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Most fish have the capability of sensing flows and nearby movements even in dark or murky conditions by using the lateral line
organs. This enables them to perform a variety of underwater activities, such as localizing prey, avoiding predators, navigating in
narrow spaces, and schooling. To emulate this capability for Autonomous Underwater Vehicles, we developed an artificial lateral
line using an array of Micro-Electro-Mechanical-Systems (MEMS) flow sensors. The signals collected via the artificial lateral line
are then processed by an adaptive beamforming algorithm developed from Capon’s method. The system produces 3D images of
source locations for different hydrodynamic activities, including the vibration of a dipole source and the movement of a tail-
flicking crayfish. A self-calibration algorithm provides the capability of self-adaptation to different environments. Lastly, we give a
Cramer-Rao bound on the theoretical performance limit which is consistent with experimental results.

1. Introduction

Most fish can sense dynamic flows using the lateral-line
sensory organs along their bodies [1] (Figure 1(a)). A lateral
line consists of numerous tiny hair-cell receptors, which
invoke neural spiking when moving fluid causes the hairs to
bend (Figures 1(b) and 1(c)). Fish use this sensing capability
to perform a wide range of activities including navigating in
dark and murky water, localizing prey, avoiding predators,
and schooling [2–5].

Thanks to recent developments in Micro-Electro-
Mechanical-Systems (MEMS) technology, it is now possible
to realize this sensing capability on Autonomous Underwa-
ters Vehicles with artificial hair-cell sensors [6]. The MEMS
sensor also has a micrometer-scale hair which bends when
intercepting a flow. Depending on the level of bending,
the mechanical force applied to the hair is translated to an
electrical signal with a certain magnitude. Those sensors
can be mass-produced and cheaply assembled into a larger
sensing system like a man-made lateral line [7].

An artificial lateral line itself is not a complete functional
system without a signal processing unit. One primary goal
of the signal-processing unit is to localize or map the
surrounding dynamic flow activities. Curcic-Blake and van
Netten applied a continuous wavelet transform on the
excitation signals collected directly from a real ruffle fish
(Gymnocephalus cernuus L.) [8]. A 2D-contour map of the
area surrounding a dipole source is generated but with very
low resolution. In this paper, we provide a new approach
using a beamforming technique (i.e., Capon’s method) to
achieve a much sharper 3D-image of the dipole sources.

Calibration is an important process for a real sensory
system to compensate sensors’ discrepancies and then to
enhance the system’s performance. A self-calibration algo-
rithm is introduced to tune the sensors online during
operation.

Finally, we also derive the theoretical performance limit,
which can help to understand fundamental limitations of
lateral-line systems and to provide guidance in their design
and use.
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This paper completes the series of our work on artificial
lateral line which has been reported in [9–11].

2. Artificial Lateral-Line

Figure 1(e) illustrates a man-made hair-cell sensor consisting
of a horizontal cantilever with a vertical hair attached at the
distal end and an embedded piezoresistor at the fixed end.
When a flow impinges upon the vertical hair, a bending force
acts on the horizontal cantilever to induce a stress change at
the piezoresistor, causing a change in resistance (Figure 1(f)).
When an electric current runs through the piezoresistor, the
change in the resistance will cause a change in the voltage
across the sensor. Within an operational range, the change
in electrical signal strength is linearly proportional to the
change in the force acting on the hair, which can be used to
infer the local flow velocity [7, 12, 13].

Note that, due to its physical structure, the sensor is
sensitive to flows along the direction of the horizontal can-
tilever and almost insensitive to flows in the perpendicular
direction. By inspecting a number of sample sensors, we find
that the sensor’s directivity pattern or response function is
approximately a figure-eight shape with two peaks (top and
bottom of the figure-eight shape) lying along the direction
of the horizontal cantilever. Therefore, the direction of the
horizontal cantilever defines the orientation of the sensor,
an important parameter when assembling sensors into an
artificial lateral line.

