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ABSTRACT 

Transportation infrastructures account for a considerable portion of public investments, 

which serve as the backbone of a country’s economy by providing essential services to businesses 

and people. In the United States, public investments in transportation infrastructure assets 

represent trillions of dollars. The U.S road network consists of about 4 million miles, being the 

world’s largest, longest, and biggest transportation system. Paved roads account for 2.6 million 

miles, and 93% of them are surfaced with asphalt. However, a portion of the paved roads consists 

of asphalt overlaid concrete pavements, also known as composite pavements. When concrete 

pavements start to fail, they are overlaid with Hot Mix Asphalt (HMA). Compared to flexible or 

rigid pavements, this offers better performance measures both structurally and functionally, and 

accordingly, it can be considered a cost-effective alternative. 

Several performance indicators have been used to assess pavement surface conditions, but 

the Pavement Condition Rating (PCR) and the International Roughness Index (IRI) are the most 

widely used and well-recognized pavement performance indicators. Transportation agencies use 

these indexes to evaluate and classify the conditions for the road networks in the long term. If 

maintenance and rehabilitation (M&R) interventions are not performed timely, the pavement 

damage caused by environmental impacts and traffic repetitions can lead the roads to early 

deterioration. Billions of dollars are spent every year on M&R. However, a shortage in federal and 

state funds led roads and bridges to poor conditions since M&R interventions were not carried out 

timely. Therefore, there is a need to develop pavement performance prediction models that can 
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support and allow decision-makers to prioritize M&R actions due to the limited budget allocation 

and estimate the rate of pavement deterioration.  

Traditionally, linear, non-linear, multiple linear regression analysis, Markov chains, 

mechanistic-empirical relations, survivor curves, semi-Markov, and Bayesian models have been 

used for predicting pavement performance. However, simple statistical approaches do not account 

for the complex relations among input variables and pavement performance. A growing body of 

literature is exploring the use of more advanced modeling techniques for pavement performance 

prediction. Among these techniques, the Artificial Neural Networks (ANNs) approach has shown 

the most significant improvements with consistent and reliable results. However, most 

performance models did not consider M&R history in the model development. 

This doctoral research presents new pavement performance models incorporating the M&R 

history and activities for composite pavements of the LTPP database. Additionally, a more 

comprehensive approach was developed for flexible, rigid, and composite pavements of the 

Mississippi Department of Transportation (MDOT) database, accounting for the influence of 

M&R history. This dissertation successfully utilized the ANNs modeling technique to obtain 

accurate and promising prediction results for pavement performance. Furthermore, the 

development of a simple, low-cost, and easy-access graphical user interface (GUI) tool brings a 

significant contribution to the enhancement of agencies' pavement management system (PMS) by 

predicting future pavement conditions, identifying rehabilitation needs, and allowing a better 

budget allocation for critical pavement sections without the need of distress data.  
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CHAPTER I: INTRODUCTION  

 

1.1. Overview 

Transportation infrastructures (roads, railways, airports, transit), account for a considerable 

portion of public investments, which serve as the backbone of a country’s economy and society by 

providing essential services to businesses and people [1]. A country’s road network is considered 

one of the largest public infrastructure assets worldwide [2]. Transportation infrastructure assets 

represent public investments of trillions of dollars in the United States (U.S.) [1]. The U.S. road 

network consists of about 4 million miles, comprising 1.4 million miles of unpaved roads and 2.6 

million miles of paved roads. About 93 percent of the 2.6 million miles of paved roads and 

highways are surfaced with asphalt [2]. However, a portion of the paved highway surfaces 

comprises composite pavements, which are made of asphalt overlaid concrete pavements. Most 

composite pavements are a result of concrete pavement rehabilitation. When concrete pavements 

start to fail, they are overlaid with Hot Mix Asphalt (HMA). Compared to flexible or rigid 

pavements, composite pavements can offer better performance levels both structurally and 

functionally and accordingly can be a more cost-effective alternative [3]. 

Over the last decades, state and federal transportation agencies have established several 

performance indicators such as Present Serviceability Rating (PSR), Present Serviceability Index 

(PSI), Pavement Condition Rating (PCR), Pavement Condition Index (PCI), and International 

Roughness Index (IRI) [1] to evaluate the effectiveness and efficiency of their service provision
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 [4]. Among all pavement condition indices used to assess pavement surface conditions, the PCR 

and IRI are the most widely used and well-recognized pavement performance indicators. The 

Mechanistic-Empirical Pavement Design Guide (MEPDG) [5] designed to update the 1993 

American Association of State Highway and Transportation Officials (AASHTO) [6] uses the IRI 

measurements of longitudinal roughness to indicate pavement smoothness. The IRI measurements 

are based on the quarter-car analysis method, a mathematical model of a vehicle that represents a 

body and a single wheel [7], with standardized parameter values and a reference simulation speed 

of 80 km/h [8]. It can be expressed in two types of units, in/mile or m/km. A higher IRI value 

indicates a rough pavement profile, which affects the ride quality experienced by road users. A 

lower IRI value indicates a smooth pavement profile, causing a better ride quality for the road 

users. If pavement smoothness decreases induced by climatic and traffic attributes, the IRI value 

increases [1]. The PCR is a rating method based upon pavement distresses. Although the 

relationship between pavement distress and performance is hard to understand, the ability of 

pavement to sustain traffic loads safely and smoothly is adversely affected by the incidence of 

observable distresses. Hence, the PCR offers a weighted measure for uniformly identifying and 

describing pavement distresses in terms of severity and extent. 

Efficient and well-maintained road networks are essential to ensure acceptable conditions 

for the road networks in the long term. If maintenance and rehabilitation actions are not performed 

timely, the pavement damages inflicted by environmental impacts and traffic repetitions may lead 

to poor conditions rapidly that can cause life-threatening for road users [2]. A substantial amount 

of financial support is required for the maintenance and rehabilitation of a road network.  However, 

the United States Department of Transportation (USDOT) encountered a shortage in its funds as 
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of 2015 since most of the funds were transferred to state agencies for new constructions and 

maintenance and rehabilitation (M&R) treatments of roads and bridges in poor condition. Thus, a 

slow reimbursement rate can delay M&R actions leading to a higher degree of deterioration for 

the infrastructure assets [9]. Without proper funds, local and state agencies cannot maintain all 

highway pavements at acceptable levels. For this reason, pavement performance prediction models 

are an essential part of agencies’ Pavement Management Systems (PMS), allowing decision-

makers to prioritize M&R actions due to budget allocation and reduce the rate of pavement 

deterioration. Performance models provide an estimation of pavement conditions, rehabilitation 

needs, and enable agencies to prioritize the worst sections. Furthermore, performance models are 

easy to understand and can deliver deeper insights by converting performance indices into 

operational measures to inform how long and how well the road will continue to serve the users 

[10]. However, some agencies utilize probability models that do not include essential parameters 

such as pavement design parameters, rehabilitation interventions, and traffic, leading to inaccurate 

and ineffective M&R decisions. 

For this reason, there is a need to develop more inclusive, reliable, and accurate pavement 

performance models that can estimate future pavement conditions, identify rehabilitation needs 

and analyze rehabilitation impacts. A growing body of literature explores different modeling 

techniques for pavement performance prediction, and several studies explore the use of regression 

models to predict pavement roughness. However, due to the complex relations between pavement 

structure and its behaviour under climatological and traffic variables and the interaction among all 

these elements [11], more advanced modeling techniques using machine learning proved to be 

promising. The Artificial Neural Networks (ANNs) approach was used in several studies [2,10,12–
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20], offering significant improvements over traditional techniques, such as regression, for 

processing large volumes of data with a higher degree of accuracy. 

This dissertation presents the use of ANNs approach for developing performance 

prediction models, new approaches incorporating M&R, exploring key inputs that are not 

considered in most models of the literature, and develops a graphical user interface (GUI) to 

implement the best-developed models for real-life use.  

1.2. Problem Statement 

One of the main concerns of transportation agencies is to ensure appropriate conditions for 

the road networks in the long term. If frequent maintenance and rehabilitation are not performed, 

the pavement damage caused by environmental impacts and traffic repetitions may cause an early 

deterioration decreasing the pavement life. Performance models are imperative to assess road’s 

future conditions, estimate pavement deterioration, identify M&R needs, and prioritize budget 

allocation for a better management system. 

Traditionally, linear, non-linear, multiple linear regression analysis, Markov chains, 

mechanistic-empirical relations, survivor curves, semi-Markov, and Bayesian models have been 

used for predicting pavement performance [20]. However, simple statistical approaches such as 

linear regression do not result in significant accuracy measures for performance predictions due to 

the complexity/non-linearity of the relationships among variables [21]. Numerous research 

investigations [2,9,15,19,22–27] have been conducted to discover different methods that can 

generate efficient, rational, and practical prediction models. Among these approaches, the ANN 

technique has been showing significant improvements with efficient and reliable results. However, 

the literature indicates that most performance models did not consider M&R history in the model 
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development. Other key features such as climatological factors and geographical location were 

also not included in many models.   

Recently, some studies [2,9,28–36] included M&R history as input variables for flexible 

and rigid pavements using the Long-Term Pavement Performance (LTPP) database. However, 

there were no studies including M&R interventions for composite pavements using LTPP. For 

other databases different than the LTPP, there is also a lack of research models that account for 

the influence of M&R history and activities during the service life of the pavement, which affects 

the accuracy and reliability of the prediction [37].  

 Therefore, this dissertation presents research papers, in which performance models 

incorporating the effects of M&R history and activities for composite pavements and the 

development of prediction models for specific climate zones of the LTPP database. Additionally, 

a more complete and inclusive approach considering maintenance and rehabilitation for asphalt, 

concrete, and composite pavement performance models using the Mississippi Department of 

Transportation (MDOT) database is presented. The developed models in this doctoral study can 

be utilized by agencies as a tool for predicting future pavement conditions and incorporating the 

M&R scheduling effectively to prioritize the resources. Furthermore, the developed models do not 

use any distress data as an input variable, which will help transportation agencies to save time from 

data collection/processing to assess the condition of the pavement.  

1.3. Research Objectives 

The overall objective of this dissertation is to study, analyze, and identify key variables 

that affect pavement performance to develop ANN models that can contribute to the state-of-the-

art by providing a more inclusive, reliable, and user-friendly tool. This tool can support objective 
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decisions regarding maintenance and rehabilitation interventions and budget plans allowing 

agencies to prioritize the resources for critical pavement sections. According to the stated problems 

in Section 1.2, the following tasks are included: 

1. Complete literature review of asphalt, concrete, and composite pavement performance 

models,  

2. Develop performance models for composite pavements using the LTPP database and verify 

the model performance, 

3. Develop performance models for asphalt, concrete, and composite pavements using the 

MDOT database and verify the model performance, 

4. Develop a GUI for implementation of the best-developed models, 

5. Evaluate the developed models using GUI for the enhancement of pavement asset 

management. 

 

As stated before, this study explores the use of an advanced modeling technique to enhance 

pavement performance modeling. The use of new approaches to incorporate M&R history and 

other significant variables are explored and explained throughout the dissertation. The following 

section explains how the dissertation is organized and discussed in detail. 

1.4. Dissertation Organization 

Chapter I presents an overview of the main aspects of the dissertation followed by the 

problem statement, research objectives, and the dissertation organization sections. 

Chapter II describes the background of machine learning and artificial neural networks 

followed by an overview of pavement performance indicators, the LTPP program, and the MDOT 

database. 

Chapter III provides an extensive literature review of pavement performance models for 

flexible, rigid, and composite pavements.  
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The following chapters of the dissertation are divided into peer-reviewed papers that were 

submitted, published, and presented at national and international conferences.  

Chapter IV presents a paper that discusses the lack of research on composite pavement 

performance models and the benefits of using the ANN modeling technique. It introduces a new 

approach incorporating M&R history and actions into model development and considering all four 

climate zones of the LTPP database. The paper did not include all data points of the database in 

the analysis and recommended that future studies should use the entire database and also 

investigate the use of specific climate zones in the model development. 

Chapter V presents a paper that discusses the effects of climate and traffic on composite 

pavements and develops performance models using all data points of the LTPP composite 

pavement database. It uses the same approach as the previous paper to include M&R history and 

introduces the use of Cumulative Equivalent Single Axle Load (CESAL) to account for the traffic 

load repetition history. 

Chapter VI presents a paper that studies the use of a specific climate zone and the inclusion 

of M&R history in the development of performance models using a traditional (multiple 

regression) and an advanced (ANN) modeling technique. The paper compares the results of both 

methods utilizing statistical measures to identify the most accurate approach. The use of a specific 

climate zone is also studied to identify if it helps the models to achieve better accuracy results and 

explore it in future studies. 

Chapter VII shows a paper that develops pavement performance models for a specific 

climate zone different than the previous. It includes M&R history and climatological factors to 

identify which model offers the most accurate results. The use of models that do not include any 
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distress data can help agencies to reduce costs and offer a more effective M&R plan. 

Chapter VIII presents a paper that discusses and develops a new method for incorporating 

M&R history into the performance model development. It compares two models for composite 

pavements located in a specific climate zone of the LTPP database and utilizes two different 

approaches to identify which one delivers better accuracy. This new approach can be used in 

different climate zones to verify it will also enhance other pavement performance models. 

 Chapter IX presents a paper that utilized the two different approaches for M&R history 

developed earlier, for a different climate zone of the LTPP composite pavement database. A 

combination of climatological and traffic variables is also used to improve model accuracy and a 

comparison of all models is performed to identify the most accurate model.  

Chapter X presents the results of a research project for the MDOT. This study develops a 

new M&R approach that can be used to identify rehabilitation needs and predict future pavement 

conditions. The models also account for the effects of several key factors such as geographic 

location, pavement structure, drainage, and traffic. A two-output model approach is considered 

and resulted in promising results that can be further studied in rigid and composite pavement types.  

Chapter XI presents a paper focused on the model development of rigid pavements for the 

MDOT database using the ANN modeling technique. This paper utilizes some of the approaches 

developed in the previous chapter and applies them to a rigid pavement type. It also compares 

models with one and two outputs to identify the most accurate model.  

Chapter XII presents a paper that develops ANN performance models for composite 

pavements. The paper utilizes different input variables to evaluate which model would give the 

most accurate predictions. The use of M&R history and actions, traffic repetition, and a 
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combination of both variables generate promising results. A two-output model approach is used 

and the best model is selected based on three accuracy measurements.  

Chapter XIII shows a graphical user interface (GUI) tool developed in this dissertation to 

implement the best-developed models. This low-cost and easy-access tool can be used by federal 

and state agencies to predict future pavement conditions, identify rehabilitation needs, and 

prioritize the resources for the critical pavement sections. 

Chapter XIV presents a summary of the research work followed by major conclusions of each 

chapter and recommendations for future research. 
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CHAPTER II: BACKGROUND 

2.1. Machine Learning 

2.1.1. Overview of Machine Learning 

Machine Learning (ML) is the science of making computers learn and act intelligently and 

improving their learning over time by feeding them data and information with observations and 

real-world interactions. The fundamental goal of the ML algorithms is to generalize beyond the 

training samples to successfully interpret data that it has never seen before [38]. Several types of 

machine learning algorithms (i.e., K-nearest neighbor, support vector machines, naive Bayes, 

logistic regression, decision trees, artificial neural networks, Bayesian networks, conditional 

random fields, etc.) have been developed and used to process large volumes of data with high 

degrees of accuracy, handle noisy and complex data, solve non-linear problems, and once trained, 

make predictions and generalizations at any time [20,39].  

The machine learning techniques hold significant potential for building a modern and 

robust pavement system management due to the excellence in automation and pattern recognition 

[20]. The literature review shows that artificial neural networks are not only one of the first 

machine learning techniques to be used but also the most used technique in civil and pavement 

engineering [40,41]. Because ML has a data-driven approach, IRI appears as a suitable indicator 

for modeling, since it is widely available in pavement databases (e.g., LTPP database), measured 

by objective means (e.g., laser profilometer), and known as one of the most common indicators
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for pavement performance evaluation [42]. In this dissertation, an artificial neural network 

technique was used for the development of performance prediction models for flexible, rigid, and 

composite pavements. 

2.1.2. Artificial Neural Networks 

2.1.2.1. Overview of ANN 

An artificial neural network is an information-processing system based on mathematical 

models that use the concept of human cognition and neural biology [43]. The ANN method 

attempts to emulate the structure and/or functional aspects of biological neural networks [44]. It 

consists of several simple processing elements called neurons (or nodes) and connecting links 

between them. When the information is processed, the connection links are used to transfer signals 

between neurons [43]. Each neuron evaluates its input signals to determine its output signal and 

transmitted it to all neurons that are on the receiving side of the connection links originating in the 

transmitting neuron. Each connection has an associated weight that multiplies the signal 

transmitted [43]. Complex relationships that are difficult to reproduce using traditional sequential, 

logic-based modeling and computation technics can be successfully represented by neural 

networks. However, the accuracy of ANN models is highly dependent on the accuracy of the 

database used to train the neural network. For this reason, the database cannot contain a significant 

amount of erroneous data or be too small, otherwise, the ANN model will generate significantly 

inaccurate or wrong predictions [44]. There are many types of neural networks characterized by 

their architecture, training algorithm, and activation function [45] as explained in the next sections. 

2.1.2.2. ANN Elements and Architecture  

The most simple and essential element of a neural network is called a neuron, which imitates the 

biological neurons from the nervous system. These neurons are a part of the ANN architecture that 
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also consists of four main elements: input layer, hidden layer(s), an output layer, and connection 

weights [28]. Figure 1 shows an example of a typical ANN architecture.  

 

Figure 1. Example of Typical ANNs Architecture 

The layers presented in Figure 1 are described as follows [9]:  

• Input Layer: It consists of independent variables that are used in the model.  

• Hidden Layer(s): The hidden layer(s) can consist of one or more layers, and each layer can 

contain a different number of hidden nodes.  

• Output Layer: It consists of the dependent variable used in the model. It can contain one or 

more output nodes.  

2.1.2.3. Feed-Forward Network and Backpropagation Learning Algorithm 

In this study, a feed-forward neural network with a back-propagation training algorithm 
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was used for the development of performance prediction models for flexible, rigid, and composite 

pavements. The neural network gains its knowledge through a trained feed-forward network that 

uses a set of training data consisting of inputs (independent variables) and output(s) (dependent 

variable(s)). The resulted output is compared to the target values and the back-propagation process 

adjusts the connection weight to reduce the error between actual and target values [2]. After 

training, the network offers an approximate functional mapping of any input pattern onto its 

corresponding output pattern. Then, the validation process was carried out using datasets that were 

excluded from the model database [2]. After the validation process, it is necessary to retrain the 

best-performing network using all experimental data to increase the prediction accuracy and 

account for all patterns in the database [44]. 

This study used different databases that contain both categorical and continuous variables. 

For this reason, the model development considered only one hidden layer. The use of more than 

one hidden layer combined with an insufficient number of databases may cause the network to 

memorize the data in the training phase. Therefore, the developed model used only one hidden 

layer to maintain the generalization capability of the network [46].  

2.1.2.4. Learning Algorithm  

2.1.2.4.1. Nodal Input Values 

The nodes from the input layer are connected to the hidden layer nodes and subsequently 

to the output layer nodes as shown in Figure 1. Node values are multiplied by the specific 

connection weights added to calculate a total sum of weights that will be transferred for the next 

node. A bias is also added as an additional set of weights and carried in the calculation. The sum 

of weights along with a bias is used to adjust the output of the hidden node, which will be the new 

feedforwarded value for the next node [9]. Sultana exemplified the calculation of an arbitrary node 
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“A” at a hidden layer; the node value is the sum of the value of the weights from the input layer. 

Equation 1 expresses the input value for a node “A” [28,44]:   

𝑁𝑜𝑑𝑒𝐴 = ∑ [(𝐼𝑛𝑝𝑢𝑡 𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒)𝑖 × (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡)𝑖]
𝑛
𝑖=1 + 𝑏𝑖𝑎𝑠                                  𝐸𝑞. 1  

2.1.2.4.2. Activation Function: Sigmoidal Function 

Many activation functions can be used to introduce non-linearity in artificial neural 

networks. The use of non-linear functions allows the model to learn complex relationships from 

the database and turn the model into a universal approximator. Bipolar sigmoidal, logistic 

sigmoidal, and binary steps are an example of some available functions. Specific applications 

might require the use of specific functions with different ranges and properties. However, the 

activation function must be continuous, differentiable, and monotonically non-decreasing to be 

applied in the backpropagation neural network [9,47]. 

The feed forwarded information at the nodes in the hidden layer(s) and output layer need 

to pass through the activation function to introduce the nonlinearity into the network. Nonlinear 

transformations that occur in all nodes of the hidden and output layer(s) can be simplified using 

Equation 2 for an arbitrary node “A” [9,44,47]: 

𝑂𝑢𝑡𝐴 = 𝑓(𝑁𝑒𝑡𝑗
𝐿)𝐴                                                                                                                                            𝐸𝑞. 2  

Where: 

• f: activation function  

• (input)A: input for node A, computed using Equation 3.  

A sigmoidal function was used as the activation function in this study. The sigmoidal 

function is especially advantageous for use in backpropagation networks because the simple 

relationship between the value of the function at a point and the value of the derivative at that point 

reduce the computational load during the training phase [45]. An output value with a specific 
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interval between 0 and 1 is expected for this function [44]. Figure 2 shows the graphical 

representation of the sigmoidal activation function that can be mathematically expressed using 

Equation 3.  

 

Figure 2. Sigmoidal Function 

𝑦(𝑥) =
 1

1 + 𝑒−𝑥
                                                                                                                                        𝐸𝑞. 3 

 

2.1.2.4.3. Weight Adjustment 

The predicted values resulting from the output node are compared to the actual (targeted) 

value and the error calculated from this comparison is used to adjust the connection weights. 

Different propagating error methods can be used to adjust the connection weights. The most 

commons are Levenberg-Marquardt, Perceptron’s, and Gradient Descent [9,48]. In this study, the 

gradient descent method was used due to its simplicity, stability, and effectiveness. The gradient 

descent method propagates the error from the output layer to the preceding layers using the 

derivatives of the activation function [9,28]. The weight’s incremental adjustments can be 

calculated using Equation 4 [44].  

∆𝑤𝑗𝑖
𝐿 = 𝑤𝑗𝑖

𝐿(𝑛𝑒𝑤)
− 𝑤𝑗𝑖

𝐿(𝑜𝑙𝑑)
                                                                                                                       𝐸𝑞. 4  
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Where: 

• New: current iteration 

• Old: previous iteration 

Gasteiger and Zupan [49] used the Delta rule to calculate the backpropagation neural 

network algorithm’s incremental change (Equation 5). 

∆𝑤𝑗𝑖
𝐿 = 𝑛𝛿𝑗

𝐿𝑂𝑢𝑡𝑖
𝐿−1                                                                                                                                   𝐸𝑞. 5  

Where [49]:  

• n: learning rate 

• 𝛿: represents the weighted error of the connection ji 

• 𝑂𝑢𝑡𝑖
𝐿−1: outcome from the ith neuron in the (L-1)th layer 

2.1.2.4.4. Learning Process 

The learning process can be summarized in six steps [44]: 

1. Input vectors are identified as Input 1, Input 2, …, Input n, where n indicates the total number 

of variables (Figure 1). 

2. Propagate the input vectors, Input 1, Input 2, …, Input n via the connection weights to generate 

the output vectors. 

3. Itemize the initial weights and update the connection weights on the output layer. 

4. Update all weights in the hidden layer(s). 

5. Repeat steps 1 through 4 for each training dataset. 

6. Repeat steps 1 through 5 until the predicted output meets the corresponding target output 

within a predetermined tolerance or the training iterations reach the maximum limit.  

2.1.2.4.5. Number of Hidden Nodes 

The user is responsible to specify the number of initial and maximum hidden nodes in the 

ANN model development. The ANN process begins with the user-specified initial hidden node 

and goes up to the maximum allowed number predetermined. At the end of this process, the ANN 
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structures with the least number of hidden nodes and the best statistical accuracy errors are selected 

to be re-evaluated in terms of statistical accuracy measures as well as graphical accuracy measures. 

Equation 6 can be used to calculate the maximum number of hidden nodes [44]. 

𝑀𝑎𝑥. 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑖𝑑𝑑𝑒𝑛 𝑁𝑜𝑑𝑒𝑠 ≤
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠)−(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)+(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)+1
           𝐸𝑞. 6  

Yasarer pointed out that choosing too many hidden nodes may lead to an overtraining 

situation. On the other hand, a few numbers of hidden nodes may not be sufficient to capture the 

behavior of complex phenomena. To utilize the generalization capability of the neural networks 

approach, this study uses networks with one hidden layer [44].  

2.1.2.5. Model Selection Criteria 

Three statistical accuracy measures were used to compare the performance of the 

developed networks and to select the best performing network. The three measures are the Average 

Square Error (ASE), the Mean Absolute Relative Error (MARE), and the Coefficient of 

Determination (R²). During the evaluation process, the training, testing, validation, and overall 

performance statistics need to be considered. The best-performing model is chosen based on the 

lowest ASE, lowest MARE, and highest R², which indicates the level of agreement between 

predicted and actual output values. Equation 7 shows the ASE calculation [50].  

𝐴𝑆𝐸 =  
∑ ∑ (𝑌𝑖𝑗

𝑃−𝑌𝑖𝑗
𝑜)

2
𝑛
𝑗=1

𝑁
𝑖=1

𝑁.𝑛
                                                                                                                         𝐸𝑞. 7     

Equation 8 expresses the MARE calculation [50]. 

𝑀𝐴𝑅𝐸 =  

∑ ∑ |
𝑌𝑖𝑗

𝑃 − 𝑌𝑖𝑗
𝑜

𝑌𝑖𝑗
𝑂 |𝑛

𝑗=1
𝑁
𝑖=1

𝑁. 𝑛
                                                                                                             𝐸𝑞. 8 

Where: 
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• 𝑌𝑖𝑗
𝑃 = Predicted output 

• 𝑌𝑖𝑗
𝑂  = Actual output 

• N = Number of datasets 

• n = Number of outputs 

Normalization of the input values is performed to prevent the ANN models from being 

biased towards a specific input. Equations 9 and 10 show the data normalization formula for input 

variables, while Equations 11 and 12 show the output variables [9].  

𝑋𝑀𝑎𝑥−𝐴𝑁𝑁𝑋𝑀𝑖𝑛

𝐴𝑁𝑁𝑋𝑀𝑎𝑥−𝐴𝑁𝑁𝑋𝑀𝑖𝑛
= 0.8                                                                                                                          𝐸𝑞. 9                                                                                                       

𝑋𝑀𝑖𝑛−𝐴𝑁𝑁𝑋𝑀𝑖𝑛

𝐴𝑁𝑁𝑋𝑀𝑎𝑥−𝐴𝑁𝑁𝑋𝑀𝑖𝑛
= 0.2                                                                                                                        𝐸𝑞. 10                                                                                                  

𝑌𝑀𝑎𝑥−𝐴𝑁𝑁𝑌𝑀𝑖𝑛

𝐴𝑁𝑁𝑌𝑀𝑎𝑥−𝐴𝑁𝑁𝑌𝑀𝑖𝑛
= 0.9                                                                                                                         𝐸𝑞. 11                                                                                                    

𝑌𝑀𝑖𝑛−𝐴𝑁𝑁𝑌𝑀𝑖𝑛

𝐴𝑁𝑁𝑌𝑀𝑎𝑥−𝐴𝑁𝑁𝑌𝑀𝑖𝑛
= 0.1                                                                                                                         𝐸𝑞. 12                                                                                                    

Where: 

• X = Value of each independent variable 

• Xmax = Maximum X 

• Xmin = Minimum X 

• Y = Value of dependent variable 

• Ymax = Maximum Y 

• Ymin = Minimum Y 

• ANNxmax = Maximum X value normalized concerning the value on the right side of the 

equation 

• ANNxmin = Minimum X value normalized concerning the value on the right side of the 
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equation 

• ANNYmax = Maximum Y value normalized concerning the value on the right side of the 

equation 

• ANNYmin = Minimum Y value normalized concerning the value on the right side of the 

equation 

2.1.2.6. Summary of ANN Model Development Stages  

The ANN model development and the desired criteria to choose the optimal network 

structures can be described in four successive stages [51], as follows: 

• Stage 1: Determine the ANN architecture. Decide input and output categories based on 

problem characteristics and ANN knowledge. Classify the datasets as training, testing, and 

validation sets. 

• Stage 2: Train and test the network on the experimental data to obtain the optimum number 

of hidden nodes and iterations for the ANN architecture defined in the previous stage. 

Determine the best-performing networks based on the lowest ASE, lowest MARE, and 

highest R² values. 

• Stage 3: Validate the best-performing network from the second stage using the validation 

database. Check if the accuracy results from the training, testing and validation database 

are comparable. If they are, then stage four maybe not be necessary. 

• Stage 4: Retrain the best performing network from stage 2 using all experimental data to 

increase prediction accuracy and account for all patterns in the database. 

Typically, retraining the selected final network with all experimental data is expected to 

deliver reliable predictions and overall better accuracy measures since all the knowledge in the 
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database are incorporated into the final network [51]. Research studies by Najjar and co-workers 

[43,51–54] recommend that stage four is necessary to arrive at a better-performing network model. 

In this study, the TR-SEQ1 computer program [55] was used to develop the ANN models. 

2.1.2.7. Dynamic-Sequential ANN Modeling 

A dynamic-sequential ANN modeling technique was also used in this study to develop 

pavement performance models. The dynamic-sequential ANN-based training technique adopted 

by Najjar [55] and Yasarer [46] is used to model the time-dependent pavement performance. The 

dynamic-sequential technique uses the framework of the conventional feed-forward error-

backpropagation neural network approach [46,56]. According to the feedback approach, the 

futuristic (i.e., year (n+1)) desired value (i.e., (A)n+1) is determined from some predetermined input 

parameters. This logic is mathematically represented by Equation 13 [56]. 

{(𝐴)𝑛+1} =  𝐴𝑁𝑁(𝑚+1)−𝑘−1{𝑥1, 𝑥2, … , 𝑥𝑚(𝐴)𝑛}                                                                      𝐸𝑞 13 

Where ANN denotes the neural network model that best relates a given number of inputs 

(m+1) [i.e., x1, x2, ..., xm, (A)n] to the desired output [i.e., (A)n+1]. Note that {x1, x2, ..., xm} is a 

vector of (m) parameters used to represent all static input parameters that might affect the desired 

output. The (m+1)-k-1 notation represents the architecture of the selected network. In this case, 

(m+1) represents the (m) static inputs, and the one additional feedback parameter, k is the optimal 

number of hidden nodes, which needs to be determined through the training and testing processes, 

and (1) is the desired number of outputs, namely, the futuristic desired value [i.e., (A)n+1] [56]. An 

important component of dynamic-sequential modeling is that the datasets must be in sequential 

order and equal time steps. For the dynamic procedure is assumed that each data is recorded at the 

same intervals [28]. Figure 3 shows an example of dynamic network architecture with one output. 
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Figure 3. Dynamic-Sequential Network Structure [46] 

2.2. Overview of Pavement Performance Indicators 

Among the most important measures of pavement performance, roughness is an indicator 

of road conditions and is used for making objective decisions related to the management of road 

networks [8]. Pavement roughness describes the irregularities in the pavement surfaces that affect 

the ride quality experienced by daily road users [2]. Of several pavement condition indices used 

to assess pavement surface conditions, the PCR and IRI are the most used and well-recognized 

pavement performance indicators. 

The PCR is a rating method based upon visual inspection of pavement distress. Although 

the relationship between pavement distress and performance is hard to be understood, there is 

evidence that the ability of pavement to sustain traffic loads safely and smoothly is adversely 

affected by the incidence of observable distress. The PCR method presents a procedure for 
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uniformly identifying and describing, in terms of severity and extent, pavement distress. The 

mathematical expression for PCR gives an index reflecting the composite effects of varying 

distress types, severity, and extent upon the overall condition of the pavement. The PCR 

calculation is based upon the summation of deducting points for each observable kind of distress. 

Deduct values are a function of distress type, severity, and extent [57]. The weights of distresses, 

severity, and extent are multiplied to find the deduction for each distress type. Appendix A presents 

the forms that aid field personnel in establishing distress severity and extent while performing the 

PCR surveys [57]. Equation 14 shows the PCR mathematical expression [28].  

𝑃𝐶𝑅 = 100 − ∑ 𝐷𝑒𝑑𝑢𝑐𝑡𝑖

𝑛

1

                                                                                                                  𝐸𝑞. 14 

Where: 

• PCR = Pavement Condition Rating 

• n = number of observable distresses 

• Deducti = multiplication of the weight of distress, the weight of severity, and weight of 

extent for distress I (Appendix A). 

The Ohio Department of Transportation [57] developed a PCR scale to describe the 

pavement condition using the PCR numbers calculated from Equation 14. This scale has a range 

from 0 to 100; a perfect pavement with no observable distress has a PCR of 100 and pavement 

with all distress present at their “High” levels of severity and “Extensive” levels of extent have a 

PCR of 0. Figure 4 illustrates the PCR Scale and the explanatory condition of a pavement 

associated with the various ranges of the PCR values. 
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Figure 4. Pavement Condition Rating (PCR) Scale [57] 

Several methods were created to measure pavement roughness which turned difficult the 

use of roughness data since they were obtained by different methods. For this reason, there was a 

need to establish a standard roughness index to eliminate possible problems caused by using 

different roughness indices, methods, and data collection [8]. In 1982, the World Bank and the 

government of Brazil proposed the International Road Roughness Experiment (IRRE) to find a 

standard roughness index appropriate for the many types of roughness to offer a basis for 

comparing roughness measures obtained by different procedures. Forty-nine road test sites were 

measured using different test equipment and measurement conditions. A full roughness range of 

asphaltic concrete, surface treatment, gravel, and earth roads was included in the study. The results 

from the IRRE showed that a standard roughness index was practical, and an index was proposed 
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that is measurable by most of the equipment, including road meters and profilometers. This 

selected measure has been denoted as IRI. The IRI is based on the quarter-car analysis method, a 

mathematical model of a vehicle that represents a body and a single wheel [7], with standardized 

parameter values and a reference simulation speed of 80 km/h [8]. 

The IRI measurement can be expressed in two types of units, in/mile or m/km. A higher 

IRI value indicates a rough pavement profile, which affects the ride quality experienced by road 

users. A lower IRI value indicates a smooth pavement profile, causing a better ride quality for the 

road users. Using high-speed vans equipped with laser equipment, accelerometers, and a computer, 

the pavement profile is measured generating the IRI values. The surface profiles are measured at 

traffic speed and the onboard accelerometer provides the data to calculate the changes in the 

vertical position. The distance between the vehicle and the surface of the road is measured by laser 

and the collected data is stored in the computer periodically. Since the change in longitudinal 

pavement profile over time is directly related to the change in roughness with time, it becomes an 

important indicator of pavement performance. The MEPDG [5] designed to update the 1993 

AASHTO [6] uses the IRI measurements of longitudinal roughness to indicate pavement 

smoothness. The IRI measurements are stable, easy to be reproduced from longitudinal profile 

elevation, highly correlated with other roughness measuring devices, and offer good correlations 

with important user serviceability ratings, like present serviceability rating. 

2.3. Long-Term Pavement Performance 

The mission to study pavement performance and promote extended pavement life across 

the United States had been advanced since the late 1950s. However, just with the passage of the 

Surface Transportation and Uniform Relocation Assistance Act of 1987, Congress authorized the 
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LTPP program as part of the first Strategic Highway Research Program (SHRP) in 1987. A 5-year 

applied research program funded by the 50 States through a dedicated share of the Highway Trust 

Fund [58]. A total of 51 States including Washington D.C. and ten Canadian provinces' highway 

agencies that joined the program seeking to advance highway research and planning were 

considered in the initial selection of the test sections in the LTPP program [2]. 

The objectives of the LTPP program are to collect and store performance data from a large 

number of in-service highways over an extended period to support analysis and product 

development. Analyze the collected data to describe pavements' performance and translate these 

insights into usable engineering products related to pavement design, construction, rehabilitation, 

maintenance, preservation, and management [58]. The data collection started in 1989 and 2,509 

pavement test sections were selected or constructed for the study. In 1992 with the end of the 

SHRP, the LTPP program continued under the U.S. Department of Transportation’s Federal 

Highway Administration (FHWA) and continues until the present day. New experiments and 

studies are being added to monitor the performance of pavement materials and new technologies 

that were not yet in use when the LTPP program began [58]. 

The design of experiments was an integral part of the planning and preparation for the 

LTPP program. In the mid-1980s, two study types were considered, the GPS and the SPS. The 

GPS experiments used in-service pavement sections to examine general performance by pavement 

type. In contrast, the SPS experiments were designed to investigate the influence of specific 

features on pavement performance, these sections were to be constructed specifically for the LTPP 

study [58]. 

The LTPP data collection has different spatial and temporal locations throughout the U.S. 
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A climatic zone classification was created during the initial recruitment phases of the LTPP test 

sections and is divided into four different climates zones identified as wet-freeze, wet-non freeze, 

dry-freeze, and dry-non freeze zones as shown in Figure 5 [2,59]. This climatic zone map was 

altered in some places to adhere to State boundaries to ease data collection processes. 

 

Figure 5. LTPP Climate Zone Map [59] 

Over the years the LTPP program has accumulated a vast repository of data, 

documentation, and related tools, which compose LTPP’s comprehensive Information 

Management System (IMS). The LTPP IMS is the premier product of the LTPP program and is 

used for research, pavement design, and product development [60]. The data and information in 

the LTPP IMS became available via the web through the data portal system, LTPPInfoPaveTM 

[61], in January 2014. InfoPave is the public gateway to access data and other information about 
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the LTPP program. 

2.4. Mississippi Department of Transportation Performance Models 

One of the main problems for state transportation agencies is to perform timely and proper 

maintenance and rehabilitation of roads and highways to meet the public’s needs and safety 

concerns. To ensure the safe passage of not only passengers, but goods, and products, the safety 

of the roadways cannot be understated [29]. Current investigations of the mechanical properties of 

existing pavements and their M&R management are crucial for the continuation of an 

uninterrupted transportation system. These studies require well-coordinated field measurements 

and a complete and reliable decision-making process to overcome future issues in pavement 

systems [62].  

The improvement of data collection equipment allowed a faster and more complete data 

acquisition, providing thousands of datasets with higher resolution. During a typical one-year 

survey, approximately 27,250 miles of survey data are collected from state, interstate, and non-

interstate highways, as well as freeway expressways or other principal arterial routes [62]. At this 

time, the MDTO database has over 40 million records of data that includes condition, distress, 

friction, curve and grade, mean roughness index, global positioning system (GPS) location, 360-

degree images, and roadway images[62].  

