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Abstract

Arianna Nicole Swensen: Improving Adjacency List Storage Methods for Polypeptide
Similarity Analysis

(under the direction of Dr. Yixin Chen)

Protein design is a complex biomolecular and computational problem. Working on

increasingly large protein folding problems requires an improvement in current analysis

methods available. This work first discusses various methods of protein design, including

de novo protein design, which is the primary focus of this thesis. Then, a new approach

utilizing a B+ tree to effectively store and query a graph of keys and vertices is proposed

in order to store the number of times two polypeptides are considered to be similar. This

approach is found to have a reduction in time complexity from current mapping methods

and thus provides a new approach by which to compute similar metrics.
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Introduction

The study of protein design has seen

significant advances in the past few

years. [1, 2, 3]. De novo protein design,

which attempts to construct an amino

acid sequence that adopts predescribed

folds, is critical to understanding how

sequencing and structure relate to each

other [4]. However, most research has

been focused on methods other than de

novo protein construction, as it has

limitations that have not yet been

overcome.

These other methods can be then

classified into two basic approaches:

template methods and non-template

methods. Template methods have

significantly improved, but non-template

methods based in machine learning have

become the most popular as they

generally are able to provide more

efficient large-scale predictions [5]. One

particular area of interest is combining

well-established methodologies with

deep learning networks to further

increase efficiency [6].

This work seeks to focus on specifically

de novo design and addressing the

general resource problem. Right now, de

novo design requires large computation

time and resources and thus can only be

feasibly applied to small proteins. This

work seeks to address the computational

issue by proposing a new methodology

for storing the number of occurrences

wherein two polypeptides are considered

similar by a given metric. Defining a

structure optimized for large read-write

access offers several benefits, including

but not limited to creating polypeptide

similarity vectors.

In Section 2, I will discuss how this

methodology can offer support to

existing approaches of de novo protein

design and redesign. In Section 3, the

suggested computational approach will

be described. In Section 4, the suggested

approach will be analyzed using

worst-case time complexity analysis.

Section 5 will summarize this work’s

contributions and identify areas for

further exploration.

De Novo Protein Design Approaches

A primary topic in research regarding

protein design is the development of new

and useful proteins that have stable
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structures with a prescribed fold. A

common approach involves selecting

polypeptides from combinatorial

libraries to create a sequence [4]. Protein

redesign or design can also occur as a

result of shuffling these polypeptides [7].

However, the potential sequences that

can occur are in the order of 𝑥𝑛

possibilities, where x is the number of

amino acids and n is the number of

amino acids in the sequence. Even with

modern supercomputing resources

available, generating all the resulting

structures is not feasible.

Given this information, random selection

of amino acids is not a computationally

effective method of de novo protein

design. Designed combinatorial libraries

that use binary patterning have been

shown to have promising results in

reducing the amount of computational

time required to find sequences that

generate desired structures [8]. Newer

research proposes that the reuse of

fragments across various proteins may

allow for more stable building of hybrid

proteins [9].

Experimental creation of new proteins

can take two routes. Proteins can be

created de novo, as discussed previously,

selecting polypeptides from collections

or at random. New proteins may also be

generated as a redesign of an existing

protein, through evolution of an existing

protein with a functional folding

structure [10]. Iterative de novo

development in particular has been used

for experimental development in small

proteins, in an effort to investigate the

sequence determinants of folding [11].

This iterative design technique can be

extended to genetic algorithm

applications, such as in [12]. Other work

supports the development of sequential

stabilization in order to predict folding

pathways and the tertiary structure based

on only the primary sequence as an input

[13].

Recent work in developing comparison

based hierarchical structures [14]

suggests that more analysis of individual

pairs of polypeptides can provide insight

into sequence and structure

relationships. This work provides the

necessary computational methodology to

compute these values for future work on

implications in protein structure.
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The methodology used for this work to

evaluate pairs of polypeptides is as

follows:

1. Two polypeptides, and , areδ ϵ

selected and keys and are𝑘
δ

𝑘
ϵ

generated for the polypeptides.

