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Chapter

A Study for Coupled Systems of
Nonlinear Boundary Value Problem
Noureddine Bouteraa and Habib Djourdem

Abstract

This chapter deals with the existence and uniqueness of solutions for a coupled
system of fractional differential equations with coupled nonlocal and integral boundary
conditions and for the system of two-point boundary value problem when we take the
case of integer derivative. The existence results for the fist problem are obtained by
using Leray-Shauder nonlinear alternative and Banach contraction principle and for the
second problem, we derive explicit eigenvalue intervals of λ for the existence of at least
one positive solution by using Krasnosel’skii fixed point theorem. An illustrative exam-
ples is presented at the end for each problem to illustrate the validity of our results.

Keywords: positive solution, uniqueness, Green’s function, system of fractional
differential equations, system of differential equations, existence, nonlocal boundary
value problem, fixed point theorem

1. Introduction

In this chapter, we are interested in the existence of solutions for the nonlinear
fractional boundary value problem (BVP)

cDαu tð Þ ¼ f t, u tð Þ, v tð Þð Þ, t∈ 0, 1½ �, 2< α≤ 3,
cDβv tð Þ ¼ g t, u tð Þ, v tð Þð Þ, t∈ 0, 1½ �, 2< β≤ 3,

λu 0ð Þ þ γu 1ð Þ ¼ u ηð Þ, λv 0ð Þ þ γv 1ð Þ ¼ v ηð Þ,

u 0ð Þ ¼

ðη

0
u sð Þds, v 0ð Þ ¼

ðη

0
v sð Þds,

λcDpu 0ð Þ þ γcDpu 1ð Þ¼cDpu ηð Þ, 1< p≤ 2:
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>

>

>

:

(1)

We also study the integer case of problem

u 4ð Þ tð Þ ¼ λa tð Þf v tð Þð Þ, 0< t< 1,

v 4ð Þ tð Þ ¼ λb tð Þg u tð Þð Þ, 0< t< 1,

u 0ð Þ ¼ 0, u0 0ð Þ ¼ 0, u00 1ð Þ ¼ 0, u000 1ð Þ ¼ 0,

v 0ð Þ ¼ 0, v0 0ð Þ ¼ 0, v00 1ð Þ ¼ 0, v000 1ð Þ ¼ 0:
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(2)
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where Dα
0þ ,D

β

0þ are the standard Riemann-Liouville fractional derivative of order α

and β, the functions f , g∈C 0, 1ð Þ � 
2,

� �

, the functions f , g∈C 0, 1ð Þ � ,ð Þ in the
second problem and λ>0, a, b∈C 0, 1½ �, 0,∞½ Þð Þ.

The first definition of fractional derivative was introduced at the end of the nine-
teenth century by Liouville and Riemann, but the concept of non-integer derivative
and integral, as a generalization of the traditional integer order differential and integral
calculus, was mentioned already in 1695 by Leibniz and L’Hospital. In fact, fractional
derivatives provide an excellent tool for the description of memory and hereditary
properties of various materials and processes. The mathematical modeling of systems
and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of
complex medium, polymer rheology, Bode’s analysis of feedback amplifiers, capacitor
theory, electrical circuits, electro-analytical chemistry, biology, control theory, fitting
of experimental data, involves derivatives of fractional order. In consequence, the
subject of fractional differential equations is gaining much importance and attention.
For more details we refer the reader to [1–6] and the references cited therein.

Boundary value problems for nonlinear differential equations arise in a variety of
areas of applied mathematics, physics and variational problems of control theory. A
point of central importance in the study of nonlinear boundary value problems is to
understand how the properties of nonlinearity in a problem influence the nature of
the solutions to the boundary value problems. The multi-point boundary conditions
are important in various physical problems of applied science when the controllers at
the end points of the interval (under consideration) dissipate or add energy according
to the sensors located, at intermediate points, see [7, 8] and the references therein. We
quote also that realistic problems arising from economics, optimal control, stochastic
analysis can be modelled as differential inclusion. The study of fractional differential
inclusions was initiated by EL-Sayad and Ibrahim [9]. Also, recently, several qualita-
tive results for fractional differential inclusion were obtained in [10–13] and the
references therein.

The techniques of nonlinear analysis, as the main method to deal with the prob-
lems of nonlinear differential equations (DEs), nonlinear fractional differential equa-
tions (FDEs), nonlinear partial differential equations (PDEs), nonlinear fractional
partial differential equations (FPDEs), nonlinear stochastic fractional partial differ-
ential equations (SFPDEs), plays an essential role in the research of this field, such as
establishing the existence, uniqueness and multiplicity of solutions (or positive solu-
tions) and mild solutions for nonlinear of different kinds of FPDEs, FPDEs, SFPDEs,
inclusion differential equations and inclusion fractional differential equations with
various boundary conditions, by using different techniques (approaches). For more
details, see [14–37] and the references therein. For example, iterative method is an
important tool for solving linear and nonlinear Boundary Value Problems. It has been
used in the research areas of mathematics and several branches of science and other
fields. However, Many authors showed the existence of positive solutions for a class of
boundary value problem at resonance case. Some recent devolopment for resonant
case can be found in [38, 39]. Let us cited few papers. Zhang et al. [40] studied the
existence of two positive solutions of following singular fractional boundary value
problems:

Dα
0þu tð Þ þ f t, u tð Þð Þ ¼ 0, t∈ 0, 1ð Þ

u 0ð Þ ¼ 0, Dβ
0þu 0ð Þ ¼ 0, Dβ

0þu 1ð Þ ¼
P

∞

j¼1D
β
0þu ηj

� �

,

8

<

:

(3)
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where Dα
0þ, Dβ

0þ are the stantard Riemann-Liouville fractional derivative of order
α∈ 2, 3ð �, β∈ 1, 2½ �, f ∈C 0, 1½ � � ,ð Þ and aj, ηj ∈ 0, 1ð Þ, α� β≥ 1 with
Pi¼0
∞

ajη
α�β�1
j < 1.

In [41], the authors studied the boundary value problems of the fractional order
differential equation:

Dα
0þu tð Þ ¼ f t, u tð Þð Þ ¼ 0, t∈ 0, 1ð Þ,

u 0ð Þ ¼ 0, Dβ
0þu 1ð Þ ¼ aDβ

0þu ηð Þ,

(

(4)

where 1< α≤ 2, 0< η< 1, 0< a, β< 1, f ∈C 0, 1½ � � 
2,

� �

and Dα
0þ, Dβ

0þ are the
stantard Riemann-Liouville fractional derivative of order α. They obtained the multi-
ple positive solutions by the Leray-Schauder nonlinear alternative and the fixed point
theorem on cones.

In 2015, Alsulami et al. [42] studied the existence of solutions of the following
nonlinear third-order ordinary differential inclusion with multi-strip boundary conditions

u 3ð Þ tð Þ∈F t, u tð Þð Þ, t∈ 0, 1ð Þ,

u 0ð Þ ¼ 0, u0 0ð Þ ¼ 0,

u 1ð Þ ¼
P

n�2

i¼1
αi

ηi
ζi
u sð Þds,

0< ζi < ηi < 1, i ¼ 1, 2, … , n� 2, n≥ 3:
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>

:

(5)

In 2017, Resapour et al. [43] investigated a Caputo fractional inclusion with inte-
gral boundary condition for the following problem

cDαu tð Þ∈F t, u tð Þ, cDβu tð Þ, u0 tð Þ
� �

,

u 0ð Þ þ u0 0ð ÞþcDβu 0ð Þ ¼

ðη

0
u sð Þds,

u 1ð Þ þ u0 1ð ÞþcDβu 1ð Þ ¼

ðν

0
u sð Þds,

8
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>

:

(6)

where 1< α≤ 2, η, ν, β∈ 0, 1ð Þ, F : 0, 1½ � � � �  ! 2 is a compact valued
multifunction and cDα denotes the Caputo fractional derivative of order α.