In the late 1980s, the MDOT started a research collaboration with the University of 

Mississippi resulting in sets of models that are currently in use for decision-making. The existing 

system utilizes Markov probabilistic models to estimate pavement distresses. It estimates the 

probability of a pavement section moving from one state of distress to a state of more severe 

distress within one year given a specific pavement preservation action [62]. Among several 
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pavement condition indices used to assess pavement surface conditions, MDOT utilizes the PCR 

and IRI, which are the most widely used and well-recognized pavement performance indicators to 

make a timely decision and maintenance schedule [63]. However, existing models have developed 

over 30 years ago. Since that time, the design methods, resources, and construction procedures 

have been updated to the latest technology based on cutting-edge research in material science and 

pavement design. Therefore, previously developed models should be updated to be valid for the 

new design methods and material changes.  

In transportation systems, decision support systems must work rapidly to ensure the correct 

maintenance without delay and reduce issues regarding traffic operations. The development of 

advanced pavement performance models using modeling techniques that are more intelligent, 

inclusive, reliable, and accurate, will lead MDOT to plan more efficient M&R actions saving time 

and money. To achieve this objective, new pavement performance models utilizing the ANN 

technique are developed in this dissertation for the MDOT database.  

The pavement database utilized in this research is a part of Mississippi’s pavement survey 

performed by the MDOT. Every two years, MDOT collects data to monitor the current pavement 

conditions and predict M&R for the Mississippi road network. Flexible, rigid, and composite 

pavements are part of the database and were utilized to develop performance prediction models. 

Due to the new methods in the data collection system, only recorded datasets from 2010 to 2020 

were utilized, which resulted in 6 usable years of data. To characterize the behavior of pavement 

deterioration in a one-year time increment, a continuous database was needed to be used for 

developing reliable models. Since MDOT collects data every even year to develop prediction 

models that are applicable for a 1-year increment, the odd-year data were generated by averaging 
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consecutive years from 2010 to 2020. This approach was successfully utilized for the MDOT 

database in previous studies [28–30,63–65]. 

By assessing the quality of databases, sections with missing or illogical data have been 

excluded as the ANN model development process needs a complete dataset. This includes 

instances of negative IRI and the sections without the recorded length. The data collection, 

processing, and modeling are explained in detail in the upcoming chapters of this dissertation. 
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CHAPTER III: LITERATURE REVIEW  

3.1. Pavement Performance Models 

Understanding the role that pavement performance plays in the maintenance and 

rehabilitation activities of the highway network system has pointed transportation agencies to the 

need for developing intelligent and efficient pavement performance models. These performance 

models can help to make decisions regarding pavement maintenance and rehabilitation priorities. 

The design premise included in the AASHTO MEPDG [5] for predicting smoothness 

degradation is that the occurrence of surface distress will result in increased roughness, rising the 

IRI value, or in other words, reducing smoothness. The MEPDG developed an equation to predict 

the IRI over time for composite pavements using data collected from the LTPP program. The 

equation is embedded in the MEPDG, and it is presented in Equation 15. 

𝐼𝑅𝐼 = 𝐼𝑅𝐼0 + 0.00825 (𝑆𝐹) + 0.575 (𝐹𝐶𝑇𝑜𝑡𝑎𝑙) + 0.0014 (𝑇𝐶) + 40.8 (𝑅𝐷)                       Eq. 15 

Where: 

• IRI0: Initial IRI after construction, in/mi 

• SF: site factor, refer to Equation 15 

• FCTotal is the area of fatigue cracking (combined alligator, longitudinal, and reflection 

cracking in the wheel path), percent of total lane area. All load-related areas combined on 

an area basis-length of cracks are multiplied by 1 ft. to convert length into area basis.) 

• TC: length of transverse cracking (including the reflection of transverse cracks in existing 

HMA pavements), ft/mile 

• RD: average rut depth.
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The site factor (SF) is calculated using Equation 16. 

𝑆𝐹 = 𝐴𝑔𝑒 [0.02003 (𝑃𝐼 + 1) + 0.007947 (𝑃𝑟𝑒𝑐𝑖𝑝 + 1) + 0.000636 (𝐹𝐼 + 1)                  Eq. 16 

Where: 

• Age: pavement age, year 

• PI: percent plasticity index of the soil 

• FI: average annual freezing index, ᵒF 

• Precip: average annual precipitation or rainfall, in. 

Sandra and Sarkar [22] developed a model based on the relationship between roughness 

and noticeable distresses commonly observed on Indian roads such as cracking, potholes, patching, 

rutting, and raveling. The data was collected over 39.5 km length of roads with different functional 

classes such as national highways, state highways, and major district roads in the Rajasthan state 

of India. All the distresses were considered in terms of extent and severity. The developed model 

showed that besides the usual distresses such as rutting, patching, and cracking considered by 

various studies, the contributions of potholes and raveling were quite predominant on Indian roads. 

Also, the level of severity of particular distress had a differential impact on the roughness, and 

thus, both severity and extent need to be considered for developing such models. The author also 

recommended that different models should be developed since the quality of construction, 

maintenance management, and traffic volume and composition vary substantially with the class of 

road. 

Rahim et al. [66] evaluated the IRI for asphalt pavement overlaid over concrete slab treated 

with crack, seat, and overlay (CS&O) rehabilitation technique. Two LTPP regions were used for 

the development of non-linear regression models, wet-freeze, and wet-non-freeze. An additional 

model was developed for pavement sections in California. Asphalt overlay thickness and base type 
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(bound or unbound) were factors evaluated in the study. The independent variables were age, 

annual Equivalent Single Axle Load (ESAL), CESAL, base type, asphalt, and concrete pavement 

thicknesses. The study obtained an R² of 0.55 for the wet-freeze model, R² of 0.50 for the wet-

non-freeze model, and an R² of 0.62 for the California model. 

Cheng and Zhang [24] investigated the applicability of IRI-based pavement deterioration 

prediction models, including four deterministic models for pavement performance prediction (i.e., 

the National Cooperative Highway Research Program (NCHRP) model, Al-Omari–Darter model, 

Dubai model, and the New Mexico Department of Transportation (NMDOT) model). Comparisons 

of these models were made using the data from both the NMDOT pavement management system 

and the LTPP sites in New Mexico. The Al-Omari-Darter model and the Dubai model were used 

to predict IRI values while the NCHRP and NMDOT models were used to predict performance 

based on IRI values. Al-Omari and Darter [67] found that pavement rut depth and the standard 

deviation of rut depth were the most significant factors affecting IRI and developed Equation 17 

and Equation 18. 

𝐼𝑅𝐼 = 57.56𝑅𝐷 − 334.28, 𝑅2 = 0.93                                                                                              Eq. 17 

       

𝐼𝑅𝐼 = 136.19𝑆𝐷 − 116.36, 𝑅2 = 0.94                                                                                            Eq. 18  

The Dubai model used Age as the predictor for the IRI predictions as shown in Equation 

19. 

𝐼𝑅𝐼 = 0.796 exp(0.0539𝐴𝑔𝑒) , 𝑅2 = 0.801                                                                                  Eq. 19 

      

The NCHRP model used an exponential regression equation as shown in Equation 20. 

𝑃𝑆𝐼 = 5 exp(−0.29𝐼𝑅𝐼) , 𝑅2 = 0.703                                                                                              Eq. 20 
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The NMDOT model devised the PSI by combining IRI and eight other pavement distresses. 

After the analysis and comparison of the models, it was found that the Dubai model and the 

NCHRP model stand a better chance of being consistent and reasonably precise than the Al-

Omari–Darter model and the NMDOT model. 

Khattak et al. [68] developed IRI prediction models using regression analysis for composite 

(asphalt overlaid concrete) and flexible pavements in the state of Louisiana as a result of a three-

phased study by the Louisiana Department of Transportation and Development. In this study, the 

performance of overlay treatment of about 751.5 km (467 miles) of composite pavements and 

2027.7 km (1260 miles) of flexible pavements in the state of Louisiana was analyzed to develop 

the IRI models. For the composite pavement IRI regression model an R² of 0.63 was found using 

nine input variables (IRI value before treatment (m/km), CESAL, thickness of HMA overlay, 

thickness of Portland Cement Concrete (PCC) layer, functional classification, cumulative 

temperature index, age of treatment, precipitation index, and a variable delta). For the flexible 

pavement IRI regression model an R² of 0.47 was found using seven input variables (functional 

classification, cumulative equivalent single-axle load, thickness of overlay, temperature index, the 

age of treatment, cumulative precipitation index, and a variable delta created in the study). The 

study concludes that the developed IRI models presented good agreement between the measured 

and predicted IRI values with most data within 5% of prediction error and the models could be 

used as a good pavement management tool for pavement maintenance and rehabilitation actions. 

However, pavement performance modeling is not a simple task due to the complex 

relations between pavement structure and its responses to climate and traffic variables, and the 

interaction between all these elements together [11]. The modeling of asphalt and concrete 
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pavement performance has been investigated in many studies over the years. However, composite 

pavements have not been well investigated. Also, several performance models have used distress 

data which are costly to collect and not easily available for all agencies. Traditionally, linear, non-

linear, multiple linear regression analysis, Markov chains, mechanistic-empirical, survivor curves, 

semi-Markov, and Bayesian models have been used for predicting pavement roughness value [20]. 

However, due to the complexity of the relations between each one of the variables that affect 

pavement roughness, the use of simple statistical approaches such as linear regression does not 

seem appropriate to develop performance-prediction models [21].  

Advanced modeling techniques using machine learning appear as an alternative for 

predicting pavement deterioration, offering significant improvements over traditional techniques. 

By feeding data in the form of observations and real-world interactions to computers and making 

them learn and act intelligently to find complex connections between variables, machine learning 

can process large volumes of data with a high degree of accuracy [20]. It can also handle noisy 

and complex data, solve non-linear problems, and once trained, it can make predictions and 

generalizations at any time [39]. Machine learning techniques hold significant potential for 

building a modern and robust pavement system due to the excellence in automation and pattern 

recognition [20]. The literature review shows that a remarkable number of researchers have used 

ANN to predict pavement performance. 

 

3.1.1. Flexible Pavement Performance Models Using ANN 

Attoh-Okine [69] used a backpropagation neural network algorithm to develop an IRI 

prediction model for asphalt pavements using data from the LTPP database and apply a 
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sensitivity analysis to find the relative significance of the material and construction variables on 

the roughness. Asphalt content, asphalt layer thickness, cumulative equivalent single axle load, 

structural number (SN), and the percentage of fines passing through the No. 200 sieve were used 

as independent variables. The IRI was used as the output variable. The study concluded that the 

ANN technique is feasible when a large database on pavement conditions is available. This 

technique could form the basis for developing a generic intelligent pavement deterioration 

process. However, it is also important to explore different preprocessing of input data, learning 

rules, and transfer functions to perform more successful predictions. 

Kargah-Ostadi et al. [70] developed an ANN model for flexible pavements using a specific 

pavement study (SPS-5) from the LTPP database. The objective of the study was to use the model 

to predict and compare pavement roughness variation trends after various rehabilitation 

alternatives. The optimum ANN structure had eight input variables, five hidden nodes within one 

hidden layer, and one output. Model testing resulted in the prediction of IRI with minimal errors 

and future roughness prediction trends that match perfectly with the observed values. These 

findings indicate that the ANN model performs successfully in predicting IRI trends following 

each kind of treatment in the SPS-5 experiment.  

Hossain et al. [16] developed an ANN prediction model for flexible pavements using 

climate and traffic data collected from the LTPP database. The study compared the ANN-predicted 

IRI and measured IRI for flexible pavements under specific climatic zones (wet freeze) with a two 

hidden-layered ANN structure with seven independent variables, nine hidden nodes for the first 

and second hidden layers, and one output (7-9-9-1), using a nonlinear transfer function. A Root 

Mean Squared Error (RMSE) of 0.027 was found for the flexible ANN model, indicating that the 
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IRI prediction was reasonable for both short-term and long-term predictions using only climate 

and traffic data. 

Solatifar and Lavasani [27] developed an ANN flexible pavement deterioration model 

based on IRI utilizing Back-Propagation Neural Networks (BPNN) technique with the LTPP 

database for two GPS sections (GPS-1 and GPS-2). After training and testing the final developed 

model, the results were compared with a polynomial model developed with a nonlinear regression 

method. Several statistical error calculations were used to compare the results of both models. The 

ANN model showed an RMSE of 0.2750 and 0.2120 for the GPS-1 and GPS-2 respectively while 

the polynomial model showed 0.2751 and 0.2120. Similar results were obtained but the ANN 

model showed more accurate results. By using the ANN model, a more precise decision in 

choosing an M&R policy can reduce the costs of pavement management. 

Jaafar [2] developed mechanistic-empirical models using ANN and multiple linear 

regression (MLR) techniques for predicting IRI, rutting, and cracking for asphalt pavements using 

the LTPP database. For the IRI modeling, the ANN architecture used seven independent variables, 

five hidden nodes within a single hidden layer, and one output (i.e., 7-5-1 ANN structure). The 

independent variables used for IRI modeling were initial IRI, pavement age, structural number 

(SN), CESAL, air temperature, precipitation, and construction number (CN) (an indicator of major 

maintenance and/or rehabilitation). The ANN model showed a coefficient of correlation (R) of 

0.72, which is considered reasonably accurate for IRI prediction in asphalt pavements. Sollazzo et 

al. [18] also developed an ANN model and compared it with linear regression, obtaining better 

accuracy when using the ANN model compared to the MLR model. 

Choi [14] developed an ANN prediction model for flexible pavements on a granular base 
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from three states: Texas, New Mexico, and Arizona. The results show that the ANN model could 

deliver a reasonable explanation for their predictive behavior and model the relationship between 

input variables and pavement performance. 

Duckworth [28] and Duckworth et al. [29] developed pavement performance prediction 

models using the ANNs approach for flexible pavements based on the MDOT database. A two-

output model for predicting PCR and IRI was found to be the most promising. The ANN model 

successfully characterized the deterioration behavior with statistical measures in a suitable range. 

Yamany [13] developed pavement performance models for flexible pavements using data 

from eight Midwestern states, and Zeiada [12], developed prediction models for warm climate 

regions in the LTPP database. Both studies found that by specifying these characteristics their 

prediction models performed better since the data gather the same characteristics and helped the 

model to understand the variability of the datasets. 

Barros et al. [71] developed ANN performance models for flexible pavements considering 

traffic and climate loads, pavement age, initial roughness condition, and M&R interventions using 

the LTPP database. The developed models efficiently characterized the deterioration behavior of 

asphalt pavements over time, and effectively capture the effect of M&R interventions. The 

predicted IRI values were in good agreement with observed values and the developed models 

(R²=0.61 and R²=0.67 for Model 1 and Model 2, respectively). Barros highlights that even though 

the development of the ANN model requires a good understanding of the roughness phenomena, 

the developed models are simple, fast, and do not require the user to have any prior knowledge of 

IRI or ANN. 
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3.1.2. Rigid Pavement Performance Prediction Models Using ANN 

Relatively fewer studies have been conducted in recent years to predict rigid pavement 

performance when compared to flexible pavements.  

Hossain et al. [17] developed a prediction model for IRI for rigid pavement using climate 

and traffic data by employing Artificial Neural Network (ANN) modeling. The climate and traffic 

data are collected from the LTPP database. The ANN model is trained, tested, and validated using 

70%, 15%, and 15% of data respectively. The trained model and the validated model are compared 

by calculating the RMSE and Mean Absolute Percentage Error (MAPE) of ANN predicted IRI 

and measured IRI. The study developed a model for rigid pavement located in the wet non-freeze 

climate zone, employing a 7-9-9-1 ANN structure and using a hyperbolic tangent sigmoidal 

transfer function, the RMSE, and MAPE values generated are 0.01 and 0.01 (1% error) 

respectively. 

Yasarer et al. [30] developed a new set of ANN models that contain daily traffic volume, 

IRI, soil condition, pavement thickness, and mean roughness index (IRIMean) for the Jointed 

Concrete Pavements (JCP) in Mississippi. The best performing ANN model had an R² of 0.93 and 

was integrated into a Microsoft Excel spreadsheet to generate an application that is simple, user-

friendly, and allows the user to visualize the future projections of the pavement section. The 

authors recommended that MDOT personnel can employ this application to predict the condition 

of the JCP and prioritize the maintenance and rehabilitation schedule.  

Yasarer et al. [65] developed a performance model for CRCP pavement using the ANN 

modeling technique for Mississippi. This study used maintenance and rehabilitation actions as an 

input in the model. The database used in this study contained 69 CRCP pavement sections that 
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resulted in 212 datasets from 2010 to 2018. The ANN model was trained using 25% data, then 

tested with 25% data, and the other 25% of data was employed to validate the model by comparing 

ANN predicted IRI and measured IRI. The study developed a model employing an 11-18-1 ANN 

structure with the accuracy of 0.0012 for ASE, 5.923 for MARE, and 0.872 for R2 statistical 

measures.  

Sultana [9] developed performance models for Jointed Plain Concrete Pavement (JPCP), 

Jointed Reinforced Concrete Pavement (JRCP), and Continuously Reinforced Concrete Pavement 

(CRCP) using MLR and ANN techniques considering the effects of M&R history in the model 

development. The input and output variables were similar for all the models and retrieved from 

the LTPP database. The ANN models showed better accuracy in predicting pavement performance 

compared to the multiple regression models for all types of concrete pavements. A high R² of 0.94, 

0.95, and 0.95 were obtained for the JPCP, JRCP, and CRCP, respectively, presenting a significant 

improvement over models that currently use mechanistic-empirical pavement design.   

Sultana et al. [33] developed an ANN pavement deterioration model for jointed plain 

concrete pavement (JPCP). The models were developed using LTPP data for the wet, freeze 

climatic region. The input variables were initial pavement condition (i. e., initial IRI), pavement 

structural and mechanical properties (i.e., age, concrete pavement thickness, base/subbase 

thickness, average contraction spacing, base/subbase materials type), traffic (CESAL), and climate 

attributes (i.e., average annual air temperature, total annual precipitation, annual freezing index, 

annual freeze-thaw), and IRI as the output variable. The developed ANN model had an R² of  0.92, 

an ASE, and a MARE value of 0.00103 and 9.93, respectively. The total data points used to 

develop the ANN model were 636 and the final model structure was 13-19-1, where 13 is the 
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number of input variables, 19 hidden nodes, and 1 output variable. The best model was used to 

simulate extreme climate conditions by developing a GUI. IRI values gradually increased, and 

pavement conditions deteriorated over time when climate conditions change to the extreme. The 

study addressed a few gaps in the literature including the scarcity of studies on long-term IRI 

prediction using LTPP data and studies on the effect of climate attributes on pavement 

deterioration. 

Sultana et al. [32] exhibited a methodology to determine pavement performance 

incorporating maintenance and rehabilitation history using the LTPP database and ANN modeling 

approach. The study incorporated the M&R history as CN in the LTPP database and the hypothesis 

testing demonstrated that M&R treatment has a significant effect on pavement performance. 

Several ANN models were attempted to evaluate the best way to include M&R history and resulted 

in a more realistic prediction of pavement conditions A continuous CN approach resulted in an R² 

of 0.901 compared to the categorical CN approach of R² of 0.878. 

Sultana et al. [35,36] utilized the CN variable for developing IRI prediction models for 

JPCP. Three ANN models were developed using variables such as initial IRI, pavement age, 

concrete pavement thickness, ESAL, climatic region, and CN. The best model had an R² of 0.87 

and successfully estimated the increase of IRI values with time and decrease of IRI value after 

maintenance and rehabilitation. 

Sultana et al. [34] studied climate attributes such as precipitation, extreme temperature, and 

freeze-thaw cycles along with traffic loads that cause pavement distresses. Sultana developed IRI 

models that successfully estimated the IRI values for JPCP considering the M&R history of the 

pavements using the ANN approach. The variables used for the ANN model development are IRI0, 
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pavement age, concrete pavement thickness, ESAL, climate zone (wet-freeze, wet non-freeze, dry-

freeze, dry non-freeze), CN, and several climatological data. The best-performing ANN model 

resulted in promising statistical measures (i.e. R²= 0.87).  

Abd El-Hakim and El-Badawy [72] developed an ANN model to predict IRI values for 

JPCP sections using the LTPP database. The model inputs were IRI0value, pavement age, 

transverse cracking, percent joints spalled, flexible and rigid patching areas, total joint faulting, 

freezing index, and percent subgrade passing No. 200 U.S. sieve. The data included a total of 184 

IRI measurements and the results show that the ANN model yielded a higher prediction accuracy 

(R² of 0.83, and ratio of standard error of estimate (predicted) to standard deviation of the measured 

IRI values: Se/Sy =0.414) compared to the MEPDG model (R² of 0.584, Se/Sy =0.643). In 

addition, the bias in the predicted IRI values using the ANN model was significantly lower 

compared to the MEPDG regression model. 

 

3.1.3. Composite Pavement Performance Prediction Models Using ANN 

Literature review to date shows that ANN models performed successfully in predicting IRI 

values for asphalt and concrete pavements. However, performance prediction models for 

composite pavements have not been well investigated. A few studies are available using composite 

pavements data and fewer studies utilized M&R history in the model development.  

Kaya et al. [10] developed pavement performance models for flexible and composite 

(asphalt concrete over the jointed plain concrete pavement) pavement systems in Iowa. ANN-

based models were found to be good tools for modeling pavement deterioration when there were 

many pavement sections with various traffic, thickness, and other various deterioration trends. 
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Abdelaziz et al. [15] develop an IRI prediction model for both original and composite 

pavements using general pavement studies (GPS-1, GPS-2, and GPS-6) and the specific pavement 

studies (SPS-1, SPS-3, and SPS-5) of the LTPP database. MLR and ANN techniques predict IRI 

as a function of pavement age, IRI0, transverse cracks, alligator cracks, and standard deviation of 

the rut depth. The ANN model resulted in better results compared to the regression model, R² = 

0.75 and R² = 0.57, respectively. The network consisted of five inputs, three hidden layers with 

ten nodes each, and one output, with a Logarithmic-Sigmoidal (LOGSIG) as the transfer function. 

Barros et al. [31] developed pavement roughness models for composite pavements using 

the LTPP database and the feed-forward ANN approach. A total of 592 data points from 52 

pavement sections were analyzed. Five models were developed and the best performing model had 

an ASE of 0.002, a MARE of 12.936, and an R² of 0.88. It utilized 14 input variables (i.e., Initial 

IRIMean, Age, Wet-Freeze, Wet Non-Freeze, Dry-Freeze, Dry Non-Freeze, Asphalt Thickness, 

Concrete Thickness, CN Code, ESAL, Annual Air Temperature, Freeze Index, Freeze-Thaw, and 

Precipitation) and one output variable (IRIMean).  

This doctoral research presents several papers that explore the development of pavement 

performance models for flexible, rigid, and composite pavements embedding M&R history and 

interventions to provide more realistic performance predictions. Since one of the main concerns of 

state and federal agencies is prioritizing the decisions for M&R actions, the developed models can 

be used to properly assess the condition of the pavements and predict future scenarios to perform 

more effective and timely M&R interventions. Furthermore, the models developed in this 

dissertation do not use distress variables as an input, which makes the use of the prediction models 

easier for agencies. 
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4.1. Abstract 

A large number of paved highway surfaces comprises composite pavements as a result of 

concrete pavement rehabilitation that uses an asphalt overlay on top of the concrete surface. 

Annually, billions of dollars are spent on the maintenance and rehabilitation of road networks. 

Roughness is one of the several indicators of road conditions used to make objective decisions 

related to road network management. The irregularities in the pavement surface affecting the ride 

quality of road users can be described by a standard roughness index defined as the International 

Roughness Index (IRI). Roughness prediction models can identify rehabilitation needs, analyze 

rehabilitation effects, and estimate future pavement conditions to implement different Maintenance 

and Rehabilitation (M&R) activities to extend the pavement life cycle and provide a smooth
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surface for road users. This study intended to develop pavement performance models to predict 

roughness for asphalt overlay on concrete pavement sections using the Long-Term Performance 

Pavement (LTPP) program database. The artificial Neural Networks (ANNs) approach was used 

to develop roughness prediction models. A total of 52 pavement sections with 592 data points were 

analyzed. Five models were developed, and the best performing model, Model 5 was found with 

an average square error (ASE) of 0.0023, mean absolute relative error (MARE) of 12.936, and 

coefficient of determination (R²) of 0.88. Model 5 utilized one output variable (IRIMean) and 14 

input variables (i.e., Initial IRIMean, Age, Wet-Freeze, Wet Non-Freeze, Dry-Freeze, Dry Non-

Freeze, Asphalt Thickness, Concrete Thickness, CN Code, ESAL, Annual Air Temperature, 

Freeze Index, Freeze-Thaw, and Precipitation). The ANN model structure utilized for Model 5 

was 14-9-1 (14 inputs, 9 hidden nodes, and 1 output). Environmental impacts and traffic repetitions 

can cause severe damage to the pavement if timely maintenance and rehabilitation are not 

performed. By considering the effects of the M&R history of the pavement, it is possible to obtain 

realistic prediction models for future planning. Therefore, the developed ANN roughness 

performance models in this paper can be used as a prediction tool for IRI values and guide 

decision-makers to develop a better M&R plan. Local and state agencies can use available 

historical traffic and climatological data in the developed models to estimate the change in IRI 

values. Utilizing these prediction models eliminates time-consuming data collection and post-

processing, and consequently, a cost reduction. This low-cost tool will improve the condition 

assessment and effective M&R scheduling. 

4.2. Introduction 

An efficient and safe transportation network for public mobility and freight transportation 
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is an important part of a nation’s economy and prosperity [2]. From the 2.6 million miles of paved 

roads and highways in the United States, 93 percent of them are surfaced with asphalt [2]. 

However, a large portion of the paved highway surfaces comprises composite pavements, which 

are made of an asphalt overlay on concrete pavements. Most of the composite pavements are a 

result of concrete pavement rehabilitation [3]. When concrete pavements start to fail, they are 

overlaid with a hot mix of asphalt (HMA) [3]. The use of composite pavements compared to 

flexible or rigid pavements, can provide better levels of performance both structurally and 

functionally and accordingly can be a more cost-effective alternative [3]. Annually, billions of 

dollars are required for the maintenance and rehabilitation of road networks. If timely maintenance 

and rehabilitation are not performed, the pavement damages inflicted by environmental impacts 

and traffic repetitions may lead the pavement to poor conditions that can cause life-threatening for 

road users [2]. 

Pavement performance modeling is an important part of pavement management systems 

(PMS), which allows decision-makers a better budget allocation plan for future pavement 

maintenance and rehabilitation (M&R) actions [37]. However, current pavement performance 

prediction models do not account for the influence of M&R activities during the service life of the 

pavement, which can affect the accuracy of the predictions [37]. Pavement roughness models are 

necessary to identify rehabilitation needs, analyze rehabilitation effects, and estimate future 

pavement conditions to implement different M&R activities to extend the pavement life cycle and 

provide good surface quality for road users [27,73]. The International Roughness Index (IRI) is 

accepted as an important indicator of pavement performance and used as the standard for pavement 

roughness [74]. The objective of this paper is to develop a pavement roughness model using ANNs 
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approach for asphalt overlay on concrete pavement sections in the LTPP database. An IRI 

prediction method was proposed based on the analysis of the influence of pavement structure, 

climate, and traffic data.  

4.2.1. Objectives 

The main objectives of this paper are to: 

(1) Analyze roughness data for asphalt overlay on concrete pavements in the U.S. territories 

using the Long-Term Performance Pavement (LTPP) database. 

(2) Develop a roughness model for asphalt overlay on concrete pavements using the Artificial 

Neural Networks (ANNs) approach on the LTPP database.  

(3) Perform a sensitivity analysis on one section of the database.  

4.2.2. Scope 

The scope is limited to asphalt overlay on concrete pavements 

4.3. Literature Review  

4.3.1. Literature Review of LTPP Program 

The mission to study pavement performance and promote extended pavement life across 

the United States had been advanced since the late 1950s. Congress authorized the LTPP program 

as part of the first Strategic Highway Research Program (SHRP) in 1987 [58]. A 5-year applied 

research program funded by the 50 States through a dedicated share of the Highway Trust Fund 

[58]. The objectives of the LTPP program were to collect and store performance data from a large 

number of in-service highways over an extended period to support analysis and product 

development. Also, analyze the collected data to describe pavements' performance and translate 

these insights into usable engineering products related to pavement design, construction, 

rehabilitation, maintenance, preservation, and management [58]. The data collection started in 
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1989 and 2,509 pavement test sections were selected or constructed for the study. 

4.3.2. Literature Review of International Roughness Index 

Roughness is an indicator of road conditions and is useful for making objective decisions 

related to the management of road networks [75]. Pavement roughness describes the irregularities 

in the pavement surfaces that affect the ride quality experienced by daily road users [2]. In 1982, 

the World Bank and the government of Brazil proposed the International Road Roughness 

Experiment (IRRE) to find a standard roughness index appropriate for the many types of roughness 

to provide a basis for comparing roughness measures obtained by different procedures. The IRRE 

results showed that a standard roughness index was practical, and an index was proposed, the IRI. 

The IRI is based on the quarter-car analysis method, a mathematical model of a vehicle that 

represents a body and a single wheel [7], with standardized parameter values and a reference 

simulation speed of 80 km/h [75]. The IRI measurement can be expressed in two types of units, 

in/mile or m/km. A higher IRI value indicates a rough pavement profile, which results in a lower 

ride quality experienced by road users. A lower IRI value indicates a smooth pavement profile, 

causing a better ride quality for the road users.  

4.3.3. Literature Review of Roughness Models 

Recently, several studies showed interest in developing pavement roughness prediction 

models for both flexible and concrete pavements. 

Kargah-Ostadi [70] developed an ANN model for IRI prediction of flexible pavements 

using a specific pavement study (SPS-5) from the LTPP database. The objective of the study was 

to use the model to predict and compare pavement roughness variation trends after various 

rehabilitation alternatives. The optimum ANN structure had eight input variables, five hidden 
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nodes within one hidden layer, and one output. Model testing resulted in the prediction of IRI with 

minimal errors and future roughness prediction trends that match perfectly with the observed 

values. These findings indicate that the ANN model performs successfully in predicting IRI trends 

following each kind of treatment in the SPS-5 experiment. 

Hossain et al. [16,17] developed an ANN prediction model for IRI for both flexible and 

concrete pavements using climate and traffic data collected from the LTPP database. Seven 

independent variables were considered as input parameters for predicting IRI. Both models 

compared the ANN predicted IRI and measured IRI for flexible and rigid pavements under specific 

climatic zones (wet-freeze for flexible pavement and wet non-freeze for rigid pavement). Both 

ANN models used a two hidden-layered ANN structure with seven independent variables, nine 

hidden nodes for the first hidden layer, nine hidden nodes for the second hidden layer, and one 

output (7-9-9-1), using a nonlinear transfer function. Both studies indicated that the IRI prediction 

was reasonable for both short-term and long-term predictions using only climate and traffic data.   

Mohamed Jaafar [2] developed mechanistic-empirical models using ANN and multiple 

linear regression techniques for predicting IRI, rutting, and cracking for asphalt pavements using 

the LTPP database. For the IRI modeling, the ANN architecture used seven independent variables, 

five hidden nodes, one hidden layer, and one output (i.e. 7-5-1 ANN structure). The ANN model 

showed a high coefficient of correlation (R) of 0.72. A multiple linear regression model was also 

developed. An R-value of 0.63 was found using multiple linear regression. The results show that 

both ANN and multiple regression models were reasonably accurate for IRI prediction in asphalt 

pavements. 

Khattak et al. [68] developed IRI prediction models using regression analysis for overlay 
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treatment of composite and flexible pavements in the state of Louisiana. For the composite 

pavement, an R² of 0.63 was found using nine input variables. For the flexible pavement, an R² of 

0.47 was found using seven input variables. The study concludes that the developed IRI models 

provided good agreement between the measured and predicted IRI values with most of the 

predictions within 5%.  

Literature review to date indicates that most roughness prediction models did not consider 

M&R history as an independent variable. This study proposes the use of CN as a categorical 

variable in the IRI prediction model for composite pavements. This approach was recently used in 

an asphalt highway pavement performance study at the University of Mississippi [2]. This paper 

developed a pavement roughness prediction model using the ANNs approach for asphalt overlay 

on concrete pavement sections in the LTPP database.  

4.4. Model Development 

4.4.1. Data Collection 

Using the LTPPInfoPaveTM database [60], a total of 311 sections were identified with 

asphalt and concrete in the same section. The asphalt thickness varies from 0.1 to 13.3 inches. The 

concrete thickness varies from 6.4 to 20.5 inches. Sections that have an asphalt layer thickness 

equal to or greater than three inches were considered as composite pavement sections. Following 

this criterion, 272 sections were identified as composite pavement sections with a total of 16,842 

IRI measurements from 1989 to 2018. Each section has two types of IRI measurements, IRILeft and 

IRIRight. A mean roughness index (IRIMean) was calculated by averaging the IRILeft and IRIRight 

measurements. On each visit date, several IRI measurement runs were done for each section. By 

averaging the IRI measurement runs, a single IRI measurement was obtained for IRILeft, IRIRight, 
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and IRIMean for each visit date. A total of 3,304 IRI measurements for 272 sections were obtained. 

For this study, a total of 592 datasets from 52 different sections were used to develop the ANN IRI 

prediction model. Figure 6 shows the 592 IRIMean measurements for the 52 sections. 

 

Figure 6. IRIMean Measurement (m/km) 

4.4.2. Consideration of M&R Treatment in IRI Roughness Prediction Model 

The CN is the attribute that LTPP uses to monitor and identify M&R in each section of the 

database. A CN1 is assigned when the pavement section was opened to the traffic. When an M&R 

is conducted, the CN number will change from CN1 to CN2. Thus, the CN factor indicates that a 

major M&R treatment was conducted on the pavement section. The treatment intervention 

generally improves the pavement condition and performance for roughness, cracking, faulting, 

joint deterioration, and other surface defects. For this reason, it is imperative to consider CN as a 

factor for a more realistic and accurate model. For the ANN model development, CN will be used 

as a categorical variable with a value of zero or one. A zero value is assigned if no M&R was 

implemented in that section and a value of one is assigned if there was an M&R intervention. The 
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use of M&R actions in the model development was expected to result in more realistic models 

considering that M&R actions affect the future condition of the pavement. As an illustration, 

Figure 7 shows different CN values for section 06-7455 located in California. This section has 

three construction numbers (CN1, CN2, and CN3), which were assigned in 1989, 2001, and 2010.  

 

Figure 7. IRIMean Measurement, Section 06-7455, California, 1989-2015 

It is evident from Figure 7 that the M&R treatments improved the composite pavement 

condition, which contributed to lower IRI values. The IRI values decreased 54% from CN1 (1.185 

in 2000) to CN2 (0.541 in 2001) when maintenance and rehabilitation (M&R) were performed in 

the section. To support this statement an independent sample t-test was performed to determine 

whether there are statistically significant differences between the means of IRI measurements 

between CN1 and CN2. The results show that the difference in the means of CN1 IRIMean and CN2 

IRIMean are statistically significant at α 0.05 probability of chance error. This implies that both 

IRIMean samples (CN1 and CN2) are from different populations. Thus, M&R treatments 

significantly improved the pavement surface condition and contributed to lower IRI values. 
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4.5. ANN Model 

4.5.1. Overview of ANN 

Artificial Neural Networks is a predictive modeling technique based on mathematical 

operations that use the concept of human cognition and neural biology [43]. The ANNs approach 

attempts to emulate the structure and/or functional aspects of biological neural networks [44]. It 

consists of several simple processing elements called neurons (or nodes) and connection links 

between them [43]. When the information is processed, the connection links are used to transfer 

signals between neurons [43]. Complex relationships that are difficult to be identified using 

traditional sequential, logic-based modeling and computational technics can be successfully 

represented by neural networks [43]. There are many types of neural networks characterized by 

their architecture, training algorithm, and activation function [45]. In this study, a feed-forward 

neural network with a back-propagation training algorithm was used for the development of the 

roughness prediction model. Different variable types that contain both categorical and continuous 

variables were used, and one hidden layer was considered in the model development. The use of 

more than one hidden layer combined with an insufficient number of databases may cause the 

network to memorize the data in the training phase [46]. Therefore, the developed models used 

only one hidden layer to maintain the generalization capability of the network [46]. The TR-SEQ1 

computer program [55] was used to develop the ANN models in this study. A sigmoidal function 

is used for data generalization purposes.  

4.5.2. ANN Model Variables and Architecture  

IRI was used as a dependent variable (i.e. output) and several independent variables (i.e. 

inputs) were used in this study. Some variables were included based on previous literature studies 
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and new variables were introduced in this research. For this paper, five models were tried using 

different independent and dependent variables. Table 1 shows the variables used for each ANN 

model in this study. 

Table 1. Independent and Dependent Variable Configuration for Five ANN Models. 

Models Model 1 Model 2 Model 3 Model 4 Model 5 

Independent 

Variables 

I0 Left I0 IRIMean I0 Left I0 IRIMean I0 IRIMean 

I0 Right Age I0 Right Age Age 

Age Wet-Freeze Age Wet-Freeze Wet-Freeze 

Wet-Freeze 
Wet, Non-

Freeze 
Wet-Freeze 

Wet, Non-

Freeze 

Wet, Non-

Freeze 

Wet, Non-Freeze Dry-Freeze 
Wet, Non-

Freeze 
Dry-Freeze Dry-Freeze 

Dry-Freeze 
Dry, Non-

Freeze 
Dry-Freeze 

Dry, Non-

Freeze 

Dry, Non-

Freeze 

Dry, Non-Freeze hasphalt 
Dry, Non-

Freeze 
hasphalt hasphalt 

hasphalt hconcrete hasphalt hconcrete hconcrete 

hconcrete CN Code hconcrete CN No Action CN Code 

CN Code ESAL CN No Action CN Any Action ESAL 

ESAL 

 

  

CN Any Action ESAL Temperature 

 

  

ESAL 
 

  

Freeze Index 

  
Freeze-Thaw 

Precipitation 

Dependent 

Variables 

IRILeft IRIMean IRILeft IRIMean IRIMean 

IRIRight 
 IRIRight 

  

 

Model 1 used eight input variables; however, the climatic region is used as a categorical 

variable with four categories. The CN code has a value of 0 for no CN changes and 1 for any 

changes. Therefore, the first model had 11 input variables and 2 output variables (IRILeft and 

IRIRight). Model 2 used I0 IRIMean instead of I0 Left and I0 Right for the input variable. A total of 

10 input variables and 1 output variable (IRIMean) were used. Model 3 used a total of 12 input 

variables and 2 output variables. The CN was considered as two categorical inputs, CN No action 

(1 or 0) and CN Any Action (1 or 0). Model 4 used 11 input variables and 1 output variable. Model 

5 included climatological factors using a total of 14 input variables and 1 output variable (IRIMean). 
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All variables used in the model developing for this paper are not related to distresses data, which 

needs a lot of work, equipment, time, and money to be measured. The ANN models developed in 

this study used easily available variables that normally most agencies have the records of. 