Using these MEMS sensors, an artificial lateral line can
be built and installed on AUVs for sensing surrounding flow
activities. Figure 1(d) shows the working prototype of a
lateral line consisting of 15 sensors on a half-cylinder surface
which models the body of an AUV. The cylinder has an
outer diameter of 89mm and a length of 240mm. There
are 9 sensors along the central line of the cylinder surface
with linear spacing of 30mm, and 6 sensors on both sides
of the middle cross curvature with angular spacing of 30◦.
Also note the alternating pattern of sensors’ orientation. This
configuration is selected to achieve a good 3D localization
performance with a limited number of sensors based on
numerical evaluation of the Cramer-Rao lower bound.

One of the most common forms of water disturbance
that is extensively used as a stimulus to study fish lateral-
line organs is the acoustic dipole source or a sinusoidally
vibrating sphere [15]. Since dipole motions are also the main
components in the model of fish’s tail-beating movement,
these responses can also be used to localize many real-world
sources such as a tail-flicking crayfish.

2.1. Model of Sensor Response to a Dipole Source. Consider
a dipole source of diameter a placed at the origin and
oscillating along the z-axis at frequency f and amplitude Uo,
that is, z(t) = Uo sin(2π f t). The flow velocity at all points
at distance r and symmetrically positioned around the z-axis
by angle θ is derived in [16] as

⇀
v flow(r, θ) =

(
a3Uo

cos(θ)
r3

)
r̂ +

(
a3Uo

2
sin(θ)
r3

)
Θ̂, (1)

where r̂ and Θ̂ are unit vectors of the dipole’s spherical
coordinates at the sensor’s position as shown in Figure 2(a).
Equation (1) indicates the flow velocity at any sensor location
around the dipole source. Since we are more interested in
knowing the sensor’s response relative to the dipole location
with respect to the sensor, it is more convenient to translate
(1) from the dipole’s spherical coordinates to the lateral line’s
Cartesian coordinates as shown in Figure 2(b). So if in the

lateral-line’s Cartesian coordinates,
⇀
s= (xs, ys, zs) specifies

the position of a sensor and
⇀
d= (xd, yd, zd) indicates the

location of the dipole source, then the flow velocity seen at
the sensor is

⇀
v flow

(⇀
d

)
= a3Uo

2r3
(3 cos(θ)r̂− ẑd), (2)

where ẑd is the unit vector specifying the oscillating direction
of the dipole source, and

r =
∥∥∥∥⇀s −

⇀
d

∥∥∥∥, r̂ =
⇀
s − ⇀

d∥∥∥∥⇀s −
⇀
d

∥∥∥∥
. (3)

From (2), it is clear that the flow velocity impacting
on the sensor’s hair is not necessarily in the horizontal
plane of the cantilever. In that case, we can project the flow

velocity
⇀
v flow onto the horizontal plane and approximate that

projected component
⇀
v⊥ as the final flow velocity sensed

by the sensor’s hair. Therefore, the vector that defines the
horizontal plane (which also defines the direction of the
sensor’s hair) is also an important parameter of the sensor.
So a sensor in a lateral line is determined by three vectors:

the position vector
⇀
s , the orientation vector

⇀
u, and the hair

direction vector
⇀
h as shown in Figure 1(e).

Also recall that the directivity pattern or the response
function of a sensor has a figure-8 shape. So if α is the angle

between the orientation vector
⇀
u and

⇀
v
⊥
flow is the projection

of the flow velocity onto the horizontal plane, we can model

the sensor response of the dipole source at location
⇀
d as

f
(⇀
d

)
=
∥∥∥∥⇀v

⊥
flow

∥∥∥∥(a cosα + b sinα + c), (4)

where a, b, c are the directivity parameters defining the
figure-8-shaped response pattern. For an ideal sensor, we
should have a = 1, b = c = 0. In practice, those
parameters will be computed for each sensor by a self-
calibration algorithm explained later.

3. Flow-Imaging Algorithm

With the artificial lateral line as the hardware platform to
collect signals from the outside world, we need to develop
a signal-processing algorithm to process those collected
signals. The goal of the signal-processing algorithm is to
produce a 3D image of the energy-level distribution of
flow-creating moving objects in the surroundings. The
approach is to scan all possible source locations in the
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Figure 1: (a) Distribution of neuromasts, a cluster of hair-cell organs indicated by black dots, on a Carassius auratus goldfish’s body
(modified from Schmitz et al. [14]). (b) A close-up image of a neuromast which is made of many hairs. (c) Illustration of a neuromast’s
function to generate excitation spikes when hairs are bended. (d) Testing platform with 15 artificial hair-cell sensors. (e) A close-up image of
a sensor. (f) Operation principle of the artificial hair-cell sensor. All (c)–(f) are modified from [11].
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Figure 2: Translating the flow velocity vector at a sensor location impact by a dipole in different coordinate systems. (a) The flow velocity