Inspired and motivated by the works mentioned above, The goal of this chapter is
to establish the existence and uniqueness results for the nonlocal boundary value
problem system (1) by using some well-known tools of fixed point theory such as
Banach contraction principle and Leray-Shauder nonlinear alternative and the exis-
tence of at least one positive solution for the system of two-point boundary value
problem (2) by using Krasnosel’skii fixed point theorem. The aim of the last results is
to establish some simple criteria for the existence of single positive solutions of the
BVPs (2) in explicit intervals for λ. The chapter is organized as follows. In Section 2,
we recall some preliminary facts that we need in the sequel, for more details; see [44]
and we give main results of problem (1). Finally, we give an example to illustrate our
result. In Section 3, deals with main results of problem (2) and we give an example to
illustrate our results.
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2. Existence and uniqueness results for problem (1)

2.1 Preliminaries

In this section, we introduce some definitions and lemmas, see [2, 4, 44–46].
Definition 2.1. Let α>0, n� 1< α< n, n ¼ α½ � þ 1 and u∈C 0,∞½ Þ,ð Þ. The

Caputo derivative of fractional order α for the function u is defined by

cDαu tð Þ ¼
1

Γ n� αð Þ

t

0

t� sð Þn�α�1u nð Þ sð Þds, (7)

where Γ �ð Þ is the Eleur Gamma function.
Definition 2.2. The Riemann-Liouville fractional integral of order α>0 of a func-

tion u : 0,∞ð Þ !  is given by

Iαu tð Þ ¼
1

Γ αð Þ

t

0

t� sð Þα�1u sð Þds, t>0, (8)

where Γ �ð Þ is the Eleur Gamma function, provided that the right side is pointwise
defined on 0,∞ð Þ.Lemma 2.1. Let α>0, n� 1< α< n and the function g : 0,T½ � !  be
continuous for each T >0. Then, the general solution of the fractional differential equation
cDαg tð Þ ¼ 0 is given by

g tð Þ ¼ c0 þ c1tþ⋯þ cn�1t
n�1, (9)

where c0, c1, … , cn�1 are real constants and n ¼ α½ � þ 1.
Also, in [19], authors have been proved that for each T >0 and u∈C 0,T½ �ð Þwe have

IαcDαu tð Þ ¼ u tð Þ þ c0 þ c1tþ⋯þ cn�1t
n�1, (10)

where c0, c1, … , cn�1 are real constants and n ¼ α½ � þ 1.

2.2 Existence results

Let X ¼ u tð Þ : u tð Þ∈C 0, 1½ �,ð Þf g endowed with the norm uk k ¼ sup
t∈ 0, 1½ �

u tð Þj j such

that uk k<∞. Then X, :k kð Þ is a Banach space and the product space X � X, u, vð Þk kð Þ is
also a Banach space equipped with the norm u, vð Þk k ¼ uk k þ vk k.

Throughout the first section, we let

M¼
Γ 3�pð Þ

γ� η2�pj j
6¼ 0, λþ γ� 1j j 6¼ 0, γ� η2

�

�

�

� 6¼ 0, Q ¼ 2 1� ηð Þ γ� ηð Þþ η2 λþ γ� 1j j
�

�

�

� 6¼ 0,

A tð Þ ¼ Λ1 tð Þj j ¼ λþ γ� 1j j η2þ 2 1� ηð Þt
� �

,

B tð Þ ¼ Λ2 tð Þj j ¼ η3 λþ γ� 1j j þ 3 γ� η2
�

�

�

� 1� ηð Þ
� �

η2þ 2 1� ηð Þt
� �

�Q η3þ 3 1� ηð Þt2
� �

,

(11)

and

Q ¼ 2 1� ηð Þ γ � ηð Þ þ η2 λþ γ � 1ð Þ 6¼ 0: (12)
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Lemma 2.2. Let y∈C 0, 1½ �,ð Þ. Then the solution of the linear differential system

cDαu tð Þ ¼ y tð Þ, cDβv tð Þ ¼ h tð Þ, t∈ 0, 1½ �, 2< α, β≤ 3

λu 0ð Þ þ γu 1ð Þ ¼ v ηð Þ, λv 0ð Þ þ γv 1ð Þ ¼ u ηð Þ,

u 0ð Þ ¼

ðη

0
v sð Þds, v 0ð Þ ¼

ðη

0
u sð Þds,

λcDpu 0ð Þ þ γcDpu 1ð Þ¼cDpv ηð Þ, 1< p≤ 2,

λcDpv 0ð Þ þ γcDpv 1ð Þ¼cDpu ηð Þ, 1< p≤ 2,

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(13)

is equivalent to the system of integral equations

u tð Þ ¼

ð

t

0

t� sð Þα�1

Γ αð Þ
y sð Þdsþ

1

1� η

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
h τð Þdτ

0

@

1

Ads

�
Λ1 tð Þ

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
h τð Þdτ

0

@

1

Ads

�
Λ2 tð ÞM

6 1� ηð ÞQ

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
h sð Þds� γ

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
y sð Þds

2

4

3

5

þ
Λ1 tð Þ

Q λþ γ � 1ð Þ

ð

η

0

η� sð Þβ�1

Γ βð Þ
h sð Þds� γ

ð

1

0

1� sð Þα�1

Γ αð Þ
y sð Þds

2

4

3

5,

(14)

and

v tð Þ ¼

ð

t

0

t� sð Þβ�1

Γ βð Þ
y sð Þdsþ

1

1� η

ð

η

0

ð

s

0

s� τð Þα�1

Γ αð Þ
h τð Þdτ

0

@

1

Ads

�
Λ1 tð Þ

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þα�1

Γ αð Þ
h τð Þdτ

0

@

1

Ads

�
Λ2 tð ÞM

6 1� ηð ÞQ

ð

η

0

η� sð Þα�p�1

Γ α� pð Þ
h sð Þds� γ

ð

1

0

1� sð Þβ�p�1

Γ α� pð Þ
y sð Þds

2

4

3

5

þ
Λ1 tð Þ

Q λþ γ � 1ð Þ

ð

η

0

η� sð Þα�1

Γ αð Þ
h sð Þds� γ

ð

1

0

1� sð Þβ�1

Γ αð Þ
y sð Þds

2

4

3

5,

(15)

where

Λ1 tð Þ ¼ λþ γ � 1ð Þ η2 þ 2 1� ηð Þt
� �

, (16)

and

Λ2 tð Þ ¼ η3 λþ γ � 1ð Þ þ 3 γ � η2
� �

1� ηð Þ
� �

η2 þ 2 1� ηð Þt
� �

� Q η3 þ 3 1� ηð Þt2
� �

:

5

A Study for Coupled Systems of Nonlinear Boundary Value Problem
DOI: http://dx.doi.org/10.5772/intechopen.105428



Proof. It is well known that the solution of equation cDαu tð Þ ¼ y tð Þ can be
written as

u tð Þ ¼ Iαy tð Þ þ c0 þ c1tþ c2t
2, (17)

v tð Þ ¼ Iβh tð Þ þ d0 þ d1tþ d2t
2, (18)

where c0, c1,c2 ∈ and and d0, d1,d2 ∈ are arbitrary constants.
Then, from (68) we have

u0 tð Þ ¼ Iα�1y tð Þ þ c1 þ 2c2t, (19)

and

cDpu tð Þ ¼ Iα�py tð Þ þ c2
2t2�p

Γ 3� pð Þ
, 1< p≤ 2: (20)

By using the three-point boundary conditions, we obtain.