4.5.3. ANN Model Selection 

The best model was selected based on the lowest average square error (ASE), lowest mean 

absolute relative error (MARE), and highest coefficient of determination (R²). Table 2 shows 

statistical measures of the ANN model development stages (i.e., training, testing, validation, and 

all-data) for the five developed models. The final structure of each model is written at the bottom 

row in an order that depicts the number of inputs, hidden nodes, and output(s), respectively. 

Table 2. ANN Model Results 

Model MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 

Network 1-9-20000 1-9-20000 5-9-20000 1-7-20000 1-9-11100 

Training 

MARE 13.540 16.539 14.058 15.481 15.076 

R² 0.83629 0.83525 0.85762 0.84083 0.84757 

ASE 0.002775 0.003288 0.002362 0.003064 0.002899 

Testing 

MARE 17.772 18.878 17.629 24.457 22.209 

R² 0.70008 0.62038 0.68056 0.54602 0.66829 

ASE 0.004578 0.006705 0.005393 0.009307 0.0072 

Validation 

MARE 20.199 21.822 18.133 21.763 23.282 

R² 0.5498 0.62044 0.52444 0.50833 0.47758 

ASE 0.007772 0.007641 0.008425 0.008617 0.009887 

All Data 

MARE 16.069 16.137 15.096 18.212 12.936 

R² 0.77346 0.78018 0.78704 0.7188 0.87741 

ASE 0.003659 0.004087 0.003466 0.005285 0.002272 

Final Structure 11-9-2 10-9-1 12-9-2 11-7-1 14-9-1 

 

All the 592 datasets were used to retrain the network at its optimal structure and iteration 

to obtain the generalized response throughout the complete database. All-data stage for Model 5 

outperformed all other models with significant improvements on model accuracy measures. For 

this reason, Model 5 was chosen as the best performing ANN model. Figure 8 shows the network 
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structure of Model 5. 

 

Figure 8. Network Architecture of the Best Performing ANN Model (Model 5) 

4.6. Results and Discussions 

Figure 9 shows the accuracy measures of all the developed ANN models for the All-Data 

stage. The accuracy measures show reliable results for all models developed. However, Model 5 

results outperform all other models developed. Model 5 has an ASE value (0.0023) 38% lower 

than the second-lowest ASE value (0.0035, Model 3); a MARE value (12.94) 14% lower than the 

second-lowest MARE value (15.10, Model 3); a R² value (0.88) 11% higher than the second-

highest R² value (0.79, Model 3). 

 

Figure 9. Graphical Comparison of Accuracy Measures between Developed ANN Models 
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Observed IRIMean values collected from the LTPP database and the predicted IRIMean 

predictions using Model 5 are presented in Figure 10. The plot shows the IRIMean (m/km) values 

in the y-axis and a section sequence number (generated to identify the data points in the database) 

on the x-axis. 

 

Figure 10. Observed and Predicted IRIMean 

Lower IRIMean values were better predicted than higher values. Figure 11 shows that Model 

5 predictions clustered around the line of equality, but the predicted values are closer to the 

observed values until the IRIMean value is equal to 3 m/km. When the observed IRIMean value is 

greater than 3 m/km, the model was not as accurate as it was for lower IRIMean values. Nevertheless, 

a high R² of 0.88 was obtained for the ANN Model 5. 
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Figure 11. Observed vs. Predicted IRIMean for ANN Model 5 

4.7. Sensitivity Analysis  

To simulate the performance of the developed IRI model, a random section was selected. 

IRI prediction values were generated for seven different years and compared with the observed 

IRI values. Figure 12 shows the observed vs. predicted plot of IRI for Section 01-0604 in Alabama. 

Predicted values were close to observed values. The predicted mean IRIMean (1.23) is 10.2% lower 

than the observed IRIMean (1.37). The projected values showed the roughness model behavior was 

captured by the developed model and the results were accurate and reliable for this section. 

 

Figure 12. Observed and Predicted Plot of IRIMean for Section 01-0604 
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Another sensitivity analysis was generated to evaluate future predictions using the 

developed model. The prediction was performed over 10 years from the last measurement. The 

variable that controls the time factor is the input variable “age”. For the predicted years, previous 

years’ climatological variables were averaged to be used. The ESAL values for the upcoming years 

were calculated by assuming an annual growth rate of 1%. No M&R intervention was assumed for 

this section. The model was able to predict future IRIMean values successfully for Section 01-0604. 

As the road deteriorates over time, the IRIMean value will increase without any M&R action. 

Accordingly, the sensitivity analysis results shown in Figure 13 presents promising predictions for 

this section.  

 

Figure 13. ANN Future Prediction IRIMean for Asphalt Overlay on Concrete Section 01-0604 

The observed IRIMean values start on the pavement age of 32 years and continue until 40 

years. The ANN model was used to predict IRIMean values from 41 to 50 years. As expected, the 

predicted IRIMean values increase with time and an M&R intervention needs to be performed to 

maintain the ride quality and road safety for the users. The developed model can be used to identify 
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in which year the section will need an intervention. Also, if no M&R is performed, the deterioration 

of the pavement occurs exponentially as can be seen from the slope of the IRIMean prediction curve 

after the pavement age of 43 years. For section 01-0604 an M&R intervention is recommended 

before the pavement age of 46 years to maintain an acceptable roughness value for the pavement. 

Therefore, the sensitivity analysis shows that the developed model can be used as a powerful tool 

by visualizing effective solutions for the future condition of the roads and their M&R planning. 

4.8. Conclusions 

In this paper, an artificial neural network approach with a backpropagation learning 

algorithm was utilized to develop IRI prediction models for asphalt overlay on concrete 

pavements. The best performing ANN model was selected based on the accuracy measures shown 

in Table 2. Model 5 showed better prediction accuracy for IRI values compared to the other ANN 

models developed. However, all the developed models are acceptable and can be used for 

generating reliable predictions. The developed ANN models have efficiently characterized the 

roughness phenomena on composite pavements. Most of the studies in the literature developed 

roughness models for asphalt or concrete pavements. This paper can be considered as a unique 

study that composite pavement roughness models were developed using ANNs approach in the 

LTPP database. Since asphalt overlay on concrete pavements is a large part of the LTPP database, 

this study can be employed by the transportation agencies and stakeholders. Therefore, the 

developed ANN model can be used as a prediction tool for IRI values and guide decision-makers 

to develop a better M&R plan. Furthermore, the developed model will predict future IRI values 

without the need for distress data. This will allow local and state agencies to save time from data 

collection and processing, resulting in cost reductions by providing a tool for better condition 
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assessment and effective M&R scheduling.  
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5.1. Introduction 

Roadways are responsible for providing mobility, accessibility, and connectivity 

throughout a country, playing a key role in the nation’s quality of life, economic growth, and 

national security [13]. In the United States, there are more than 4 million miles of roadways where 

2.6 million miles are paved roads and 93% of them are surfaced with asphalt [2]. However, some 

of these paved roads are a result of pavement rehabilitation where concrete pavement is overlaid 

with asphalt and turned into a composite pavement [3]. These pavements can be more cost-

effective and provide better levels of performance both structurally and functionally [3]. The 

collection and assessment of current pavement information, prediction of future conditions, and 

decisions regarding reconstruction, rehabilitation, and maintenance strategies to reach a 

predetermined level of performance are vital elements of Pavement Management Systems (PMS)
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[76]. Road pavements continuously deteriorate under the effects of traffic, climate, and a 

combination of both traffic and climate loads. The capacity of the road to meet the demands of 

traffic and the environment throughout its design life at an acceptable level is known as 

performance [77]. Over the last decades, state and federal transportation agencies have established 

several performance indicators to evaluate the effectiveness and efficiency of their service 

provision [4]. The International Roughness Index (IRI) is the most well-recognized pavement 

performance indicator, and it is used by most transportation agencies throughout the world as a 

standard to determine road surface roughness [78]. The IRI reflects not only the pavement 

condition but also the ride quality and comfort level of road users [15]. IRI assesses the pavement 

surface deviations along the road that affect vehicle suspension movement vertically [20]. To 

ensure superior standards, agencies have to monitor the performance parameters of the entire 

network frequently to adopt the most proper maintenance operations where needed [18].  

Pavement performance prediction models are imperative to highway agencies because they 

provide decision support for their overall maintenance and budget plan [13]. Pavement 

performance models are also required to optimize maintenance and rehabilitation (M&R) policies 

over a planning horizon [76]. However, the use of pavement performance models to estimate the 

pavement deterioration process is a difficult task strongly related to the serviceability level and 

assessment of pavement condition [79,80]. Because of the large number of variables and the 

complex relations between each one of them, the use of simple statistical approaches such as linear 

regression does not seem appropriate to develop performance-prediction models [21]. The type of 

algorithms, number of measured data, and effective variables will directly influence the accuracy 

of the prediction models [81]. Several algorithms and statistical methods have been developed to 
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predict pavement conditions. In this paper, an Artificial Neural Network (ANN) approach was 

selected to develop the composite pavement roughness prediction models. The ANN is a predictive 

modeling technique that uses the concept of human cognition and neural biology [43]. Neural 

networks can successfully represent complex relationships that are difficult to identify using 

traditional sequential methods [52]. The Long-Term Pavement Performance (LTPP) program 

database was used to provide the required data for modeling. The LTPP program is a part of the 

first Strategic Highway Research Program (SHRP), created in 1987, and funded by the Highway 

Trust Fund to collect and store performance data from a large number of in-service highways over 

an extended period to support analysis and product development [58]. In this research, the 

prediction models were used to assess the influence of climate and traffic data on composite 

pavement performance and identify the most accurate ANN model. 

5.1.1. Objectives 

The major objectives of this paper are to: 

(1) Use the LTPP database to analyze roughness data for composite pavements. 

(2) Use the ANN approach to develop roughness models for composite pavements using 

different independent variables. 

(3) Assess the influence of climate and traffic data on composite pavement performance and 

identify the best ANN model developed. 

(4) Perform an in-depth analysis using different sections of the database to identify how the 

developed models are performing and identify the best performance model.  

5.2. Literature Review of IRI Prediction Models 

Pavement roughness is one of the major parameters to describe pavement irregularities, 

ride quality, and hence the user perspective about the road. Rough pavements cause an increase in 

fuel consumption, and a decrease in vehicle efficiency, and result in traffic safety issues that can 



83 

 

lead to the loss of lives and millions of dollars per year [82]. Among other pavement condition 

indices used to assess pavement surface condition, the IRI is the most used and well-recognized 

pavement performance indicator. Developed in 1982 by the World Bank and the government of 

Brazil at the International Road Roughness Experiment (IRRE), the IRI was created to be a 

standard roughness index and provide a basis for comparing roughness measurements obtained by 

different procedures. The IRI is based on the quarter-car analysis method, a mathematical model 

of a vehicle that represents a body and a single wheel [8], with standardized parameter values and 

a reference simulation speed of 80 km/h [7]. Higher IRI values represent a rough pavement surface 

that indicates a lower ride quality for road users, while lower IRI values indicate smooth pavements 

with better ride quality.  

Understanding the role that pavement performance plays in the maintenance and 

rehabilitation activities of the highway network system, transportation agencies have pointed to 

the need for developing intelligent and efficient pavement performance models. These 

performance models can help to make decisions regarding pavement maintenance and 

rehabilitation priorities. However, pavement performance modeling is not a simple task due to the 

complex relations between pavement structure and its responses to climate and traffic variables, 

and the interaction between all these elements together [11].  The modeling of asphalt and concrete 

pavement performance has been investigated in many studies over the years. However, composite 

pavements have not been well investigated. Also, several performance models have used distress 

data which are costly to collect and not easily available for all agencies. Traditionally, linear, non-

linear, multiple linear regression analysis, Markov chains, mechanistic-empirical, survivor curves, 

semi-Markov, and Bayesian models have been used for predicting pavement roughness value [20]. 
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However, due to the complexity of the relations between each one of the variables that affect 

pavement roughness, the use of simple statistical approaches such as linear regression does not 

seem appropriate to develop performance-prediction models [21]. Advanced modeling techniques 

using machine learning are appearing as an alternative for predicting pavement deterioration, 

offering significant improvements over traditional techniques. By feeding data in the form of 

observations and real-world interactions to computers and making them learn and act intelligently 

to find complex connections between variables, machine learning can process large volumes of 

data with a high degree of accuracy [20]. It can also handle noisy and complex data, solve non-

linear problems, and once trained, it can make predictions and generalizations at any time [39]. 

Machine learning techniques hold significant potential for building a modern and robust pavement 

system due to the excellence in automation and pattern recognition [20]. The literature review 

shows that a remarkable number of researchers have used ANN to predict pavement roughness. 

Lin et al. [74] developed ANNs models to predict IRI using a back-propagation neural 

network with seven independent variables, age, initial IRI, AC thickness, climatic conditions, 

pavement distresses, SN, and cumulative ESALs.  

Kargah-Ostadi et al. [70] developed an ANN model for the IRI prediction of flexible 

pavements using a specific pavement study (SPS-5) from the LTPP database. The optimum ANN 

structure had eight input variables, five hidden nodes within one hidden layer, and one output. The 

ANN model performed successfully in predicting IRI trends following each kind of treatment in 

the SPS-5 experiment. 

Sollazzo et al. [18] developed an ANN model using input parameters, related to traffic, 

weather, and structural aspects. The ANN approach was effectively used as a powerful tool for 
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estimating structural performance using roughness data, especially if compared to linear 

regression. 

Mazari and Rodriguez [83], proposed a methodology that included the application of a 

hybrid technique that combines gene expression programming (GEP) and ANN. The results were 

improved when using a hybrid GEP-ANN approach. The hybrid method was found to effectively 

predict the IRI, and the results were satisfactory compared to similar prediction models from the 

literature.  

Hossain et al. [16] and Hossain [17] developed ANN prediction models for IRI for flexible 

and concrete pavements, respectively, using climate and traffic data collected from the LTPP 

database. Both models compared the ANN predicted IRI and measured IRI for flexible and rigid 

pavements under specific climatic zones (wet freeze for flexible pavement and wet non-freeze for 

rigid pavement). A two hidden-layered ANN structure with seven independent variables, nine 

hidden nodes for the first and second hidden layers, and one output (7-9-9-1), using a nonlinear 

transfer function. An RMSE of 0.027 and 0.01 were found for the flexible and rigid ANN models, 

respectively, indicating that the IRI prediction was reasonable for both short-term and long-term 

predictions using only climate and traffic data.   

Jaafar [2] developed mechanistic-empirical models using ANN and multiple linear 

regression techniques for predicting IRI, rutting, and cracking for asphalt pavements using the 

LTPP database. For the IRI modeling, the ANN architecture used seven independent variables, 

five hidden nodes within a single hidden layer, and one output (i.e. 7-5-1 ANN structure). The 

ANN model showed a high coefficient of correlation (R) of 0.72. The results show that ANN 

models were reasonably accurate for IRI prediction in asphalt pavements. 
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Duckworth [28] developed pavement performance prediction models using the ANNs 

approach for flexible pavements based on the Mississippi Department of Transportation (MDOT) 

database. A two-output model for predicting Performance Condition Rating (PCR) and IRI was 

found to be the most promising. The ANN model successfully characterized the deterioration 

behavior with statistical measures in a suitable range. 

Kaya et al. [10] developed pavement performance models for flexible and composite 

(asphalt concrete over the jointed plain concrete pavement) pavement systems in Iowa. ANN-

based models were found to be good tools for modeling pavement deterioration when there were 

many pavement sections with various traffic, thickness, and other various deterioration trends. 

Abdelaziz et al. [15] develop an IRI prediction model for both original and overlaid flexible 

pavements using general pavement studies (GPS-1, GPS-2, and GPS-6) and the specific pavement 

studies (SPS-1, SPS-3, and SPS-5) of the LTPP database. Multiple linear regression and ANN 

techniques predict IRI as a function of pavement age, initial IRI, transverse cracks, alligator cracks, 

and standard deviation of the rut depth. The ANN model resulted in better results compared to the 

regression model, R² = 0.75 and R² = 0.57, respectively. The network consisted of five inputs, 

three hidden layers with ten nodes each, and one output, 5-10-10-10-1 with LOGSIG as the transfer 

function.  

Yamany et al. [13] used condition data of interstate flexible pavements from eight 

Midwestern states to estimate three models: fixed-parameters regression, random- parameters 

regression, and ANN. The ANN model was found to statistically outperform the regression models 

when estimating pavement roughness across all states.  

Jaafar [19] developed IRI prediction models for asphalt pavements using multiple linear 
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regression and ANN modeling approaches for the Western region on the LTPP database. The 

variables included in the models were IRI, pavement age, design structural number, ESAL, and a 

dummy variable for construction number. The feedback ANN predictions using all data showed a 

higher R of 0.85 compared to the enhanced dummy regression equation.  

Solatifar and Lavasani [27] developed an ANN flexible pavement deterioration model 

based on IRI using Back-Propagation Neural Networks (BPNN) technique using LTPP data for 

two GPS sections (GPS-1 and GPS-2). The ANN model showed more accurate results leading to 

a more precise decision in choosing M&R policy. 

Ziari et al. [81] investigated the capabilities of ANNs and group method of data handling 

(GMDH) methods in predicting flexible pavement conditions. Results indicated that ANN models 

predicted the future condition of pavement with high accuracy in the short and long term, while 

GMDH models did not have the same accuracy. 

Bashar and Torres-Machi [20] assessed the overall performance of three machine learning 

algorithms (ANN, Random Forest (RF), and Support Vector Machine (SVM)) and compared them 

to traditional techniques used to predict IRI. The authors recommend the use of ANN to model IRI 

since its performance was very accurate (R=0.930) over a significant number of studies with both 

small and larger sample sizes. 

Literature review to date shows that ANN models performed successfully in predicting IRI 

values for asphalt and concrete pavements. However, roughness prediction models for composite 

pavements have not been well investigated. Furthermore, there is a lack of studies exploring the 

effects of climate and traffic variables on composite pavements. This paper developed a pavement 

roughness prediction model using the ANNs approach for composite pavement sections and 



88 

 

assessed the effects of climate and traffic variables in the performance models using the LTPP 

database. 

5.3. Model Development 

5.3.1. Methodology 

Pavement performance models can be used as a valuable prediction tool for IRI. It can 

estimate future pavement conditions, timely maintenance, and major rehabilitation actions. This 

allows local and state agencies to develop better condition assessment and effective M&R 

scheduling saving time and resulting in cost reductions. The model development process used in 

this paper is described, as follows: 

(1) Conduct a literature review of previous studies to identify independent variables 

responsible for affecting pavement performance. 

(2) Compile databases for composite pavements model development from the LTPP database, 

which must include all variables identified in step (1). 

(3) Identify missing/erroneous data and evaluate the quality of databases. 

(4) Develop procedures for estimating important missing data from step (3). 

(5) Develop pavement performance models using the ANN approach technique. 

(6) Evaluate the accuracy of the developed models for composite pavements using statistical 

measures. 

(7) Select the most accurate model based on statistical indicators. 

(8) Perform in-depth analysis for developed models. 

(9) Implement selected performance models for composite pavements. 

5.3.2. LTPP Data Collection for Composite Pavements 

The LTPP program was created in 1987 as a part of the first SHRP. Five years later the 

LTPP program was handed to the U.S. Department of Transportation’s Federal Highway 

Administration (FHWA) [58]. A total of 51 States, including Washington D.C., and ten Canadian 
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provinces were considered in the initial selection of the test sections in the LTPP program seeking 

to advance highway research and planning [2]. 

The objectives of the LTPP program are to collect and store performance data from a large 

number of in-service highways over an extended period to support analysis and product 

development, analyze the collected data to describe pavement performance, and translate these 

insights into usable engineering products related to pavement design, construction, rehabilitation, 

maintenance, preservation, and management. The data collection started in 1989, and 2,509 

pavement test sections were selected or constructed for the study. New experiments and studies 

are being added to monitor the performance of pavement materials and new technologies that were 

not yet in use when the LTPP program began [58]. 

The design of experiments was an integral part of the planning and preparation for the 

LTPP program. In the mid-1980s, two study types were considered, the General Pavement Studies 

(GPS) and the Specific Pavement Studies (SPS). The GPS experiments used in-service pavement 

sections to examine general performance by pavement type. In contrast, the SPS experiments were 

designed to investigate the influence of specific features on pavement performance, these sections 

were to be constructed specifically for the LTPP study [58]. The LTPP database includes inventory 

data, monitoring data, and maintenance and rehabilitation data organized in seven modules.  

The LTPP data collection has different spatial and temporal locations throughout the U.S. 

A climatic zone classification was created during the initial recruitment phases of the LTPP test 

sections and was divided into four different climate zones, identified as wet freeze, wet non-freeze, 

dry-freeze, and dry non-freeze zones, as shown in Figure 14 [2,59]. This climatic zone map was 

altered in some places to adhere to State boundaries to ease data collection processes.  
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Figure 14. LTPP Climate Zones 

Wet climate zones contained in the LTPP database correspond to values of precipitation 

per year higher than 508 mm (20 inches) while dry climate zones are lower than this value. For 

freeze/non-freeze zones, the threshold contained in the LTPP database is based on an annual 

average freezing index of 83 ℃ (150 ℉) days. Locations with an index over this threshold are 

classified in the freeze zone and those under the threshold in a non-freeze climate zone [84]. Table 

3 shows the number of sections in each LTPP climate zone used in this study. A total of 264 

sections were identified as composite pavement sections, where the asphalt layer thickness over 

the concrete layer is equal to or greater than three inches.  

Table 3. Summary of Climate Zones 

Climate Zones Number of Sections Percentage of Sections 

Wet, Freeze 189 72% 

Wet, Non-Freeze 52 20% 

Dry, Freeze 21 8% 

Dry, Non-Freeze 2 1% 

Total 264 100% 



91 

 

5.3.3. Data Processing 

Several variables were retrieved from the LTPP database to construct the database used in 

the study. The data processing for output and input variables is described in this section. 

5.3.3.1. Output Variables 

As the standard measurement of pavement roughness, the IRI was considered the output 

variable in the modeling process for this research. For the 264 sections, a total of 16,842 IRI 

measurements from 1989 to 2018 were found in the database. Each section has two types of IRI 

measurements, IRI inside wheel path (IRILeft) and IRI outside wheel path (IRIRight). A mean 

roughness index (IRIMean) is calculated by averaging the IRILeft and IRIRight measurements. On each 

visit date, several IRI measurement runs were done for each section. By averaging the IRI 

measurement runs, a single IRI measurement was obtained for IRILeft, IRIRight, and IRIMean for each 

visit date. By doing this, a total of 3,304 IRI measurements were obtained for the 264 sections. In 

this study, a total of 2,487 datasets from 255 different sections were used to develop the ANN 

roughness prediction model. Table 4 shows the descriptive statistics of output variables and Figure 

15 shows the measurements for IRILeft and IRIRight. 

Table 4. Descriptive Statistics of Output Variables 

Variables Description Mean SD COV (%) Max. Min. 

IRILeft IRI Inside Wheel Path, m/km 1.18 0.45 38.2% 3.93 0.39 

IRIRight IRI Outside Wheel Path, m/km 1.26 0.51 40.3% 6.35 0.37 

IRIMean Mean of IRI Inside and Outside Wheel Path, m/km 1.22 0.46 37.6% 4.22 0.41 

 

IRI measurements were greater on the outside wheel path compared to the inside wheel 

path. The average IRI measured for the IRIRight is 1.26 m/km (79.8 in./mile), which is 6.3% greater 

than the IRILeft of 1.18 m/km (74.8 in./mile). 
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Figure 15. IRILeft and IRIRight Measurements 

Mean differences were assessed using the independent samples t-test to determine whether 

IRIRight and IRILeft differ on average from each other. The step-by-step procedure is described as 

follows:  

• Step 1: Set up the null hypothesis and alternative hypothesis. 

Null Hypothesis: H0: µ1 = µ2  

Where:  

µ1 = Mean of Population 1 for IRILeft 

µ2 = Mean of Population 2 for IRIRight  

The population means of the two samples (IRILeft and IRIRight) are equal. This implies that 

both samples are from the same population. 

Alternative Hypothesis: HA: µ1 ≠ µ2 

The population means of the two samples (IRILeft and IRIRight) are not equal. This implies 

that both samples are from different populations. 
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• Step 2: Select α probability of Type 1 chance error for α level of statistical significance. 

α = 0.05 ; α/2 = 0.025 (for two-tailed test) 

Figure 16 shows the two-tailed t-test probability distribution. 

 

Figure 16. Two-tailed t-test Probability Distribution Graph 

• Step 3: Define test criteria and the decision rule for rejecting H0. 

Test criteria: t critical = 1.96 for degree of freedom (dof) = 4,972 and α/2 = 0.025 

Decision Rule: Reject H0 if t-test statistics (t test) exceeds the absolute value of t critical (t test> 

t critical) and probability of significance value, p ≤ Probability of Type-1 chance error, α. 

• Step 4: Calculate t test statistics, t test, and p-significance value. 

t test = -6.13 

Probability of significance, p-value < 0.001 

• Step 5: Interpret the results. 

t test (-6.13) > t critical (1.96) and p (< 0.001) < α (0.05) 

Therefore, the t-test rejects the null hypothesis. The results show that the difference in the 

means of IRILeft and IRIRight is statistically significant at α 0.05 probability of chance error. This 
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implies that both samples (IRILeft and IRIRight) are from different populations. For this reason, this 

study will utilize IRIRight as a dependent variable since it shows the highest value for pavement 

roughness, considering the worst-case scenario. 

5.3.3.2. Input Variables 

An input or independent variable is a variable considered to be the cause of some effect. 

Pavement deterioration is known to occur due to several factors such as pavement structure, 

climate, traffic, and maintenance over the years. In this study, an extensive literature review of 

input variables used in previous studies was done to identify key variables that influence pavement 

performance. In addition, other input variables were found to assist the understanding of the 

pavement deterioration process and were included in this paper. To understand the relationship 

between input and output variables, it is necessary to plot each one of the input variables with the 

desired output variable. Figure 17 shows plots of each input variable versus IRIRight.  

The “initial IRIRight” represents the first IRI value measured in the outside wheel path for a 

specific section of the LTPP database. The first measurement is usually done when the pavement 

is built and opened to traffic and indicates the road surface condition at the beginning of the 

analysis period.  

The variable “age” is calculated by subtracting the year when the section was opened to 

traffic from the IRI measurement year. This variable was selected since it reflects the effects of 

pavement exposure time to climate and traffic loads. Age is also used to predict pavement 

performance for future years. 

The “cumulative ESAL” (CESAL) variable is a sum of annual ESAL data over the years. 

The ESAL represents a mixed stream of traffic of different axle loads and axle configurations 

predicted over the design or analysis period and then converted into an equivalent number of 
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18,000-lb. single axle loads summed over that period. In some years, the LTPP did not have ESAL 

information, and an interpolation and extrapolation procedure was applied to calculate ESAL for 

the missing year. The CESAL variable represents the effects of traffic loads in the model.  

 

Figure 17. Independent Variables Versus IRIRight 

The “asphalt thickness” variable represents the surface asphalt thickness overlaid on a 
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concrete pavement. The “concrete thickness” variable represents the overall thickness of concrete 

used for the pavement section. The subbase thickness variable represents the subbase thickness 

used for the pavement, consisting of an unbound (granular) or bound (treated) subbase. The asphalt 

thickness, concrete thickness, and subbase thickness represent the structural properties of 

pavements. 

The “annual average temperature” variable represents the average daily mean air 

temperatures for the year. The temperature changes affect the material properties of pavements 

and contribute to the deterioration process. The “total annual precipitation” variable represents the 

sum of monthly precipitation for the year. The “annual freeze index” variable represents the sum 

of the difference between 0 and the mean daily air temperature when the mean daily air temperature 

is less than 0 °C for each day of the month. The “annual freeze-thaw” variable represents the 

number of days in the year when the air temperature goes from less than 0 °C to greater than 0 °C, 

assuming the minimum daily temperature occurs before the maximum daily temperature. The 

annual average temperature, total annual precipitation, annual freeze index, and annual freeze-

thaw represent the effect of climate variables in the model. Asphalt and concrete pavements, 

base/subbase, and subgrade materials are susceptible to both temperature and moisture variations, 

which makes necessary the use of climate variables for more accurate pavement performance 

models. 

Correlation analysis of the available datasets was performed by running a correlation test 

to obtain the Pearson correlation coefficient (r) between all variables.  The correlation matrix is 

capable of summarizing large amounts of data where the goal is to identify patterns and observe 

whether the variables are correlated with each other. It provides a linear association between the 



97 

 

output and the proposed input variables. However, the correlation matrix only presents linear 

correlations; if the data is not linearly correlated, it will have a low correlation value. Table 5 

summarizes the descriptive statistics of input variables used in this study and the correlation 

between each input variable and the output variable (IRIRight).  

Table 5. Descriptive Statistics of Input Variables 

Variables Mean SD COV (%) Max. Min. r (IRI Right) 

Initial IRIRight (m/km) 1.88 0.84 44.8% 4.1 0.6 0.13 

Age 32.48 7.65 23.6% 60.0 2.0 0.19 

Cumulative ESAL 8105128 8183586 1.01 66776707 35566 0.08 

Asphalt Thickness (in) 5.02 1.88 37.4% 13.3 1.7 -0.15 

Concrete Thickness (in) 9.14 1.08 11.8% 19.4 7.0 -0.02 

Subbase Thickness (in) 5.28 2.85 54.0% 16.0 0.0 0.08 

Annual Average Temperature (°C) 10.56 2.72 25.8% 22.4 5.1 -0.03 

Total Annual Precipitation (mm) 967.61 285.11 29.5% 2036.4 131.8 0.03 

Annual Freeze Index 382.04 282.55 74.0% 1345.0 0.0 0.04 

Annual Freeze-Thaw (days) 92.98 37.59 40.4% 236.0 2.0 0.03 

Notes: Standard Deviation (SD); Coefficient of Variation (COV); Pearson Correlation with 

IRIRight (r (IRI Right))  

The three highest correlations between input variables and IRIRight were observed with the 

variable “age” (0.19) followed by a negative correlation with “asphalt thickness” (-0.15), and 

“initial IRIRight” (0.13). Other variables show low linear correlation values, which means they are 

not linearly correlated with the dependent variable. However, these variables might follow a non-

linear correlation with IRIRight that cannot be identified by the correlational analysis. Therefore, 

even though the correlation between independent variables and the dependent variable was low in 

some cases, all independent variables were used in this study for the development of ANN models. 

Some variables used in this study are categorical variables with fixed values of 0 or 1 for 

modeling purposes and were not included in Figure 17 and Table 5. The categorical variables used 

in this study are summarized in Table 6. 
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Table 6. Categorical Variables Summary 

Categorical 

Variables 
Description 

Categorical Variable 

Components 
r (IRI Right) 

Construction 

Number Code 
Categorical variable for M&R 

No Intervention 
0.28 

Intervention 

Climate Zone 
Categorical variable for LTPP 

climate region 

Wet, Non-Freeze 0.05 

Dry, Non-Freeze -0.09 

Dry, Freeze -0.06 

Wet, Freeze 0.01 

Season 
Categorical variable for the month 

of the measurement 

Spring (March, Apr, May) 0.03 

Summer (June, July, Aug) 0.08 

Autumn (Sep, Oct, Nov) -0.02 

Winter (Dec, Jan, Feb) -0.12 

Subbase Type 
Categorical variable for subbase 

type (stabilized or granular) 

Granular 0.12 

Treated -0.09 

 

The “construction number code” represents M&R interventions performed in the pavement 

structure. When an M&R intervention is performed, the variable receives a value of 1. On the other 

hand, if there is no M&R intervention, a 0 value is assigned for the variable. This variable 

represents the effect of maintenance and rehabilitation activities in pavement roughness modeling. 

A correlation of 0.28 was observed between this variable and IRIRight, which was the highest 

correlation found in the analysis. 

The “climate zone” variable represents the climatic zones defined by the LTPP, which 

consists of four different regions: wet non-freeze, dry non-freeze, dry freeze, and wet freeze. 

Correlation analysis shows low values for this variable. The “season” variable represents the 

month in which the measurement was performed, and it consists of four seasons, spring (March, 

April, May), summer (June, July, August), autumn (September, October, November), and winter 

(December, January, February), which was found to have the highest correlation (-0.12). The 

climate region and season variables represent the effect of climate and season on pavement 

deterioration. 
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The “subbase type” variable defines the type of subbase used in the pavement section, 

which consists of two types, unbound (granular) or bound (stabilized), and represents the effect of 

material properties in the model. 

5.4. ANN Development 

ANNs are mathematical models built to simulate the neural structure of a human brain [85]. 

The structure of ANNs is formed from elements called neurons (processing units) and the 

connection weights between them. The connection links are used to transfer signals between 

neurons when the information is processed. Input signals are evaluated, and the output signal is 

determined and transmitted to all neurons that are on the receiving side of the connection links 

[43]. ANNs help estimate functions or patterns through their learning ability from a large body of 

data sets. Feed-forward back-propagation, radial basis function, recurrent, and modular neural 

networks are some of the many types of neural networks [86]. In this paper, a feed-forward neural 

network with a back-propagation training algorithm was used for the development of the roughness 

prediction model. Figure 18 shows an example of a simple ANN architecture. 

 

Figure 18. ANN Network Plot 
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The neural network gains its knowledge through a trained feed-forward network that uses 

a set of training data consisting of inputs and output(s). The resulting output is compared to the 

target values, and the back-propagation process adjusts the connection weight to reduce the error 

between actual and target values. After training, the network provides an approximate functional 

mapping of any input pattern onto its corresponding output pattern. Then, the validation process 

is carried out using datasets that were excluded from the model database [2]. This study used 

different variable types that contain both categorical and continuous variables. A one-hidden layer 

structure was considered since the use of more than one hidden layer may cause the network to 

memorize the data in the training phase [46]. The TR-SEQ1 computer program [55] was used to 

develop the ANN models in this study. Figure 19 shows the curve for the sigmoidal function used 

in this study for data generalization purposes. 

 

Figure 19. Sigmoidal Function 

5.4.1. ANN Methodology 

Yasarer and Najjar [51,55] described four successive stages for ANN model development, 

as follows: 
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• Stage 1: Determine the ANN architecture. Decide input and output categories based on 

problem characteristics and ANN knowledge. Classify the datasets as training (50%), 

testing (25%), and validation (25%) sets. 

• Stage 2: Train and test the network on the experimental data to obtain the optimum number 

of hidden nodes and iterations for the ANN architecture defined in the previous stage. 

• Stage 3: Validate the best-performing network from the second stage using the validation 

database. Check if the accuracy results from the training, testing, and validation databases 

are comparable. If they are, then stage four maybe not be necessary. 

• Stage 4: Retrain the best performing network from stage two using all experimental data 

to increase prediction accuracy and account for all patterns in the database [44]. 

Typically, retraining the network with all experimental data is expected to provide reliable 

predictions and overall better accuracy measures [51]. Several research studies [43,87]  

recommended that stage four is necessary to arrive at a better-performing network model. 

5.4.2. ANN Model Architecture 

For this paper, three models were developed using different independent variables. Table 

7 shows the variables used for each ANN model. 

Model 1 used 10 input variables; however, the “climate region” and “seasons” are 

categorical variables with four categories each. The “construction number code” is a categorical 

variable that represents M&R interventions performed in the pavement structure. When an M&R 

intervention is performed, the variable receives a value of 1. If there is no M&R intervention, a 0 

value is assigned for the variable. Therefore, model 1 consists of 17 input variables and one output 

variable (IRIRight). Model 2 did not use the variable responsible for traffic loads, CESAL, but 

included all climate variables, “air temperature,” “precipitation,” “freeze index,” and “freeze-

thaw.” A total of 20 input variables were used for model 2. Model 3 used a total of 21 input 

variables which include both traffic and climate loads. All ANN models developed in this study 
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did not use any input variables related to distress data, which requires a lot of time and money to 

be measured. Therefore, the variables used in this study are easily available for transportation 

agencies. 

Table 7. Input and Output Variables Configuration 

No. Input Variables Model 1 Model 2 Model 3 

1 
IRI0 (Initial IRI Outside Wheel 

Path) (m/km) 

Initial IRI Outside 

Wheel Path (m/km) 

Initial IRI Outside 

Wheel Path (m/km) 

Initial IRI Outside Wheel Path 

(m/km) 

2 Age (Pavement age, years) Age Age Age 

3 
Climate Zone (Categorical 

variable for LTPP climatic zone) 

Wet, Non-Freeze Wet, Non-Freeze Wet, Non-Freeze 

Dry, Non-Freeze Dry, Non-Freeze Dry, Non-Freeze 

Wet, Freeze Wet, Freeze Wet, Freeze 

Dry, Freeze Dry, Freeze Dry, Freeze 

4 

Seasons 

(Categorical variable for the 

season) 

Winter (Dec-Feb) Winter (Dec-Feb) Winter (Dec-Feb) 

Spring (Mar-May) Spring (Mar-May) Spring (Mar-May) 

Summer (June-Aug) Summer (June-Aug) Summer (June-Aug) 

Autumn (Sept-Nov) Autumn (Sept-Nov) Autumn (Sept-Nov) 

5 

Subbase Materials 

(Categorical variable for Subbase 

materials) 

Unbound (Granular) 

Subbase 

Unbound (Granular) 

Subbase 
Unbound (Granular) Subbase 

Bound (Treated) 

Subbase 

Bound (Treated) 

Subbase 
Bound (Treated) Subbase 

6 

Construction Number Code 

(Construction Number, variable 

for M & R) 

CN Code: (0,1…) 

No Intervention 0 

Interventions 1… 

CN Code: (0,1…) 

No Intervention 0 

Interventions 1… 

CN Code: (0,1…) 

No Intervention 0 

Interventions 1… 

7 
CESAL (Cumulative Equivalent 

Single Axle Load) 
CESAL - CESAL 

8 
hasphalt 

hasphalt hasphalt hasphalt 
(Asphalt pavement thickness, in) 

9 

hconcrete 

hconcrete hconcrete hconcrete (Concrete pavement thickness, 

in) 

10 
hbase/subbase 

hsubbase hsubbase hsubbase 
(Base/Subbase thickness, in) 

11 Air Temperature (°C) - Air Temperature Air Temperature 

12 Precipitation (mm) - Precipitation Precipitation 

13 Freeze Index - Freeze Index Freeze Index 

14 Freeze-Thaw (days) - Freeze-Thaw Freeze-Thaw 

No. Output Variables Model 1 Model 2 Model 3 

1 
IRI Outside Wheel Path (IRI 

Right) 
IRIoutside IRIoutside IRIoutside 
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5.4.3. ANN Model Network Selection 

To choose the best-performing network for each model, three statistical accuracy measures 

were used. The Coefficient of Determination (R²), the Mean Absolute Relative Error (MARE), 

and the Average Square Error (ASE). Each ANN model development stage (i.e., training, testing, 

validation, and all-data) was considered, and the best-performing network was selected based on 

the lowest ASE, lowest mean MARE, and highest R². Table 8 shows the summary network 

statistics for model 1. The network analyzed can be identified in the first row of the table in an 

order that depicts the initial hidden node, final hidden node, and the number of iterations. The final 

structure of each model is shown in the bottom row of the table in an order that represents the 

number of inputs, number of the final hidden node, and number of output(s), respectively. 