2. The distance between and∆
1

δ ϵ

is calculated using the following

formula, where is the residue𝑖
δ

number of in the primaryδ

sequence, and is the residue𝑖
ϵ

number of in the primaryϵ

sequence:

∆
1
 = | 𝑖

δ
  −  𝑖

ϵ
 | 

3. The distance between and∆
3

δ ϵ

is calculated using the following

formula, where is the(𝑥
δ
, 𝑦

δ
,  𝑧

δ
)

centroid of the coordinates of the

amino acids making up , andδ

is the centroid of the(𝑥
ϵ 

, 𝑦
ϵ 

,  𝑧
ϵ 

)

coordinates of the amino acids

making up :ϵ

∆
3
 =  (𝑥

δ
− 𝑥

ϵ
)2 + (𝑦

δ
− 𝑦

ϵ
)2 +  (𝑧

δ
− 𝑧

ϵ
)2  

4. If is a parameter determining ifλ

and are “far” from each other,δ ϵ

and is a parameter determiningµ

if and are “close” to eachδ ϵ

other, , where and∀δ,  ϵ ∆
1
 ≥  λ

, The vector (∆
3
 ≤ µ 𝑘

δ
, 𝑘

ϵ
, 𝑐)

should be created or updated

with a number of times

indicating how often this occurs

across the given set of protein

data.

A simple criterion for similarity is

described above, but more complex

methods of calculating similarity are

available, with the methodology

described above being used for the sake

of focusing on the computation problem

at hand. The most effective way to

compute similarity between different

polypeptides to support various protein

design and redesign algorithms is

outside of the scope of this work and a

topic for further research.

Creating a means in which to effectively

and efficiently compute similarity

between polypeptides based on various

effective criteria offers the means to

build combinatorial databases specific to

the problem; alternatively, it provides

means to direct iterative evolution of a

protein designed de novo or an existing

natural protein. The primary contribution

of this work is an optimization of this

3



computation in a generalized manner, in

an attempt to reduce CPU time necessary

to compute the overall similarity vectors

for a given dataset.

Design Approach

In order to meet the requirements set

forth in the previous section, a data

structure must meet the following𝐷

criteria:

1. That it stores a set of vectors 𝑣

composed of vectors in the form

( ;𝑘
δ
, 𝑘

ϵ
, 𝑐)

2. That can be queried by a key,𝑣

and return the subset of𝑘
δ

vectors where is all vectors𝑣
𝑘

δ

𝑣
𝑘

δ

that contain ;𝑘
δ

3. That can be queried by a pair𝑣

of keys, and and return the𝑘
δ

𝑘
ϵ

vector where is the𝑣
𝑘

δ
, 𝑘

ϵ
 

𝑣
𝑘

δ
, 𝑘

ϵ
 

vector ( ;𝑘
δ
, 𝑘

ϵ
, 𝑐)

4. and that both query and insertion

can be performed in time or𝑂(𝑛)

less to support large sets of data

in a way that reduces necessary

computational time.

A mathematical representation of these

vectors can be formalized as an

undirected graph with the set of𝐺

vertices and edges , with each edge𝑉 𝐸

having a weight . [Formally,𝑤

.]𝐺 =  (𝑉,  𝐸)

Assuming proteins contain a number of

polypeptides , and number of proteins𝑝

exist in the dataset, the amount of𝑛

potential pairs can be defined as:𝑐

𝑐 =  𝐶(𝑛𝑝,  2) =  (𝑛𝑝)!
2!(𝑛𝑝 − 2)!

becomes increasingly large as either𝑐 𝑛

or are increased. However, the𝑝

significant values are limited by the

bounds established in the polypeptide

similarity metric described above, which

means that there will be generally a

sparse set of pairs for all that are𝑐
ϕ

 𝑐

useful and should be included in the

computations.

Thus, while an adjacency matrix

generally provides search time, it𝑂(1)

is infeasible for to be stored in this𝐺

manner as it will require storage𝑂( 𝑉| |2)

space, where is equal to the number of𝑉

unique polypeptides in all proteins .𝑛

4



The set of adjacency lists that must be𝑎

stored are in the form where(𝑘,  𝑣)

and , which may also be referred𝑘 ϵ 𝑉 𝑣

to as , contains all of the edges as a𝑎
𝑘

𝐸

list of the vertices that are connected𝑉

to and their respective weights .𝑘 𝑤 𝑎

requires significantly less storage space,

using only , where𝑂( 𝑉| | +  𝐸| |)

Querying for an edge will then𝐸 =  𝑐
ϕ

.  