c2 ¼
M

2
Iβ�py ηð Þ � γIα�py 1ð Þ
� �

,

c0 ¼ �
2η2 λþ γ � 1ð Þ

2 1� ηð ÞQ

ð

η

0

ð

s

0

s� τð Þβ�1

Г βð Þ
h τð Þdτ

0

@

1

Adsþ
1

1� η

ð

η

0

ð

s

0

s� τð Þβ�1

Г βð Þ
h τð Þdτ

0

@

1

Ads

�
η2 η3 λþ γ � 1ð Þ þ 3 γ � η2ð Þ 1� ηð Þ½ � � η3Qð ÞM

2 1� ηð ÞQ

ð

η

0

η� sð Þβ�p�1

Г β � pð Þ
h sð Þds

2

4

�γ

ð

1

0

1� sð Þα�p�1

Г α� pð Þ
y sð Þds

3

5þ
η2

Q

ð

η

0

η� sð Þβ�1

Г βð Þ
h sð Þds� γ

ð

1

0

1� sð Þα�1

Г αð Þ
y sð Þds

2

4

3

5,

(21)

and

c1 ¼
�2 λþ γ � 1ð Þ

Q

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
h τð Þdτ

0

@

1

Ads

�
η3 λþ γ � 1ð Þ þ 3 γ � η2ð Þ 1� ηð Þð ÞM

3Q

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
h sð Þds� γ

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
y sð Þds

2

4

3

5

þ
2 1� ηð Þ

Q

ð

η

0

η� sð Þβ�1

Γ βð Þ
y sð Þds� γ

ð

1

0

1� sð Þα�1

Γ αð Þ
y sð Þds

2

4

3

5:

(22)

Substituting the values of constants c0, c1 and c2 in (68), we get solution (64).
Similarly, we obtain solution (65). The proof is complete.

The following rolations hold:

A tð Þj j≤ β þ γ � 1j j η2 þ 2 1� ηð Þ
� �

¼ A1, (23)
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and

B tð Þj j≤ η3 β þ γ � 1j j þ 3 γ � η2
�

�

�

� 1� ηð Þ
� �

η2 þ 2 1� ηð Þ
� �

� Q η3 þ 3 1� ηð Þ
� ��

�

�

� ¼ B1,

(24)

For the sake of brevity, we set

Δ1 ¼
ηβþ1

1� ηð ÞΓ β þ 2ð Þ
þ

A1η
βþ1

Q 1� ηð ÞΓ β þ 2ð Þ
þ

MB1η
β�p

1� ηð ÞQΓ λ� pþ 1ð Þ

þ
A1η

β

Q β þ γ � 1j jΓ β þ 1ð Þ

Δ2 ¼
MB1γ

6 1� ηð ÞQΓ α� pþ 1ð Þ
þ

A1γ

Q λþ γ � 1j jΓ αþ 1ð Þ
þ

1

Γ αþ 1ð Þ

Δ3 ¼
ηαþ1

1� ηð ÞΓ αþ 2ð Þ
þ

A1η
αþ1

Q 1� ηð ÞΓ αþ 2ð Þ
þ

MB1η
α�p

1� ηð ÞQΓ α� pþ 1ð Þ

þ
A1η

α

Q λþ γ � 1j jΓ αþ 1ð Þ
,

(25)

and

Δ4 ¼
MB1γ

6 1� ηð ÞQΓ β � pþ 1ð Þ
þ

A1γ

Q λþ γ � 1j jΓ β þ 1ð Þ
þ

1

Γ β þ 1ð Þ
: (26)

In view of Lemma 2, we define the operator T : X � X ! X � X by

T u, vð Þ tð Þ ¼
T1 u, vð Þ tð Þ

T2 u, vð Þ tð Þ

� �

, (27)

where

T1 u, vð Þ tð Þ ¼

ð

t

0

t� sð Þα�1

Γ αð Þ
f s, u sð Þ, v sð Þð Þdsþ

1

1� η

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
g τ, u τð Þ, v τð Þð Þdτ

0

@

1

Ads

�
B tð ÞM

6 1� ηð ÞQ

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
g s, u sð Þ, v sð Þð Þds� γ

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
f s, u sð Þ, v sð Þð Þds

2

4

3

5

þ
A tð Þ

Q β þ γ � 1j j

ð

η

0

η� sð Þβ�1

Γ βð Þ
g s, u sð Þ, v sð Þð Þds� γ

ð

1

0

1� sð Þα�1

Γ αð Þ
f s, u sð Þ, v sð Þð Þds:

2

4

3

5

�
A tð Þ

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
g τ, u τð Þ, v τð Þð Þdτ

0

@

1

Ads,

(28)
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and

T2 u, vð Þ tð Þ ¼

ð

t

0

t� sð Þβ�1

Γ βð Þ
g s, u sð Þ, v sð Þð Þdsþ

1

1� η

ð

η

0

ð

s

0

s� τð Þα�1

Γ αð Þ
f τ, u τð Þ, v τð Þð Þdτ

0

@

1

Ads

�
B tð ÞM

6 1� ηð ÞQ

ð

η

0

η� sð Þα�p�1

Γ α� pð Þ
f s, u sð Þ, v sð Þð Þds� γ

ð

1

0

1� sð Þβ�p�1

Γ β � pð Þ
g s, u sð Þ, v sð Þð Þds

2

4

3

5

þ
A tð Þ

Q β þ γ � 1j j

ð

η

0

η� sð Þα�1

Γ αð Þ
f s, u sð Þ, v sð Þð Þds� γ

ð

1

0

1� sð Þβ�1

Γ βð Þ
g s, u sð Þ, v sð Þð Þds:

2

4

3

5

�
A tð Þ

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þα�1

Γ αð Þ
f τ, u τð Þ, v τð Þð Þdτ

0

@

1

Ads:

(29)

Observe that the boundary value problem (1) has solutions if the operator equation
u, vð Þ ¼ T u, vð Þ has fixed points.

Now we are in a position to present the first main results of this paper. The
existence results is based on Leray-Shauder nonlinear alternative.

Lemma 2.3. [44] (Leray-Schauder alternative). Let E be a Banach space and T : E !
E be a completely continuous operator (i.e., a map restricted to any bounded set in E is
compact). Let

ε ¼ u, vð Þ∈X � X : u, vð Þ ¼ λT u, vð Þ, for some0< λ< 1f g: (30)

Then either the ε Tð Þ is unbounded or T has at least one fixed point.
Theorem 1.1 Assume that f , g : 0, 1½ � � �  !  are a continuous function and.
H1ð Þ there exist a function ki ≥0mi ≥0, i ¼ 1, 2 and k0 >0,m0 >0 such that

∀u∈, ∀v∈, i ¼ 1, 2, we have

f t, u, vð Þj j≤ k0 þ k1 uj j þ k2 vj j, (31)

and

g t, u, vð Þj j≤m0 þm1 uj j þm2 vj j: (32)

If Δ2 þ Δ3ð Þk1 þ Δ1 þ Δ4ð Þm1 < 1 and Δ2 þ Δ3ð Þk2 þ Δ1 þ Δ4ð Þ,m3 < 1, where
Δi, i ¼ 1, 2, 3, 4 are given above. Then the boundary value problem (1)–(58) has at
least one solution on [0,1].