Table 8. Summary of Model 1 Network Statistics 

Network 4-15-20000 5-19-20000 6-17-20000 7-19-20000 10-13-20000 

Training 

MARE 19.69 20.69 21.15 21.40 21.81 

R² 0.72 0.73 0.72 0.70 0.64 

ASE 0.00143 0.00150 0.00163 0.00167 0.00188 

Testing 

MARE 25.66 28.14 27.18 27.14 26.15 

R² 0.26 0.36 0.35 0.35 0.38 

ASE 0.00402 0.00368 0.00374 0.00354 0.00323 

Validation 

MARE 24.41 27.14 27.90 27.23 25.11 

R² 0.38 0.37 0.33 0.33 0.34 

ASE 0.00340 0.00427 0.00455 0.00406 0.00389 

All Data 

MARE 19.50 18.34 19.28 18.13 20.38 

R² 0.65 0.70 0.66 0.67 0.62 

ASE 0.00162 0.00142 0.00162 0.00152 0.00181 

Chosen 5-19-20000 

Final Structure 17-19-1 

 

The training development stage used 50% of the total datasets in the database, while testing 

and validation used 25% each. After developing the possible networks, the all-data stage used all 
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datasets from the database to retrain the network at its optimal structure and iteration to obtain the 

generalized response throughout the complete database. For this reason, the all-data stage statistics 

are used as the main comparison between each network. For model 1, even if it did not have the 

best results for training, testing, and validation, the 5-19-20000 network outperformed all other 

networks in the all-data stage with lower ASE (0.00142) and higher R² (0.70). The final network 

structure of model 1 includes 17 input variables, 1 hidden layer with 19 hidden nodes, 20,000 

iterations, and 1 output. 

 Table 9 shows the summary network statistics for model 2. 

Table 9. Summary of Model 2 Network Statistics 

Models 3-19-20000 4-9-20000 4-19-20000 8-14-20000 12-19-20000 

Training 

MARE 17.96 21.68 18.00 20.50 20.60 

R² 0.78 0.65 0.78 0.71 0.76 

ASE 0.00121 0.00183 0.00123 0.00164 0.00149 

Testing 

MARE 30.47 26.26 28.42 27.93 28.48 

R² 0.27 0.41 0.37 0.39 0.38 

ASE 0.00443 0.00294 0.00392 0.00333 0.00354 

Validation 

MARE 29.28 26.75 27.93 29.44 28.99 

R² 0.24 0.30 0.31 0.37 0.35 

ASE 0.00511 0.00393 0.00455 0.00402 0.00378 

All Data 

MARE 17.47 20.48 16.54 17.61 17.42 

R² 0.73 0.61 0.75 0.70 0.75 

ASE 0.00128 0.00185 0.00120 0.00137 0.00122 

Chosen 4-19-20000 

Final Network 20-19-1 

 

For model 2, climatological variables were included, and the traffic variable (CESAL) was 

excluded from the model. The 4-19-20000 network showed the lowest ASE (0.00120) and MARE 

(16.54) values and the highest R² (0.75) for the all-data stage compared to the other four networks. 

Therefore, the 4-19-20000 network was chosen as the best network for model 2. The final network 
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structure of model 2 includes 20 input variables, 1 hidden layer with 19 hidden nodes, 20,000 

iterations, and 1 output. 

Table 10 shows model 3 summary network statistics. Model 3 included all climatological 

and traffic variables in the modeling process, which resulted in better results for the networks. The 

14-19-20000 network showed the lowest ASE (0.00107) and MARE (15.67) values and the highest 

R² (0.77) for the all-data stage compared to the other three networks. Hence, the 14-19-20000 

network was chosen as the best network for model 3. The final network structure of model 3 

includes 21 input variables, 1 hidden layer with 19 hidden nodes, 20,000 iterations, and 1 output. 

Table 10. Summary of Model 3 Network Statistics 

Models 7-19-20000 10-19-20000 13-19-20000 14-19-20000 

Training 

MARE 17.67 19.84 19.29 17.35 

R² 0.80 0.77 0.77 0.80 

ASE 0.00117 0.00148 0.00147 0.00117 

Testing 

MARE 28.79 28.89 27.97 27.33 

R² 0.28 0.34 0.29 0.39 

ASE 0.00532 0.00447 0.00480 0.00404 

Validation 

MARE 28.06 30.10 27.49 26.83 

R² 0.32 0.35 0.43 0.40 

ASE 0.00503 0.00474 0.00380 0.00369 

All Data 

MARE 16.24 17.32 16.91 15.67 

R² 0.76 0.73 0.75 0.77 

ASE 0.00111 0.00129 0.00116 0.00107 

Chosen 14-19-20000 

Final Network 21-19-1 

 

5.5. ANN Model Results 

5.5.1. ANN Best Model Selection 

After choosing the best networks for each model, it is necessary to compare all three models 

developed and their networks to choose the best model performance. Table 11 shows the summary 
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of the best network performance for each ANN model. The accuracy measures indicate reliable 

results for all models developed; however, model 3 outperformed all other models with significant 

improvements in training, testing, validation, and all-data stages. Compared to models 1 and 2, 

model 3 the all-data stage showed a MARE 15% and 5% lower, an R² 10% and 3% higher, and an 

ASE 21% and 8% lower, respectively. These results show a better performance for the model that 

uses both climate and traffic variables (model 3) compared to the ones that just use traffic or 

climate variables.  

Table 11. Summary of Best Network Performance for each ANN Model 

Models 1 2 3 

Structure 

(Initial Hidden Node - Final 

Hidden Node – Iterations) 

5-19-20000 4-19-20000 14-19-20000 

Training 

MARE 20.69 20.60 17.35 

R² 0.73 0.76 0.80 

ASE 0.0015 0.0015 0.0012 

Testing 

MARE 28.14 28.48 27.33 

R² 0.36 0.38 0.39 

ASE 0.0037 0.0035 0.0040 

Validation 

MARE 27.14 28.99 26.83 

R² 0.37 0.35 0.40 

ASE 0.0043 0.0038 0.0037 

All Data 

MARE 18.34 16.54 15.67 

R² 0.70 0.75 0.77 

ASE 0.0014 0.0012 0.0011 

Final Network 
17-19-1 20-19-1 21-19-1 

# of Inputs - Final Hidden Node - # of Outputs 

 

Figure 20 shows a graphical comparison of the accuracy measures for the all-data stage 

between all three models. 
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Figure 20. Graphical Comparison of Accuracy Measures  

The graphical comparison confirms that model 3 had the best statistical measures, and 

therefore it was chosen as the best performing model. Figure 21 shows the network architecture of 

the best-performing ANN model (model 3). 

 

Figure 21. Network Architecture of the Best Performing ANN Model (model 3) 
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Figure 22 shows the observed IRIRight values collected from the LTPP database and the 

predicted IRIRight using model 3. A section sequence number was generated to identify the data 

points in the database and to help the visualization of the graph. The ANN model was capable to 

capture the pavement deterioration behavior. However, some higher IRI values were not captured 

by the model, which predicted lower values compared to the observed IRI. 

 

Figure 22. Model 3 - Observed vs Predicted Values for IRIRight 

Figure 23 shows that predicted values clustered around the line of equality until IRI values 

were equal to 3m/km. When the observed IRI values were greater than 3 m/km, the model was not 

as accurate as it was for lower IRI values. Nevertheless, a high R² of 0.77 was obtained for the 

ANN model 3. 
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Figure 23. Observed vs. Predicted IRIRight for ANN Model 3 

5.6. In-depth Analysis 

An in-depth analysis was performed to evaluate how the developed models performed in 

four random sections of the database. Each plot shows the observed and predicted IRI values for 

each model. Figure 24 shows the observed vs. predicted plot of IRI for Section 04-0607 in Arizona. 

 

Figure 24. IRIRight Observed vs Predicted for Section 04-0607 - Arizona 

Section 04-0607, located in Arizona, is part of the dry freeze climate region, which 
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indicates precipitation per year lower than 508 mm (20 inches) and an annual average freezing 

index lower than 83 ℃ (150 ℉) days. Predicted values were close to observed values for all 

models. The mean difference percentage with observed values was lower for model 3 (1.80%) 

compared to model 2 (8.15%) and model 1 (13.61%). Also, model 3 showed to be the best in 

capturing the pavement deterioration behavior and closely followed the observed values. Model 1 

and model 2 were not capable of obtaining the variations of IRI and, for this reason, could not 

achieve better IRI predictions for each analyzed year.  

Figure 25 shows the observed vs. predicted plot of IRI for Section 05-A607 in Arkansas. 

 

Figure 25.  IRIRight Observed vs Predicted for Section 05-A607 - Arkansas 

Section 05-A607, located in Arkansas, is part of the wet non-freeze climate region, which 

indicates precipitation per year higher than 508 mm (20 inches) and an annual average freezing 

index lower than 83 ℃ (150 ℉) days. The mean difference percentage with observed values was 

lower for model 2 (-2.10%) compared to model 3 (-5.37%) and model 1 (7.54%). However, models 

1 and 2 were not able to follow the IRI variations from the observed data; instead, they showed 

straight lines upwards and downwards. Model 3 was the only model capable of capturing the 
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variations observed in the IRI behavior over time. Therefore, model 3 had the best performance 

compared to other models.  

Figure 26 shows the observed vs. predicted plot of IRI for Section 18-0607 in Indiana. 

 

Figure 26. IRIRight Observed vs Predicted for Section 18-0607 – Indiana 

Section 18-0607, located in Indiana, is part of the wet freeze climate region, which 

indicates precipitation per year higher than 508 mm (20 inches) and an annual average freezing 

index higher than 83 ℃ (150 ℉) days. The mean difference percentage indicates lower values for 

model 3 (0.37%) compared to model 2 (5.53%) and model 1 (6.98%). Different from Figure 24 

and Figure 25, all three models in section 18-0607 were able to capture the variations in IRI 

behavior but model 3 predictions showed to be closer to the observed values. Figure 27 shows the 

observed vs. predicted plot of IRI for Section 48-7165 in Texas. 
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Figure 27. IRIRight Observed vs Predicted for Section 48-7165 - Texas 

Section 48-7165, located in Texas, is part of the wet-non freeze climate region, which 

indicates precipitation per year higher than 508 mm (20 inches) and an annual average freezing 

index lower than 83 ℃ (150 ℉) days. The mean difference percentage indicates lower values for 

model 1 (2.60%) compared to model 3 (3.34%) and model 2 (10.33%). However, model 1 

predictions did not follow the same behavior as the observed values. Model 3 showed to be the 

best to capture the pavement roughness behavior.  

Therefore, the in-depth analysis showed that all developed models were reasonably 

accurate and reliable for each section analyzed. However, model 3 showed better IRI predictions 

and better capacity to recognize IRI variations over time for the composite pavement sections. 

5.7. Conclusion 

In this study, the LTPP database was used to analyze roughness data for composite 

pavements. An artificial neural network approach with a backpropagation algorithm was used to 

develop roughness prediction models and assess the influence of climate and traffic data using 

different input variables for three models. Model 1 used the CESAL variable to represent the 
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effects of traffic loads in the model while model 2 used air temperature, precipitation, freeze index, 

and freeze-thaw to represent the effects of climate variables in the pavement deterioration process. 

Model 3 used all variables to assess the importance of both traffic and climate in the modeling 

process. 

The results indicate that all developed models provided reliable results with good accuracy 

between observed and predicted values, as shown in Table 11. Model 3 outperformed all other 

models in training, testing, validation, and all-data stages. The final network structure of model 3 

(Figure 21) includes 21 input variables, 1 hidden layer with 19 hidden nodes, 20,000 iterations, 

and 1 output. 

An in-depth study was performed for different sections of the database and the analysis 

reveals that model 1 and model 2 were not able to capture all the variations of IRI over time. These 

variations were better predicted in model 3 when both traffic and climate variables were used 

together in the model. Due to the complexity of the deterioration phenomena, traffic and climate 

variables must be used together to assist the model to recognize the roughness behavior, identify 

the influence of each variable and the relation between them, and predict reasonable values 

according to the data provided. This study proves the importance of traffic and climate variables 

in the modeling process and demonstrates that the model provides better prediction values when 

both traffic and climate variables are used together, compared to the use of each one of them 

separately. Furthermore, the models developed in this study used the composite pavements 

database, which the literature lacks in research studies and modeling development. The prediction 

models also do not use any distress data, which can save time and money from data collection and 

processing for transportation agencies. 
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5.7.1. Recommendation 

The recommendations for better model development and further study of pavement 

roughness modeling are, as follows:  

• In this study, the categorical variable of construction number code was used to identify 

M&R interventions on the pavement. Further study of this variable is necessary to improve 

model performance.  

• Do further study on climate variables to identify new variables able to improve model 

predictions. 

• Develop different models according to each climate region to verify if IRI predictions will 

be more accurate. 

• Develop ANN models using the dynamic approach.   

• Develop a graphical user interface (GUI) to create a product that can be used for agencies 

to predict IRI. 
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6.1. Abstract 

Pavement performance prediction models are an important part of the Pavement 

Management System (PMS), allowing decision-makers to do better budget allocation plans for 

future pavement maintenance and rehabilitation actions. This study intends to analyze roughness 

data for composite pavements (asphalt overlay on concrete) in the wet non-freeze climate zone of
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the Long-Term Performance Pavement (LTPP) database, develop pavement roughness prediction 

models using Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) 

approaches, evaluate the accuracy of developed models, and compare their results to identify the 

best performance model. A total of 49 sections with 353 datapoints were used for the analysis. The 

ANN and MLR models included 11 input variables and 1 output variable. The results indicated 

the ANN model outperformed the MLR model with a MARE (13.14) 53% lower and an ASE 

(0.00182) 99% lower, compared to the MLR model. The R² value improved from 0.37, obtained 

by the MLR model, to 0.86, obtained by the ANN model. This translates into 132% better 

prediction accuracy by using the ANN-based model. Therefore, the ANN model showed to be 

more accurate than the MLR model and was hence chosen as the best-performance model. The use 

of a specific climate region helped the model to capture almost 90% of the variability, which may 

be not viable when using data from all climate zones together. Furthermore, the developed models 

did not use any distress data for input variables, which can help transportation agencies to save 

time and money from data collection and processing. 

Keywords: International Roughness Index (IRI), Artificial Neural Network (ANN), 

Composite Pavement, Long-Term Pavement Performance (LTPP), Wet Non-Freeze 

6.2. Introduction 

Reliable and precise assessment of the existing and future pavement conditions are key 

components of a successful pavement management system (PMS) [82]. One of the goals of PMS 

is to increase pavement life by considering the effects of pavement material and environment on 

pavement performance. Over the last two decades, transportation agencies have established several 

performance indicators to evaluate the effectiveness and efficiency of their service provision [4]. 
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The most well-recognized pavement performance indicator is the International Roughness Index 

(IRI), which is a standard to determine road surface roughness [20]. Developed in 1982 by the 

World Bank and the government of Brazil at the International Road Roughness Experiment 

(IRRE), the IRI was created to be a standard roughness index. The IRI describes the irregularities 

in the pavement surfaces that affect the ride quality experienced by road users, and it is useful for 

making objective decisions related to the management of road networks [2,7,8]. Higher IRI values 

represent a rough pavement surface that indicates a lower ride quality for users, while lower IRI 

values indicate smooth pavements with better ride quality.  

Pavement performance prediction models are an important part of PMS since they allow 

decision-makers to develop better budget allocation plans for future pavement maintenance and 

rehabilitation (M&R) actions [37]. Pavement performance models are necessary to identify 

rehabilitation needs, analyze rehabilitation effects, and estimate future pavement conditions to 

implement different M&R activities to extend the pavement life cycle and provide good surface 

quality for road users [27]. However, the use of prediction models to estimate the pavement 

deterioration process is a difficult task related to the serviceability level and assessment of 

pavement condition [79,80]. A growing body of literature explores different modeling techniques 

for pavement performance prediction. Several studies explore the use of regression models to 

predict pavement roughness [12–15,68]. However, due to the complex relations between pavement 

structure and its responses under climate and traffic variables, and the interaction among all of 

these elements [11], more advanced modeling techniques using machine learning proved to be 

promising. The Artificial Neural Network (ANN) technique was used in several studies [2,10,12–

20], offering significant improvements over traditional techniques, such as regression, by 
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processing large volumes of data with a higher degree of accuracy. However, most of the studies 

developed predictions models for asphalt or concrete pavements, which resulted in a lack of 

research on composite pavements that mainly consist of asphalt overlaid concrete pavements. 

Compared to flexible or rigid pavements, composite pavements can provide better performance 

measures both structurally and functionally, and accordingly, can be considered a cost-effective 

alternative [2]. Therefore, developing performance models for composite pavements can be very 

beneficial to understanding the contribution of this road infrastructure in the pavement 

management system. 

Several pavement performance prediction models in the literature that uses the Long-Term 

Performance Pavement (LTPP) database try to account for the influence of climate using data from 

different climate zones in the same model. The LTPP climate zones include four different zones 

identified as wet freeze, wet non-freeze, dry-freeze, and dry non-freeze zones [2,59]. The LTPP 

used the precipitation per year to identify wet (higher than 508 mm) and dry (lower than 508 mm) 

climate zones. For freeze and non-freeze zones, the threshold used was based on an annual average 

freezing index of 83 ℃ (150 ℉) days. Locations with an index over this threshold are classified 

in the freeze zone and those under the threshold in a non-freeze climate zone [84]. The use of data 

from different climate zones in the same model might affect pavement performance prediction 

accuracy since the model needs to explain a higher degree of variability to perform well. An 

alternative to this would be to develop one model for each climate zone instead of using a unique 

model for all climate zones together.  

Therefore, the objectives of this paper are to develop pavement roughness prediction 

models using Multiple Linear Regression (MLR) and ANN approaches and compare which 
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modeling technique provides more accurate results for composite pavement sections in the wet 

non-freeze climate region of the LTPP database. The prediction models were proposed based on 

the influence of pavement structure, climate, and traffic data.  

6.2.1. Objectives 

The main objectives of this paper are to: 

1. Analyze roughness data for composite pavement sections in the wet non-freeze region using 

the LTPP database. 

2. Identify key parameters responsible for affecting pavement performance. 

3. Develop roughness prediction models using ANN and MLR approaches. 

4. Evaluate the accuracy of ANN and MLR models using statistical measurements. 

5. Perform a comparison between ANN and MLR modeling predictions. 

6.3. Literature Review  

The literature shows that a significant number of researchers have used MLR and ANN to 

predict pavement roughness. Some studies used only the MLR approach to develop prediction 

models, such as Khattak et al. [68] who developed IRI prediction models using regression analysis 

for overlay treatment of composite and flexible pavements in the state of Louisiana. An R² of 0.63 

and 0.47 were found for the composite and flexible pavements, respectively. However, most of the 

studies compare the accuracy of MLR and ANN modeling techniques to identify the best approach. 

Prediction models for flexible pavements are the most common in the literature.  

Sollazzo et al. [18] developed an ANN model for flexible pavement using input parameters related 

to traffic, weather, and structural aspects. The ANN approach was effectively used as a powerful 

tool for estimating structural performance using roughness data, especially when compared to 
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linear regression.  

Jaafar [2] developed prediction models using ANN and MLR techniques for predicting IRI, 

rutting, and cracking for asphalt pavements using the LTPP database. For the IRI modeling, the 

ANN architecture used seven independent variables, five hidden nodes within a single hidden 

layer, and one output (i.e., 7-5-1 ANN structure). A high coefficient of correlation (R) of 0.72 and 

0.63 was found for the ANN and MLR models, respectively. The results show that both models 

were reasonably accurate for IRI prediction in asphalt pavements, but the ANN model 

outperformed the MLR with higher accuracy. 

Jaafar [19] also developed IRI prediction models for asphalt pavements using multiple linear 

regression and ANN modeling approaches for the Western region on the LTPP database. The 

variables included in the models were IRI, pavement age, design structural number, ESAL, and a 

dummy variable for construction number. Correlation values of 0.85 and 0.57 were found for the 

ANN and MLR models, respectively. Therefore, the ANN model showed to be more accurate than 

the MLR approach. 

Choi [14] developed an ANN prediction model for flexible pavements on a granular base 

from three states: Texas, New Mexico, and Arizona. The results show that the ANN model could 

provide a reasonable explanation for their predictive behavior and model the relationship between 

input variables and pavement performance. 

Hossain et al. [16,17] developed an ANN prediction model for flexible pavements using 

climate and traffic data collected from the LTPP database. The study compared the ANN-predicted 

IRI and measured IRI for flexible pavements under specific climatic zones (wet freeze) with a two 

hidden-layered ANN structure with seven independent variables, nine hidden nodes for the first 
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and second hidden layers, and one output (7-9-9-1), using a nonlinear transfer function. An RMSE 

of 0.027 was found for the flexible ANN model, indicating that the IRI prediction was reasonable 

for both short-term and long-term predictions using only climate and traffic data. 

Some studies from the literature developed models for both flexible and composite pavements. 

Kaya et al. [10] developed ANN-based models for flexible and composite pavement 

systems in Iowa. ANN pavement performance prediction models were found to be good tools for 

modeling pavement deterioration when there were many pavement sections with various traffic, 

thickness, and other various deterioration trends. 

Abdelaziz et al. [15] develop IRI prediction models for flexibl+e and composite pavements 

using general pavement studies (GPS-1, GPS-2, and GPS-6) and specific pavement studies (SPS-

1, SPS-3, and SPS-5) of the LTPP database. The MLR and ANN techniques predict IRI as a 

function of pavement age, initial IRI, transverse cracks, alligator cracks, and standard deviation of 

the rut depth. The ANN model resulted in better accuracy measures compared to the MLR model, 

R² = 0.75 and R² = 0.57, respectively. 

Some studies specified some states or specific climate zones, as can be observed in Yamany 

[13], that developed pavement performance models for flexible pavements using data from eight 

Midwestern states, and Zeiada [12], that developed prediction models for warm climate regions in 

the LTPP database. Both studies found that by specifying these characteristics their prediction 

models performed better since the data gather the same characteristics and helped the model to 

understand the variability of the datasets. 

The literature review to date shows that MLR and ANN models performed successfully in 

predicting IRI values for asphalt pavements. However, prediction models for composite pavements 
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have not been well investigated as well as the use of specific climate regions. Therefore, this paper 

develops pavement roughness prediction models using the ANN and MLR approaches for 

composite pavement sections in the wet non-freeze climate zone from the LTPP database. 

6.4. Model Development 

6.4.1. Methodology  

Pavement performance models can estimate future pavement conditions, timely 

maintenance, and major rehabilitation actions. The prediction models allow transportation 

agencies to develop better condition assessment and effective M&R scheduling, saving time and 

subsequently reducing costs. Figure 28 shows the pavement performance modeling methodology 

flowchart for the LTPP database. 

 

 

Figure 28. Pavement Performance Modeling Methodology  

The model development methodology used in this paper is described as follows: 
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1. Conduct a literature review of previous studies to identify independent variables 

responsible for affecting pavement performance. 

2. Compile databases for composite pavements in the wet non-freeze region of the LTPP 

database, which must include all variables identified in step (1). 

3. Identify missing/erroneous data and evaluate the quality of databases. 

4. Develop pavement performance models using the ANN and MLR approach techniques. 

5. Evaluate the accuracy of the developed models using statistical measures. 

6. Select the most accurate models based on statistical indicators. 

7. Perform comparison analysis for ANN and MLR developed models. 

6.4.2. Data Collection 

The LTPP program was created in 1987 to collect and store performance data over an 

extended period to support analysis and product development, analyze the collected data to 

describe pavement performance, and translate these insights into usable engineering products 

related to pavement design, construction, rehabilitation, maintenance, preservation, and 

management. The initial selection of the test sections of the LTPP includes 50 states and 

Washington D.C., and ten Canadian provinces. The data collection started in 1989, and 2,509 

pavement test sections were selected or constructed for the study. New experiments and studies 

are being added to monitor the performance of pavement materials and new technologies that were 

not yet in use when the LTPP program began [58]. A climate zone classification was developed 

since the data collection had different spatial and temporal locations throughout the U.S. The LTPP 

climate zones include four different zones, identified as wet freeze, wet non-freeze, dry-freeze, 

and dry non-freeze zones, as shown in Figure 29 [2,59]. The LTPP used the precipitation per year 



124 

 

to identify wet (higher than 508 mm) and dry (lower than 508mm) climate zones. For freeze and 

non-freeze zones, the threshold used was based on an annual average freezing index of 83 ℃ (150 

℉) days. Locations with an index over this threshold are classified in the freeze zone and those 

under the threshold in a non-freeze climate zone [84]. 

 

Figure 29. LTPP Climate Zones [2,59] 

Using the LTPP database, a total of 264 sections were identified as composite pavement 

sections, where the asphalt layer thickness over the concrete layer is equal to or greater than three 

inches. In this study, only composite pavement sections located in the wet non-freeze climate zone 

were used. A total of 49 sections fit the criteria and were used for the analysis.  

6.4.3. Data Processing 

Several variables were retrieved from the LTPP database to construct the database used in 

the study. The output and input variables are described in this section. 

6.4.3.1. Output Variables 

The IRI is considered the standard measurement of pavement roughness, and it was used 

as the output variable for modeling. Each section had two types of IRI measurements; IRI inside 
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wheel path (IRILeft) and IRI outside wheel path (IRIRight). A mean roughness index (IRIMean) was 

calculated by averaging the IRILeft and IRIRight measurements. On each visit date, several IRI 

measurement runs were done for each section. By averaging the IRI measurement runs, a single 

IRI measurement was obtained for IRILeft, IRIRight, and IRIMean for each visit date. By doing this, a 

total of 353 IRI measurements from 1989 to 2018 were found for the 49 sections. Figure 30 shows 

the measurements for IRILeft and IRIRight. 

 

Figure 30. IRILeft and IRIRight Measurements 

IRI measurements for IRIRight (1.31 m/km or 83.0 in./mile) were 8% greater than the IRILeft 

(1.22 m/km or 77.3 in./mile). Mean differences were assessed using the independent samples t-test 

to determine whether IRIRight and IRILeft differ on average from each other. The results show that 

the difference in the means of IRIRight and IRILeft is statistically significant at α 0.05 probability of 

chance error. This implies that both samples are from different populations. Therefore, this study 

used IRIRight as a dependent variable since it shows the highest value for pavement roughness. 

6.4.3.2. Input Variables 

An extensive literature review was conducted to identify key input variables to explain 
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pavement deterioration over the years. Plots with each input variable and the output variable are 

recommended to assist the understanding of the relationship between them. Figure 31 shows plots 

of each input variable versus IRIRight. 

 

 

Figure 31. Independent Variables Versus IRIRight 

Pavement structure, climate, traffic, and maintenance are known as key variables for 

pavement performance. In addition to these variables, this study used other input variables to assist 

the model’s understanding of the pavement deterioration process to improve the accuracy of the 

predictions. Three variables used in this study are categorical variables with fixed values of 0 or 1 

for modeling purposes and were not included in Figure 31. 

A correlation analysis was performed by running a correlation test to obtain the Pearson 

correlation coefficient (r) between all variables.  The correlation matrix provides a linear 

association between the output and the proposed input variables. Therefore, if the data is not 

linearly correlated, it will have a low correlation value. Table 12 summarizes the descriptive 

statistics of input variables used in this study and the correlation between each input variable and 

the output variable (IRIRight). 
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Table 12. Descriptive Statistics of Input Variables  

Input Variables Mean SD COV (%) Max. Min. r (IRI Right) 

Initial IRIRight (m/km) 1.94 0.74 0.38 3.75 0.79 0.16 

Age 32.24 8.23 0.26 57.00 4.00 0.17 

CNCode 0.43 0.50 1.15 1.00 0.00 0.45 

Granular Base/ Subbase 0.38 0.49 1.29 1.00 0.00 0.14 

Treated Base/ Subbase 0.59 0.49 0.83 1.00 0.00 -0.19 

CESAL 8800963.08 8344342.56 0.95 66776706.5 256280 0.13 

Surface Asphalt Thickness (in) 4.99 1.75 0.35 9.20 1.70 -0.13 

Concrete Thickness (in) 9.03 1.14 0.13 19.40 7.70 0.09 

Subbase Thickness (in) 6.85 3.71 0.54 16.00 0.00 0.07 

Annual Average Temperature (°C) 14.47 2.93 0.20 22.40 9.10 -0.24 

Total Annual Precipitation (mm) 1252.52 289.40 0.23 2036.40 583.60 -0.03 

Notes: Construction Number Code (CNCode); Standard Deviation (SD); Coefficient of 

Variation (COV); Pearson Correlation with IRIRight (r (IRI Right))  

The three highest correlations between input variables and IRIRight were observed with the 

variable “CNCode” (0.45), where CNCode denotes the maintenance and rehabilitation history in the 

LTPP database, followed by a negative correlation with “Annual Average Temperature” (-0.24), 

and “Treated Base/ Subbase” (-0.19). Other variables show low linear correlation values, 

indicating they are not linearly correlated with the dependent variable. However, these variables 

might follow a non-linear correlation with IRIRight that cannot be identified by the correlational 

analysis. Hence, all independent variables were used in this study for the development of ANN 

and MLR models. 

6.5. ANN Development 

ANN is a predictive modeling technique based on mathematical operations that use the 

concept of human cognition and neural biology [43]. The ANNs approach attempts to emulate the 

structure and/or functional aspects of biological neural networks [44]. Complex relationships that 

are difficult to be identified using traditional sequential, logic-based modeling and computational 
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techniques can be successfully represented by neural networks [43]. There are many types of 

neural networks characterized by their architecture, training algorithm, and activation functions. 

In this study, a feed-forward neural network with a back-propagation training algorithm was used 

for the development of the roughness prediction model. The neural network gains its knowledge 

through a trained feed-forward network that uses a set of training data consisting of inputs 

(independent variables) and output(s) (dependent variable(s)). The resulting output is compared to 

the target values, and the back-propagation process adjusts the connection weight to reduce the 

error between actual and target values [2]. After training, the network provides an approximate 

functional mapping of any input pattern onto its corresponding output pattern. One hidden layer 

was considered in the model development. The use of more than one hidden layer combined with 

an insufficient number of databases may cause the network to memorize the data in the training 

phase [44]. The TR-SEQ1 computer program [55] was used to develop the ANN models in this 

study. A sigmoidal function is used for data generalization purposes. 

6.5.1. ANN Methodology 

Four successive stages were used for ANN model development and the desired criteria to 

choose the optimal network structures [51], as follows: 

• Stage 1: Determine the ANN architecture. Decide input and output variables. Classify the 

datasets as training (50%), testing (25%), and validation (25%) sets. 

• Stage 2: Train and test the network on the experimental data to obtain the optimum number 

of hidden nodes and iterations for the ANN architecture. 

• Stage 3: Validate the best-performing network from the second stage using the validation 

database. Check if the accuracy results from the training, testing, and validation database 
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are comparable. If they are, then stage four may not be necessary. 

• Stage 4: Retrain the best performing network from stage 2 using all experimental data to 

increase prediction accuracy and account for all patterns in the database. 

Typically, retraining the selected final network with all experimental data is expected to 

provide reliable predictions and overall better accuracy measures since all the knowledge in the 

database are incorporated in the final network [43,51]. 

6.5.2. ANN Model Network Selection 

Three statistical accuracy measures were used to select the best-performing network for the model. 

The Coefficient of Determination (R²), the Mean Absolute Relative Error (MARE), and the 

Average Square Error (ASE). Each ANN model development stage (i.e., training, testing, 

validation, and all-data) was considered, and the best performing network was selected based on 

the lowest ASE, lowest mean MARE, and highest R². Table 13 shows the summary of ANN model 

network statistics.  

Table 13. Summary of ANN Model Network Statistics 

Networks 1-19-20000 2-5-20000 3-19-1200 13-19-2000 16-19-7100 

Training 

MARE 7.29 15.27 10.72 9.98 9.60 

R² 0.97 0.87 0.96 0.94 0.94 

ASE 0.00029 0.00146 0.00058 0.00072 0.00070 

Testing 

MARE 30.92 25.38 21.13 20.71 20.69 

R² 0.44 0.60 0.62 0.72 0.67 

ASE 0.01476 0.00522 0.00713 0.00425 0.00533 

Validation 

MARE 30.68 25.32 21.32 20.24 20.45 

R² 0.43 0.59 0.62 0.71 0.67 

ASE 0.01492 0.00528 0.00721 0.00429 0.00538 

All Data 

MARE 14.48 18.36 13.98 13.14 12.94 

R² 0.70 0.77 0.82 0.86 0.83 

ASE 0.00479 0.00264 0.00262 0.00182 0.00214 

Chosen Network 13-19-2000 

Final Model Structure 11-19-1 (inputs-hidden nodes-output) 
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The networks analyzed can be identified in the first row of Table 13 in an order that depicts 

the initial hidden node, final hidden node, and the number of iterations. The final structure of each 

model is shown in the bottom row of the table in an order that represents the number of inputs, 

number of the final hidden node, and number of output(s), respectively. 

Following the ANN methodology, after developing the possible networks, the all-data 

stage used all datasets from the database to retrain the network at its optimal structure and iteration 

to obtain the generalized response throughout the complete database. Therefore, the all-data stage 

statistics are used as the main comparison between each network. The 13-19-2000 network 

outperformed all other networks in the all-data stage with lower ASE (0.00182) and higher R² 

(0.86). Thus, the 13-19-2000 was chosen as the best-performing network. The final model structure 

includes 11 input variables, one hidden layer with 19 hidden nodes, 2,000 iterations, and one 

output. Figure 32 shows the architecture of the best-performing network for the ANN model. 

  

Figure 32. Architecture of the Best-Performing Network for the ANN Model  
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6.6. Regression Model 

A multiple linear regression analysis was conducted to develop the roughness prediction 

model for composite pavements in the LTPP wet non-freeze region. The MLR model was 

developed using the same input and output variables used in the ANN model. The input variables 

included initial IRIRight, age, CNCode, granular base/subbase, treated base/subbase, CESAL, surface 

asphalt thickness, concrete thickness, subbase thickness, annual average temperature, and total 

annual precipitation. The IRIRight was used as the output variable.  

6.6.1. Multiple Regression Model Development 

To develop a multiple linear regression, the data should follow some assumptions, as 

shown: 

• The sample should be random. 

• The output variable should be normally distributed. 

• Observations should be independent. 

• The relationship between the output variable and each input variable should be linear. 

• The correlation between each input variable should not be more than 0.8. 

• Error prediction should be normally distributed. 

The output variables need to be checked for model assumptions before developing any 

multiple regression models. Depending on the relation and pattern among output and input 

variables, data transformations might be needed for dependent and/or independent variables. In 

this study, the output variable (IRIRight) was normally distributed, standard residuals were normally 

distributed, and scatterplots did not show curvilinear relationships between IRIRight and 

independent variables. A statistically significant relationship between input variables and the 
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output variable was found, F (11, 341) = 17.91, p < 0.001. The MLR model accounted for 37% of 

the variance in the model. 

6.7. Discussion 

6.7.1. ANN Model Results 

Figure 33 shows a scatter plot of observed vs. predicted IRIRight values for the ANN model. 

 

Figure 33. Observed vs. predicted IRIRight for ANN model 

The ANN model was able to capture the roughness changes and pavement deterioration 

behavior; however, when the observed IRI values were greater than 3 m/km, the model was not as 

accurate as for lower IRI values. Nevertheless, the ANN model resulted in a high R² of 0.85. 

6.7.2. Regression Model Results 

The developed MLR model equation is given in Equation 21, as follows:  

𝐼𝑅𝐼𝑅𝑖𝑔ℎ𝑡 = 0.572 + 0.093(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑅𝐼𝑅𝑖𝑔ℎ𝑡) + 0.006(𝐴𝑔𝑒) + 0.679(𝐶𝑁𝐶𝑜𝑑𝑒) −

0.712(𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝐵𝑎𝑠𝑒 𝑆𝑢𝑏𝑏𝑎𝑠𝑒⁄ ) − 0.771(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐵𝑎𝑠𝑒 𝑆𝑢𝑏𝑏𝑎𝑠𝑒⁄ ) − 6.85 × 10−9(𝐶𝐸𝑆𝐴𝐿) −

0.022(𝐴𝑠𝑝ℎ𝑎𝑙𝑡𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) + 0.171(𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) − 0.007(𝑆𝑢𝑏𝑏𝑎𝑠𝑒𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) −

0.046(𝐴𝑛𝑛𝑢𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 0.00011(𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)      𝐸𝑞. 21   
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Figure 34 shows the graphical comparison of observed and predicted values accuracy for 

the MLR model. 

 

Figure 34. Observed vs. predicted IRIRight for MLR model 

The MLR model prediction is scattered and does not follow the line of equality, which 

shows that the MLR model was not able to capture most of the roughness changes and pavement 

deterioration behavior.  

The model predicted lower values compared to the observed IRIRight. The MLR model 

resulted in a low R² of 0.37. The MLR model was verified using three sections that were not used 

in the model development. Figure 35 shows the observed vs. predicted plot for the verification 

sections.  
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Figure 35. Observed vs. Predicted IRIRight Values for Verification Sections 

The MLR model showed better results for the verification sections compared to the full 

database. A total of 27 data points were used for the verification. The MLR model accounted for 

57% of the variability in the model, compared to 37% when using the full database. Therefore, the 

verification shows that the MLR model performs reasonably when exposed to sections outside the 

original database used for the model development. 

6.8. Comparison Between ANN and MLR Model Results 

The prediction accuracy measures for the ANN model and the MLR model are graphically 

depicted in Figure 33 and Figure 34, respectively. It is very clear from the predicted versus 

observed plots that the ANN model outperformed the MLR model with more accurate predictions. 

The ANN model had a MARE (13.14) 53% lower and an ASE (0.00182) 99% lower than the MLR 

model. The R² value has improved from 0.37 obtained by the MLR model to 0.86 obtained by the 

ANN model. This translates into a 132% improvement in accuracy using the ANN-based model. 

It is possible to increase the accuracy of the regression model by using non-linear regression; 
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however, several studies show that even the best non-linear regression models will not deliver 

better accuracy measures than those obtained via an appropriately developed ANN-based model 

[52]. 

A comparison between the ANN and MLR model predictions for two random sections of 

the database was performed to identify the most accurate model approach and evaluate the 

performance of the developed models. Figure 36 shows the observed and predicted values for both 

the ANN and MLR models of section 05-A608 in Arkansas. 

 

Figure 36. IRIRight Section 05-A608 - ANN and MLR Comparison 

Predicted values were close to observed values only for the ANN model. The MLR model 

underpredicted the IRI values for all years, following almost a straight line with not much 

variation. The mean difference percentage with observed values was much lower for the ANN 

model (8%) compared to the MLR model (-57%). Therefore, the ANN model proved to be better 

in capturing the pavement deterioration behavior over time. Figure 37 shows the observed and 

predicted values for ANN and MLR models of section 41-7018 in Oregon. 
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Figure 37. IRIRight Section 41-7018 - ANN and MLR Comparison 

For section 41-7018, it is possible to observe that the MLR prediction did not follow the 

pattern of observed values. Predicted values were close to observed values only for the ANN 

model. The mean difference percentage with observed values was a lot lower for the ANN model 

(3%) compared to the MLR model (16%). The ANN model was able to capture the pavement 

deterioration behavior and IRI variations over time, closely following the observed values. 