provide search time in the case𝑂( 𝑉| |)

that a vertex has an edge with every𝑉

other vertex in , with a more precise𝐺

time complexity when searchingθ(𝑎
𝑘
)

for an edge that connects vertex to𝑘

some other vertex .𝑣 ϵ 𝑉

Thus, the challenge becomes

aggregating the set in a manner that𝑎

makes it computationally efficient to

find the adjacency list for updates and𝑎
𝑘

queries. Implementation will rely

heavily on the mapping of as a𝑘 → 𝑎
𝑘
 

pair.(𝑘,  𝑣)

Several methods exist for mapping

key-value pairs. One common approach

to mapping adjacency lists as (𝑘,  𝑣)

pairs is utilization of the HashMap data

structure. A hash algorithm is

determined, varying based on the data

and the size of the HashMap, to insert

pairs into the HashTable at a(𝑘,  𝑣)

specific location, minimizing collisions.

Determining a hashing algorithm to

handle an unknown quantity of data is

still an ongoing research problem, with

the general assumption that HashTables

generally do not undergo frequent

insertions [15].

TreeMap implementations offer an

alternative to this approach while still

providing effective time and space

efficiency. While many implementations

of TreeMap use a red-black tree,

including the Java implementation [16],

I propose that a B+-tree implementation

offers several benefits in this particular

case. Additional implementations have

been proposed, including work to

optimize search time in TreeMap [16]

and recent work to implement Graph

structures in a universally applicable

manner [18].

The B+-tree, depicted in Fig. 1, is a

variant of the B-tree and a -ary tree.𝑚

All values are stored within the leaf

nodes.
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Fig. 1. A B+-tree of order 4.

The tree is sorted by key, and the leaf

nodes are connected by pointers. This

allows for rapid random and sequential

access.

B+-trees are generally used in database

applications and file organization

applications [19]. As graph processing

has become more common, more graph

databases are using B+-trees or B+-tree

variants [20] as a way to implement their

file organization.

This has expanded into security

applications for cloud computing [21]

applications, favored over red-black

trees due to the property of a lower

height, originally designed to reduce

query time and disk accesses. Given the

size of , I propose that the B+-tree𝐺

provides an optimal tool to analyze,

write, and read information from the

disk to store information about

polypeptide similarity analysis for

comparison across metrics.

Time Complexity Analysis

The height of a red-black tree is defined

by the following equality statement,

where is the number of keys in the𝑛

tree:

ℎ
𝑅𝐵

≤  2𝑙𝑜𝑔
2
(𝑛 + 2) − 2 

The height of a B+-tree is defined by the

following equality statement, where is𝑛

the number of keys in the tree and is𝑚

the order of the tree:
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ℎ
𝐵+

≤  1 + 𝑙𝑜𝑔
⌈ 𝑚

2 ⌉
( 𝑛+ 1

2 )

Then the value of when𝑚 ℎ
𝐵+

 =  ℎ
𝑅𝐵

can be approximated by the following

equation, assuming the value of is𝑚

divisible by 2:

 1 +  𝑙𝑜𝑔
( 𝑚

2 )
( 𝑛+1

2 ) = 2𝑙𝑜𝑔
2
(𝑛 + 2) −  2 

𝑙𝑜𝑔
( 𝑚

2 )
( 𝑛+1

2 ) =  2𝑙𝑜𝑔
2
(𝑛 + 2) −  3 

𝑙𝑛( 𝑛+1
2 )

𝑙𝑛( 𝑚
2 )

 =  2𝑙𝑜𝑔
2
(𝑛 + 2) −  3

𝑙𝑛( 𝑛+1
2 ) =  2𝑙𝑜𝑔

2
(𝑛 + 2)𝑙𝑛( 𝑚

2 ) −  3𝑙𝑛( 𝑚
2 )

- 3) =𝑙𝑛( 𝑚
2 )( 2𝑙𝑜𝑔

2
(𝑛 + 2) 𝑙𝑛( 𝑛+1

2 )

𝑙𝑛( 𝑚
2 ) =  

𝑙𝑛( 𝑛+1
2 )

 2𝑙𝑜𝑔
2
(𝑛+2) − 3

𝑚
2  =  

𝑙𝑛( 𝑛+1
2 )

 𝑒
2𝑙𝑜𝑔

2
(𝑛+2) − 3

𝑚
2  =  𝑒

𝑙𝑛( 𝑛+1
2 )

2𝑙𝑜𝑔
2
(𝑛+2) − 3

𝑚 =  𝑒
𝑙𝑛( 𝑛+1

2 )

2𝑙𝑜𝑔
2
(𝑛+2) − 3  · 2

This value of can then be𝑚

approximated to 3 as grows𝑛

sufficiently large.