Proof. It is clear that T is a continuous operator where T : X � X ! X � X is
defined above. Now, we show that T is completely continuous. Let Ω⊂X � X be
bounded. Then there exist positive constants L1 and L2 such that

f t, u tð Þ, v tð Þð Þj j≤L1, g t, u tð Þ, v tð Þð Þj j≤L2, ∀ u, vð Þ∈Ω: (33)
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Then for any u, vð Þ∈Ω, we have

T1 u, vð Þ tð Þj j≤
L2

1� η

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Ads

þ
A tð Þj jL2

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Adsþ L1

ð

t

0

t� sð Þα�1

Γ αð Þ
ds

þ
M B tð Þj j

6 1� ηð ÞQ
L2

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
dsþ γL1

ð

0

0

1� sð Þα�p�1

Γ α� pð Þ
ds

2

4

3

5

þ
A tð Þj j

Q λþ γ � 1j j
L2

ð

η

0

η� sð Þβ�1

Γ βð Þ
dsþ γL1

ð

1

0

1� sð Þα�1

Γ αð Þ
ds

2

4

3

5,

≤L2
1

1� η

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Adsþ
A1

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ αβð Þ
dτ

0

@

1

Ads

8

<

:

þ
MB1

6 1� ηð ÞQ

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
dsþ

A1

6 λþ γ � 1j j

ð

η

0

η� sð Þβ�1

Γ βð Þ
ds

9

=

;

þL1
MγB1

6 1� ηð ÞQ

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
dsþ

A1γ

Q λþ γ � 1j j

ð

1

0

1� sð Þα�1

Γ αð Þ
ds

8

<

:

þ

ð

t

0

t� sð Þα�1

Γ αð Þ
ds

9

=

;

,

≤L2Δ1 þ L1Δ2:

(34)

Hence

T1 u, vð Þk k≤L2Δ1 þ L1Δ2: (35)

In the same way, we can obtain that

T2 u, vð Þk k≤L1Δ3 þ L2Δ4: (36)

Thus, it follows from (78) and (95) that the operator T is uniformly bounded, since
T u, vð Þk k≤L1 Δ1 þ Δ3ð Þ þ L2 Δ2 þ Δ4ð Þ. Now, we show that T is equicontinuous. Let

t1, t2 ∈ 0, 1½ � with t1 < t2. Then we have

T1 u t2ð Þ, v t2ð Þð Þ � T1 u t1ð Þ, v t1ð Þð Þj j≤L1

ð

t1

0

t2 � sð Þα�1 � t1 � sð Þα�1

Γ αð Þ
ds

þL1

ð

t2

t1

t2 � sð Þα�1

Γ αð Þ
dsþ

A t2ð Þ � A t1ð Þj jL2

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Ads

þ
B t2ð Þ � B t1ð Þð ÞM

6 1� ηð ÞQ
L2

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
dsþ γL1

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
ds

2

4

3

5

þ
A t2ð Þ � A t1ð Þ

Q λþ γ � 1j j
L2

ð

η

0

η� sð Þβ�1

Γ βð Þ
ds� γL1

ð

1

0

1� sð Þα�1

Γ αð Þ
ds

2

4

3

5:

(37)
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Obviously, the right-hand side of the above inequality tends to zero as t2 ! t1.
Similarly, we have

T2 u t2ð Þ, v t2ð Þð Þ � T2 u t1ð Þ, v t1ð Þð Þj j≤L2

ð

t1

0

t2 � sð Þβ�1 � t1 � sð Þβ�1

Γ βð Þ
ds

þL2

ð

t2

t1

t2 � sð Þβ�1

Γ βð Þ
dsþ

A t2ð Þ � A t1ð Þj jL1

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þα�1

Γ αð Þ
dτ

0

@

1

Ads

þ
B t2ð Þ � B t1ð Þð ÞM

6 1� ηð ÞQ
L1

ð

η

0

η� sð Þα�p�1

Γ α� pð Þ
dsþ γL2

ð

1

0

1� sð Þβ�p�1

Γ β � pð Þ
ds

2

4

3

5

þ
A t2ð Þ � A t1ð Þ

Q λþ γ � 1j j
L1

ð

η

0

η� sð Þα�1

Γ αð Þ
ds� γL2

ð

1

0

1� sð Þβ�1

Γ βð Þ
ds

2

4

3

5:

(38)

Again, it is seen that the right-hand side of the above inequality tends to zero as
t2 ! t1. Thus, the operator T is equicontinuous.

Therefore, the operator T is completely continuous.
Finally, it will be verified that the set ε ¼

u, vð Þ∈X � X : u, vð Þ ¼ λT u, vð Þ, 0≤ λ≤ 1f g is bounded. Let u, vð Þ∈ ε, with u, vð Þ ¼
λT u, vð Þ for any t∈ 0, 1½ �, we have

u tð Þ ¼ λT1 u, vð Þ tð Þ, v tð Þ ¼ λT2 u, vð Þ tð Þ: (39)

Then

u tð Þj j≤Δ2 k0 þ k1 uj j þ k2 vj jð Þ þ Δ1 m0 þm1 uj j þm2 vj jð Þ,

¼ Δ2k0 þ Δ1m0 þ Δ2k1 þ Δ1m1ð Þ uj j þ Δ2k2 þ Δ1m2ð Þ vj j,
(40)

and

v tð Þj j≤Δ3 k0 þ k1 uj j þ k2 vj jð Þ þ Δ4 m0 þm1 uj j þm2 vj jð Þ,

¼ Δ3k0 þ Δ4m0 þ Δ3k1 þ Δ4m1ð Þ uj j þ Δ3k2 þ Δ4m2ð Þ vj j:
(41)

Hence we have

uk k ¼ Δ2k0 þ Δ1m0 þ Δ2k1 þ Δ1m1ð Þ uk k þ Δ2k2 þ Δ1m2ð Þ vk k, (42)

and

vk k ¼ Δ3k0 þ Δ4m0 þ Δ3k1 þ Δ4m1ð Þ uj j þ Δ3k2 þ Δ4m2ð Þ vj j, (43)

which imply that

uk k þ vk k ¼ Δ2 þ Δ3ð Þk0 þ Δ1 þ Δ4ð Þm0 þ Δ2 þ Δ3ð Þk1 þ Δ1 þ Δ4ð Þm1½ � uk k

þ Δ2 þ Δ3ð Þk2 þ Δ1 þ Δ4ð Þm2½ � vk k:
(44)

Consequently,
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u, vð Þk k ¼
Δ2 þ Δ3ð Þk0 þ Δ1 þ Δ4ð Þm0

Δ0
, (45)

where

Δ0 ¼ min 1� Δ2 þ Δ3ð Þk1 þ Δ1 þ Δ4ð Þm1½ �, 1� Δ2 þ Δ3ð Þk2 þ Δ1 þ Δ4ð Þm2½ �f g,

(46)

which proves that ε is bounded. Thus, by Lemma 15, the operator T has at least one
fixed point. Hence boundary value problem (1) has at least one solution. The proof is
complete.

Now, we are in a position to present the second main results of this paper.

Theorem 1.2 Assume that f , g : 0, 1½ � � 
2 !  are continuous functions and there

exist positive constants L1 and L2 such that for all t∈ 0, 1½ � and ui, vi ∈, i ¼ 1, 2, we have.

1. f t, u1, u2ð Þ � f t, v1, v2ð Þj j≤L1 u1 � v1j j þ u2 � v2j jð Þ,

2. g t, u1, u2ð Þ � g t, v1, v2ð Þj j≤L2 u1 � v1j j þ u2 � v2j jð Þ.

Then the boundary value problem (1) has a unique solution on [0,1] provided

Δ1 þ Δ3ð ÞL1 þ Δ2 þ Δ4ð ÞL2 < 1: (47)

Proof. Let us set sup
t∈ 0, 1½ �

f t, 0, 0ð Þj j ¼ N1 <∞ and sup
t∈ 0, 1½ �

g t, 0, 0ð Þj j ¼ N2 <∞.