Therefore, the ANN model showed to be more accurate than the MLR model and, hence, was 

chosen as the best-performance model. 

6.9. Conclusions 

In this study, multiple linear regression and artificial neural network approaches were used 

to develop roughness prediction models for composite pavements in the wet non-freeze climate 

region from the LTPP database. Both models used 11 input variables (i.e., initial IRIRight, age, 

CNCode, granular Base/ Subbase, treated Base/ Subbase, CESAL, surface asphalt thickness, concrete 

thickness, subbase thickness, annual average temperature, and total annual precipitation) and 1 
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output variable (IRIRight). The best-performing network for the ANN model was selected based on 

three accuracy measures shown in Table 13. The 13-19-2000 network outperformed all other 

networks in the all-data stage with lower ASE (0.00182) and higher R² (0.86). The final ANN 

model includes 11 input variables, one hidden layer with 19 hidden nodes, 2,000 iterations, and 

one output. The developed MLR model accounted for only 37% of the variability. Predictions for 

the MLR model were scattered and did not follow the line of equality. However, verification 

sections for the MLR showed better results with an R² of 0.57 compared to the 0.37 when using 

the complete database.  

Figure 33 and Figure 34 show graphically the prediction accuracy measures for the ANN 

and MLR models. The results showed that the ANN model outperformed the MLR model with 

53% lower MARE, 99% lower ASE, and 132% better R² prediction accuracy. The developed ANN 

model was able to capture the roughness changes and pavement deterioration behavior over time. 

Predicted values clustered around the line of equality, showing good accuracy. However, when 

observed values were higher than 3 m/km, the model was not as accurate as for lower IRI values. 

It might be interesting to develop different models for lower and higher IRI values. A comparison 

between the ANN and MLR model predictions was performed for two random sections of the 

database to identify the most accurate model approach and evaluate the performance of the 

developed models. The ANN model performed better than the MLR for both sections, being able 

to capture the pavement deterioration behavior and follow closely the IRI variations over time. 

Therefore, the ANN model showed to be more accurate than the MLR model and, hence, 

chosen as the best-performance model. The complex relationship between pavement structure, 

climate, and traffic variables is better explained when using the ANN model. The developed ANN 
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model can contribute to the state-of-the-art by providing a more inclusive, reliable, and user-

friendly tool to support objective decisions regarding maintenance and rehabilitation interventions 

and budget plans allowing agencies to prioritize the resources for critical pavement sections. 

Additionally, the use of a specific climate region helped the model to capture 86% of the 

variability, which may not be viable when using data from all climate zones together. Moreover, 

the models developed in this study did not use any distress data for input variables, which can save 

time and money from data collection and processing for transportation agencies. 
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7.1. Abstract 

Objective decisions related to the management of road networks are based on important 

measures of pavement performance. The International Roughness Index (IRI) is a critical indicator 

of pavement performance, and it is considered the standard for pavement roughness. A reliable 

pavement performance prediction model is needed to predict future pavement conditions and 

identify maintenance and rehabilitation (M&R) needs. This study intends to develop pavement 

roughness models using the Artificial Neural Networks (ANNs) approach for composite (asphalt 

overlay on concrete) pavements using the Long-Term Performance Pavement (LTPP) program 

database for the Wet-Freeze climate region. A total of 186 pavement sections with 1,930 data 

points were analyzed. Five models were developed using different independent variables (i.e.,
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Initial IRIRight, Age, Seasons, Asphalt Thickness, Concrete Thickness, Subbase Thickness, 

Subbase Type, Construction Number (CN), Cumulative Equivalent Single Axle Load (CESAL), 

Air Temperature, Freeze Index, Freeze-Thaw, and Precipitation) and one dependent variable (i.e., 

IRIRight). The best-performing model was selected based on the lowest average square error (ASE), 

lowest mean absolute relative error (MARE), and highest coefficient of determination (R²). Results 

showed that the developed models had satisfactory results with a good fit of observed and predicted 

data. Therefore, local and state agencies can use the developed ANN roughness models as a tool 

for better condition assessment and effective M&R scheduling. Furthermore, the use of available 

climatological and historical traffic data to predict IRI changes will also eliminate time-consuming 

data collection and processing, accordingly, reducing costs. 

Key words: International Roughness Index (IRI), Artificial Neural Network (ANN), Long-

Term Pavement Performance (LTPP), composite pavement, wet freeze. 

7.2. Introduction 

A large portion of the paved highways in the U.S. comprises composite pavements. This 

type of pavement is commonly a result of concrete pavement rehabilitation, where an asphalt layer 

is overlaid on a concrete surface [3]. In the U.S., pavement performance models are required for 

state highway agencies to assist in their pavement management decision-making processes [10]. 

Performance models bring key features to a successful pavement management system (PMS) [82] 

providing an estimation of pavement conditions and rehabilitation needs and allowing agencies to 

prioritize road sections that are in the worst conditions. Performance models are easy to understand 

and can provide deeper insights converting performance indices into operational measures to 

inform how long and how well the road will continue to serve the users [10]. Numerous pavement 
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performance indices have been developed in the last three decades; however, the international 

roughness index (IRI) is the most well-recognized performance index [12,20]. The IRI expresses 

the irregularities in the pavement surfaces that affect the ride quality, and it is useful for making 

objective decisions related to the management of road networks [2,8].  

Pavement performance modeling is a challenging task due to the complexity of the 

pavement structure and its responses under traffic loading, dynamic weather and climate changes, 

variability in construction activities, and the interaction among all these elements [11]. Advanced 

modeling techniques such as artificial neural networks (ANNs) have been used successfully in  

several studies offering significant improvements over traditional techniques (i.e., linear 

regression) by processing large volumes of data with excellent accuracy. However, several 

performance models in the literature use the Long-Term Performance Pavement (LTPP) database 

to develop models without considering specific conditions of local climate and geography, which 

makes the model less accurate.  

Therefore, this paper proposes the development of pavement roughness prediction models 

to study the performance of composite pavements using the ANN approach according to the 

specific climate and geographical conditions (wet freeze climate zone), pavement structure, and 

traffic data using the LTPP database. 

7.2.1. Objectives 

The major objectives of this paper are to: 

(1) Analyze roughness data for composite pavement sections in the wet freeze region using the 

LTPP database. 

(2) Use the ANN approach to develop roughness models for composite pavements in the wet 
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freeze region of the LTPP database using different independent variables. 

(3) Evaluate the accuracy of the ANN models using statistical measurements to identify the 

most accurate model. 

(4) Perform a model comparison among the developed models using two random sections of 

the database to identify the best-performing model.  

7.3. Literature Review 

The literature review shows that a remarkable number of researchers have used ANN to 

predict pavement roughness. Duckworth [28] and Yasarer et al. [65] developed pavement 

performance prediction models for flexible and continuously reinforced concrete pavement 

(CRCP) sections, respectively, using the ANNs approach based on the Mississippi Department of 

Transportation (MDOT) database. Both papers concluded the ANN model successfully predicted 

roughness values and could be used for pavement performance prediction.  

Hossain et al. [16] and Hossain et al. [17] also developed ANN roughness prediction 

models for flexible and concrete pavements, respectively, but using climate and traffic data 

collected from the LTPP database. The studies used data from the wet freeze climate zone for 

flexible pavements and wet non-freeze for rigid pavements. An RMSE of 0.027 and 0.01 were 

found for the flexible and rigid ANN models, respectively, indicating that the IRI prediction was 

reasonable for both short-term and long-term predictions. 

Jaafar [2] and Jaafar [19] developed IRI prediction models for asphalt pavements using 

multiple linear regression and ANN modeling approaches using all the LTPP database and the 

Western region of the LTPP database, respectively. The ANN model showed a high coefficient of 

correlation (R) of 0.72 and 0.85, respectively, showing promising results for IRI predictions in 
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asphalt pavements. For flexible and composite pavements, Kaya et al. [10] used the Iowa database 

to develop ANN-based models that were found to be good tools for predicting pavement 

deterioration when there were many pavement sections with various traffic, thickness, and other 

various deterioration trends.  

The literature shows ANN models successfully predicted IRI values for asphalt, concrete, 

and composite pavements. However, composite pavements have not been well investigated, 

especially the effects of traffic and climate variables for a specific climate region of the LTPP 

database. Since each location has its local climate and specific characteristics, it is necessary to 

use data from an individual region to assist the performance models to be more accurate. Hence, 

this paper develops a pavement roughness prediction model using the ANNs approach for 

composite pavement sections using data from the wet freeze climate zone of the LTPP database. 

7.4. Model Development 

7.4.1. Data Collection 

The LTPP program created in 1987 to collect and store performance data over several years 

was used as the database for the data analysis in this study. The LTPP program was developed to 

support analysis and product development, analyze the collected data to describe pavement 

performance, and translate these insights into usable engineering products related to pavement 

design, construction, rehabilitation, maintenance, preservation, and management. The data 

collection started in 1989, and 2,509 pavement test sections from 51 U.S. states and ten Canadian 

provinces were selected or constructed for the program. The LTPP developed a climate zone 

classification that included four different zones identified as wet freeze, wet non-freeze, dry-freeze, 

and dry non-freeze zones [2,84]. The LTPP used the precipitation per year to identify wet (higher 
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than 508 mm) and dry (lower than 508mm) climate zones. For freeze and non-freeze climate zones, 

the LTPP used a threshold based on an annual average freezing index of 83 ℃ (150 ℉) days. 

Locations with an index over this threshold were classified in the freeze zone and those under the 

threshold in a non-freeze climate zone [84]. 

A total of 264 composite sections where the asphalt layer thickness over the concrete layer 

is equal to or greater than three inches were found using the LTPP database. For this study, only 

composite pavement sections located in the wet freeze climate zone were used. A total of 186 

pavement sections with 1,930 data points were used for the analysis. 

7.4.2. Data Processing 

To construct the database used in this study, all the variables were retrieved from the LTPP 

database. The data processing for output and input variables is described in this section. 

7.4.2.1. Output Variables 

The IRI is accepted as one of the most important indicators of pavement performance and 

used as the standard for pavement roughness, and it was used as the output variable for modeling. 

Each section in the database had two types of IRI measurements: IRI inside wheel path (IRILeft) 

and IRI outside wheel path (IRIRight). Several IRI measurements were done on each visit date for 

each section. By averaging the IRI measurement runs, a single IRI measurement was obtained for 

IRILeft and IRIRight for each visit date. By doing this, a total of 1,930 IRI measurements from 1989 

to 2018 were found for the 186 sections.  

IRI measurements for IRIRight (1.27 m/km or 80.5 in./mile) were 8% greater than the IRILeft 

(1.18 m/km or 74.8 in./mile), which agreed with previous research [2,31,36,88,89]. An 

independent samples t-test was used to determine whether IRIRight and IRILeft differ on average 

from each other. The t-test result shows that the difference in the means of IRIRight and IRILeft is 
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statistically significant at α 0.05 probability of chance error implying that both samples are from 

different populations. Therefore, this study used IRIRight as a dependent variable since it shows the 

highest value for pavement roughness. 

7.4.2.2. Input Variables 

For the input variables, the literature shows that pavement structure, climate, traffic, and 

maintenance are key variables to account for pavement deterioration. This research used some 

variables that were already studied in the literature but introduced new variables that were found 

to help the model to achieve better results. An important step of modeling is to identify how the 

input variables relate to the output variable. Figure 38 shows plots of each input variable versus 

IRIRight. Two variables used in this study are categorical variables (CNCode, subbase type), which 

have fixed values of 0 or 1 for modeling purposes and were not included in Figure 38. 

 

Figure 38. Independent Variables Versus IRIRight 
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Table 14 shows a summary of the descriptive statistics of input variables and the correlation 

between each input variable and the output variable (IRIRight). A correlation test was performed to 

obtain the Pearson correlation coefficient (r) among all variables. The correlation analysis provides 

the linear association between the output and the proposed input variables. Hence, if the data 

analyzed do not have a good linear correlation, the coefficient will show low values.  

Table 14. Descriptive Statistics of Input Variables  

Input Variable Mean 
Standard 

Deviation 
COV (%) Max. Min. 

r (IRI 

Right) 

IRI0, Initial IRI Right (m/km) 1.90 0.83 43.7% 4.1 0.60 0.058 

Age 32.63 7.77 23.8% 60.0 2.00 0.199 

CESAL 7649125 8113176 1.06 
6127620

1 

35566.0

0 
0.059 

Surface Asphalt Thickness (in) 5.13 1.88 36.6% 13.3 1.90 -0.214 

Concrete Thickness (in) 9.25 1.05 11.4% 18.1 7.00 -0.079 

Subbase Thickness (in) 5.18 2.67 51.5% 15.6 0.00 0.058 

Annual Average Temperature 

(°C) 
10.07 1.93 19.2% 15.3 5.10 -0.008 

Total Annual Precipitation (mm) 966.58 218.80 22.6% 1919.5 377.40 -0.015 

Annual Freeze Index 458.10 270.40 59.0% 1345.0 28.00 0.067 

Annual Freeze-Thaw (days) 87.33 15.00 17.2% 151.0 46.00 0.006 

IRI Right (m/km) 1.25 0.45 35.6% 6.4 0.39 1.000 

Notes: Coefficient of Variation (COV); Pearson Correlation with IRIRight (r (IRI Right))  

The three highest correlations were observed with the variable “CNCode” (0.21) followed 

by a negative correlation with “surface asphalt thickness” (-0.21), and “age” (0.20). Other variables 

indicate low linear correlation values, implying they are not linearly correlated with IRIRight. 

However, these variables might follow a non-linear correlation that cannot be identified by the 

correlational analysis. Therefore, even though the correlation was low in some cases, all 

independent variables were used for the development of ANN models. 

7.5. Ann Development 

ANNs are a predictive modeling technique based on mathematical models built to simulate 

the neural structure of a human brain using the concept of human cognition and neural biology 
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[43]. The neural networks can successfully represent complex relationships that are difficult to be 

identified using traditional sequential, logic-based modeling, and computational techniques [43]. 

A feedforward neural network with a back-propagation training algorithm was used for the 

development of the roughness prediction model in this study. A one hidden layer network was 

considered in the model development since the use of more than one hidden layer may cause the 

network to memorize the data in the training phase [44]. A sigmoidal function was used for data 

generalization purposes and the TR-SEQ1 computer program [55] was used to develop the ANN 

models. 

7.5.1. ANN Model Architecture  

For this paper, five models were developed using different independent variables and 

IRIRight as the dependent variable. Table 15 shows the independent variables used for each ANN 

model.  

Table 15. Input Variables Configuration for Five ANN Models 

No. Model 1 Model 2 Model 3 Model 4 Model 5 

1 IRI0 IRI0 IRI0 IRI0 IRI0 

2 Age Age Age Age Age 

3 

- - Winter (Dec-Feb)   

- - Spring (Mar-May)   

- - Summer (June-Aug)   

- - Autumn (Sept-Nov)   

4 Granular Subbase Granular Subbase Granular Subbase Granular Subbase Granular Subbase 

5 Treated Subbase Treated Subbase Treated Subbase Treated Subbase Treated Subbase 

6 CNCode CNCode CNCode CNCode CNCode 

7 - CESAL CESAL CESAL CESAL 

8 hasphalt hasphalt hasphalt hasphalt hasphalt 

9 hconcrete hconcrete hconcrete hconcrete hconcrete 

10 hsubbase hsubbase hsubbase hsubbase hsubbase 

11 - - - Air Temp. Air Temp. 

12 - - - Precipitation Precipitation 

13 - - - - Freeze Index 

14 - - - - Freeze-Thaw 
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Model 1 used 8 input variables; however, the “granular subbase,” “treated seasons,” and 

“CNCode” are categorical variables. The “CNCode” is a categorical variable that represents M&R 

interventions in the pavement structure. A value of 1 is assigned when an M&R intervention was 

performed. If there was no M&R intervention, a 0 value was assigned. Model 2 used 9 input 

variables, including an input variable responsible for traffic loads, CESAL. Model 3 used 13 input 

variables including four more variables that represent the season in which each test was performed 

in the section. It consists of four seasons spring (March, April, May), summer (June, July, August), 

autumn (September, October, November), and winter (December, January, February), and 

represents the effect of climate and season on pavement deterioration. Model 4 used 11 input 

variables including “air temperature” and “precipitation” to account for the climate effects on the 

pavement. Model 5 used 13 input variables and included “freeze index” and “freeze-thaw” to 

account for the effect of lower temperatures on pavement performance. All variables used in this 

study are not related to distress data and are easily available for federal and state transportation 

agencies. 

7.5.2. ANN Model Selection 

The best ANN model was chosen based on the lowest average square error (ASE), lowest 

mean absolute relative error (MARE), and highest coefficient of determination (R²). Table 16 

demonstrates the statistical measures of each ANN model development stage (i.e., training, testing, 

validation, and all-data) for all developed models. 

Training, testing, and validation stages used 972, 479, and 479 data points, respectively. 

After developing the possible networks for each model, the all-data stage used all 1,930 data points 

from the database to retrain the network at its optimal structure and iteration. Therefore, the all-
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data stage statistics were used as the main comparison between each model. The all-data stage for 

model 5 outperformed the other models with more accurate measures. Hence, model 5 was chosen 

as the best-performing ANN model. The final model structure includes 13 input variables, one 

hidden layer with 19 hidden nodes, 20,000 iterations, and one output. 

Table 16. ANN Model Results 

Model 1 2 3 4 5 

Structure 4-19-20000 6-18-20000 4-19-20000 7-19-20000 8-19-20000 

Training 

MARE 20.09 20.19 17.39 17.03 18.11 

R² 0.58 0.58 0.69 0.69 0.71 

ASE 0.00097 0.0010 0.0007 0.00068 0.00070 

Testing 

MARE 23.81 19.85 22.73 20.22 20.84 

R² 0.34 0.51 0.32 0.53 0.44 

ASE 0.00140 0.0011 0.0016 0.00099 0.00136 

Validation 

MARE 26.65 20.90 25.00 19.21 22.29 

R² 0.27 0.45 0.22 0.50 0.37 

ASE 0.00195 0.0012 0.0023 0.00099 0.00157 

All Data 

MARE 17.94 17.94 17.29 17.14 15.77 

R² 0.57 0.59 0.62 0.68 0.71 

ASE 0.00087 0.00082 0.00076 0.00066 0.00059 

 

7.6. Discussion 

Figure 39 shows a graphical comparison of the accuracy measurements for the all-data 

stage among all developed models.  

 

Figure 39. Graphical Comparison of Accuracy Measures 

The accuracy measures show reliable results for all models developed. However, model 5 
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outperformed all other models developed in this study. Compared to models 1, 2, 3, and 4, the all-

data stage of model 5 showed an ASE 32%, 28%, 22%, and 10% lower, a MARE 12%, 12%, 9%, 

and 8% lower, and an R² 24%, 19%, 13%, and 4% higher, respectively. Figure 40 illustrates the 

observed IRIRight values collected from the LTPP database and the predicted values using model 

5. The ANN model could imitate the pavement deterioration behavior. However, some higher IRI 

values were not captured by the model, which predicted lower values compared to the observed 

IRI. Predicted values tried to cluster around the line of equality but some values were 

underpredicted, especially when the observed IRIRight values were higher than 3 m/km; however, 

all values were used in the model. Nevertheless, a good R² of 0.71 was obtained for the ANN 

model 5. 

 

Figure 40. Observed Versus Predicted IRIRight for ANN Model 5 

7.7. Model comparison 

Model comparison was conducted to evaluate the performance of the developed models in 

two random sections of the database. IRI prediction values were generated using all models and 

compared with observed values. Figure 41 shows the observed versus predicted plots of IRIRight 

for section 29-0661 in Missouri and section 46-7049 in South Dakota. 
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Figure 41. Observed and Predicted Plots of IRIRight for Sections 29-0661 and 46-7049 

Predicted values were close to observed values for almost all models in both sections. 

Model 3 was the only one to not closely follow the observed IRIRight values. This might happen 

because model 3 was the only model to use the input variable “season,” which could cause the 

model to predict less accurate values. Model 5 showed the most accurate results for both sections, 

being the best to explain the variability in the model and capture the pavement deterioration 

behavior. The use of variables that represents the pavement initial condition (IRI0), effects of 

pavement exposure time (age), pavement structure (thickness of asphalt, concrete, subbase, and 

type of subbase), the effect of maintenance and rehabilitation (CNCode), the effect of traffic loads 

(CESAL), and climatological effects of temperature, moisture, and freeze (air temperature, 

precipitation, freeze index, freeze-thaw) in the same model might be the reason why model 5 had 

a better performance than other models that did not use all variables at the same time. 

Therefore, the model comparison showed that all developed models were reasonably 

accurate and reliable for both analyzed sections and can be used to predict pavement roughness. 

Furthermore, the analysis showed that by combining all input variables in the same model, the 

predictions were more accurate since the model had a better understanding of the pavement 

deterioration behavior and translated this into more precise IRIRight values. Therefore, the 
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developed models in this study can be used as a powerful tool to predict pavement’s future 

condition and better M&R planning. 

7.8. Conclusions 

The concluding remarks are summarized, as follows: 

(1) The pavement roughness models for composite pavements were developed using the 

artificial neural networks modeling technique. The models used data collected from the 

LTPP database for the wet freeze climate zone. 

(2) The best-performing ANN model was selected based on the accuracy measures presented 

inTable 16. Model 5 outperformed all other models accounting for 71% of the variability 

with an R² of 0.71 with 13 input variables, one hidden layer with 19 hidden nodes, 20,000 

iterations, and one output. 

(3) Compared to models 1, 2, 3, and 4, the all-data stage of model 5 showed an ASE 32%, 

28%, 22%, and 10% lower, a MARE 12%, 12%, 9%, and 8% lower, and an R² 24%, 19%, 

13%, and 4% higher, respectively. 

(4) The ANN model could replicate the pavement deterioration behavior with reasonable 

accuracy. Predicted values cluster around the line of equality but some values were 

underpredicted, especially when the observed IRIRight values were higher than 3 m/km. 

(5) Model comparison was performed for sections 29-0661 and 46-7049. Predicted values 

were close to observed values for almost all models in both sections. Model 5 showed to 

be the most accurate. 

(6) The study showed that the use of a specific climate zone combined with input variables 
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that represent the pavement’s initial condition, effects of pavement exposure time, 

pavement structure, effects of maintenance and rehabilitation, effects of traffic loads, and 

climatological effects of temperature, moisture, and freeze in the same model increased the 

model accuracy. 

Therefore, the developed ANN model efficiently characterized the pavement roughness 

behavior on composite pavements and can be used by agencies as a prediction tool for IRI values 

and guide decision-makers to develop a better M&R plan. Furthermore, the developed model can 

predict IRI values without using distress data, which will result in cost reductions and more 

effective M&R scheduling 
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8.1. Introduction 

One of the main goals of the Pavement Management System (PMS) is to enhance pavement 

condition by considering the effects of pavement structure and material, environment, and 

maintenance and rehabilitation (M&R) interventions on pavement performance [26]. A growing 

body of studies has been exploring different modeling techniques and variables to achieve accurate 

predictions. Advanced modeling techniques that use machine learning have shown promising 

results when predicting pavement roughness. 

The Artificial Neural Network (ANNs) technique has been used in several studies offering 

significant improvements over traditional techniques, such as regression, by processing large 

volumes of data with a higher degree of accuracy. However, current pavement performance
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prediction models did not account for the influence of M&R history in the model development, 

which can affect the accuracy of the predictions [88]. In addition, most studies developed 

performance models for flexible or concrete pavements, which resulted in a lack of research on 

composite pavements. Composite pavements are normally a result of concrete pavement 

rehabilitation, when concrete pavements start to fail, they are overlaid with Hot Mix Asphalt 

(HMA). Compared to flexible or rigid pavements, composite pavements can provide better 

performance measures both structurally and functionally, and accordingly, can be considered a 

cost-effective alternative [3]. 

Therefore, the objectives of this paper are to (1) develop pavement roughness prediction 

model for composite pavement sections in the wet non-freeze climate region of the LTPP database 

using the ANN technique and (2) utilize a new approach to incorporate M&R history in the model 

development. 

8.2. Model Development 

8.2.1. Methodology 

The model development methodology used in this paper is described as follows: 

1. Perform a literature review of previous studies to identify independent variables 

responsible for impacting pavement performance. 

2. Compile databases for composite pavements in the wet freeze region of the LTPP database. 

3. Develop pavement performance models using the ANN technique. 

4. Evaluate the accuracy of the developed models using statistical measures. 

5. Select the most accurate model based on statistical indicators. 

8.2.2. Data Collection 

Using the LTPP database, a total of 264 sections were identified as composite pavement 
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sections. In this study, only composite pavement sections located in the wet freeze climate zone 

were used. A total of 186 pavement sections with 1,930 data points were used for the analysis. 

8.2.3. Data Processing 

Several variables were retrieved from the LTPP database to develop the database used in 

this paper. The output and input variables are described in this section. 

8.2.3.1. Output Variables 

The International Roughness Index (IRI) is recognized as one of the most important 

indicators of pavement performance. A total of 1,930 IRI measurements were found for the 186 

sections. The mean of IRI outside wheel path (IRIRight) (1.27 m/km) measurements were 8% greater 

than the mean of IRI inside wheel path (IRILeft) (1.18 m/km) measurements, which agreed with 

previous research [2,31,36,88,89]. Therefore, the worst scenario was chosen and the IRIRight was 

defined as the dependent variable for this study.  

8.2.3.2. Input Variables 

Table 17 shows the variables used for each ANN model in this study. 

Table 17. Independent and Dependent Variable Configuration for Five ANN Models. 

Models Model 1 Model 2 

Independent Variables 

I0 IRIRight I0 IRIRight 

Age Age 

CNCode CNContinuous 

Unbound Base/Subbase Unbound Base/Subbase 

Bound Base/Subbase Bound Base/Subbase 

Cumulative ESAL Cumulative ESAL 

hasphalt hasphalt 

hconcrete hconcrete 

hbase/subbase hbase/subbase 

  

Dependent Variable IRIRight IRIRight 

 

Model 1 and Model 2 used nine input variables explained, as follows: 

• I0 IRIRight: initial IRIRight when the pavement section was opened to traffic (m/km) 
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• Age: time in years from the opening date to the last measurement 

• Unbound Base/Subbase: categorical variable to indicate unbound base/subbase (0 or 1), 1 

if unbound 

• Bound Base/Subbase: categorical variable to indicate bound base/subbase (0 or 1), 1 if 

bound 

• Cumulative ESAL: cumulative equivalent single axle load from the opening date until the 

last measurement 

• hasphalt: asphalt thickness (in.) 

• hconcrete: concrete thickness (in.) 

• hbase/subbase: base/subbase thickness (in.) 

• CNCode and CNContinuous: variables created for incorporating M&R actions 

8.2.4. Incorporating M&R Interventions in the Model Development  

The construction number (CN) is the variable used by the LTPP to identify M&R actions 

in each section of the database. An initial CN1 is assigned when the pavement section is opened 

to the traffic. When an M&R is conducted, the CN number changes from CN1 to CN2. Hence, the 

CN factor indicates that an M&R treatment was conducted on the pavement section. The treatment 

intervention normally improves the pavement condition and performance with respect to 

roughness and other surface defects. Therefore, it is essential to consider CN as a factor for a more 

inclusive, realistic, and accurate performance prediction model. Two approaches were used for 

incorporating the M&R interventions in the ANN model development: 

• The first approach was to use the CN as a categorical variable with a value of zero or one. 

A zero value is assigned if no M&R was implemented in that section and a value of one is 

assigned if there was an M&R intervention. This variable was called CNCode. 

• The second approach was to use the CN as a continuous variable with values from 1 to 9. 

An initial CN1 was assigned when the section became a composite section and increased 
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by one unit whenever an M&R action was performed in the pavement section. By doing 

this the CN values became CN2, CN3, CN4, CN5, CN6, CN7, CN8, and CN9 according 

to how many M&R interventions were performed in the same section. This variable was 

called CNContinuous. 

• The use of a CN variable for incorporating M&R actions in the model development was 

expected to result in more realistic models considering that M&R interventions affect the 

future condition of the pavement. 

8.2.5. ANN Model Selection 

A feedforward neural network with a back-propagation training algorithm was used for the 

development of the performance model in this study. A one hidden layer network was considered 

in the model development and a sigmoidal function was used for data generalization purposes. The 

TR-SEQ1 computer program [55] was used to develop the ANN models. Table 18 shows statistical 

measures of the ANN model development stages for the two developed models.  

Table 18. ANN Model Results 

Model 1 2 

Structure 

(Initial Hidden Node – Final Hidden 

Node – Iterations) 

6-18-20000 6-19-20000 

Training 

MARE 20.19 18.52 

R² 0.58 0.69 

ASE 0.0010 0.00072 

Testing 

MARE 19.85 22.34 

R² 0.51 0.38 

ASE 0.0011 0.00135 

Validation 

MARE 20.90 20.98 

R² 0.45 0.43 

ASE 0.0012 0.00121 

All Data 

MARE 17.94 17.25 

R² 0.59 0.65 

ASE 0.00082 0.00072 

Final Network 
9-19-1 

# of Inputs - Final Hidden Node - # of Outputs 
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The best model was selected based on the lowest average square error (ASE), lowest mean 

absolute relative error (MARE), and highest coefficient of determination (R²).  

Training, testing, and validation stages used 973, 479, and 478 data points, respectively. 

After developing the possible networks for each model, the all-data stage used all 1,930 data points 

from the database to retrain the network at its optimal structure and iteration. Therefore, the all-

data stage statistics were used as the main comparison between each model. The accuracy 

measures show reliable results for both developed models. However, Model 2 outperformed Model 

1 in the all-data stage with a 12% lower ASE, 4% lower MARE, and 10% higher R². Therefore, 

Model 2 was chosen as the best-performing model. The final model structure includes 9 input 

variables, one hidden layer with 19 hidden nodes, 20,000 iterations, and one output. 

8.3. Discussion  

8.3.1. Model Results 

Figure 42 shows a scatter plot of observed versus predicted IRIRight values for Model 1 and 

Model 2. 

 

Figure 42. Observed vs. Predicted IRIRight for ANN Model 1 and ANN Model 2, respectively 

Both ANN models were able to capture the pavement deterioration behavior. However, 

Model 2 showed better accuracy with an R² (0.649) 10% higher than Model 1 (0.593). Predicted 
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values for both models clustered around the line of equality; however, lower IRIRight values were 

better predicted than higher values. When the observed IRIRight values were greater than 3 m/km, 

both models were not as accurate Nevertheless, both models resulted in reliable predictions 

explaining 59.3% and 64.9% of the variability in the model. Therefore, the use of a new approach 

utilizing a continuous variable for incorporating M&R history in the model development provided 

better results compared to the use of a categorical variable as observed in Table 18 and Figure 42. 

8.4. Conclusions 

Model 2 showed better accuracy for predicting IRI values compared to Model 1. The use 

of a continuous variable (CNContinuous) for incorporating M&R actions showed results 12% lower 

for ASE, 4% lower for MARE, and 10% higher for R², which indicates a significant improvement 

over the model that used a categorical variable (CNCode). This new approach for maintenance and 

rehabilitation actions can also be implemented for other climate regions to verify if it can enhance 

other pavement performance models by providing more accurate predictions. The continuous 

approach developed in this study will assist transportation agencies to support objective decisions 

regarding maintenance and rehabilitation actions and budget plans permitting agencies to prioritize 

the resources for critical pavement sections. Furthermore, the developed models are user-friendly 

and can be easily utilized for predicting future pavement roughness conditions without the need 

for any distress data, saving time and money for federal and state agencies.
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9.1. Abstract 

Efficient and well-maintained pavement systems are crucial to ensure appropriate 

conditions for the road networks. If timely maintenance and rehabilitation (M&R) is not 

performed, the pavement deterioration may lead to poor conditions that affect the comfort and 

safety of road users. The effectiveness of any M&R actions essentially depends on the time of 

treatment. This paper presents the development of pavement roughness models using the Artificial 

Neural Networks (ANNs) approach for composite pavements using the Long-Term Performance 

Pavement (LTPP) program database for the wet non-freeze climate region. A total of 49 composite 

pavement sections with 353 data points were analyzed. The use of an M&R variable in the model
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development resulted in more realistic and accurate models to predict future pavement conditions, 

identify M&R actions, and simulate interventions for future years. The developed models could 

be used by transportation agencies as a valuable tool for more effective M&R scheduling 

prioritizing worst condition pavement sections. 

9.2. Introduction 

Efficient and well-maintained pavement systems are vital to guarantee proper conditions 

for the road networks. Pavement performance is a general term that intends to describe pavements’ 

conditions over time indicating valuable information to keep the roads in acceptable levels of 

service to the users. Transportation agencies have used numerous performance indicators to assess 

the effectiveness and efficiency of their service provision [4]. Among others, the International 

Roughness Index (IRI) became the standard indicator to determine road surface roughness [20]. A 

well-constructed newly laid pavement has an initial roughness that tends to be lower, and it starts 

to increase with time as the pavement deteriorates due to climate and traffic loads [22]. With the 

lack of adequate and timely maintenance and rehabilitation (M&R) interventions, the rate of 

deterioration starts to rapidly increase leading the pavement to poor conditions. 

Many funds are necessary to be invested in maintaining road networks within satisfactory 

conditions. However, if these funds are not sufficient, it is not possible to perform adequate and 

timely M&R activities, which is one of the main problems that agencies have been dealing [29,90]. 

For this reason, the development of pavement performance models becomes a vital tool that allows 

agencies to implement a better budget allocation plan for future M&R interventions. The 

performance models can identify rehabilitation needs, analyze rehabilitation effects, and estimate 

future pavement conditions to implement different M&R activities to extend the pavement life 

cycle leading agencies to develop a more efficient and effective Pavement Management System 
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(PMS) [27,88]. 

The Long-Term Pavement Performance (LTPP) program is the largest pavement 

performance research program ever undertaken, gathering data from more than 2,000 pavement 

test sections over a 20-year test period [84], and for this reason, is one of the most used databases 

for developing performance prediction models. Machine learning modeling techniques such as the 

Artificial Neural Network (ANN) have been proving to offer significant modeling improvements 

by processing large volumes of data with a higher degree of accuracy [26].  

Therefore, this paper utilizes the ANN modeling technique to develop pavement 

performance models for composite pavements in the LTPP wet non-freeze region using a new 

approach to consider the effects of M&R treatments on IRI predictions.  

9.3. Literature Review  

In the last decades, significant research efforts have been shifted toward the use of machine 

learning algorithms for pavement performance modeling. The literature shows that the ANNs are 

not only one of the first machine learning techniques to be used but also the most used technique 

in civil and pavement engineering [40,41]. The ANN method attempts to emulate the structure 

and/or functional aspects of biological neural networks [46]. It consists of several simple 

processing elements called neurons (or nodes) and connecting links between them. When the 

information is processed, the connection links are used to transfer signals between neurons [43]. 

Each neuron evaluates its input signals to determine its output signal and transmitted to all neurons 

that are on the receiving side of the connection links originating in the transmitting neuron. Each 

connection has an associated weight that multiplies the signal transmitted. Complex relationships 

that are difficult to reproduce using traditional sequential, logic-based modeling and computation 

technics can be successfully represented by neural networks [43]. 
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Since machine learning has a data-driven approach, IRI appears as a suitable indicator for 

modeling, since it is widely available in pavement databases (e.g., LTPP database), measured by 

objective means (e.g., laser profilometer), and known as one of the most common indicators for 

pavement performance evaluation [42]. Numerous studies have successfully used the ANN 

technique to predict IRI values for flexible pavements [10,13,15,16,28,29,68,69,91]. Other authors 

explored the use of ANNs for rigid pavements and obtained reasonable to high accuracy on IRI 

predictions [9,17,30,34,36,65,72]. The literature shows relatively less number of studies for 

composite pavements, but the ANN continues to be the most accurate and promising technique 

according to the results presented [10,15,26,68,88].   

However, literature to date shows that several models did not include M&R history in 

modeling development. Incorporating M&R activities is a challenging task due to the complex 

relationships between pavement roughness and its responses before and after rehabilitation. Recent 

studies have shown promising results after using different approaches to introduce M&R variables 

into their modeling procedures [26,29–31,34,36,65,88]. Therefore, the development of 

performance prediction models for composite pavements incorporating M&R history is a must. 

This paper uses different approaches to generate M&R variables that assist the models to 

understand the roughness behavior before and after rehabilitation activities resulting in more 

reliable, inclusive, and accurate prediction models.  

9.4. Model Development 

9.4.1. Methodology  

Figure 43 shows the pavement performance modeling methodology flowchart for the LTPP 

database.  



 

165 

 

Figure 43. Pavement Performance Modeling Methodology 

The description of the methodology is, as follows: 

1. Conduct an extensive literature review to identify key input and output variables. 

2. Compile databases for composite pavements in the wet non-freeze region of the LTPP 

database. 

3. Develop pavement performance models using the ANN technique. 

4. Evaluate the accuracy of the developed models using statistical measures. 

5. Select the most accurate models based on statistical indicators. 

6. Perform comparison analysis for the developed ANN models. 

9.4.2. Data Collection 

The data used in this study were retrieved from the LTPP database. A total of 264 sections 

were identified as composite pavement sections, where the asphalt overlay thickness over the 

concrete layer was equal to or greater than three inches. In this study, only composite pavement 

sections located in the wet non-freeze climate zone were utilized, which resulted in a total of 49 



 

166 

sections available for the analysis.  

The climate zone classification was developed at the beginning of the LTPP study since 

the data collection had different spatial and temporal locations throughout the U.S. Four climate 

zones were defined as wet freeze, wet non-freeze, dry-freeze, and dry non-freeze [84]. Table 19 

shows the states located in the wet non-freeze climate region. The LTPP used the precipitation per 

year to identify wet (higher than 508 mm) and dry (lower than 508mm) climate zones. For freeze 

and non-freeze zones, the threshold used was based on an annual average freezing index of 83 ℃ 

(150 ℉) days. Locations with an index over this threshold are classified in the freeze zone and 

those under the threshold in a non-freeze climate zone [84]. 

Table 19. States Located in the Wet Non-freeze LTPP Climate Zone 

State Code State Name State Code State Name 

1 Alabama 24 Maryland 

5 Arkansas 28 Mississippi 

6 California 37 North Carolina 

10 Delaware 40 Oklahoma 

11 District of Columbia 41 Oregon 

12 Florida 45 South Carolina 

13 Georgia 47 Tennessee 

15 Hawaii 48 Texas 

16 Idaho 53 Washington 

22 Louisiana 72 Puerto Rico 

 

9.4.3. Data Processing 

To build the modeling database for this study, input and output variables were retrieved 

from the LTPP database. These variables are described in this section. 