The following analyses assume that >𝑚 

3 and is sufficiently large, and thus,𝑛

.ℎ
𝐵+

 <  ℎ
𝑅𝐵

Insertion

A red-black tree is a balanced binary

search tree. As such, the time complexity

for inserting a new node is .𝑂(ℎ
𝑅𝐵

)

Then, rebalancing must occur.

Recoloring a node occurs in time,𝑂(1)

but in worst case scenario re-establishing

the red-black properties requires

recoloring up to the root, which requires

recolors, occurring in time.ℎ
𝑅𝐵

𝑂(ℎ
𝑅𝐵

)

Thus, the worst-case cost of insertion

can be generalized as the following:

𝑂(ℎ
𝑅𝐵

) +  𝑂(ℎ
𝑅𝐵

) ϵ  𝑂(ℎ
𝑅𝐵

)

In a B+-tree, all of the data is stored at

the leaf nodes, thus there are leaf𝑛

nodes. Each internal node has𝑁

children, where is the order𝑚 +  1 𝑚

of the B+-tree. To insert, the cost is

within a node to maintain the𝑂(𝑚)

sorted property of the internal nodes. At

worse, this must occur times, asℎ
𝐵+

nodes are split.

Thus, the worst-case cost of insertion

can be generalized as the following:

7



𝑂(𝑚 ·  ℎ
𝐵+

) ϵ 𝑂(ℎ
𝐵+

)

Thus we can say that insertion to a

B+-tree, in the worst case, will be faster

than a red-black tree.

Search

Similarly to insertion, searching a

red-black tree for a specific key is of

time complexity as the worst𝑂(ℎ
𝑅𝐵

)

case is searching for a key at a leaf node.

B+ trees have up to keys in an internal𝑚

node, with all of the data being stored at

the leaf nodes. Searching an internal

node, using binary search, is of time

complexity , and this occurs𝑂(𝑙𝑜𝑔
2
𝑚)

times.𝑂(ℎ
𝐵+

)

Then, the worst-case time complexity

will be bounded by the following

equation:

𝑂(𝑙𝑜𝑔
2
𝑚 ·  ℎ

𝐵+
) ϵ 𝑂(ℎ

𝐵+
).  

Thus we can say that searching a

B+-tree, in the worst case, will be faster

than a red-black tree.

Choosing an optimal for reducing𝑚

search complexity should be considered

on a case-to-case basis, given the

number of keys will affect this𝑛

analysis, and thus should be considered

carefully when creating a B+-tree based

map.

In the case of an adjacency list of graph

being mapped, regardless of tree𝐺

implementation, there is the

consideration of the lists stored at the

tree nodes, which are generally searched

in time.𝑂(𝑛)

Conclusion

In this work, I have demonstrated that a

B+ tree may provide significant

improvements to existing mapping

algorithms available that may support

polypeptide similarity analysis.

Reducing the time complexity is crucial

to research regarding protein folding and

the causes and prediction of folds among

primary sequences that do not have a

known tertiary structure.

8



A time complexity analysis has been

performed on the B+-tree and the

red-black tree, the latter of which is the

most common way to implement

TreeMap classes. The B+-tree provides

significant improvements to searching

and insertion when dealing with disk

access by reducing the overall height of

the tree.

Given a sufficiently large list of

polypeptides, stored as keys, and a

carefully selected , the number of keys𝑚

present in one node of the B+-tree, these

queries can be optimized for

performance while storing this

information on the disk for future

analysis and comparison to other

similarity metrics than the one described

in this work.

Future work to optimize the performance

of the B+-tree by implementing

bulk-loading, buffers, and other insertion

and query optimization methodologies

can be done to increase the efficacy of

the solution described in this work.

Additionally, the polypeptide similarity

metric described in this work is very

simplistic, and further algorithms can be

developed to increase overall

understanding of the polypeptides that

may determine the translation from a

primary sequence into a tertiary

structure.
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