For u∈X, we observe that

f t, u tð Þ, v tð Þð Þj j ≤ f t, u tð Þð Þ � f t, 0, 0ð Þj j þ f t, 0, 0ð Þj j,

≤L1 u tð Þj j þ v tð Þj jð Þ þN1,

≤L1 uk k þ vk kð Þ þN1,

(48)

and

g t, u tð Þ, v tð Þð Þj j≤ g t, u tð Þð Þ � g t, 0, 0ð Þj j þ g t, 0, 0ð Þj j≤L2 uk k þN2: (49)

Then for u∈X, we have

T1 u, vð Þ tð Þj j≤
1

1� η

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
L2 u, vð Þk k þN2½ �dτ

0

@

1

Ads

þ
A tð Þj j

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
L2 u, vð Þk k þN2½ �dτ

0

@

1

Adsþ

ð

t

0

t� sð Þα�1

Γ αð Þ
L1 u, vð Þk k þN1½ �ds

þ
M B tð Þj j

6 1� ηð ÞQ

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
L2 u, vð Þk k þN2½ �dsþ γ

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
L1 u, vð Þk k þN1½ �ds

2

4

3

5

þ
A tð Þj j

Q λþ γ � 1j j

ð

η

0

η� sð Þβ�1

Γ βð Þ
L2 u, vð Þk k þN2½ �dsþ γ

ð

1

0

1� sð Þα�1

Γ αð Þ
L1 u, vð Þk k þN1½ �ds,

2

4

3

5
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≤ L2 u, vð Þk k þN2ð Þ
1

1� η

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Adsþ
A1

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Ads

8

<

:

þ
MB1

6 1� ηð ÞQ

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
dsþ

A1

6 λþ γ � 1j j

ð

η

0

η� sð Þβ�1

Γ βð Þ
ds

9

=

;

þ
MB1

6 1� ηð ÞQ

ð

η

0

η� sð Þβ�p�1

Γ β � pð Þ
dsþ

A1

6 λþ γ � 1j j

ð

η

0

η� sð Þβ�1

Γ βð Þ
ds

9

=

;

þ L1 u, vð Þk k þN1ð Þ

ð

t

0

t� sð Þα�1

Γ αð Þ
ds

8

<

:

þ
MγB1

6 1� ηð ÞQ

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
dsþ

A1γ

Q λþ γ � 1j j

ð

1

0

1� sð Þα�1

Γ αð Þ
ds

9

=

;

,

≤ L2rþN2ð ÞΔ1 þ L1rþN1ð ÞΔ2

(50)

Hence

T1 u, vð Þk k≤ L2Δ1 þ L1Δ2ð ÞrþN2Δ1 þN1Δ2 (51)

In the same way, we can obtain that

T2 u, vð Þk k≤ L1Δ3 þ L2Δ4ð ÞrþN2Δ4 þN1Δ3: (52)

Consequently,

T u, vð Þk k≤ Δ2 þ Δ3ð ÞL1 þ Δ1 þ Δ4ð ÞL2ð ÞrþN2 Δ1 þ Δ4ð Þ þN1 Δ2 þ Δ3ð Þ≤ r: (53)

Now, for u1, v1ð Þ, u2, v2ð Þ∈X � X and for each t∈ 0, 1½ �, it follows from assumption
H3ð Þ that

T1 u2, v2ð Þ tð Þ � T1 u1, v1ð Þ tð Þj j≤L2 u2 � u1k k þ v2 � v1k kð Þ
1

1� η

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Ads

8

<

:

þ
A1

Q 1� ηð Þ

ð

η

0

ð

s

0

s� τð Þβ�1

Γ βð Þ
dτ

0

@

1

Ads

þ
MB1

6 1� ηð ÞQ

η

0

η� sð Þβ�p�1

Γ β � pð Þ
dsþ

A1

6 λþ γ � 1j j

ð

η

0

η� sð Þβ�1

Γ βð Þ
ds

9

=

;

þL1 u2 � u1k k þ v2 � v1k kð Þ

ð

t

0

t� sð Þα�1

Γ αð Þ
ds

8

<

:

þ
MγB1

6 1� ηð ÞQ

ð

1

0

1� sð Þα�p�1

Γ α� pð Þ
dsþ

A1γ

Q λþ γ � 1j j

ð

1

0

1� sð Þα�1

Γ αð Þ
ds

9

=

;

≤ L2Δ1 þ L1Δ2ð Þ u2 � u1k k þ v2 � v1k kð Þ:

(54)
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Thus

T1 u2, v2ð Þ � T1 u1, v1ð Þk k≤ L2Δ1 þ L1Δ2ð Þ u2 � u1k k þ v2 � v1k kð Þ: (55)

Similarly,

T2 u2, v2ð Þ � T2 u1, v1ð Þk k≤ L2Δ3 þ L1Δ4ð Þ u2 � u1k k þ v2 � v1k kð Þ: (56)

It follows from (101) and (110) that

T u2, v2ð Þ � T u1, v1ð Þk k≤ L2 Δ1 þ Δ3ð Þ þ L1 Δ2 þ Δ4ð Þð Þ u2 � u1k k þ v2 � v1k kð Þ: (57)

Since L2 Δ1 þ Δ3ð Þ þ L1 Δ2 þ Δ4ð Þ< 1, thus T is a contraction operator. Hence it
follows by Banach’s contraction principle that the boundary value problem (1) has a
unique solution on 0, 1½ �.

We construct an example to illustrate the applicability of the results presented.
Example 2.1. Consider the following system fractional differential equation

cD3u tð Þ ¼
t

8
cos tð Þð Þ sin

u tð Þj j þ v tð Þj j

2

� �� �

þ
e� u tð Þþv tð Þð Þ2

1þ t2
, t∈ 0, 1½ �,

cD3v tð Þ ¼
1

32
sin 2πu tð Þð Þ þ

v tð Þj j

16 1þ v tð Þj jð Þ
þ

1

2
, t∈ 0, 1½ �,

8

>

>

>

<

>

>

>

:

(58)

subject to the three-point coupled boundary conditions

1

100
u 0ð Þ þ

1

10
u 1ð Þ ¼ u

1

2

� �

,

u 0ð Þ ¼

ð0,5

0
u sð Þds,

1
100

c
D

3
2u 0ð Þ þ 1

10
c
D

3
2u 1ð Þ¼cD

3
2u

1

2

� �

,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(59)

where f t, u, vð Þ ¼ t
8 cos tð Þð Þ sin uj jþ vj j

2

� �� �

þ e� uþvð Þ2

1þt2 , t∈ 0, 1½ �, η ¼ 0, 5, λ ¼ 0, 01, γ ¼

0, 1, p ¼ 1, 5 and g t, u, vð Þ ¼ 1
32π sin 2πu tð Þð Þ þ v tð Þj j

16 1þ v tð Þj jð Þ þ
1
2.

It can be easily found that M ¼ 20
3 and Q ¼ 9

400.

Furthermore, by simple computation, for every ui, vi ∈, i ¼ 1, 2, we have

f t, u1, u2ð Þ � f t, v1, v2ð Þj j≤L u1 � v1j j þ u2 � v2j jð Þ, (60)

and

g t, u1, u2ð Þ � g t, v1, v2ð Þj j≤L u1 � v1j j þ u2 � v2j jð Þ, (61)

where L1 ¼ L2 ¼ L ¼ 1
16. It can be easily found that Δ1 ¼ Δ3 ffi 0, 799562, Δ2 ¼

Δ4 ffi 1, 182808.
Finally, since L1 Δ1 þ Δ3ð Þ þ L2 Δ2 þ Δ4ð Þ ¼ 2L Δ1 þ Δ2ð Þ ffi 0, 247796< 1, thus all

assumptions and conditions of Theorem 1.2 are satisfied. Hence, Theorem implies that
the three-point boundary value problem (58, 59) has a unique solution.
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3. Existence result for second problem (2)

We provide another results about the existence of solutions for the problem (2) by
using the assumption.