9.4.3.1. Output Variables 

The IRI is considered the standard measurement of pavement roughness, and it was used 

as the output variable for modeling. Each section had two types of IRI measurements; IRI inside 

wheel path (IRILeft) and IRI outside wheel path (IRIRight). A mean roughness index (IRIMean) was 
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calculated by averaging the IRILeft and IRIRight measurements. On each visit date, several IRI 

measurement runs were done for each section. By averaging the IRI measurement runs, a single 

IRI measurement was obtained for IRILeft, IRIRight, and IRIMean for each visit date. By doing this, a 

total of 353 IRI measurements from 1989 to 2018 were found for the 49 sections. 

 IRI measurements for IRIRight (1.31 m/km or 83.0 in./mile) were 8% greater than the IRILeft 

(1.22 m/km or 77.3 in./mile). Mean differences were assessed using the independent samples t-test 

to determine whether IRIRight and IRILeft differ on average from each other. The results show that 

the difference in the means of IRIRight and IRILeft is statistically significant at α 0.05 probability of 

chance error. This implies that both samples are from different populations. Therefore, IRIRight was 

selected as the dependent variable since it shows the highest value for pavement roughness. 

9.4.3.2. Input Variables 

The input variables were selected after an extensive literature review and several inputs 

were tried in a preliminary study using a trial-and-error method. The selected variables showed in 

this section were found to be the most significant variables considering the practical point of view. 

The selected input variables used in this study are explained, as follows: 

• IRI0 (m/km): represents the first IRI value measured in the outside wheel path for a specific 

pavement section of the LTPP database. The first measurement is usually done when the 

pavement was built and opened to traffic, or the pavement was first included in the LTPP 

study. It indicates the road surface condition at the beginning of the analysis period. 

• Age (years): calculated by subtracting the year when the section was opened to traffic from 

the year that the IRI measurement was collected. This variable represents the time 

pavement was exposed to climate and traffic loads. Age is also a fundamental variable to 

be used as an input variable to predict pavement performance for future years. 

• Granular Base/ Subbase (0 or 1): categorical variable to represent the use of a granular 
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base/subbase in the pavement structure. A value of “1” was used when granular 

base/subbase was utilized and a value of “0” when there was no granular base/subbase. 

• Treated Base/ Subbase (0 or 1): categorical variable to represent the use of treated 

base/subbase in the pavement structure. A value of “1” was used when treated base/subbase 

was utilized and a value of “0” when there was no treated base/subbase. 

• CESAL: The Cumulative Equivalent Single Axle Load (CESAL) is the sum of annual 

Equivalent Single Axle Load (ESAL) data over the years. The ESAL represents the effects 

of traffic loads on the pavement over time. In some years, the LTPP database did not have 

ESAL information corresponding to the IRI measurements data. Interpolation and 

extrapolation procedures were applied using known data points to compute ESAL for the 

missing years. Cumulative ESAL represents the cumulative traffic load that was endured 

by the pavement over pavements’ life. 

• Surface Asphalt Thickness (in.): the surface asphalt thickness represents the thickness of 

asphalt overlaid on a concrete base. 

• Concrete Thickness (in.): represents the thickness of concrete under the asphalt layer. The 

concrete layer serves as a base for the asphalt layer on top of the pavement. 

• Subbase Thickness (in.): represents the thickness under the concrete base. Thicker subbases 

tend to provide more support for the pavement structure. 

• Annual Average Temperature (°C): represents the average daily mean air temperatures for 

the year. The temperature changes impact the material properties of pavements and 

influence the pavement deterioration process. Thus, this climatological variable is 

necessary for more realistic performance models predictions. 

• Total Annual Precipitation (mm): represents the sum of monthly precipitation for the year. 
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The amount of precipitation affects the material properties of pavements’ base/ subbase 

and subgrade layers, which also impacts the pavement deterioration process and should 

also be used as a climatological variable in the modeling development. 

For the consideration of M&R treatment in the ANN model development two variables 

(CNCode and CNContinuous) were created and are explained, as follows:  

The construction number (CN) is the attribute that LTPP uses to monitor and identify M&R 

in each section of the database. A CN1 is assigned when the pavement section was opened to the 

traffic. When an M&R is conducted, the CN number will change from CN1 to CN2. Thus, the CN 

factor indicates that a major M&R treatment was conducted on the pavement section. The 

treatment intervention normally improves the pavement condition concerning roughness, cracking, 

faulting, joint deterioration, and other surface defects. Hence, it is essential to consider CN as a 

factor for a more realistic and precise model. As an illustration, Figure 44 shows different CN 

values for section 06-0661 located in California. This test section has three construction numbers 

CN1, CN2, and CN3.  

 

Figure 44. IRIRight measurements, Section 06-0661, California, 1993-2015 

It is evident from Figure 44 that M&R treatments improved the composite pavement 

condition resulting in lower IRI values. The IRI values decreased 16% from CN1 (1.63 in 1999) 
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to CN2 (1.37 in 2000) when maintenance and rehabilitation (M&R) were performed. To support 

this statement an independent sample t-test was performed to determine whether there are 

statistically significant differences between the means of IRI measurements between CN1 and 

CN2. The results show that the difference in the means of CN1 IRIRight and CN2 IRIRight are 

statistically significant at α 0.05 probability of chance error. This implies that both IRIRight samples 

(CN1 and CN2) are from different populations. This confirmed the IRIRight value for CN2 (1.37 

m/km) is statistically significant and lower, compared to the IRIRight value for CN1 (1.63 m/km). 

Thus, M&R treatments significantly improved the pavement surface condition and contributed to 

lower IRI values. 

Therefore, two variables were created using different approaches. 

• CNCode: the CNCode was developed based on the original CN collected from the LTPP 

database corresponding to each IRI data point. If no M&R action (CN1 in the original 

LTPP database) was done, the CNCode assumed a value of “0”, and continued as “0” until 

a new M&R action was performed. The first M&R action (CN2 in the original LTPP 

database) assumed a value of “1”, and this “1” continued until the end of IRI data points 

for this pavement section. 

• CNContinuous: the CNContinuous was also developed based on the original CN collected from 

the LTPP database corresponding to each IRI data point. If no M&R action (CN1 in the 

original LTPP database) was done, the CNCode assumed a value of “1”, and continued as 

“1” until a new M&R action was performed. The next M&R action (CN2 in the original 

LTPP database) assumed a value of “2”, and this “2” continued until the next M&R 

intervention. The next M&R action (CN3 in the original LTPP database) assumed a value 

of “3”, and this “3” continued until the next M&R action. This CNContinuous assignment 
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continued until all the M&R actions performed on a pavement section were categorized.  

9.4.4. ANN Modeling and Structure 

For the ANN modeling procedure, this study utilized a feed-forward neural network with 

a back-propagation training algorithm to develop performance prediction models for asphalt 

pavements in the wet non-freeze region of the LTPP database. One hidden layer was implemented 

to maintain the generalization capability of the network without causing the network to memorize 

the data in the training phase [46]. The modeling database was divided into training (50%), testing 

(25%), and validation (25%). After achieving the optimum model networks, the model was 

retrained in the All-data stage using 100% of the data points. The TR-SEQ1 computer program 

[55] with a sigmoidal function (for data generalization purposes) was used to develop the ANN 

models in this study. 

A total of three models were developed using different input and output variables from the 

modeling database. Table 20 summarizes the structure of each model used in this paper. 

Table 20. Input and Output Variables for ANN Models 

Models Model 1 Model 2 Model 3 

Input 

Variables 

IRI0 IRI0 IRI0 

Age Age Age 

CNCode CNCode CNContinuous 

Granular Base/ Subbase Granular Base/ Subbase Granular Base/ Subbase 

Treated Base/ Subbase Treated Base/ Subbase Treated Base/ Subbase 

CESAL CESAL CESAL 

Surface Asphalt 

Thickness 
Surface Asphalt Thickness 

Surface Asphalt 

Thickness 

Concrete Thickness Concrete Thickness Concrete Thickness 

Subbase Thickness Subbase Thickness Subbase Thickness 

 Annual Average 

Temperature 
 

 Total Annual Precipitation  

Output 

Variables 
IRIRight IRIRight IRIRight 

 

Models 1 and 3 used nine input variables and one output variable. However, Model 1 used 
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the CNCode to incorporate M&R actions in the model development, while Model 3 used the 

CNContinuous. This approach was used to identify which M&R variable would provide more accurate 

predictions. Model 2 utilized 11 input variables and one output variable. The two additional input 

variables (Annual Average Temperature and Total Annual Precipitation) in Model 2 were included 

to take into consideration the climatological effects on pavement deterioration. Model 2 also used 

the CNCode as the main variable for M&R actions. All models have used the same output model 

(IRIRight). 

9.4.5. ANN Model Selection 

The best model was chosen based on the lowest Average Square Error (ASE), Mean 

Absolute Relative Error (MARE), and highest Coefficient of Determination (R²). Table 21 shows 

the summary of the ANN model results. The model network is written in an order that depicts the 

number of initial hidden nodes, the number of final hidden nodes, and iterations. The final structure 

of each model is written at the bottom row of the table, in an order that depicts the number of 

inputs, hidden nodes, and output(s), respectively. 

Table 21. ANN Model Results 

Model Model 1 Model 2 Model 3 

Network 1-19-20000 13-19-2000 8-17-20000 

Training 

MARE 8.08 9.98 10.68 

R² 0.96 0.94 0.93 

ASE 0.0005 0.0007 0.0008 

Testing 

MARE 17.15 20.71 20.66 

R² 0.44 0.72 0.60 

ASE 0.0121 0.0043 0.0058 

Validation 

MARE 14.73 20.24 25.90 

R² 0.83 0.71 0.62 

ASE 0.0020 0.0043 0.0057 

All data 

MARE 10.45 13.14 12.94 

R² 0.90 0.86 0.87 

ASE 0.0011 0.0018 0.0013 

Final Structure 9-19-1 11-19-1 9-17-1 
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Training stage results show that Model 1 had better accuracy measures in terms of ASE, 

MARE, and R². On the other hand, for the testing stage, Model 2 showed better results for ASE 

and R² while Model 1 had a better MARE outcome. In the validation stage, Model 1 showed lower 

ASE, MARE, and higher R² results compared to other models. In the All-data stage, all the 353 

data points were used to retrain the network at its optimal structure and iterations to obtain the 

generalized response throughout the complete database. Results for the All-data stage show that 

Model 1 outperformed all other models with better accuracy measures for ASE, MARE, and R². 

Statistical measures of Model 1 retrained with all data showed an ASE of 0.0011, a MARE of 

10.45, and a high R² of 0.90.  

Therefore, Model 1 was selected as the best-performing ANN model for the composite 

pavements located in the LTPP wet non-freeze climate zone. The network structure of Model 1 

includes 9 input variables, 1 hidden layer with 19 hidden nodes, 20,000 iterations, and 1 output. 

9.5. Discussion 

9.5.1. ANN Model Results 

Figure 45 shows a graphical comparison of statistical measures for all models using the 

All-data stage. 

 

Figure 45. Graphical comparison of accuracy measures for all developed models 

All three models presented accurate, reliable, and consistent results. However, Model 1 

outperformed all other models with an ASE 40% and 18% lower, a MARE 20% and 19% lower, 

and an R² 5% and 3% higher than Models 2 and 3, respectively. This analysis supports the previous 
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selection of Model 1 as the best-performing model. Figure 46 shows the observed IRI values 

collected from the LTPP database versus the predicted IRI values using Model 1.  

 

Figure 46. Model 1 Predicted vs. Observed IRIRight 

 Model 1 predictions clustered around the line of equality showing an excellent agreement 

(R² = 0.90) between observed and predicted values IRI values. The model was able to capture the 

composite pavement deterioration behavior and understand the roughness changes over time 

explaining 90% of the variability. The complex relationships between the input variables and 

IRIRight were successfully modeled and translated into reliable, consistent, and accurate 

predictions. 

The use of the CNCode variable showed more efficiency in assisting the network to 

incorporate the effects of M&R in the model development than the CNContinuous. This might occur 

because when no rehabilitation is performed the use of “0” demonstrates to the model that there is 

no need to assign any weight for that variable at that moment. After an M&R intervention, the 

CNCode receives a value of “1”, which indicates to the model that some action was performed and 

a drop in the IRIRight value needs to occur. Another important point of discussion is the use of 

climatological variables (Model 2). Since the database was already developed for sections located 

in the wet non-freeze climate region and this region was already classified according to the 
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precipitation and freeze data, it is not necessary to utilize additional climatological variables that 

contain the same information. The accuracy comparison between Model 1 (no climatological 

variables) and Model 2 (with climatological variables) confirms this statement and this approach 

should be applied in different LTPP climate zones for future studies.  

Therefore, statistical measures and prediction plots showed that all developed models were 

accurate and reliable tools that could be used by transportation agencies to assist their PMS 

providing more efficient and timely effective M&R interventions. However, Model 1 showed to 

provide the most accurate results and, thus, is recommended to be used as the best-performing 

model for predicting IRI values for composite pavements in the LTPP wet non-freeze climate 

region. 

9.6. Implementation of Model 1 for Random Sections 

This section presents the implementation of Model 1 for two random sections of the 

database to visualize and evaluate predicted and observed roughness. This comparison is important 

to identify the model's capability to predict IRI values for some sections under different input 

variable values. Figure 47 shows the comparison between predicted and observed IRI values using 

Model 1 for Sections 40-0603 and 48-5154. 

 

Figure 47. Model 1 Observed and Predicted Plots of IRI for Sections 40-0603 and 48-5154   
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Predicted IRI values were very close to the observed values for both sections. The predicted 

mean of IRI (1.29) for section 40-0603 was only 1% lower than the observed mean (1.30), while 

for section 48-5154 predicted values were 0.5% lower. The model predicted successfully the IRI 

increase over time and the IRI decrease right after an M&R action was applied in the pavement 

section. Therefore, the implementation analysis showed that agencies can use the developed model 

for predicting future roughness values and incorporate M&R interventions effectively to prioritize 

funds for the worst condition sections. 

9.7. Conclusion 

In this study, an ANN modeling technique was used to develop roughness performance 

prediction models for composite pavements in the LTPP wet non-freeze climate region. Even 

though all developed models showed accurate and reliable results, Model 1 outperformed other 

models with an ASE 40% and 18% lower, a MARE 20% and 19% lower, and an R² 5% and 3% 

higher than Models 2 and 3, respectively. The network structure of Model 1 includes 9 input 

variables, 1 hidden layer with 19 hidden nodes, 20,000 iterations, and 1 output. The predicted vs. 

observed plot (Figure 46) showed that Model 1 predictions clustered around the line of equality 

showing an excellent agreement (R² = 0.90) between observed and predicted values IRI values. 

The use of the CNCode variable efficiently incorporated M&R actions in the model development 

and assisted the network to achieve higher accuracy compared to the CNContinuous variable. The 

results also showed that since the database was already developed for a specific climate region, 

the inclusion of climatological variables related to precipitation and temperature did not improve 

model accuracy and for this reason should not be included when modeling specific climate regions. 

Implementation of Model 1 for two random sections of the database showed that the model had 

excellent performance predicting the IRI increase and decrease due to time exposure and M&R 
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actions.  

Therefore, this study successfully developed an ANN performance model that can 

contribute to the state-of-the-art by providing a reliable, accurate and consistent tool to support 

objective decisions regarding M&R interventions allowing agencies to develop more efficient 

PMS by prioritizing resources for critical composite pavement sections. 
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10.1. Model Development 

10.1.1. Methodology 

PCR and IRI are the two most important indicators of pavement smoothness. State agencies 

must predict these two measures accurately to estimate the future condition of the pavement 

sections. Frequent maintenance, rehabilitation, and eventually resurfacing are necessary to 

maintain the pavement in acceptable conditions. Therefore, pavement performance models are 

necessary to accurately estimate pavement deterioration to prioritize budget allocation for a better 

management system. Figure 48 presents the pavement performance modeling methodology 

flowchart for the MDOT database.
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Figure 48. Pavement Performance Modeling Methodology for the MDOT Database 

The model development methodology for the MDOT database used in this study is 

presented, as follows: 

(1) Compile databases for asphalt, concrete, and composite pavements from the MDOT 

database, including variables that affect pavement performance. 

(2) Assess the quality of databases and identify missing/erroneous data items. 

(3) Develop procedures for estimating important missing data in the time series.  

(4) Develop pavement performance models for asphalt, concrete, and composite pavements 

using the ANN modeling technique.  

(5) Evaluate the accuracy of the developed performance prediction models. 

(6) Select the best-performing model based on statistical measures and verify the prediction 

behavior. 

(7) Implement the selected performance models via GUI. 
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(8) Evaluate the selected models using GUI for the enhancement of pavement asset 

management. 

10.1.2. Data Collection  

The data used in this study is collected as a part of the MDOT’s survey. Mississippi has 

four different pavement types: Flexible, JCP, CRCP, and composite pavement. Like other states, 

the MDOT operates a pavement management system that includes PCR, IRI, and distress data. 

Typically, PCR values decrease and IRI values increase with the deterioration of pavement over 

time. IRI is measured as IRIMean and classified as low, medium, and high severity levels. The PCR 

values are calculated based on measured IRI and the deduction factors that are determined as 

functions of distresses and severity level [28,50].  

10.1.3. Data Processing 

The database for the ANN model development is obtained after cleansing and reorganizing 

the raw data files. Due to new data acquisition methods, materials, and tools used by the MDOT, 

only data collected from 2010 to 2020 are included in the model development. Sections with 

missing or illogical data have been excluded as the ANN model development process needs a 

complete dataset. These exclusions reduced the number of asphalt, concrete, and composite 

pavement sections. Each section is comprised of five different datasets based on PCR, IRI, and 

rehabilitation actions. In Mississippi, the distress data is collected every even year. To develop 

prediction models that are applicable for a 1-year increment, the odd-year data needed to be 

generated by averaging consecutive years from 2010 to 2020 [28,50]. 

 It is known that MDOT did not keep track of all rehabilitation actions and for this reason, 

another approach for assigning rehabilitation actions was proposed based on the discussions with 

the state agency. Improvement of PCR and IRI values without any rehabilitation action was 
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considered irrational. Some uncertainty due to the calibration of the profilometer, systematic 

errors, and the environmental conditions on the day of the survey may have resulted in some of 

the irrational condition measures. To incorporate the effect of the rehabilitation on PCR and IRI, 

artificial rehabilitation actions based on the significant changes in PCR and IRI have been assigned 

to the database [50]. Threshold values for PCR and IRI were assigned based on the evaluation of 

data history. If PCR increased 8% to 12% and IRI decreased 5% to 16% in a year compared to the 

previous measurement, a minor rehabilitation was assumed to take place in that year. If PCR 

increased above 12% and IRI decreased more than 16%, a major rehabilitation was assumed. If 

none of these situations occurred, it was assumed no rehabilitation. The models with two outputs 

(i.e., PCR and IRI) were modified to be used with the complementary PCR (i.e., 100-PCR) since 

the outputs need to be directly proportional in the ANN modeling. Because PCR and IRI usually 

change inversely over time, it was necessary to utilize the complementary PCR and IRI since both 

change proportionally over time. Therefore, the use of complementary PCR assisted the network 

to optimize the model with better accuracy and establishing a superior correlation between actual 

and predicted outputs. 

10.2. MDOT Flexible Pavement Performance Model 

For the development of the asphalt pavement performance models, 35,712 data points from 

3,968 pavement sections throughout the state of Mississippi were used. Figure 49 shows a spatial 

map of the 3,968 flexible pavement sections from the MDOT database included in the model 

development. 
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Figure 49. Spatial Map of MDOT Flexible Pavement Sections  

10.2.1. ANN Model Variables and Architecture for MDOT Asphalt Pavements 

For the MDOT asphalt pavement modeling research, different models were developed 

varying the numbers of independent and dependent variables. These variables are explained, as 

follows:  

• Beginning Longitude and Latitude: coordinates to indicate the initial location of the 

roadway section. 

• Ending Longitude and Latitude: coordinates to indicate the end of the roadway section. 

• Structural Number: indicates the strength of the roadway when factoring material 

properties, thickness, and drainage in each layer. 

• Length of the Section: length of the section recorded in miles.  

• Age of the Section in 2010: shows the section’s age since the earliest available pavement 
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measurement was recorded. 

• PCR in 2010: shows the initial PCR value in 2010 to indicate the base starting value. 

• IRI in 2010: shows the initial IRI in 2010 to indicate the baseline value to represent the 

pavement initial condition. 

• Time since 2010: represents the time since 2010 to the desired prediction year. This value 

is associated with the effects of pavement aging. 

• Drainage: categorical variable to indicate whether the section has drainage or not. The 

categorical value of “0” indicates no drainage while the sections with “1” indicate the 

existence of drainage. 

• Minor Rehabilitation: categorical variable to represent minor rehabilitation. Use “1” if PCR 

increased 8% to 12% and IRI decreased 5% to 16% in a year compared to the previous 

measurement. If not, use “0”. 

• Major Rehabilitation: categorical variable to represent major rehabilitation. Use “1” if PCR 

increased above 12% and IRI decreased more than 16%. If not, use “0”.  

• ESAL: Equivalent Single Axle Load in that specific year. 

• CESAL: Cumulative Equivalent Single Axle Load in that specific year. 

• PRE PCR: variable used for dynamic ANN models to indicate the PCR from the previous 

years that will be used to predict the actual year. 

• PRE IRI: variable used for dynamic ANN models to indicate the IRI from the previous 

years that will be used to predict the actual year. 

• IRI: International Roughness Index measured in that year. 

• Complementary PCR: this variable is calculated by subtracting 100-PCR. This parameter 

is generated because the outputs need to be directly proportional in the ANN modeling. 

Because PCR and IRI usually change inversely over time, it was necessary to utilize 

complementary PCR. The use of this variable assisted the network to optimize the model 

with better accuracy and correlation between observed and predicted outputs. 

In this study, five models were developed for the MDOT asphalt pavements. Table 22 

shows the variables used for each model.  
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Table 22. Independent and Dependent Variables for MDOT Asphalt Pavements 

Models Model 1 Model 2 Model 3 Model 4 Model 5 

Independent 

Variables 

Begin Lat. Begin Lat. Begin Lat. Begin Lat. Begin Lat. 

Begin Long. Begin Long. Begin Long. 
Begin 

Long. 
Begin Long. 

End Lat. End Lat. End Lat. End Lat. End Lat. 

End Long. End Long. End Long. End Long. End Long. 

SN SN SN SN SN 

Length Length Length Length Length 

Age in 2010 Age in 2010 Age in 2010 
Age in 

2010 
Age in 2010 

PCR in 2010 PCR in 2010 PCR in 2010 
PCR in 

2010 
PCR in 2010 

IRI in 2010 IRI in 2010 IRI in 2010 IRI in 2010 IRI in 2010 

Time (t) Time (t) Time (t) Time (t) Time (t) 

Drainage Drainage Drainage Drainage Drainage 

IRI Minor IRI Minor IRI Minor IRI Minor IRI Minor 

IRI Major IRI Major IRI Major IRI Major IRI Major 
 ESAL ESAL ESAL CESAL 

PRE PCR PRE PCR PRE PCR PRE PCR PRE PCR 

PRE IRI PRE IRI PRE IRI PRE IRI PRE IRI 

Dependent 

Variables 

Complementary 

PCR 

Complementary 

PCR 

Complementary 

PCR 
 Complementary 

PCR 

IRIMean IRIMean 
 IRIMean IRIMean 

 

Model 1 utilized 15 independent variables and was the only one that did not have any traffic 

variable included in its development. A two-output model with IRIMean and complementary PCR 

was utilized. Model 2, Model 3, and Model 4 included 16 independent variables and used the 

ESAL variable to incorporate the effects of traffic in the pavement deterioration process. The 

output variables with IRIMean and complementary PCR were also utilized for Model 2 while Model 

3 used only complementary PCR and Model 4 only IRI. Model 5 also used 16 independent 

variables but utilized CESAL to embed the history of traffic loads for inclusive predictions. Model 

5 utilized the same two-output model with IRIMean and complementary PCR. The use of variables 

that are not related to distress data makes the models more accessible for transportation agencies 

since most of these variables are easily available in their databases. Therefore, this model brings a 

valuable tool for the MDOT’s asphalt pavement management system.    
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10.2.2. ANN Model Selection for MDOT Asphalt Pavements 

The best model was selected based on the lowest ASE, MARE, and highest R². A total of 

35,712 data points from 3,968 flexible pavement sections were used to build the ANN modeling 

database. The maximum and minimum values of each independent variable were included in the 

training phase for the network to represent the characteristics of the response. The maximum and 

minimum ranges of each input/output variable for ANN model development were chosen on 

purpose to be wider than their actual ranges for better mathematical mapping [51]. The final 

structure of each network is written at the bottom row in an order that depicts the number of inputs, 

hidden nodes, and output(s), respectively. Table 23 shows the comparison of each model for the 

complementary PCR output.  

Table 23. ANN Model Results for MDOT Flexible Pavements (Complementary PCR Output) 

Model Model 1 Model 2 Model 3 Model 5 

Complementary PCR 9-19-20000 16-19-20000 6-12-20000 3-16-20000 

Training 

MARE 17.52 17.25 17.46 17.69 

R² 0.659 0.668 0.660 0.664 

ASE 0.00380 0.00376 0.00380 0.00373 

Testing 

MARE 17.29 17.21 16.96 17.15 

R² 0.545 0.539 0.551 0.551 

ASE 0.00388 0.00391 0.00384 0.00377 

Validation 

MARE 19.22 19.17 18.77 19.10 

R² 0.513 0.503 0.516 0.519 

ASE 0.00491 0.00512 0.00496 0.00490 

All data 

MARE 17.34 17.80 17.32 17.57 

R² 0.622 0.615 0.616 0.617 

ASE 0.00434 0.00449 0.00429 0.00441 

 

For the complementary PCR output, the training stage showed that Model 5 had the lowest 

ASE value while Model 2 had the lowest MARE and highest R² values. In the testing stage, Model 

5 had the lowest ASE while Model 1 had lowest MARE, the highest R² was achieved by both 
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Model 5 and Model 1. In the validation stage, Model 5 showed better accuracy measures in terms 

of ASE and R² while Model 3 had the lowest MARE. In the all-data stage, the 35,712 data points 

were used to retrain the network at its optimal structure and iteration to obtain the generalized 

response throughout the complete database. The all-data stage results show that Model 3 had the 

lowest ASE and MARE, while Model 1 had best R². However, all models showed similar 

performance showing reasonable accuracy. Considering the results of all stages, Model 5 was 

selected as the most promising performance model. Statistical measures of Model 5 trained with 

all data showed an ASE of 0.00441, a MARE of 17.57, and an R² of 0.617. 

Table 24 shows the comparison of each model for the IRI output.  

Table 24. ANN Model Results for MDOT Flexible Pavements (IRI Output) 

Model Model 1 Model 2 Model 4 Model 5 

IRI 9-19-20000 16-19-20000 5-16-19200 3-16-20000 

Training 

MARE 23.39 22.68 24.46 23.35 

R² 0.397 0.403 0.361 0.394 

ASE 0.0000235 0.0000233 0.0024900 0.0000236 

Testing 

MARE 22.42 22.08 22.12 22.31 

R² 0.360 0.385 0.380 0.390 

ASE 0.0000311 0.0000303 0.0030300 0.0000303 

Validation 

MARE 27.27 27.30 27.02 26.75 

R² 0.122 0.108 0.130 0.132 

ASE 0.0000375 0.0000416 0.0036700 0.0000369 

All data 

MARE 23.39 23.37 23.83 23.61 

R² 0.370 0.362 0.347 0.365 

ASE 0.0000275 0.0000286 0.0029100 0.0000275 

 

For the IRI output, the training stage showed Model 2 had better accuracy measurements 

for ASE, MARE and R². The testing stage showed that Model 2 and Model 5 had the lowest ASE 

value, while Model 2 had the lowest MARE and Model 5 the highest R² value. In the validation 

stage, Model 5 showed better results for all three statistics measurements. The all-data stage 
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showed that all models had similar results with moderate confidence. Model 1 and Model 5 showed 

the lowest ASE values while Model 2 had the lowest MARE and Model 1 highest R² values. 

Considering the results of all stages, Model 5 was selected as the best model.  Statistical measures 

of Model 5 trained with all data showed an ASE of 0.0000275, a MARE of 23.61, and an R² of 

0.365. 

Therefore, Model 5 was chosen as the best-performing ANN model for MDOT flexible 

pavement. The network structure of Model 5 includes 16 input variables, 1 hidden layer with 16 

hidden nodes, 20,000 iterations, and 2 outputs. Figure 50 shows the network architecture of the 

best-performing ANN model. 

 

Figure 50. ANN Architecture for the Best Performing Model for MDOT Asphalt Pavement 

10.2.3. ANN Model Results for MDOT Asphalt Pavements 

Model 5 was chosen as the best performing network based on statistical measures (ASE, 
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MARE, and R2 value) of all the stages. Figure 51 shows the all-data stage comparison of the 

developed MDOT asphalt pavement ANN models for IRIMean and complementary PCR.  

 

Figure 51. Graphical Comparison of Accuracy Measures for MDOT ANN Models 

The accuracy measures show reasonable results for all five developed models. However, 

Model 5 results were more consistent considering training, testing, validation, and all-data stages. 

The complementary PCR output results show that all four models had similar results with 

reasonable accuracy. For the IRI output, Model 4 was the only model with higher ASE value, all 

other models had similar accuracy and error measurements.  

Figure 52 shows the observed PCR values collected from the MDOT asphalt database and 

the predicted PCR values using Model 5.  
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Figure 52. Observed vs. Predicted Complementary PCR for MDOT Flexible ANN Model 5 

Model 5 predictions clustered around the line of equality but the model overpredicted some 

of the PCR values, however, the model was able to capture the PCR behavior. Hence, the model 

showed a reasonable R² of 0.617. Figure 53 shows the observed IRIMean values from the MDOT 

asphalt database and the predicted IRIMean values using Model 5.  

 

Figure 53. Observed vs. Predicted IRIMean for MDOT Flexible ANN Model 5 

Predicted values tried to get close to the line of equality but most values were 

underpredicted by the model. IRIMean values that were between 0 and 2.5 were predicted with good 

accuracy, however, when the observed values were greater than 2.5 m/km the model could not 
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capture the IRIMean behavior showing an R² of 0.365. 

Therefore, to improve the model accuracy for the IRI output, it is necessary to further study 

the ANN model architecture and variables used for the modeling development. However, the 

model can be considered reasonably accurate if the user goal is to obtain PCR values for the asphalt 

pavement section.  

10.3. Implementation of the Developed Models via GUI for the ANN MDOT Asphalt 

Model  

A preliminary GUI was developed in Microsoft Excel using the connections weights and 

threshold values for the ANN MDOT asphalt model. The developed excel application has 16 input 

variables and 2 output variables. In this application, by entering the input variables of beginning 

latitude and longitude, ending latitude and longitude, structural number, section length, age in 

2010, PCR in 2010, IRI in 2010, time, drainage, IRI minor, IRI major, CESAL, Pre-PCR, and Pre-

IRI in the Excel interface shown in Figure 54, the IRIMean is automatically calculated by the 

application. The appropriate ranges for the input variables are also shown in Figure 54. If any of 

the provided input values are outside the applicable range, it may cause the model to generate 

unreliable predictions. 

 

Figure 54. Preliminary GUI Application for ANN Model for MDOT Asphalt Pavement 



 

191 

10.3.1. Sensitivity Analysis for the ANN MDOT Asphalt Model  

A sensitivity analysis was carried out to evaluate the performance of the developed ANN 

MDOT asphalt model. Using the preliminary GUI application, a random section was selected from 

the database and IRI prediction values were generated for nine consecutive years and compared 

with the observed IRI values. Figure 61 shows the observed vs. predicted plot of PCR for the 

MDOT asphalt pavement section #14.  

 

Figure 55. Observed and Predicted Plot of PCR for MDOT Asphalt Pavement Section #14 

Predicted PCR values were close to the observed values. The predicted mean of PCR 

(81.13) was 4% lower than the observed mean of PCR (84.56), which showed that the PCR trend 

was captured by the developed model and the results were accurate and reliable for this section. 

However, the model performance may vary based on each section's characteristics, but the model 

will still follow a similar trend. Figure 56 shows the observed vs. predicted plot of IRIMean for the 

MDOT asphalt pavement section #14. 

Predicted IRIMean values followed the trend embedded within the actual IRI data, increasing 

with time. The predicted mean of IRIMean (1.31) was 26.2% higher than the observed mean of 

IRIMean (1.04), which showed that the model was able to understand the deterioration behavior but 
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overpredicted most IRIMean values. However, the prediction results were reasonably accurate and 

reliable since the complex relationships among all variables are not easy to be predicted. It is also 

important to note that the model performance for IRIMean may vary based on each section.  

 

Figure 56. Observed and Predicted Plot of IRIMean for MDOT Asphalt Pavement Section #14 

Therefore, the sensitivity analysis showed that MDOT can use the developed model as a 

tool for predicting future conditions of asphalt pavement sections and incorporate the M&R 

scheduling effectively to prioritize the resources. If no M&R actions are performed, the rate of 

deterioration increases exponentially, reducing the pavement life and leading to poor conditions 

that can be life-threatening for road users. 

10.4. Recommendations from the ANN MDOT Model 

1. The developed model showed high accuracy for PCR predictions. However, further study 

on exploring independent variables and model architectures needs to be performed for 

improving IRI prediction accuracy. 

2. A preliminary GUI was developed in this study. However, a more complete GUI needs to 

be developed for better visualization of asphalt pavement deterioration and to help users to 
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simulate different scenarios by utilizing different input values. 

3. Use the developed GUI to perform another sensitivity analysis by modifying input values 

for selected variables to evaluate their effects on PCR and IRI predictions. 

The MDOT study developed ANN models for asphalt pavement sections in Mississippi.  

Further models for concrete and composite pavements are also developed in this doctoral 

research. 
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11.1. Introduction 

The Mississippi Department of Transportation (MDOT) is responsible for maintaining 

about 400 miles of jointed concrete pavement (JCP) statewide. An efficient Pavement 

Management System (PMS) is essential for transportation agencies to maintain adequate pavement 

conditions and allocate resources for future Maintenance and Rehabilitation (M&R) planning. One 

of the main problems that state transportation agencies encounter is the proper M&R of roads and 

highways to meet the public’s needs and safety concerns [29]. Pavement performance models 

become a key part of PMS allowing decision-makers a better budget allocation plan for future 

M&R interventions [92]. Although pavement prediction models can forecast many variables, the 

International Roughness Index (IRI) and Pavement Condition Rating (PCR) are the most
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significant variables in determining the condition of the pavement [30].  

Traditionally, linear, non-linear, multiple linear regression analysis, Markov chains, 

mechanistic-empirical relations, survivor curves, semi-Markov, and Bayesian models have been 

used for predicting pavement performance [20]. The MDOT currently uses Markov probability 

matrices to support their M&R decisions; however, it does not consider M&R history, and key 

factors that affect pavement performance (i.e., traffic load, geographic location, and pavement 

design). Advanced modeling techniques using artificial neural networks (ANN) appear as an 

alternative for predicting pavement deterioration, offering significant improvements over 

traditional techniques [20,26]. Although the MDOT PMS includes all types of pavements, this 

paper will focus on the model development of JCP pavements using an ANN approach to develop 

a more, inclusive, reliable, and accurate prediction of future pavement conditions to perform 

effective and timely M&R interventions. The performance models will consider the effects of 

geographical location, traffic loads, pavement design, and M&R history. Furthermore, the 

developed models do not use any distress variables as an input, which makes the use of the 

prediction models easier for transportation agencies.  

 

11.1.1. Objectives 

The main objectives of this paper are to: 

• Analyze pavement performance data for JCP sections in the MDOT database. 

• Identify key parameters responsible for affecting pavement performance. 

• Develop pavement performance prediction models using the ANN approach. 

• Evaluate the accuracy of ANN models using statistical measurements. 

• Implement the best ANN model developed in the study for a random section. 
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11.2. Literature Review  

Among the most important measures of pavement performance, the IRI and PCR are the 

most used and well-recognized pavement performance indicators [20]. Developed in 1982 by the 

World Bank and the government of Brazil at the International Road Roughness Experiment 

(IRRE), the IRI was created to be a standard roughness index. The IRI describes the irregularities 

in the pavement surfaces that affect the ride quality experienced by road users, and it is useful for 

making objective decisions related to the management of road networks [2,7,8]. Higher IRI values 

represent a rough pavement surface that indicates a lower ride quality for users, while lower IRI 

values indicate smooth pavements with better ride quality.  

The PCR method provides a procedure for uniformly identifying and describing, in terms 

of severity and extent, pavement distress. The MDOT uses PCR as the main performance indicator 

to assess pavement conditions. Represented with a number from 0 to 100, higher PCR numbers 

represent better pavement conditions. MDOT groups pavements in good, fair, or poor condition 

(Figure 57) based on their PCR value [93]. The mathematical expression for PCR (Equation 22) 

gives an index reflecting the composite effects of varying distress types, severity, and extent upon 

the overall condition of the pavement [29].  

𝑃𝐶𝑅 = 100 − ∑ 𝐷𝑒𝑑𝑢𝑐𝑡𝑖
𝑛
1                                                                                                                  𝐸𝑞. 22  

    

Where: n = number of observable distresses; Deducti = multiplication of the weight of 

distress, the weight of severity, and weight of extent for distress i. 
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Figure 57. MDOT PCR Scale [93] 

Different modeling techniques such as linear, non-linear, multiple linear regression 

analysis, and Markov chains have been used for predicting pavement performance. The Hidden 

Markov was one of the most popular probabilistic models in the 1990s in pavement management 

systems [65]. Elhadidy et al. [90] used the Markov chain model for predicting pavement 

performance over the life span and developing a genetic algorithm to achieve optimum cost-benefit 

actions while Zhao and Guo [94] used the Markov chain to predict IRI values from 2005 to 2011 

using data from test sections located on Highway 281 in the US. The use of simple statistical 

approaches such as linear regression has been used for modeling but does not seem appropriate to 

develop prediction models due to the complexity of the relations between each one of the variables 

that affect pavement performance. Advanced modeling techniques such as ANN appear as an 

alternative for predicting pavement deterioration, offering significant improvements over 

traditional techniques. The ANN is a predictive modeling technique that emulates the structure 

and/or functional aspects of biological neural networks. The ANN is capable of identifying 

complex relationships that are difficult for traditional sequential, logic-based modeling and 

computational techniques [43,44].  

The ANN technique was successfully utilized to predict IRI values for flexible 

[2,18,69,70,83], concrete [9,17,34,36,65], and composite [10,26,31,68,92] pavements. Literature 
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review to date shows that ANN models performed successfully in predicting PCR and IRI by 

processing large volumes of data with a higher degree of accuracy. Therefore, there is a need for 

state transportation agencies to develop reliable, inclusive, and accurate pavement performance 

models using the state’s database to create mode advanced prediction tools. The prediction models 

need to be able to incorporate key factors such as geographical location, traffic loads, pavement 

design, and especially M&R history to assess the development of better budget allocation plans 

for future M&R actions. Furthermore, models that do not use distress variables are recommended 

for ease of use by federal and state agencies. 