We shall consider the Banach space B ¼ C 0, 1½ �ð Þ equipped with usual supermum
norm and Bþ ¼ Cþ 0, 1½ �ð Þ. In arriving our results, we present some notation and
preliminary lemmas. The first is well known.

Lemma 3.1. Let y tð Þ∈C 0, 1½ �. If u∈C4 0, 1½ �, then the BVP

u 4ð Þ tð Þ ¼ y tð Þ, 0≤ t≤ 1,

u 0ð Þ ¼ u0 0ð Þ ¼ u00 1ð Þ ¼ u000 1ð Þ ¼ 0,

(

(62)

has a unique solution

u tð Þ ¼

ð

1

0

G t, sð Þy sð Þds, (63)

where

G t, sð Þ ¼

1

6
t2 3s� tð Þ, 0≤ t≤ s≤ 1,

1

6
s2 3t� sð Þ, 0≤ s≤ t≤ 1:

8

>

>

<

>

>

:

(64)

Lemma 3.2. For any t, sð Þ∈ 0, 1½ � � 0, 1½ �, we have

0≤G t, sð Þ≤G 1, sð Þ ¼
1

6
s2 3� sð Þ ¼ ψ sð Þ: (65)

Proof. The derivatives of the function G with respect to t is

∂

∂t
G t, sð Þ ¼

1

2
s2 �

1

2
s� tð Þ2, 0≤ t≤ s≤ 1

1

2
s2, 0≤ s≤ t≤ 1:

8

>

>

<

>

>

:

(66)

Since the derivative of the function G with respect to t is nonnegative for all
t∈ 0, 1½ �, G is nondecreasing function of t that attaints its maximum when t ¼ 1. Then

max
0≤ t≤ 1

G t, sð Þ ¼ G 1, sð Þ ¼
1

2
s2 �

1

6
s3: (67)

Lemma 3.3. Let 0< θ< 1. Then for y tð Þ∈Cþ 0, 1½ �, the unique solution u tð Þ of BVP 14ð Þ
is nonnegative and satisfies

min
t∈ θ, 1½ �

u tð Þ≥
2θ3

3
uk k: (68)

Proof. Let y tð Þ∈Cþ 0, 1½ �, then from G t, sð Þ≥0 we know u∈Cþ 0, 1½ �. Set u t0ð Þ ¼
uk k, t0 ∈ 0, 1ð �. We first prove that
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G t, sð Þ

G t0, sð Þ
≥

2

3
t3, t, t0, s∈ 0, 1ð �: (69)

In fact, we can consider four cases:

1. if 0< t, t0 ≤ s≤ 1, then

G t, sð Þ

G t0, sð Þ
¼

t2 3s� tð Þ

t20 3s� t0ð Þ
≥

t2 2sð Þ

3s� t0
≥

t2 2sð Þ

3
≥

t2 2tð Þ

3
¼

2t3

3
, (70)

2. if 0< t≤ s≤ t0 ≤ 1, then

G t, sð Þ

G t0, sð Þ
¼

t2 3s� tð Þ

t20 3s� t0ð Þ
≥

t2 2sð Þ

3s� t0
≥

t2 2sð Þ

3
≥

t2 2tð Þ

3
¼

2t3

3
, (71)

3. if 0< s≤ t, t0 ≤ 1, then

G t, sð Þ

G t0, sð Þ
¼

s2 3t� sð Þ

s2 3t0 � sð Þ
¼

3t� s

3t0 � s
≥

3t� s

3t0
≥

3t� s

3
≥

2tþ t� s

3
≥

2t

3
≥

2t3

3
, (72)

4. if 0< t0 ≤ s≤ t≤ 1, then

G t, sð Þ

G t0, sð Þ
¼

s2 3t� sð Þ

t20 3s� t0ð Þ
≥

t20 3t� sð Þ

t20 3t� t0ð Þ
≥

3t� s

3t
≥

3t� t

3t
≥

2t

3
≥

2t3

3
, (73)

Therefore, for t∈ θ, 1½ �, we have

u tð Þ ¼

ð

1

0

G t, sð Þy sð Þds ¼

ð

1

0

G t, sð Þ

G t0, sð Þ
G t0, sð Þy sð Þds≥

2t3

3
u t0ð Þ≥

2θ3

3
uk k: (74)

The proof is complete.
If we let

K ¼ x∈B : x tð Þ≥0 on 0, 1½ �, and min
t∈ θ, 1½ �

x tð Þ≥
2θ3

3
xk k

	 


(75)

then it is easy to see that K a cone in B. We not that a pair u tð Þ, v tð Þð Þ is a solution of
BVPs (2) if, and only if

u tð Þ ¼ λ

ð

1

0

G t, sð Þa sð Þf λ

ð

1

0

G s, rð Þb rð Þg u rð Þð Þdr

0

@

1

Ads, t∈ 0, 1½ �, (76)

and

v tð Þ ¼ λ

ð

1

0

G t, sð Þb sð Þg u sð Þð Þds, t∈ 0, 1½ �: (77)
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Now, we define an integral operator T : K ! B by

Tuð Þ tð Þ ¼ λ

ð

1

0

G t, sð Þa sð Þf λ

ð

1

0

G s, rð Þb rð Þg u rð Þð Þdr

0

@

1

Ads, u∈K: (78)

We adopt the following assumptions:
H1ð Þ a, b∈C 0, 1ð Þ, 0,∞½ Þð Þ and each does not vanish identically on any subinterval.
H2ð Þ f , g∈C 0,∞½ Þ, 0,∞½ Þð Þ and each to be singular at t ¼ 0or t ¼ 1.

H3ð Þ All of f 0 ¼ lim
x!0þ

f xð Þ
x , g0 ¼ lim

x!0þ

g xð Þ
x , f

∞
¼ lim

x!∞

f xð Þ
x , and g

∞
¼ lim

x!∞

g xð Þ
x exist

as real numbers.
H4ð Þ g 0ð Þ ¼ 0 and f is increasing function.
Lemma 3.4 Let λ be positive number and K be the cone defined above.

i. If u∈Bþ and v : 0, 1½ � ! 0,∞½ Þ is defined by (77), then v∈K.

ii. If T is the integral operator defined by (78), then T Kð Þ⊂K.

iii. Assume that H1ð Þ, H2ð Þ hold. Then T : K ! B is completely continuous.

Proof. Let u∈Bþ and v be defined by (77).

i. By the nonnegativity of G, b and g it follows that v tð Þ≥0, t∈ 0, 1½ �. In view of
H1ð Þ, H2ð Þ, we have

ð

1

0

G t, sð Þb sð Þg u sð Þð Þds≥

ð

1

0

min
t∈ θ, 1½ �

G t, sð Þb sð Þg u sð Þð Þds, (79)

from which, we take

min
t∈ θ, 1½ �

ð

1

0

G t, sð Þb sð Þg u sð Þð Þds≥

ð

1

0

min
t∈ θ, 1½ �

G t, sð Þb sð Þg u sð Þð Þds: (80)

Consequently, employing (68) and for λ>0, we have

λ

ð

1

0

G t, sð Þb sð Þg u sð Þð Þds ≥ λ

ð

1

0

min
t∈ θ, 1½ �

G t, sð Þb sð Þg u sð Þð Þds

≥
2θ3

3
λ

ð

1

0

G t0, sð Þb sð Þg u sð Þð Þds

≥
2θ3

3
v t0ð Þ, t0 ∈ 0, 1ð �

≥
2θ3

3
vk k:

(81)
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Therefore

min
t∈ θ, 1½ �

v tð Þ≥
2θ3

3
vk k: (82)

Which give that v∈K.

ii. Obviously, for v∈K, T uð Þ∈Cþ 0, 1½ �. For t∈ 0, 1½ �, we have

Tu tð Þk k ¼ max
0≤ t≤ 1

λ

ð

1

0

G t, sð Þa sð Þf v sð Þð Þds

≤ λ

ð

1

0

G 1, sð Þa sð Þf v sð Þð Þds,

(83)

and

Tu tð Þ ¼ λ

ð

1

0

G t, sð Þa sð Þf v sð Þð Þds

¼ λ

ð

1

0

G t, sð Þ

G 1, sð Þ
G 1, sð Þa sð Þf v sð Þð Þds

≥
2θ3

3
λ

ð

1

0

G 1, sð Þa sð Þf v sð Þð Þds

≥
2

3
θ3 Tu tð Þk k:

(84)

Which give that Tu∈K. Therefore T : K ! K.

iii. By using standard arguments it is not difficult to show that the operator T :

K ! B is completely continuous.