11.3. Model Development 

11.3.1. Methodology  

The methodology for the model development is presented, as follows: 

• Compile databases for JCP pavements from the MDOT database, including variables that 

affect pavement performance. 

• Assess the quality of databases and identify missing/erroneous data items. 

• Develop pavement performance models for JCP pavements using the ANN modeling 

technique.  

• Evaluate the accuracy of the developed performance prediction models. 

• Select the best-performing model based on statistical measures and verify the prediction 

behavior. 

• Implement the selected performance models via Graphical User Interface (GUI). 

• Evaluate the selected model using GUI for the enhancement of pavement asset 

management. 

  

11.3.2. Data Collection and Processing 

The data used in this paper is a part of a pavement survey in the state of Mississippi 

performed by MDOT. Every two years, MDOT collects data to monitor the current pavement 
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conditions and predict M&R for the Mississippi road network. Four different pavement types are 

found in the database: Flexible, JCP, Continuous Reinforced Concrete Pavement (CRCP), and 

composite pavement. In this study, only JCP pavements were utilized to develop prediction 

models. Like other states, the MDOT operates a pavement management system that includes PCR, 

IRI, and distress data. Only data collected between 2010 and 2018 were used since the data 

collection method before 2010 was not consistent. A total of 101 JCP sections with 909 data points 

were utilized in the model development. Sections with missing or illogical data have been excluded 

as the ANN model development process needs a complete dataset. Since MDOT collects data 

every even year, to develop prediction models that are applicable for a 1-year increment, the odd 

year data were generated by averaging consecutive years from 2010 to 2020. This approach was 

successfully utilized for the MDOT database in previous studies [29,30,65]. 

The purpose of developing an ANN pavement performance model was to predict when 

M&R actions were needed and how it affects the roadway. It is known that not all rehabilitation 

actions were properly recorded and for this reason, a different approach for assigning rehabilitation 

actions was proposed based on the discussions with the state agency. To incorporate the effect of 

the rehabilitation on PCR and IRI, artificial rehabilitation actions based on significant changes in 

PCR and IRI have been assigned to the database. Threshold values for PCR and IRI were assigned 

based on the evaluation of data history. Several threshold values were studied [29,30,65] and 

optimum threshold values were found. If PCR increased 8% to 12% and IRI decreased 5% to 16% 

in a year compared to the previous measurement, a minor rehabilitation was assumed to take place 

in that year. If PCR increased above 12% and IRI decreased more than 16%, a major rehabilitation 

was assumed. If none of these situations occurred, it was assumed no rehabilitation. 
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11.3.3. ANN Structure and Modeling Process 

In this study, a single layer feed-forward neural network with a back-propagation training 

algorithm was used for the development of prediction models for JCP pavements. The neural 

network gains its knowledge through a trained feed-forward network that uses a set of training 

data consisting of inputs and output(s). The resulting output is compared to the target values and 

the back-propagation process adjusts the connection weight to reduce the error between actual and 

target values [44]. One hidden layer was considered in the model development. After training, the 

network provides an approximate functional mapping of any input pattern onto its corresponding 

output pattern. Then, the validation process was carried out using datasets that were excluded from 

the model database. After the validation process, it is necessary to retrain the best-performing 

network using all experimental data to increase the prediction accuracy and account for all patterns 

in the database [44]. All ANN models were trained with 50%, tested with 25%, validated with 

25% of the data, and finally, retrained using the best-performing network with the full dataset. The 

TR-SEQ1 computer program [55] was used to develop the ANN models and a sigmoidal function 

was utilized for data generalization purposes. 

For the JCP performance prediction modeling, several input variables were selected after 

an extensive literature review and consultation with MDOT personal to identify what parameters 

were significant to the agency. Different inputs were tried in a preliminary study using a trial-and-

error method to select the most significant variables considering the practical point of view. 

Different models were developed varying the numbers of independent and dependent variables in 

a preliminary study using a trial-and-error method to select the most significant variables 

considering the practical point of view and identify the optimum modeling structure The four best 

developed models are presented in this paper and the variables used in these models are explained, 
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as follows:  

• Beginning Longitude and Latitude: coordinates to indicate the initial location of the 

roadway section. 

• Ending Longitude and Latitude: coordinates to indicate the end of the roadway section. 

• Thickness: indicates the concrete thickness in the pavement section in inches. 

• Length of the Section: length of the section recorded in miles.  

• Age of the Section in 2010: shows the section’s age since the earliest available pavement 

measurement was recorded. 

• PCR in 2010: shows the initial PCR value in 2010 to indicate the base starting value. 

• IRI in 2010: shows the initial IRI in 2010 to indicate the baseline value to represent the 

pavement initial condition. 

• Time since 2010: represents the time since 2010 to the desired prediction year. This value 

is associated with the effects of pavement aging. 

• Minor Rehabilitation: categorical variable to represent minor rehabilitation. Use “1” if PCR 

increased 8% to 12% and IRI decreased 5% to 16% in a year compared to the previous 

measurement. If not, use “0”. 

• Major Rehabilitation: categorical variable to represent major rehabilitation. Use “1” if PCR 

increased above 12% and IRI decreased more than 16%. If not, use “0”.  

• Equivalent Single Axle Load (ESAL): ESAL in that specific year. 

• Cumulative Equivalent Single Axle Load (CESAL): CESAL in that specific year. 

• PRE PCR: variable used for dynamic ANN models to indicate the PCR from the previous 

years that will be used to predict the actual year. 

• PRE IRI: variable used for dynamic ANN models to indicate the IRI from the previous 

years that will be used to predict the actual year. 

• IRI: International Roughness Index measured in that year. 

• Complementary PCR: this variable is calculated by subtracting 100 - PCR. This parameter 

is generated because the outputs need to be directly proportional in the ANN modeling. 

Since PCR and IRI are normally inversely proportional over time, it was necessary to 

utilize the complementary PCR approach. The use of this variable assisted the model to 

optimize the network calculations providing better accuracy between observed and 
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predicted values. 

A total of four models were developed using the same JCP database. All the inputs and 

outputs used in these models are listed in Table 25. 

Table 25. Independent and Dependent Variables for ANN Models 

Models Model 1 Model 2 Model 3 Model 4 

Independent 

Variables 

Begin Lat. Begin Lat. Begin Lat. Begin Lat. 

Begin Long. Begin Long. Begin Long. Begin Long. 

End Lat. End Lat. End Lat. End Lat. 

End Long. End Long. End Long. End Long. 

Thickness Thickness Thickness Thickness 

Length Length Length Length 

Age in 2010 Age in 2010 Age in 2010 Age in 2010 

PCR in 2010 PCR in 2010 PCR in 2010 PCR in 2010 

IRI in 2010 IRI in 2010 IRI in 2010 IRI in 2010 

Time (t) Time (t) Time (t) Time (t) 

IRI Minor IRI Minor IRI Minor IRI Minor 

IRI Major IRI Major IRI Major IRI Major 

ESAL CESAL ESAL ESAL 

PRE PCR PRE PCR PRE PCR  

PRE IRI PRE IRI  PRE IRI 

Dependent 

Variables 

Complementary PCR Complementary PCR Complementary PCR  

IRI IRI  IRI 

 

The independent and dependent variables for the models in this study were obtained after 

examining previous studies that have also used the MDOT database [29,30,65]. Models 1 and 2 

utilized 15 independent variables and two outputs (IRI and complementary PCR). To incorporate 

the effects of traffic in the pavement deterioration process, Model 1 used ESAL while Model 2 

used CESAL. The idea of using CESAL instead of ESAL is to introduce the cumulative history of 

traffic loads since the first recorded measurement for more inclusive predictions. Models 3 and 4 

included 14 independent variables and one output variable each, Complementary PCR and IRI 

respectively. The purpose of using separate outputs is to identify if the model will have a better 

performance when using a two-output model or individual outputs. The use of variables that are 

not related to distress data makes the models more accessible for transportation agencies since 
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most of these variables are easily available in their databases. Therefore, the models developed in 

this paper bring a new and valuable tool for the MDOT’s pavement management system. 

11.3.4. ANN Model Selection 

The best model was selected based on the lowest Average Square Error (ASE), Mean 

Absolute Relative Error (MARE), and highest Coefficient of Determination (R²). The maximum 

and minimum values of each independent variable were included in the training phase for the 

network to represent the characteristics of the response. The maximum and minimum ranges of 

each input/output variable for ANN model development were chosen on purpose to be wider than 

their actual ranges for better mathematical mapping [44]. The model network is written in an order 

that depicts the number of initial hidden nodes, the number of final hidden nodes, and iterations. 

The final structure of each model is written at the bottom row in an order that depicts the number 

of inputs, hidden nodes, and output(s), respectively. Table 26 shows the comparison of Models 1, 

2, and 4 for the complementary PCR output and Models 1, 2, and 3 for the IRI output.  

Table 26. ANN Model Results for JCP Pavements (Complementary PCR and IRI Outputs) 

Output Complementary PCR IRI 

Model Model 1 Model 2 Model 4 Model 1 Model 2 Model 3 

Network 5-19-4100 8-8-6200 12-19-20000 5-19-4100 8-8-6200 13-15-20000 

Training 

MARE 3.15 3.99 3.45 4.34 7.58 4.84 

R² 0.96 0.89 0.95 0.97 0.93 0.97 

ASE 0.00018 0.00048 0.00021 0.0000017 0.0000045 0.0002055 

Testing 

MARE 7.59 5.05 10.37 8.75 7.24 8.02 

R² 0.65 0.86 0.52 0.72 0.83 0.77 

ASE 0.00146 0.00052 0.00255 0.0000100 0.0000092 0.0008246 

Validation 

MARE 6.97 6.72 10.10 11.53 12.32 12.47 

R² 0.65 0.67 0.41 0.79 0.76 0.76 

ASE 0.00118 0.00139 0.00199 0.0000112 0.0000135 0.0012898 

All data 

MARE 3.51 4.16 4.42 5.73 7.93 5.97 

R² 0.93 0.85 0.89 0.95 0.91 0.94 

ASE 0.00029 0.00061 0.00048 0.0000031 0.0000056 0.0003290 

Final Structure 15-19-2 15-8-2 14-19-1 15-19-2 15-8-2 14-15-1 

 

For the complementary PCR output, the training stage showed that Model 1 had the lowest 
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ASE and MARE values and the highest R². In the testing stage, Model 2 showed better accuracy 

measures in terms of ASE, MARE, and R². In the validation stage, Model 1 showed better accuracy 

measures in terms of ASE, but Model 2 showed better MARE and R² values. In the-all data stage, 

the 909 data points were used to retrain the network at its optimal structure and iteration to obtain 

the generalized response throughout the complete database. The all-data stage results show that 

Model 1 outperformed all other models with better accuracy measures for ASE, MARE, and R². 

Statistical measures of Model 1 retrained with all-data showed an ASE of 0.00029, a MARE of 

3.51, and an R² of 0.93. 

For the IRI output, Model 1 showed better accuracy measures for training and validation 

stages, while Model 2 showed better results for testing. In the all-data stage, Model 1 outperformed 

all other models with better accuracy measures for ASE, MARE, and R². Statistical measures of 

Model 1 trained with all-data showed an ASE of 0.0000031, a MARE of 5.73, and an R² of 0.95.  

Therefore, Model 1 was selected as the best-performing ANN model for MDOT JCP 

pavement. The network structure of Model 1 includes 15 input variables, 1 hidden layer with 19 

hidden nodes, 4,100 iterations, and 2 outputs. 

11.4. Discussion 

 

11.4.1. ANN Model Results 

Figure 58 shows a graphical comparison of statistical measures for Complementary PCR 

and IRI outputs using all-data stage. 
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Figure 58. Graphical Comparison of Accuracy Measures for All Developed Models 

Figure 58 shows that all four developed models presented reliable results. However, Model 

1 outperformed all other models with more accurate predictions. For the complementary PCR 

output, Model 1 had an ASE 52% and 38% lower, a MARE 16% and 20% lower, and an R² 9% 

and 5% higher than Models 2 and 4, respectively. For the IRI output, Model 1 had an ASE 45% 

and 99% lower, a MARE 28% and 4% lower, and an R² 5% and 1% higher than Models 2 and 3, 

respectively. These results reaffirm the selection of Model 1 as the best-performing model for the 

MDOT JCP pavement. Figure 59 shows the observed PCR and IRI values collected from the 

MDOT database and the predicted PCR and IRI values using Model 1.  

 

Figure 59. Observed vs. Predicted PCR and IRI for Model 1 
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 Model 1 predictions clustered around the line of equality and showed high accuracy when 

predicting PCR and IRI. The model was able to capture the deterioration behavior of the JCP 

pavements resulting in an excellent agreement (R² = 0.93 and R² = 0.95) between observed and 

predicted values for PCR and IRI, respectively. These results indicate that the model was capable 

to understand the complex relationships between input and output variables translating them into 

reliable predictions. The use of CESAL did not improve the model accuracy since Model 2 could 

not outperform Model 1, which has used ESAL to incorporate traffic history in the model 

development. The two-output model approach used in Model 1 also proved to be more efficient 

for PCR and IRI predictions than using the traditional one-output model. The use of both PCR and 

IRI data assisted the model to achieve higher accuracy. However, changing the PCR output to 

Complementary PCR was important for the model's success. Since PCR and IRI performance 

measures are negatively correlated, the ANN technique performs better when the outputs are 

positively correlated. Thus, the use of this approach was essential to assist the network to optimize 

the model predictions.  

Therefore, all developed models showed to be accurate and reliable tools to be used by 

MDOT, but Model 1 showed to be the best-performing model for predicting PCR and IRI values 

for JCP pavement. 

11.5. Implementation of Model 1 via GUI  

A GUI was developed in Microsoft Excel using the connections weights and threshold 

values for Model 1. The user enters the input variables, and the application automatically computes 

the PCR and IRI values for the selected year as shown in Figure 60. The appropriate ranges for the 

input values are shown in the application, if any of the provided input values are outside the 

applicable range, it may cause the model to generate unreliable predictions. 
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Figure 60. GUI Application for Model 1 

To implement Model 1, the GUI application was utilized to predict PCR and IRI values for 

a random section of the database. This analysis intends to compare the accuracy of the prediction 

values generated by the ANN model and the observed values collected from the database. This 

comparison is important to identify the model's capability to understand pavement responses under 

different input variables. Figure 61 shows the comparison between predicted and observed PCR 

and IRI values for Section #903. 

Predicted PCR values were very close to the observed values. The predicted mean of PCR 

(75.73) was 0.08% higher than the observed mean of PCR (75.67), which confirmed that the ANN 

model was able to capture the PCR changes over time and generate reliable predictions for Section 

#903. Predicted IRI values also followed the increase and decrease of IRI data over time. The 

predicted mean of IRI (1.97) was 0.38% lower than the observed mean of IRI (1.98), showing that 

the roughness deterioration behavior was successfully identified by the ANN model. However, it 

is known that the model performance may vary based on each section's characteristics, but a similar 

trend will be followed by the model. 

 

Begin Lat. Begin Long. End Lat. End Long. Thickness Length Age @ 2010 PCR @ 2010 PCR IRI
32.353 -90.629146 32.342155 -90.604198 203.2 1.662 41.0 75.0

IRI @ 2010 Time (t) Minor Major ESAL Dynamic PCR Dynamic IRI
2.010 1 0 0 289737 25 2.0

Variables Begin Lat. Begin Long. End Lat. End Long. Thickness Length Age @ 2010 PCR @ 2010

Minimum 30.299 -91.066853 30.298663 -91.067662 76.2 0.099 3.0 46.0

Maximum 34.824559 -88.11399 34.82477 -88.113945 558.8 10.097 78 79

Variables IRI @ 2010 Time (t) Minor Major ESAL Dynamic PCR Dynamic IRI

Minimum 1.33 1 0 0 76.65 20 1.03

Maximum 4.53 9 1 1 390110.175 61 5.12

Section #

903

INPUTS OUTPUTS

75.4 2.01

USER RANGES
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Figure 61. Observed and Predicted Plot of PCR and IRI for JCP Pavement Section #903 

Therefore, the implementation of Model 1 for a random section of the database showed 

that MDOT can use the developed model as a key tool for predicting future conditions of JCP 

pavement sections and incorporating the M&R scheduling effectively to prioritize the resources 

for the most needed sections. Timely M&R interventions are necessary to keep roads in acceptable 

conditions, prevent early pavement deterioration, increase pavement life, and provide a more 

comfortable ride for road users. 

11.6. Conclusion 

This study attempted to develop pavement performance models utilizing the ANN 

approach for JCP sections in the MDOT database. Four models were developed using different 

input and output variables. Model 1 outperformed all other models for the complementary PCR 

output with an ASE 52% and 38% lower, a MARE 16% and 20% lower, and an R² 9% and 5% 

higher than Models 2 and 4, respectively. For the IRI output, Model 1 also showed to be the best-

performing model with an ASE 45% and 99% lower, a MARE 28% and 4% lower, and an R² 5% 

and 1% higher than Models 2 and 3, respectively. Model 1 was able to explain 93% and 95% of 

the variability for complementary PCR and IRI, respectively. These results indicate that the 

developed model was able to understand the complex relationships between input and output 
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variables capturing the deterioration behavior of JCP pavements for both PCR and IRI 

performance indicators. The use of ESAL and a two-output model (Complementary PCR and IRI) 

helped the ANN model to generate more accurate predictions compared to the use of CESAL and 

the traditional one output models. Furthermore, the use of variables that are not related to distress 

data makes the models more accessible for agencies since these variables are easily available in 

their databases. The final network structure for Model 1 includes 15 input variables, one hidden 

layer with 19 hidden nodes, 4,100 iterations, and two outputs.  

A GUI application was developed in Microsoft Excel for the implementation of Model 1 

in a random section of the database. Predicted mean values for PCR and IRI were very close to the 

observed values for Section #903. Predicted PCR and IRI values were only 0.08% higher and 

0.38% lower compared to theirs observed means, respectively. These results confirm the reliability 

of Model 1 to generate PCR and IRI predictions. Therefore, the ANN performance prediction 

model developed in this paper provides a new, more reliable, inclusive, and accurate tool to assist 

MDOT to predict future JCP pavement conditions and incorporate the M&R scheduling effectively 

to develop a better budget allocation plan and a more effective PMS.
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12.1. Abstract 

Local, state, and federal highway agencies run some form of maintenance and 

rehabilitation program during the design life of highways. Due to budgetary restrictions, 

maintenance and rehabilitation actions must be prioritized based on the future condition of the 

highway section. There are important factors that affect the performance of highways. To properly 

assess the condition of the pavement and operate maintenance, prediction models with significant 

condition variables are essential. Mississippi Department of Transportation (MDOT) utilizes 

probability-based prediction models to determine which sections of the highway and when they 

need rehabilitation. The current probability models predict the performance without the section-

specific parameters. The goal of this study is to develop a new set of performance prediction 

models for the composite Pavements in Mississippi by using machine learning. The 
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best-performing model can be used as a simple and user-friendly tool to allow the user to visualize 

the future projections of the pavement section. MDOT personnel can employ this application to 

predict the condition of the composite pavement section and prioritize the maintenance and 

rehabilitation schedule. 

Keywords: Artificial Neural Network (ANN), machine learning, Mississippi Department 

of Transportation (MDOT), pavement performance, composite pavement. 

 

12.2. Introduction 

Road networks are one of the largest public infrastructure assets of a country, they provide 

public mobility and freight transport to secure the nation’s economy and prosperity [36]. Annually, 

transportation agencies spend billions of dollars for the maintenance and rehabilitation (M&R) of 

their road networks. One of the most difficult tasks for state transportation agencies, such as the 

Mississippi Department of Transportation (MDOT), is to maintain roads and highways in 

acceptable conditions to meet the public’s needs and safety concerns [28]. If timely M&R is not 

performed, it may lead the pavement to poor conditions, causing an uncomfortable ride experience 

for road users [31]. To assess pavement surface condition and ride quality, Performance Condition 

Rating (PCR) and International Roughness Index (IRI) are the two widely used measures 

worldwide. Pavement performance models assist agencies to predict how a pavement deteriorates 

over time due to traffic, environmental conditions, and M&R history, being an important part of 

the pavement management system (PMS). The use of prediction models allows decision-makers 

to develop a better budget allocation plan and M&R schedule [26]. 

Flexible and rigid pavements are the main concern of most studies in the literature. 

However, a portion of the paved surfaces is comprised of composite pavements, which are made 
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of an asphalt overlay on concrete pavements [88]. When concrete pavements start to fail, they are 

overlaid with a layer of a hot mix of asphalt (HMA) to provide better levels of performance being 

a more cost-effective alternative [3]. Although a PMS include all types of pavements, the study of 

composite pavements has not been well investigated in the literature, which is the focus of this 

paper.  

A growing body of studies has been exploring several modeling techniques and variables 

to reach accurate predictions. The use of an Artificial Neural Network (ANNs) technique has 

shown significant improvements over traditional methods, such as regression, by processing large 

volumes of data with a higher degree of accuracy. However, present pavement performance 

prediction models did not account for the influence of some essential parameters such as pavement 

design, rehabilitation interventions, and traffic in the model development, which affects the 

accuracy of the predictions [88].  

In this study, composite pavement performance models were developed for the Mississippi 

road network using the ANN approach to predict the future condition of pavement sections 

incorporating the influence of pavement structure and design, traffic, and M&R interventions. The 

data used for this project was provided by the MDOT, and only data collected between 2010 and 

2020 were analyzed. Several models were created to predict PCR and IRI. Over time, this model 

can be improved further in the future for the prediction of pavement conditions as more data is 

accurately measured and added to the existing database. 

12.2.1. Objectives 

The major objectives of this paper are to: 

(1) Analyze data for composite pavement sections in the MDOT database. 

(2) Use the ANN technique to develop performance models for composite pavements in the 

MDOT database using different independent variables. 
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(3) Evaluate the accuracy of the developed models using statistical measurements to identify 

the most accurate model. 

12.3. Literature Review 

There has been an increased interest in the use of machine learning approaches in different 

fields of engineering. Several types of machine learning algorithms have been developed and used 

to process large volumes of data with high degrees of accuracy, handle noisy and complex data, 

solve non-linear problems, and once trained, make predictions and generalizations at any time. 

The machine learning techniques hold significant potential for building a modern and robust 

pavement system management due to the excellence in automation and pattern recognition  

[20,39]. The literature review shows that ANN is not only one of the first machine learning 

techniques to be used, but also the most used technique in civil and pavement engineering [40,41]. 

The ANN method attempts to emulate the structure and/or functional aspects of biological neural 

networks [44]. Complex relationships that are difficult to reproduce using traditional sequential, 

logic-based modeling and computation technics can be successfully represented by neural 

networks. However, the accuracy of ANN models depends on the accuracy of the database used 

to train the neural network. 

Several studies have used ANN to predict pavement performance. Prediction of IRI values 

for flexible pavements in the wet freeze region and rigid pavements in the wet non-freeze region 

of the Long-Term Pavement Performance (LTPP) database achieved reasonable accuracy for both 

short-term and long-term predictions[16,17]. Models for Jointed Plain Concrete Pavement (JPCP), 

Jointed Reinforced Concrete Pavement (JRCP), and Continuously Reinforced Concrete Pavement 

(CRCP) were developed with a high degree of accuracy presenting better accuracy compared to 

models that currently use mechanistic-empirical pavement design or multiple regression [9]. 

ANNs were also used to predict pavement performance of flexible and rigid roads in Mississippi 
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achieving satisfactory results [29,30]. Because machine learning has a data-driven approach, PCR 

and IRI appear as suitable indicators for modeling, as they are widely available in pavement 

databases and known as one of the most common indicators for pavement performance evaluation. 

12.4. Model Development 

12.4.1. Methodology 

The database for the ANN model development is obtained after cleansing and reorganizing 

the raw data files. Due to new data acquisition methods, materials, and tools used by the MDOT, 

only data collected from 2010 to 2020 are included in the model development. Sections with 

missing or illogical data have been excluded as the ANN model development process needs a 

complete dataset. Each section is comprised of five different datasets based on PCR, IRI, and 

rehabilitation actions. In Mississippi, the distress data is collected every even year. To develop 

prediction models that are applicable for a 1-year increment, the odd year data was needed to be 

generated by averaging consecutive years from 2010 to 2020 [28,65]. The sections of the roads 

with JCP varied in length from 0.04 miles to 15.9 miles and includes variables such as beginning 

and ending latitudes and longitudes, the thickness of pavement layer, initial PCR, initial IRI, minor 

and major rehabilitation, and traffic. The pavement age was included in the model development.  

MDOT conducts a survey to monitor the actual condition of Mississippi roads every two 

years. A database was generated with all data collected over the years and combined to develop 

the performance prediction model for composite pavements. Additional information regarding 

maintenance and rehabilitation history were also incorporated into the model’s database. An 

independent variable is added to indicate that an M&R was performed on a particular section so it 

can be utilized in the performance model. By doing this, the ANN can learn the effect of a 

maintenance and rehabilitation intervention in the pavement section and provide more accurate 



 

215 

PCR and IRI predictions. However, the MDOT did not keep track of all rehabilitation actions and 

for this reason, they were assigned based on a few criteria. Improvement of PCR and IRI values 

without any rehabilitation action was considered irrational. Some uncertainty due to the calibration 

of the profilometer, systematic errors, and the environmental conditions on the day of the survey 

may have resulted in some of the irrational condition measures. To incorporate the effect of the 

rehabilitation on PCR and IRI, artificial rehabilitation actions based on the significant changes in 

PCR and IRI have been assigned to the database [65]. Threshold values for PCR and IRI were 

assigned based on the evaluation of data history. If PCR increased 8% to 12% and IRI decreased 

5% to 16% in a year compared to the previous measurement, a minor rehabilitation was assumed 

to take place in that year. If PCR increased above 12% and IRI decreased more than 16%, a major 

rehabilitation was assumed. If none of these situations occurred, it was assumed no rehabilitation.  

12.4.2. ANN Development 

This study uses a feedforward neural network with a back-propagation training algorithm 

for the development of the performance prediction model. A one hidden layer network was 

considered in the model development, as the use of more than one hidden layer may cause the 

network to memorize the data in the training phase [44]. For the development of the composite 

performance models 10,305 data points from 1,145 pavement sections throughout the state of 

Mississippi were used. In this study, the TR-SEQ1 computer program [55] was used to develop 

the ANN models. A total of three different models have been developed by changing selected 

variables to identify the optimum model. For each of the three models that were created for this 

study, one network was chosen to be the best performing using three statistical measures.  

12.4.3. ANN Model Architecture  

For this paper, three models were developed using different independent variables and PCR 
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and IRI as dependent variables. Table 27 shows the variables used for each ANN model.  

Table 27. Independent and Dependent Variables Configuration  

Models Model 1 Model 2 Model 3 

Independent Variables 

Begin Lat. Begin Lat. Begin Lat. 

Begin Long. Begin Long. Begin Long. 

End Lat. End Lat. End Lat. 

End Long. End Long. End Long. 

Thickness Thickness Thickness 

Length Length Length 

Age in 2010 Age in 2010 Age in 2010 

PCR in 2010 PCR in 2010 PCR in 2010 

IRI in 2010 IRI in 2010 IRI in 2010 

Time (t) Time (t) Time (t) 

Drainage Drainage Drainage 

 Minor Rehabilitation Minor Rehabilitation 

 Major Rehabilitation Major Rehabilitation 
  ESAL 

PRE PCR PRE PCR PRE PCR 

PRE IRI PRE IRI PRE IRI 

Dependent Variables 
Complementary PCR Complementary PCR Complementary PCR 

IRI IRI IRI 

 

The three models created in this study have the same core of inputs: beginning latitude and 

longitude, ending latitude and longitude, the thickness of the top layer of pavement, length of 

pavement, pavement age at the year 2010, PCR at the year 2010, IRI at the year 2010, time counted 

from 2010, drainage, pre-PCR, and pre-IRI. Minor and major rehabilitations and a traffic variable 

were utilized in different models to study the significance of each variable. The time ranges from 

1 to 9 because there are only 9 years of past data available for this study.  

Model 1 utilized 13 independent variables and did not utilize any M&R history and traffic 

variables in its development. Model 2 included 15 independent variables, incorporating M&R 

history, but not using a traffic variable. Model 3 included 16 independent variables incorporating 

the effects of minor and major rehabilitation and traffic in the model. A two-output model with 

IRI and complementary PCR was utilized for all developed models. The two outputs (i.e., PCR 

and IRI) were modified to be used with the complementary PCR (i.e., 100-PCR), as the outputs 



 

217 

need to be directly proportional in the ANN modeling. Because PCR and IRI usually change 

inversely over time, it was necessary to utilize the complementary PCR and IRI, as both change 

proportionally over time. Therefore, the use of complementary PCR assisted the network to 

optimize the model with better accuracy and to establish a superior correlation between actual and 

predicted outputs. The use of variables that are not related to distress data makes the models more 

accessible for transportation agencies, as most of these variables are easily available in their 

databases. Therefore, this model brings a valuable tool for the MDOT’s pavement management 

system. 

12.5. Results And Discussion 

12.5.1. ANN Model Selection 

The best model was chosen based on how close the prediction of the model is with the 

existing data. The three best-performing models were selected based on the lowest average square 

error (ASE), lowest mean absolute relative error (MARE), and highest coefficient of determination 

(R²). Table 28 shows the statistical measures of each ANN model development stage (i.e., training, 

testing, validation, and all-data) for the complementary PCR output. 

For the complementary PCR output, the training stage showed that Model 3 indicated better 

accuracy measures in terms of ASE, MARE, and R². In the testing stage, Model 2 had the lowest 

ASE and MARE values and the highest R². In the validation stage, Model 2 had the lowest ASE 

and highest R² while Model 3 showed the lowest MARE. In the all-data stage, the 1,930 data points 

were used to retrain the network at its optimal structure and iteration to obtain the generalized 

response throughout the complete database. The all-data stage results show that Model 2 and 

Model 3 had good accuracy with low ASE and MARE values and an R² around 0.83. However, 

Model 1, the only model that did not use any variable related to M&R actions demonstrated lower 
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accuracy compared to the other models that incorporated the effects of rehabilitation interventions. 

Statistical measures of Model 2 trained with all data showed to be the best model for the 

complementary PCR with an ASE of 0.0007808, a MARE of 7.566, and an R² of 0.833. 

Table 28. ANN Model Results for Complementary PCR Output 

  Model 1 Model 2 Model 3 

Complementary PCR 9-12-20000 16-19-20000 8-18-16000 

Training 

MARE 20.84 8.13 7.66 

R² 0.672 0.819 0.838 

ASE 0.0029880 0.0008506 0.0007635 

Testing 

MARE 21.89 8.22 8.35 

R² 0.575 0.805 0.785 

ASE 0.0035952 0.0009134 0.0010196 

Validation 

MARE 19.19 8.55 8.34 

R² 0.693 0.779 0.739 

ASE 0.0026957 0.0010106 0.0011974 

All data 

MARE 21.971 7.566 7.926 

R² 0.654 0.833 0.827 

ASE 0.0034965 0.0007808 0.0008096 

 

Table 29 shows the comparison of each model for the IRI output. 

Table 29. ANN Model Results for IRI Output 

  Model 1 Model 2 Model 3 

IRI 9-12-20000 16-19-20000 8-18-16000 

Training 

MARE 23.84 12.85 12.11 

R² 0.805 0.825 0.836 

ASE 0.0000171 0.0000092 0.0000084 

Testing 

MARE 25.97 13.96 13.89 

R² 0.715 0.763 0.757 

ASE 0.0000249 0.0000110 0.0000113 

Validation 

MARE 21.80 14.03 13.25 

R² 0.763 0.747 0.726 

ASE 0.0000183 0.0000112 0.0000123 

All data 

MARE 19.823 12.147 12.333 

R² 0.781 0.819 0.816 

ASE 0.0000157 0.0000088 0.0000090 
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For the IRI output, the training stage showed that Model 3 demonstrated better accuracy 

measures in terms of ASE, MARE, and R². In the testing and validation stages, Model 2 had the 

lowest ASE and highest R², while Model 3 had the lowest MARE. The all-data stage results show 

that all models had good accuracy with really low ASE values and high R² values that vary from 

0.781 to 0.819. It is important to notice that the least accurate model (Model 1) was the only one 

that did not incorporate M&R history in its development. Model 2 and Model 3 demonstrated 

better accuracy when using minor and major rehabilitation variables. Statistical measures of Model 

2 trained with all data showed to be the best model for IRI with an ASE of 0.0000088, a MARE 

of 12.147, and an R² of 0.819.  

Therefore, Model 2 was chosen as the best performing ANN model for composite 

pavements in the MDOT database. The network structure of Model 2 includes 15 input variables, 

1 hidden layer with 19 hidden nodes, 20,000 iterations, and 2 outputs. Figure 62 shows the 

observed PCR values collected from the MDOT database versus the predicted values using all 

developed models. 

 

 

Figure 62. Observed Versus Predicted PCR for All Developed Models 
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PCR predictions clustered around the line of equality and showed that the PCR behavior 

was captured by all the prediction models. However, some prediction values for Model 1 did not 

follow closely the line of equality, which explains the lower R² value compared to other models. 

Model 2 and Model 3 showed a high R² of 0.834 and 0.827, respectively, but it is possible to 

observe that Model 2 prediction values were closer to the line of equality. Figure 63 shows the 

observed IRI values collected from the MDOT database versus the predicted values using all 

developed models. 

 

 

Figure 63. Observed Versus Predicted IRI for All Developed Models 

IRI predictions followed the line of equality and showed reliable results for all developed 

models. However, Model 1 demonstrated that several predicted values were overpredicted, 

showing higher IRI values, which reduced the model accuracy. Model 2 and Model 3 showed 

similar results where the models could capture the IRI behavior, but Model 2 showed a better trend 

for predicted values and was chosen as the best performance model for composite pavements in 
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the MDOT database.  

Therefore, all developed models were able to imitate the pavement deterioration behavior. 

However, the model that did not use variables that incorporate the effect of M&R actions showed 

lower accuracy compared to other models. The results show the importance of considering 

maintenance and rehabilitation history when developing performance models, especially for 

composite pavements, which is the focus of this study.  

12.6. Conclusions 

In this study, an artificial neural network approach was used to develop performance 

prediction models for composite pavements in Mississippi from the MDOT database. Three 

different models were developed using different input variables and a two-output structure. All 

models had satisfactory results and could be used for generating reliable predictions for pavement 

performance. However, the only model that did not consider the effects of maintenance and 

rehabilitation history (Model 1) showed to be the least accurate. Models that considered M&R 

(Model 2 and Model 3) showed better predictions. The best-performing model was selected based 

on three accuracy measures shown in Table 28 and Table 29. Model 2 outperformed all other 

models in the all-data stage with lower ASE, MARE, and higher R² for IRI and PCR outputs. The 

final ANN model includes 15 input variables, one hidden layer with 19 hidden nodes, 20,000 

iterations, and two outputs.  Figure 62 and Figure 63  show predicted versus observed values for 

PCR and IRI for all developed models. It is possible to observe that the developed ANN models 

were able to capture the pavement deterioration behavior over time, but Model 2 and Model 3 had 

better accuracy than Model 1. Predicted values clustered around the line of equality, showing good 

agreement between observed and predicted values. Therefore, the development of performance 

models that include maintenance and rehabilitation variables provided a more accurate, inclusive, 
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reliable, and realistic model for transportation agencies. The developed model can support 

objective decisions regarding maintenance and rehabilitation interventions and budget plans 

permitting state agencies to prioritize the resources for critical pavement sections. Furthermore, 

the best-performing model can be used as a simple and user-friendly tool to allow the user to 

visualize the future projections of the pavement section. MDOT personnel can employ this 

application to predict the condition of the composite pavement section and prioritize the 

maintenance and rehabilitation schedule.
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CHAPTER XIII: GRAPHICAL USER INTERFACE (GUI) 

 

13.1. Graphical User Interface Development 

Several papers presented in this dissertation was developed with GUIs to implement the 

utilization of the best ANN models. In this section, a complete GUI is presented as an example to 

show the utilization of the model and better visualization of pavement deterioration, understanding 

of the effects of M&R, simulation of different scenarios by utilizing different input values, and 

support objective decisions regarding M&R interventions for a better budget allocation.  

An example of a developed GUI for the best flexible model of Chapter X is shown in Figure 

64.  

 

Figure 64. GUI for Flexible Pavement
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The database, connection weights, threshold values, and coefficients for the model are 

imported into excel worksheets and the GUI utilizes programming codes from Excel’s Visual 

Basic to perform the calculations necessary for generating pavement performance predictions. The 

steps for the use of the developed GUI (Figure 64)  are described as follows: 

• The first step is to select which Section ID the user wants to analyze. The program will 

collect the information of the given section and complete the fields that are constant (Begin 

Lat, Begin Long, End Lat, End Long, Structural Number, Length, Drainage, Age at 2010, 

PCR @ 2010, and IRI @ 2010).   

• The second step is to decide until what year the user wants the model to predict. The 

program will generate predictions until reaching the date inputted by the user. 

• The third step is to input the rehabilitation year that the user wants to perform in the 

pavement section. The program will collect this data and use it to generate three different 

scenarios for the section. A no rehabilitation, a minor rehabilitation, and a major 

rehabilitation using the year inputted by the user. 

• The fourth step is to click on the “Projections” button. A user form window will pop up 

and the user will need to choose the approximate ESAL increase per year and click on the 

“Submit” button to initiate the analysis. 

 

Figure 65. User Form for Approximate ESAL Increase 

• The program will perform all calculations using the database, connection weights, 

threshold values, and coefficients to generate a table with the pavement performance 

predictions for the three scenarios described previously (Figure 66). 
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Figure 66. Pavement Performance Predictions 

• The program will also generate a plot for each output variable including the predictions 

from all three scenarios.  

 

Figure 67. Predictions for PCR and IRI 
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• To perform another analysis, just return to step one and repeat the steps to obtain new 

predictions.  

By providing a tool that generates predictions considering the effects of no rehabilitation, 

minor and major rehabilitations, agencies can analyze different scenarios and identify which 

sections would need to be prioritized in the M&R decision plan. This tool can also be used to 

simulate different years of M&R actions to evaluate the effects of early or late interventions on the 

pavement performance condition.   

Therefore, this simple, low-cost, and easy-access tool brings a significant contribution to 

the enhancement of agencies' PMS by predicting future pavement conditions, identifying 

rehabilitation needs, and allowing a better budget allocation for critical pavement sections.
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CHAPTER XIV: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

14.1. Summary 

In this study, a set of pavement performance models were developed utilizing an ANN 

modeling technique and considering the effects of M&R history and interventions to offer a more 

inclusive, reliable, and accurate prediction tool. The developed models can be utilized by state and 

federal transportation agencies to predict future pavement conditions and incorporate the M&R 

scheduling effectively to prioritize the resources for the critical pavement sections. Additionally, 

the developed models did not use any distress data as an input variable, which will help agencies 

to save time in data collection and processing. 