The key tool in our approach is the following Krasnoselskii’s fixed point theorem of
cone expansion-compression type.

Theorem 1.3 (See [47]) Let B be a Banach space and K ⊂B be a cone in B. Assume

Ω1 and Ω2 are open subset of B with 0∈Ω1 and Ω1 ⊂Ω2,

T : K ∩ Ω2nΩ1

� �

! K be a completely continuous operator such that.

i. Tuk k≤ uk k, ∀u∈K ∩ ∂Ω1 and Tuk k≥ uk k, ∀u∈K ∩ ∂Ω2; or.

ii. Tuk k≥ uk k, ∀u∈K ∩ ∂Ω1 and Tuk k≤ uk k, ∀u∈K ∩ ∂Ω2.

Then, T has a fixed point in K ∩ Ω2nΩ1

� �

. Throughout this section, we shall use the
following notations:

17

A Study for Coupled Systems of Nonlinear Boundary Value Problem
DOI: http://dx.doi.org/10.5772/intechopen.105428



L1 ¼ max
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þf
∞
dr

2

4

3

5

�1

,
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þg
∞
dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

(85)

and

L2 ¼ min

ð

1

0

ψ rð Þa rð Þf 0dr

2

4

3

5

�1

,

ð

1

0

ψ rð Þb rð Þg0dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

: (86)

L3 ¼ max
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þf 0dr

2

4

3

5

�1

,
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þg0dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

(87)

and

L4 ¼ min

ð

1

θ

ψ rð Þa rð Þf
∞
dr

2

4

3

5

�1

,

ð

1

θ

ψ rð Þb rð Þg
∞
dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

: (88)

4. Existence results

In this section, we discuss the existence of at least one positive solution for BVPs
(2). We obtain the following existence results, by applying the positivity of Green’s
function G t, sð Þ and the fixed-point of cone expansion-compression type.

Theorem 1.4 Assume conditions H1ð Þ, H2ð Þ and H3ð Þ are satisfied. Then, for each λ

satisfying L1 < λ<L2 there exists a pair u, vð Þ satisfying BVPs (2) such that u tð Þ>0 and
v tð Þ>0 on 0, 1ð Þ.

Proof. Let L1 < λ<L2. And let ε>0 be chosen such that

max
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þ f
∞
� ε

� �

dr

2

4

3

5

�1

,
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þ g
∞
� ε

� �

dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

≤ λ,

(89)

and

λ≤ min

ð

1

θ

ψ rð Þa rð Þ f 0 þ ε
� �

dr

2

4

3

5

�1

,

ð

1

θ

ψ rð Þb rð Þ g0 þ ε
� �

dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

: (90)

From the definitions of f 0 and g0 there exists an R1 >0 such that

f uð Þ≤ f 0 þ ε
� �

u, 0< u≤R1, (91)

and

g uð Þ≤ g0 þ ε
� �

u, 0< u≤R1, (92)
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Let u∈K with uk k ¼ R1. From (65) and choice of ε, we have

λ

ð

1

0

G t, sð Þb rð Þg u rð Þð Þ ≤ λ

ð

1

0

ψ rð Þb rð Þg u rð Þð Þdr

≤ λ

ð

1

0

ψ rð Þb rð Þ g0 þ ε
� �

u rð Þdr

≤ uk kλ

ð

1

0

ψ rð Þb rð Þdr g0 þ ε
� �

dr

≤R1 ¼ uk k:

(93)

Consequently, from (65) and choice of ε, we have

Tu tð Þ ¼ λ

ð

1

0

G t, sð Þa sð Þf λ

ð

1

0

G s, rð Þb rð Þg u rð Þð Þdr

0

@

1

Ads

≤ λ

ð

1

0

ψ sð Þa sð Þf λ

ð

1

0

G s, rð Þb rð Þg u rð Þð Þdr

0

@

1

Ads

≤ λ

ð

1

0

ψ sð Þa sð Þ f 0 þ ε
� �

λ

ð

1

0

G s, rð Þb rð Þg u rð Þð Þdr

2

4

3

5ds

≤ λ

ð

1

0

ψ sð Þa sð Þ f 0 þ ε
� �

R1ds

≤R1 ¼ uk k:

(94)

So, Tuk k≤ uk k. If we set Ω1 ¼ u∈B : uk k<R1f g, then

Tuk k≤ uk k, for u∈K ∩ ∂Ω1 (95)

Considering the definitions of f
∞
and g

∞
there exists an R2 >0 such that

f uð Þ≥ f
∞
� ε

� �

u, 0< u≤R2, (96)

and

g uð Þ≥ g
∞
� ε

� �

u, 0< u≤R2: (97)

Let u∈K and R2 ¼ max 2R1,
3R2

2θ3

n o

with uk k ¼ R2, then

min
s∈ θ, 1½ �

u sð Þ≥
2

3
θ3 uk k≥R2 (98)
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Thus, from (68) and choice of ε, we have

λ

ð

1

0

G t, sð Þb rð Þg u rð Þð Þ ≥
2θ3

3
λ

ð

1

0

G 1, rð Þb rð Þg u rð Þð Þdr

≥
2θ3

3
λ

ð

1

θ

ψ rð Þb rð Þ g
∞
� ε

� �

u rð Þdr

≥ uk k
2θ3

3

� �2

λ

ð

1

θ

ψ rð Þb rð Þdr g
∞
� ε

� �

dr

≥R2 ¼ uk k:

(99)

Consequently, from (77) and choice of ε, we have

Tu tð Þ ≥
2θ

3
λ

ð

1

θ

ψ sð Þa sð Þf λ

ð

1

θ

G s, rð Þb rð Þg u rð Þð Þdr

0

@

1

Ads

≥
2θ3

3
λ

ð

1

θ

ψ sð Þa sð Þ f
∞
� ε

� �

λ

ð

1

θ

G s, rð Þb rð Þg u rð Þð Þdr

2

4

3

5ds

≥
2θ3

3
λ

ð

1

θ

ψ sð Þa sð Þ f
∞
� ε

� �

H2ds

≥
2θ3

3

� �2

λ

ð

1

θ

ψ sð Þa sð Þ f
∞
� ε

� �

H2ds

≥R2 ¼ uk k:

(100)

So, Tuk k≥ uk k. If we set Ω2 ¼ u∈B : uk k<R2f g, then

Tuk k≥ uk k, for u∈K ∩ ∂Ω2: (101)

Applying (i) of Theorem 3.1 to (95) and (101), yields that T has a fixed point

u ∗ ∈K ∩ Ω2=Ω1

� �

. As such and with v defined by

v tð Þ ¼ λ

ð

1

0

G t, sð Þb sð Þg u sð Þð Þds, (102)

the pair u, vð Þ is a desired solution of BVPs (2) for the given λ. The proof is complete.
Theorem 1.5 Assume conditions H1ð Þ, H2ð Þ, H3ð Þ and H4ð Þ are satisfied. Then, for

each λ satisfying L3 < λ<L4 there exists a pair u, vð Þ satisfying BVPs (2) such that
u tð Þ>0 and v tð Þ>0 on 0, 1ð Þ.