A new approach for considering the influence of M&R history was introduced in Chapter 

IV for the development of performance models for composite pavements utilizing the ANN 

technique within the LTPP database. All four climate zones of the LTPP database were utilized 

but the paper did not include all data points of the database in the model development. Five models 

were developed using different input and output variables and the best ANN model structure 

consisted of 14 inputs, 9 hidden nodes, and 1 output. By developing a new approach that 

considered the effects of the M&R history and interventions it is possible to obtain realistic and 

accurate prediction models for future planning. 

Chapter V used the same approach established in the previous chapter to develop
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 performance prediction models to assess the influence of climate and traffic data on composite 

pavements. The study utilized all data points available for composite pavements on the LTPP 

database and developed three models using the ANN approach. The results indicate that all models 

resulted in reliable predictions but the model that included all climatological and traffic variables 

was more accurate. The final ANN structure for the best model included 21 inputs, 19 hidden 

nodes, and 1 output. An in-depth study was performed for random sections and demonstrated the 

ability of the developed model to capture the variations of roughness over time. The study showed 

that due to the complexity of the deterioration phenomena, M&R, traffic, and climate variables 

must be used together in the modeling process to deliver better prediction values. 

The use of a specific climate zone in the development of pavement performance models 

was explored in Chapter VI. This study utilized a traditional (multiple regression) and an advanced 

(ANN) modeling technique to develop prediction models for the wet non-freeze climate zone of 

the LTPP database. The complex relationship between pavement structure, climate, and traffic 

variables was investigated and the results showed that the ANN model presented an accuracy 

132% higher than the MLR model. Also, the use of a specific climate zone helped the model to 

capture 86% of the variability, which would not be viable when using data from all climate zones 

together. Therefore, further study with different climate zones should also be explored to verify if 

it provides more accurate predictions.  

Chapter VII developed pavement performance models for a specific climate zone different 

than the one used in the previous chapter. The study used all data points available in the wet-free 

climate zone of the LTPP database. This chapter showed that the use of a specific climate zone 

combined with input variables that represent the pavement’s initial condition, effects of pavement 

exposure time, pavement structure, effects of maintenance and rehabilitation, effects of traffic 
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loads, and climatological effects of temperature, moisture, and freeze in the same model increased 

the model accuracy. The developed models efficiently characterized the pavement roughness 

behavior on composite pavements and could be used as a prediction tool to develop better M&R 

plans. 

A new approach for incorporating M&R history into the performance model development 

is discussed in Chapter VIII. Two models considering two different methods to account for the 

influence of M&R history were developed for the wet non-freeze climate region of the LTPP 

database using the ANN modeling technique. The new approach for M&R consisted to use a 

continuous variable instead of a categorical variable for the CN and resulted in an accuracy 10% 

higher when predicting roughness values compared to the previous method. This approach was 

then recommended to be used for other climate zones to verify if it would enhance other 

performance models and assist agencies to support objective decisions regarding M&R schedule 

and budget plans. 

Chapter IX utilized the two developed approaches for M&R to develop new performance 

models for the wet non-freeze region of the LTPP database, a climate zone different than the one 

used in the previous chapter. Three models were developed and showed reliable results, however, 

the most promising model appeared to be the one using a categorical variable for M&R and without 

climatological variables. This result showed that the use of the CNCode variable efficiently 

incorporated M&R actions in the model development and assisted the network to achieve higher 

accuracy compared to the CNContinuous variable, different than the results from the previous chapter. 

Therefore, each climate zone might have different behaviors when exposed to different M&R 

approaches and variables and for this reason, a specific performance model needs to be developed 

for each one of the climate zones separately.  
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The use of a different database and model development was implemented in Chapter X. 

This study utilized the MDOT database and an ANN dynamic sequential modeling technique to 

develop performance prediction models for flexible pavements. Five models were developed 

considering the effects of several key factors such as geographic location, pavement structure, 

drainage, and traffic. Additionally, an innovative approach for M&R actions was developed to 

generate more realistic predictions and to be useful for the state agency. A two-output model 

structure was considered and resulted in promising results that could be further studied for rigid 

and composite pavements.  

Chapter XI used the approach developed in the previous chapter to develop performance 

models utilizing the dynamic sequential ANN technique for rigid pavements of the MDOT 

database. The study developed four models utilizing different input and output variables including 

a discussion of the use of a one-output or two-output model to enhance pavement performance 

predictions. Model 1 showed the best results for PCR and IRI predictions with high accuracy, 

indicating that the deterioration behavior was captured by the model and translated in good 

agreement between predicted and observed values. 

Chapter XII developed a new set of performance prediction models for composite 

pavements in Mississippi utilizing the dynamic sequential ANN method. Three models were 

developed with the same core of inputs but differing M&R  and traffic variables to study the 

significance of each variable. A two-model output structure was utilized and all models had 

satisfactory results. However, the models with M&R variables performed better than the model 

without the effect of M&R, which shows the importance of utilizing an M&R variable. The study 

also showed that the best models can be used by MDOT personnel since they can be employed in 

a simple and user-friendly tool to predict future pavement conditions. 
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Chapter XIII shows the development of a graphical user interface for the implementation 

of developed models in a simple, fast, low-cost, and user-friendly tool to support objective 

decisions regarding maintenance and rehabilitation interventions and budget plans. Even though 

the development of pavement performance prediction models requires a good understanding of the 

pavement deterioration phenomena, and ANN modeling techniques, the developed GUI does not 

require the user to have any prior knowledge of pavement performance or ANN. This tool brings 

an enormous contribution to the enhancement of PMS. 

14.2. Conclusions 

Based on the results presented in the previous chapters, the key conclusions are listed in 

the following sections. 

14.2.1. Roughness Modeling For Composite Pavements Using Machine Learning 

• Most studies in the literature developed roughness models for flexible or rigid pavements, 

which resulted in a lack of research for composite pavements. This study contributes to the 

community by studying, discussing, and developing ANN performance models to better 

understand the deterioration behavior of composite pavements. 

• The development of a new approach to consider M&R history in the model development 

and account for the effects of interventions resulted in an improvement in roughness 

prediction accuracy. 

• Lower IRI values were better predicted than higher values, this might happened because 

the deterioration behavior for pavements of good quality is different from the pavements 

in worst conditions. 

• Sensitivity analysis showed that predicted values were in good agreement with the 

observed values, which confirms the efficiency of the developed model. Additional 

analysis also showed that for future predictions the model successfully predicted the 

pavement deterioration over time when no M&R actions were performed. 

• The developed model can be used to identify the specific year that a section would need an 

intervention to keep the road in an acceptable condition, which offers a powerful tool to 
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visualize effective solutions for future pavement needs. 

 

14.2.2. The Effect of Climate And Traffic On Composite Pavement Roughness Modeling 

Using Machine Learning 

• The use of the ANN approach with a backpropagation algorithm for the development of 

performance prediction models for composite pavements of the LTPP database resulted in 

reliable and accurate predictions, which confirms the ANN capability of generalization 

studied in the literature.  

• The use of traffic and climate variables applied together in the same model resulted in 

better prediction accuracy. This happens because due to the complexity of the pavement 

deterioration phenomena, these variables bring important information to assist the model 

in better recognizing the changes in roughness behavior by identifying the influence of 

each variable on the output and the relation between each of them. This resulted in an 

improvement in roughness prediction according to the data given. 

• An in-depth study was performed for random sections of the database and showed that 

models that did not include M&R, climate, and traffic variables were not able to capture 

all the variations of IRI over time. These variations were better predicted when applying 

all variables in the same model. 

 

14.2.3. International Roughness Index Model For Composite Pavements In The LTPP Wet 

Non-Freeze Climate Region: Machine Learning And Regression Approaches 

• Mean differences were assessed using the independent samples t-test to determine whether 

IRIRight and IRILeft differ on average from each other. The results show that the difference 

in the means of IRIRight and IRILeft is statistically significant at α 0.05 probability of chance 

error, which implies that both samples are from different populations. Therefore, the  

IRIRight was used as the dependent variable since it shows the highest value for pavement 

roughness. 

• Advanced and traditional modeling techniques were utilized for the development of 
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pavement performance models. The ANN model outperformed the MLR model with a 

MARE 53% lower and an ASE 99% lower. For the R² value, the ANN model showed an 

improvement of 132% when compared to the MLR model. This confirms the selection of 

the ANN model as the best prediction model.  

• A comparison between the ANN and MLR model predictions was also performed for two 

random sections of the database and the ANN model also proved to be better in capturing 

the pavement deterioration behavior over time following closely the observed values. 

• This study was performed for a specific climate zone of the LTPP (wet non-freeze) to 

analyze if the prediction accuracy would be improved since the data points share the same 

climate characteristics. Results showed that the use of a specific climate zone helped the 

developed model to capture almost 90% of the variability, which may be not viable when 

using data from all climate zones together. 

 

14.2.4. Composite Pavement Roughness Modeling For LTPP Wet Freeze Climate Region 

Using Machine Learning 

• The developed ANN model could replicate the pavement deterioration behavior with 

reasonable accuracy for composite pavements in the LTPP wet freeze climate zone. 

Predicted values cluster around the line of equality but some values were underpredicted, 

especially when the observed IRIRight values were higher than 3 m/km. 

• The use of a specific climate zone combined with input variables that represent the 

pavement’s initial condition, effects of pavement exposure time, pavement structure, 

effects of maintenance and rehabilitation, effects of traffic loads, and climatological effects 

of temperature, moisture, and freeze in the same model increased the model accuracy. 

• Model comparison was performed for two random sections of the database and showed 

that four of the five developed models performed reasonably, however, the only model that 

included the season variable was the only one that did not follow closely the observed 

values. Therefore, the season variable should not be used since it did not help to improve 

prediction accuracy and might be causing confusion in the model network.   
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14.2.5. Pavement Performance Modeling For Composite Pavements in the LTPP Wet 

Freeze Climate Region Incorporating Maintenance and Rehabilitation 

• A new approach (CNContinuous) to incorporate M&R history in the model development was 

developed and compared to the previous approach (CNCode) used in earlier chapters. The 

new approach consists in using a continuous variable instead of the categorical variable 

utilized before.  

• Both ANN-developed models were able to predict pavement roughness values with 

reasonable accuracy. However, the model that utilized the CNContinuous approach resulted in 

better accuracy when compared to the CNCode approach.  

• Therefore, the use of a new approach (CNContinuous) presented a significant improvement in 

prediction accuracy. However, this approach should be applied in other climate zones and 

datasets to verify its performance.  

 

14.2.6. Pavement Performance Modeling Considering Maintenance And Rehabilitation 

For Composite Pavements in the LTPP Wet Non-Freeze Region Using Neural 

Networks 

• The CNContinuous approach was applied for composite pavements located in the LTPP wet 

non-freeze climate zone and compared to the CNCode approach to verify which M&R 

method would perform better.  

• Even though all developed models showed accurate and reliable results, the model utilizing 

the CNCode approach achieved higher accuracy compared to the model utilizing the 

CNContinuous. Additionally, the most accurate model did not use any climatological factors.  

• The use of climatological variables related to precipitation and temperature did not improve 

model performance and should not be used when modeling specific climate zones. This 

might happen because since the climate zone is already specified, there is no reason to 

overfeed the model with more data that has the same meaning as another one that has 

already been fed to the model. 

• The implementation of Model 1 for two random sections of the database resulted in an 

excellent performance for predicting IRI variations due to time exposure and M&R actions.  
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14.2.7. Development of Performance Models For Flexible Pavements Using The MDOT 

Database 

• A dynamic sequential ANN technique was successfully implemented for the development 

of flexible pavements for the MDOT database. 

• To incorporate the effect of the rehabilitation on PCR and IRI, a new M&R approach was 

utilized, and artificial rehabilitation actions based on the significant changes in PCR and 

IRI have been assigned to the database. 

• The use of a two-output model was implemented to enhance model prediction accuracy 

when compared to models that used only one output. 

• Five models were developed utilizing different input and output models. The best model 

showed to be the one utilizing CESAL for traffic consideration, and a two-output model 

with complementary PCR and IRI. 

• The idea of using CESAL instead of ESAL is to introduce the cumulative history of traffic 

loads since the first recorded measurement for more inclusive predictions. This approach 

should be promising for flexible pavements in the MDOT database.   

• PCR predictions were more accurate than IRI predictions. Further study is necessary to 

improve the model accuracy for the IRI output. However, the model can be considered 

highly accurate if the user goal is to obtain PCR values for the asphalt pavement sections. 

 

14.2.8. Performance Prediction Model For Jointed Concrete Pavements In Mississippi 

Using Machine Learning 

• A dynamic sequential ANN technique was successfully implemented for the development 

of JCP pavements for the MDOT database. 

• The same approach of artificial rehabilitation actions based on the significant changes in 

PCR and IRI has been utilized and applied to the database. 

• The use of ESAL and a two-output model (Complementary PCR and IRI) helped the ANN 

model to generate more accurate predictions compared to the use of CESAL and the 

traditional one-output models. 
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• The model had an excellent prediction accuracy explaining more than 90% of the 

variability for both PCR and IRI, which indicates a good understating of complex 

relationships between input and output variables. 

• A GUI application was developed for the model implementation in a random section of the 

database and resulted in accurate predictions, which confirms that the developed model can 

be considered a reliable, inclusive, and accurate tool to assist MDOT to predict JCP 

pavement conditions and incorporate a more effective M&R scheduling.  

 

14.2.9. Performance Evaluation Of Composite Pavements On Mississippi Highways Via 

Machine Learning 

• A dynamic sequential ANN technique was successfully implemented for the development 

of composite pavements for the MDOT database. 

• The same approach of artificial rehabilitation actions based on the significant changes in 

PCR and IRI has been utilized and applied to the database. 

• All models had satisfactory results and could be used for generating reliable predictions 

for pavement performance. However, when not considering the effects of M&R history, 

model prediction accuracy significantly decreased.  

• For the composite pavements, the most accurate model did not use the ESAL variable to 

account for the influence of traffic repetitions, which shows different behavior from other 

pavement types. 

14.2.10. Graphical User Interface 

• The GUI developed in this dissertation for the implementation of the best models is a 

unique tool that enables a simple, fast, low-cost, and user-friendly tool to help agencies to 

apply the models in real life. 

• The GUI can support objective decisions regarding maintenance and rehabilitation 

interventions and budget plans, allowing better visualization of the pavement deterioration 

behavior and helping state and federal agencies to simulate different scenarios according 

to their need.  

• The GUI translates a specific and deep knowledge of pavement deterioration phenomena 
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and advanced modeling techniques into a tool that can be used by a user without any prior 

knowledge, which contributes to the agencies’ PMS. 

 

Based on the previously stated conclusions, this study has demonstrated that the developed 

performance models utilizing the ANN approaches have successfully predicted pavement 

deterioration over time with accurate and promising results. The inclusion of new variables and 

the development of new methodologies to consider the key effects of M&R history have been 

shown to improve model performance. Additionally, the development of a GUI for the 

implementation of the performance models offered a unique tool that can be utilized by agencies 

to support objective M&R decisions and develop better budget plans according to their needs. 

Furthermore, all models developed in this research do not require the use of any variables related 

to distress data, which makes the implementation of these models more accessible, helping 

agencies to save time and money in data collection and processing. 

Therefore, this dissertation has successfully contributed to the enhancement of pavement 

performance modeling and the ANN’s state-of-the-art by providing an efficient, reliable, and 

accurate tool that can be used in the scientific, academic, and practical fields.  

 

14.3. Recommendation for Future Research 

• Even though this dissertation developed several models utilizing different pavement types, 

databases, and input and output variables, further studies exploring different variables and 

model architectures should be performed. These new models should attempt to achieve 

higher accuracy measurements. 

• This study developed performance models including all climate zones and two specific 

climate zones. Further study should develop additional models for other climate zones that 

were not explored in this dissertation and evaluate the model’s accuracy.  

• The ANN models developed for the LTPP database utilized the static approach. The use of 
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the dynamic sequential approach should be explored to evaluate if it will enhance model 

accuracy. 

• The ANN models were able to capture the performance changes and pavement 

deterioration behavior over time. However, some models were not as accurate when the 

observed IRI values were greater than 3 m/km. New performance models should be 

developed separating lower and higher IRI values to investigate if it improves model 

accuracy. 

• Use the developed GUI to perform additional sensitivity analysis or to simulate different 

scenarios by modifying input values for selected variables to evaluate their effects on 

pavement performance predictions.  

• Utilize the developed GUI to simulate pavement extreme conditions by inputting extreme 

values for climatological factors to evaluate the effects of climate changes on pavement 

performance.  

• Verify the models' predictions with newly available measurements from the database to 

evaluate the model performance. As soon as new data points are available, the models can 

be updated to generate more accurate predictions for future years. 



 

239 

 

 

 

 

 

 

 

 

 

 

 

LIST OF REFERENCES 

 

 

 

 

 

 

 

 

 

 



 

240 

REFERENCES 

[1] Hudson WRonald, Uddin Waheed, Haas RC. Infrastructure Management: Integrating 

Design, Construction, Maintenance, Rehabilitation and Renovation. McGraw-Hill; 1997. 

[2] Jaafar ZFM. Computational Modeling and Simulations of Condition Deterioration to 

Enhance Asphalt Highway Pavement Design and Asset Management. University of Mississippi, 

2019. 

[3] Chen C, Williams RC, Marasinghe MG, Ashlock JC, Smadi O, Schram S, et al. Assessment 

of composite pavement performance by survival analysis. Journal of Transportation Engineering 

2015;141:1–9. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000784. 

[4] Georgiou P, Plati C, Loizos A. Soft Computing Models to Predict Pavement Roughness: 

A Comparative Study. Advances in Civil Engineering 2018;2018. 

https://doi.org/10.1155/2018/5939806. 

[5] AASHTO. Mechanistic Empirical Pavement Design Guide: A Manual Practice. 2008. 

[6] AASHTO. AASHTO Guide for Design of Pavements Structures 1993:624. 

[7] Sayers MW. Two quarter-car models for defining road roughness. IRI and HRI. 

Transportation Research Record 1989:165–72. 

[8] Sayers MW, Gillespie TD, Queiroz CAV. International Road Roughness Experiment: a 

Basis for Establishing a Standard Scale for Road Roughness Measurements. Transportation 

Research Record 1986:76–85.



 

241 

[9] Sultana S. Computational Modeling of Climate Attributes and Condition Deterioration of 

Concrete Highway Pavements. Ph.D. Dissertation. University of Mississippi, 2021. 

[10] Kaya O, Ceylan H, Kim S, Waid D, Moore BP. Statistics and Artificial Intelligence-Based 

Pavement Performance and Remaining Service Life Prediction Models for Flexible and Composite 

Pavement Systems. Transportation Research Record 2020;2674:448–60. 

https://doi.org/10.1177/0361198120915889. 

[11] Gupta, Ankit; Kumar, Praveen; Rastogi R. A critical review of flexible pavement 

performance models developed for indian perspective. Indian Highway 2012;40:41–60. 

[12] Zeiada W, Dabous SA, Hamad K, Al-Ruzouq R, Khalil MA. Machine Learning for 

Pavement Performance Modelling in Warm Climate Regions. Arabian Journal for Science and 

Engineering 2020;45:4091–109. https://doi.org/10.1007/s13369-020-04398-6. 

[13] Yamany MS, Saeed TU, Volovski M, Ahmed A. Characterizing the Performance of 

Interstate Flexible Pavements Using Artificial Neural Networks and Random Parameters 

Regression. Journal of Infrastructure Systems 2020;26:04020010. 

https://doi.org/10.1061/(asce)is.1943-555x.0000542. 

[14] Choi JH, Adams TM, Bahia HU. Pavement roughness modeling using back-propagation 

neural networks. Computer-Aided Civil and Infrastructure Engineering 2004;19:295–303. 

https://doi.org/10.1111/j.1467-8667.2004.00356.x. 

[15] Abdelaziz N, Abd El-Hakim RT, El-Badawy SM, Afify HA. International Roughness 

Index prediction model for flexible pavements. International Journal of Pavement Engineering 

2020;21:88–99. https://doi.org/10.1080/10298436.2018.1441414. 

[16] Hossain MI, Gopisetti LSP, Miah MS. International roughness index prediction of flexible 



 

242 

pavements using neural networks. Journal of Stomatology 2019;145:1–10. 

https://doi.org/10.1061/JPEODX.0000088. 

[17] Hossain M, Gopisetti LSP, Miah MS. Artificial neural network modelling to predict 

international roughness index of rigid pavements. International Journal of Pavement Research and 

Technology 2020;13:229–39. https://doi.org/10.1007/s42947-020-0178-x. 

[18] Sollazzo G, Fwa TF, Bosurgi G. An ANN model to correlate roughness and structural 

performance in asphalt pavements. Construction and Building Materials 2017;134:684–93. 

https://doi.org/10.1016/j.conbuildmat.2016.12.186. 

[19] Jaafar ZFM. Pavement Roughness Modeling Using Regression And Ann Methods For 

LTPP Western Region 2019:536–48. https://doi.org/10.15405/epms.2019.12.53. 

[20] Bashar MZ, Torres-Machi C. Performance of Machine Learning Algorithms in Predicting 

the Pavement International Roughness Index. Transportation Research Record: Journal of the 

Transportation Research Board 2021:036119812098617. 

https://doi.org/10.1177/0361198120986171. 

[21] Hunt PD, Bunker JM. Study of Site-Specific Roughness Progression for a Bitumen-Sealed 

Unbound Granular Pavement Network. Transportation Research Record 2003;I:273–81. 

https://doi.org/10.3141/1819a-40. 

[22] Sandra AK, Sarkar AK. Development of a model for estimating International Roughness 

Index from pavement distresses. International Journal of Pavement Engineering 2013;14:715–24. 

https://doi.org/10.1080/10298436.2012.703322. 

[23] Rahim AM, Fiegel G, Ghuzlan K, Khumann D. Evaluation of international roughness 

index for asphalt overlays placed over cracked and seated concrete pavements. 



 

243 

https://doi.org/10.1080/10298430802342773. 

[24] Chen C, Zhang J. Comparisons of IRI-Based Pavement Deterioration Prediction Models 

Using New Mexico Pavement Data. Geo-Frontiers Congress 2011 2011:4594–603. 

https://doi.org/10.1061/41165(397)470. 

[25] Mohamed Jaafar ZF bin, Uddin W, Najjar Y. Asphalt Pavement Roughness Modeling 

Using the Artificial Neural Network and Linear Regression Approaches for LTPP Southern 

Region. Transportation Research Board 2016. 

[26] Barros R, Yasarer H, Sultana S. International Roughness Index Model for Composite 

Pavements in the LTPP Wet Non-Freeze Climate Region: Machine Learning and Regression 

Approaches. 101st Annual Meeting of the Transportation Research Board (TRB) 2022, 2022. 

[27] Solatifar N, Lavasani SM. Development of an artificial neural network model for asphalt 

pavement deterioration using LTPP data. Journal of Rehabilitation in Civil Engineering 

2020;8:121–32. https://doi.org/10.22075/JRCE.2019.17120.1328. 

[28] Tennant Duckworth P. Evaluation of Flexible Pavement Performance Models in 

Mississippi: A Neural Network Approach. University of Mississippi, 2020. 

[29] Duckworth P, Yasarer H, Najjar Y. Evaluation of Flexible Pavement Performance Models 

in Mississippi: A Neural Network Approach. vol. 164. Springer International Publishing; 2022. 

https://doi.org/10.1007/978-3-030-77230-7_15. 

[30] Yasarer H, Andrews W, Najjar Y. Performance Evaluation of Jointed Concrete Pavements 

on Mississippi Highways via Artificial Neural Network. Tran-SET 2021, Reston, VA: American 

Society of Civil Engineers; 2021, p. 86–92. https://doi.org/10.1061/9780784483787.010. 

[31] Barros R, Yasarer H, Uddin W, Sultana S. Roughness Modeling for Asphalt Overlay on 



 

244 

Concrete Pavements Using Neural Networks. Transportation Research Board 2021. 

[32] Sultana S, Yasarer H, Barros R, Najjar Y. Incorporating Maintenance and Rehabilitation 

History into Pavement Performance Modeling for Jointed Plain Concrete Pavement. ASCE 

International Conference on Transportation & Development (ICTD) 2022 2022:1–12. 

[33] Sultana S, Yasarer H, Barros R, Najjar Y. Evaluating the Effect of Climate Change in 

Pavement Performance Modeling using Artificial Neural Network Approach. ASCE International 

Conference on Transportation & Development (ICTD) 2022 2022:1–12. 

[34] Sultana S, Yasarer H, Uddin W, Barros R. International Roughness Index Modeling For 

Jointed Plain Concrete Pavement Using Artificial Neural Network. IOP Conference Series: 

Materials Science and Engineering 2021;1203:032034. https://doi.org/10.1088/1757-

899X/1203/3/032034. 

[35] Sultana S, Yasarer HI, Uddin W, Barros R. International Roughness Index Model for 

Jointed Plain Concrete Highway Pavements: An Artificial Neural Network Application. BCRRA 

2022 2022. 

[36] Sultana S, Yasarer HI, Uddin W, Barros R. International Roughness Index Model for 

Jointed Plain Concrete Highway Pavements: An Artificial Neural Network Application. 

Transportation Research Board 2021. 

[37] Qian J, Jin C, Zhang J, Ling J, Sun C. International Roughness Index Prediction Model for 

Thin Hot Mix Asphalt Overlay Treatment of Flexible Pavements. Transportation Research Record 

2018;2672:7–13. https://doi.org/10.1177/0361198118768522. 

[38] Faggella D. What is Machine Learning? 2020. https://emerj.com/ai-glossary-terms/what-

is-machine-learning/ (accessed October 4, 2021). 



 

245 

[39] Darko A, Chan APC, Adabre MA, Edwards DJ, Hosseini MR, Ameyaw EE. Artificial 

intelligence in the AEC industry: Scientometric analysis and visualization of research activities. 

Automation in Construction 2020;112:103081. https://doi.org/10.1016/j.autcon.2020.103081. 

[40] Adeli H. Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and 

Infrastructure Engineering 2001;16:126–42. https://doi.org/10.1111/0885-9507.00219. 

[41] Ceylan H, Bayrak MB, Gopalakrishnan K. Neural networks applications in pavement 

engineering: A recent survey. International Journal of Pavement Research and Technology 

2014;7:434–44. https://doi.org/10.6135/ijprt.org.tw/2014. 

[42] Marcelino P, de Lurdes Antunes M, Fortunato E, Gomes MC. Machine learning approach 

for pavement performance prediction. International Journal of Pavement Engineering 

2021;22:341–54. https://doi.org/10.1080/10298436.2019.1609673. 

[43] Najjar YM, Huang C. Simulating the stress-strain behavior of Georgia kaolin via recurrent 

neuronet approach. Computers and Geotechnics 2007;34:346–61. 

https://doi.org/10.1016/j.compgeo.2007.06.006. 

[44] Yasarer H. Characterizing the Permeability of Concrete Mixes Used in. Kansas State 

University, 2010. 

[45] Fausett L. Fundamentals of Neural Networks: Architectures, Algorithms and Applications 

Fundamentals of Neural Networks: Architectures, Algorithms and Applications. vol. 814. 

Prentice-Hall; 2005. 

[46] Yasarer H. Decision Making in Engineering Prediction Systems. PhD Dissertation. Kansas 

State University, 2013. 

[47] Al-masaeid HH. Utilizing of Magnesium Oxysulfate Binders for Additive Construction 



 

246 

Applications 2019. 

[48] Qatu K. Optimizing the performance of complex engineering systems aided by artificial 

neural networks. 2019. 

[49] Gasteiger J, Zupan J. Neural Networks in Chemistry. Angewandte Chemie International 

Edition in English 1993;32:503–27. https://doi.org/10.1002/ANIE.199305031. 

[50] Yasarer H, Oyan MNS, Najjar Y. A Performance Prediction Model for Continuously 

Reinforced Concrete Pavement Using Artificial Neural Network. Lecture Notes in Civil 

Engineering 2020;76:771–82. https://doi.org/10.1007/978-3-030-48679-2_72. 

[51] Yasarer H, Najjar Y. Development of a mix-design based Rapid Chloride Permeability 

assessment model using neuronets. Proceedings of the International Joint Conference on Neural 

Networks 2011:2756–60. https://doi.org/10.1109/IJCNN.2011.6033580. 

[52] Yasarer H, Najjar YM. Characterizing the Permeability of Kansas Concrete Mixes Used in 

PCC Pavements. International Journal of Geomechanics 2014;14:04014017. 

https://doi.org/10.1061/(asce)gm.1943-5622.0000362. 

[53] Yasarer H, Najjar Y. Assessing the auto associative network approach for prediction in 

civil engineering databases. Procedia Computer Science 2014;36:618–22. 

https://doi.org/10.1016/j.procs.2014.09.064. 

[54] Najjar YM, Basheer IA. Utilizing computational neural networks for evaluating the 

permeability of compacted clay liners. Geotechnical and Geological Engineering 1996;14:193–

212. https://doi.org/10.1007/BF00452947. 

[55] Najjar Y. Quick Manual for the Use of ANN program TRSEQ1. Manhattan, Kansas: 1999. 

[56] Najjar Y, Felker V. Characterizing the roughness progression on Kansas Pavements: A 



 

247 

sequential neuronet approach. GeoCongress 2006: Geotechnical Engineering in the Information 

Technology Age 2006;2006:127. https://doi.org/10.1061/40803(187)127. 

[57] Ohio Department of Transportation. Pavement Condition Rating System. 2006. 

[58] FHWA FHA. Performance Program. 2015. https://doi.org/10.4135/9781412950558.n409. 

[59] FHWA FHA. Chapter 7. Recommendations - Evaluation of Long-Term Pavement 

Performance (LTPP) Climatic Data for Use in Mechanistic-Empirical Pavement Design Guide 

(MEPDG) Calibration and Other Pavement Analysis , May 2015 - FHWA-HRT-15-019. 2015. 

[60] FHWA FHA. LTPP INFOPAVE Brochure 2018. 

[61] FHWA FHA. Long Term Pavement Performance (LTPP) Info Pave: Data 2020. 

https://infopave.fhwa.dot.gov/Data/DataSelection. 

[62] Yasarer H, Barros R, Mississippi Department of Transportation M. Development of 

Pavement Performance Models for MDOT: A Neural Network Approach. Oxford, Mississippi: 

2022. 

[63] Barros R, Yasarer H, Najjar Y. Performance Evaluation of Composite Pavements on 

Mississippi Highways via Machine Learning. BCRRA 2022 2022. 

[64] Barros R, Yasarer H, Sultana S, Najjar Y. Performance Prediction Model for Jointed 

Concrete Pavements in Mississippi using Machine Learning. ASCE International Conference on 

Transportation & Development (ICTD) 2022 2022:1–13. 

[65] Yasarer H, Oyan MNS, Najjar Y. A Performance Prediction Model for Continuously 

Reinforced Concrete Pavement Using Artificial Neural Network. Proceedings of the 9th 

International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9, vol. 76, 

2020, p. 771–82. https://doi.org/10.1007/978-3-030-48679-2_72. 



 

248 

[66] Rahim AM, Fiegel G, Ghuzlan K, Khumann D. Evaluation of international roughness 

index for asphalt overlays placed over cracked and seated concrete pavements. International 

Journal of Pavement Engineering 2009;10:201–7. https://doi.org/10.1080/10298430802342773. 

[67] Al-Omari B, Darter MI. Effect of pavement deterioration types on IRI and rehabilitation. 

Transportation Research Record 1995:57–65. 

[68] Khattak MJ, Nur MA, Bhuyan MRUK, Gaspard K. International roughness index models 

for HMA overlay treatment of flexible and composite pavements. International Journal of 

Pavement Engineering 2014;15:334–44. https://doi.org/10.1080/10298436.2013.842237. 

[69] Attoh-Okine N 0. Predicting Roughness Progression in Flexible Pavements Using 

Artificial Neural Networks. 3rd International Conference on Managing Pavements 1994;1:55–62. 

[70] Kargah-Ostadi N, Stoffels SM, Tabatabaee N. Network-level pavement roughness 

prediction model for rehabilitation recommendations. Transportation Research Record 2010:124–

33. https://doi.org/10.3141/2155-14. 

[71] Barros R, Yasarer H, Sultana S, Jaafar ZFM, Najjar Y. Performance Model Development 

for Flexible Pavements via Neural Networks. ASCE International Conference on Transportation 

& Development (ICTD) 2022 2022:1–13. 

[72] Abd El-Hakim R, El-Badawy S. International roughness index prediction for rigid 

pavements: An Artificial Neural Network Application. Advanced Materials Research 

2013;723:854–60. https://doi.org/10.4028/www.scientific.net/AMR.723.854. 

[73] Shahin MY. Pavement Management for Airports, Roads, And Parking Lots. Springer; 

1994. 

[74] Lin J, Yau J-T, Hsiao L-H. Correlation Analysis Between International Roughness Index ( 



 

249 

IRI ) By. Transportation Research Board 82th Annual Meeting 2003:1–21. 

[75] FHWA. LTPP Manual for Profile Measurements and Processing 2008. 

[76] Meegoda JN, Gao S. Roughness progression model for asphalt pavements using long-term 

pavement performance data. Journal of Transportation Engineering 2014;140:1–7. 

https://doi.org/10.1061/(ASCE)TE.1943-5436.0000682. 

[77] Chandra S, Sekhar CR, Bharti AK, Kangadurai B. Relationship between pavement 

roughness and distress parameters for indian highways. Journal of Transportation Engineering 

2013;139:467–75. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000512. 

[78] Michigan Department of Transportation (MDOT). International Roughness Index. 2017. 

[79] Yang J, Lu JJ, Gunaratne M, Xiang Q. Forecasting Overall Pavement Condition with 

Neural Networks: Application on Florida Highway Network. Transportation Research Record 

2003:3–12. https://doi.org/10.3141/1853-01. 

[80] Bianchini A, Bandini P. Prediction of pavement performance through neuro-fuzzy 

reasoning. Computer-Aided Civil and Infrastructure Engineering 2010;25:39–54. 

https://doi.org/10.1111/j.1467-8667.2009.00615.x. 

[81] Ziari H, Sobhani J, Ayoubinejad J, Hartmann T. Prediction of IRI in short and long terms 

for flexible pavements: ANN and GMDH methods. International Journal of Pavement Engineering 

2015;17:776–88. https://doi.org/10.1080/10298436.2015.1019498. 

[82] Elhadidy AA, El-Badawy SM, Elbeltagi EE. A simplified pavement condition index 

regression model for pavement evaluation. International Journal of Pavement Engineering 

2021;22:643–52. https://doi.org/10.1080/10298436.2019.1633579. 

[83] Mazari M, Rodriguez DD. Prediction of pavement roughness using a hybrid gene 



 

250 

expression programming-neural network technique. Journal of Traffic and Transportation 

Engineering (English Edition) 2016;3:448–55. https://doi.org/10.1016/j.jtte.2016.09.007. 

[84] FHWA FHA. LONG-TERM PAVEMENT PERFORMANCE Information Management 

System User Guide. vol. 088. 2019. 

[85] Sinshaw TA, Surbeck CQ, Yasarer H, Najjar Y. Artificial Neural Network for Prediction 

of Total Nitrogen and Phosphorus in US Lakes. Journal of Environmental Engineering 

2019;145:04019032. https://doi.org/10.1061/(asce)ee.1943-7870.0001528. 

[86] Sibanda W, Pretorius P. Artificial Neural Networks-A Review of Applications of Neural 

Networks in the Modeling of HIV Epidemic. International Journal of Computer Applications 

2012;44:975–8887. 

[87] Najjar Y, Mryyan S. Characterization of a Perchlorate Contaminated Site. Proceedings of 

World Environmental and Water Resources Congress 2009 - World Environmental and Water 

Resources Congress 2009: Great Rivers 2009;342:1–11. https://doi.org/10.1061/41036(342)240. 

[88] Barros R, Yasarer H, Uddin W, Sultana S. Roughness Modeling for Composite Pavements 

using Machine Learning. IOP Conference Series: Materials Science and Engineering 

2021;1203:032035. https://doi.org/10.1088/1757-899X/1203/3/032035. 

[89] Sultana S, Yasarer H, Uddin W, Barros R. International Roughness Index Modeling For 

Jointed Plain Concrete Pavement Using Artificial Neural Network. IOP Conference Series: 

Material Science and Engineering 6th World Multidisciplinary Civil Engineering-Architecture-

Urban Planning Symposium - WMCAUS 2021, Prague (Czech Republic), 30 August - 3 

September 2021 2021. 

[90] Elhadidy AA, Elbeltagi EE, Ammar MA. Optimum analysis of pavement maintenance 



 

251 

using multi-objective genetic algorithms. HBRC Journal 2015;11:107–13. 

https://doi.org/10.1016/j.hbrcj.2014.02.008. 

[91] Madeh Piryonesi S, El-Diraby TE. Using Machine Learning to Examine Impact of Type 

of Performance Indicator on Flexible Pavement Deterioration Modeling. Journal of Infrastructure 

Systems 2021;27:04021005. https://doi.org/10.1061/(asce)is.1943-555x.0000602. 

[92] Barros R, Yasarer H, Uddin W, Sultana S. Roughness Modeling for Composite Pavements 

using Machine Learning. IOP Conference Series: Material Science and Engineering 6th 

WMCAUS 2021 2021. https://doi.org/10.1088/1757-899X/1203/3/032035. 

[93] Mississippi Department of Transportation M. MDOT Pavement Condition (PATH) 2021. 

https://path.mdot.ms.gov/pavement_condition (accessed January 17, 2022). 

[94] Zhao Z, Guo Z. Prediction of Asphalt Pavement International Roughness Index (IRI) by 

Combined Approach of Empirical Regression and Markov. ICTE 2013 - Proceedings of the 4th 

International Conference on Transportation Engineering 2013:2106–13. 

https://doi.org/10.1061/9780784413159.307. 

 

 

 

 

 

 

 

 



 

252 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 



 

253 

Appendix A Pavement Condition Rating Forms and Key Forms [57] 

 

Figure A1. Key Flexible Pavement Condition Rating Form 

 

Figure A2. Flexible Pavement Condition Rating Form
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Figure A3. Key Asphalt Surface Local Rating Form 

 

Figure A4. Local Pavement Condition Rating Form 
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Figure A5. Key Composite Pavement Condition Rating Form 

 

Figure A6. Composite Pavement Condition Rating Form 



 

256 

 

Figure A7. Key Jointed Concrete Pavement Condition Rating Form 

 

Figure A8. Jointed Concrete Pavement Condition Rating Form 
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Figure A9. Key CRC Pavement Condition Rating Form 

 

Figure A10. CRC Pavement Condition Rating Form 
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Figure A11. Key Brick Paver Condition Rating Form 

 

Figure A12. Brick Paver Condition Rating Form
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