Proof. Let L3 < λ<L4 and ε>0 be chosen such that

max
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þ f 0 � ε
� �

dr

2

4

3

5

�1

,
2θ3

3

� �2 ð1

θ

ψ rð Þa rð Þ g0 � ε
� �

dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

≤ λ, (103)
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and

λ≤ min

ð

1

0

ψ rð Þa rð Þ f
∞
þ ε

� �

dr

2

4

3

5

�1

,

ð

1

0

ψ rð Þb rð Þ g
∞
þ ε

� �

dr

2

4

3

5

�1
8

>

<

>

:

9

>

=

>

;

: (104)

From the definitions of f 0 and g0 there exists an R1 >0 such that

f uð Þ≥ f 0 � ε
� �

u, 0< u≤R1, (105)

and

g uð Þ≥ g0 � ε
� �

u, 0< u≤R1, (106)

Now g 0ð Þ ¼ 0 and so there exists 0<R2 ≤R1 such that

λg uð Þ≤
R1

ð

1

0

ψ rð Þb rð Þdr

, 0≤ u≤R2: (107)

Let u∈K with uk k ¼ R2. Then

λ

ð

1

0

G t, sð Þb rð Þg u rð Þð Þ ≤ λ

ð

1

0

ψ rð Þb rð Þg u rð Þð Þdr

≤

ð

1

0

ψ rð Þb rð ÞR1dr

ð

1

0

ψ sð Þb sð Þds

≤R1 ¼ uk k:

(108)

Therefore, by (68), we have

Tu tð Þ ¼ λ

ð

1

0

G t, sð Þa sð Þf λ

ð

1

0

G s, rð Þb rð Þg u rð Þð Þdr

0

@

1

Ads

≥
2θ3

3
λ

ð

1

θ

ψ sð Þa sð Þf
2θ3

3
λ

ð

1

θ

ψ rð Þb rð Þg u rð Þð Þdr

0

@

1

Ads

≥
2θ3

3
λ

ð

1

θ

ψ sð Þa sð Þ f 0 � ε
� � 2θ3

3

� �2

λ

ð

1

θ

ψ rð Þb rð Þ g0 � ε
� �

uk kdr

2

4

3

5ds

≥
2θ3

3
λ

ð

1

θ

ψ rð Þa rð Þ f 0 � ε
� �

uk k

≥
2θ3

3

� �2

λ

ð

1

θ

ψ rð Þa rð Þ f 0 � ε
� �

uk k

≥ uk k:

(109)
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So, Tuk k≥ uk k. If we set Ω1 ¼ u∈B : uk k<R2f g, then

Tuk k≥ uk k, u∈K ∩ Ω2nΩ1

� �

(110)

Considering the definitions of f
∞
and g

∞
there exists R1 >0 such that

f uð Þ≤ f
∞
þ ε

� �

u, u≥R1, (111)

and

g uð Þ≤ g
∞
þ ε

� �

u, u≥R1: (112)

We consider two cases: g is bounded or g is unbounded.
Case ið Þ. Suppose g is bounded, say g uð Þ≤N, N >0 for all 0< u<∞. Then, for

u∈K

λ

ð

1

0

G t, sð Þb rð Þg u rð Þð Þ≤ λ

ð

1

0

ψ rð Þb rð Þg u rð Þð Þdr

M ¼ max f uð Þ : 0≤ u≤Nλ

ð

1

0

ψ rð Þb rð Þdr

8

<

:

9

=

;

(113)

and let

R3 > max 2R2, Mλ

ð

1

0

ψ sð Þa sð Þds

8

<

:

9

=

;

: (114)

Then, for u∈K with uk k ¼ R3, we have

Tu tð Þ ≤ λ

ð

1

0

ψ sð Þa sð ÞMds

≤R3 ¼ uk k:

(115)

So that Tuk k≤ uk k. If we set Ω2 ¼ u∈B : uk k≤R3f g, then, for u∈K ∩ ∂Ω2:

Tuk k≤ uk k, u∈K ∩ ∂Ω2 (116)

Case iið Þ. g is unbounded, there exists R3 > max 2R2,R1

� �

such that g uð Þ≤ g R3ð Þ, for

0< u≤R3.

Similarly, there exists R4 > max 2R3, Mλ
Ð 1
0ψ rð Þb rð Þg R3ð Þds

n o

such that

f uð Þ≤ f R4ð Þ, for 0< u≤R4.
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Let u∈K with uk k ¼ R4, from H4ð Þ, we have

Tu tð Þ ≤ λ

ð

1

0

ψ sð Þa sð Þf λ

ð

1

0

ψ rð Þb rð Þg R3ð Þdr

0

@

1

Ads

≤ λ

ð

1

0

ψ rð Þa rð Þf R4ð Þds

≤ λ

ð

1

0

ψ rð Þa rð Þ f
∞
þ ε

� �

R4ds

≤R4 ¼ uk k:

(117)

So, Tuk k≤ uk k. If we set Ω2 ¼ x∈C 0, 1½ �j xk k≤R4f g, then

Tuk k≤ uk k, for u∈K ∩ ∂Ω2: (118)

In either of cases, application of part iið Þ of Theorem 3.1 yields a fixed point u ∗ of

T belonging to K ∩ Ω2=Ω1

� �

, which in turn yields a pair u, vð Þ satisfying BVPs (2) for
the chosen value of λ. The proof is complete.

We construct an example to illustrate the applicability of the results presented.
Example 4.1. Consider the two-point boundary value problem

u 4ð Þ tð Þ ¼ λtv tð Þ v tð Þe�v tð Þ þ
v tð Þ þ K

1þ ηv tð Þ

� �

, 0< t< 1,

v 4ð Þ tð Þ ¼ λtu tð Þ u tð Þe�u tð Þ þ
u tð Þ þ K

1þ ηu tð Þ

� �

, 0< t< 1,

8

>

>

>

<

>

>

>

:

(119)

and satisfying two-point boundary conditions

u 0ð Þ ¼ 0, u0 0ð Þ ¼ 0, u00 1ð Þ ¼ 0, u000 1ð Þ ¼ 0,

v 0ð Þ ¼ 0, v0 0ð Þ ¼ 0, v00 1ð Þ ¼ 0, v000 1ð Þ ¼ 0,

(

(120)

where a tð Þ ¼ b tð Þ ¼ t, f vð Þ ¼ v ve�v þ vþK
1þηv

� �

, g uð Þ ¼ u 1þ uþK
1þηu

� �

.

By simple calculations, we find g 0ð Þ ¼ 0, f
∞
¼ g

∞
¼ 1

η
, f 0 ¼ g0 ¼ K.

Choosing θ ¼ 1
3 , η ¼ 100, andK ¼ 104, we obtain L3 ffi 1, 1817237,L4 ffi 9, 1666667.

By Theorem 4, it follows that for every λ such that 1, 1817237< λ< 9, 1666667, there
exists a pair u, vð Þ satisfying BVPs (25–2526).

5. Conclusions

This chapter concerns the boundary value problem of a class of fractional
differential equations involving the Caputo fractional derivative with nonlocal
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boundary conditions. By using the Leray-Shauder nonlinear alternative and Banach
contraction principle, one shows that the problem has at least one positive solutions
and has unique solution. Secondly, we derive explicit eigenvalue intervals of λ for the
existence of at least one positive solution for the second problem by using
Krasnosel’skii fixed point theorem. The results of the present chapter are significantly
contribute to the existing literature on the topic.
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