in the dipole’s spherical coordinates with (r, θ,φ) defining the location of a sensor with repect to the dipole and (r̂, θ̂, φ̂) defining the unit
vectors of the dipole’s spherical coordinates at the sensor’s position (modified from [16]). (b) Flow velocity is computed in the lateral line’s
Cartesian coordinates (modified from [10]).
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surrounding region and to compute an estimate of the level
of agreement between the measured excitation array pattern
and the expected pattern assuming a dipole source at that
location. The expected patterns can be derived from the
analytical model in (2) and (4) or from training templates.
Different algorithms may produce different estimates. In [8],
the authors used a continuous wavelet transform (CWT)
technique to produce a 2D-contour map. From such a
map, we can infer the region of a single dipole source,
but the CWT has very low resolution so the source is
difficult to locate precisely, and multiple sources probably
could not be distinguished. Similarly, in [17] we used a
mean squared-error function to generate 2D images for
detection and localization of a single source. Although this
method is a maximum likelihood estimator under single-
source assumptions, it also produces low-resolution images.

Our approarch here is based on a minimum-variance
beamforming framework, or Capon’s method. In particular,
assume that there are N sensors in the array and we sample

K possible source locations surrounding the array (i.e.,
⇀
dk

with 1 ≤ k ≤ K). Let c be a vector of the measured
data from the array and ek be the expected array pattern

stimulated by a dipole source at position
⇀
dk; that means ek =

[ f1(
⇀
dk), f2(

⇀
dk), . . . , fN (

⇀
dk)]

T where fn(
⇀
dk) is the response of

sensor n according to the model in (2) and (4). The basic
concept of the minimum-variance beamforming framework
is that for each scanned location k, an optimal weight vector
wk is applied to the sensor data to recover the signal from the
point k while maximally suppressing the noise and signals
from other locations. Mathematically, wk is the solution to
the optimization problem

min
wk

E
[∣∣∣wH

k c
∣∣∣2
]
subject to R

[
wH
k ek

]
= 1 (5)

which is given by [18] as

wk = R−1ek
eHk R−1ek

(6)

and the final output power corresponding to location k is

1
eHk R−1ek

, (7)

where R is the correlation matrix of the sensor array
signals [18] and wH

k , e
H
k are Hermitian transposes of wk, ek,

respectively.
Applying Capon’s method, we can build the flow imaging

algorithm as follows.

Step 1. Using the analytical model from (2) and (4), compute
the expected array pattern ek for all locations of interest 1 ≤
k ≤ K

ek =
[
f1

(⇀
dk

)
, f2

(⇀
dk

)
, . . . , fN

(⇀
dk

)]T
. (8)

Note that the sensor response depends not only on the

position vector
⇀
dk but also on the oscillation orientation of

the dipole source which is defined by the azimuth angle θd
and the zenith angle φd. Therefore, there are actually two
more angular dimensions to scan through for each point k.

Step 2. Compute the pseudocorrelation matrix or the outer-
product of the signals measured from all sensors. If the
signals from all sensors are sampled for a certain duration
to collect L samples for each channel, that is, c[i] for
i = (1, 2, . . . ,L), then the outer-product-based empirical
estimate of the correlation matrix is

R = 1
L

L∑
i=1

cH[i]∗ c[i]. (9)

Step 3. Use Capon’s method to compute the energetic
magnitude of any flow source at each scanned location k

Ek = 1
eHk R−1ek

. (10)

Step 4. Plot the energy-level 3D image with Ek representing
the energy at point k in the space. The high-energy regions
in the image correspond to the locations of dipole sources.

This algorithm implementing Capon’s method produces
much higher resolution 3D images of flow activities than the
other two algorithms mentioned above.

4. Self-Calibration Algorithm

Calibration is an indispensable step when working with
actual physical systems. The performance of a system can
be significantly enhanced if the system is calibrated well;
in many cases, accurate calibration is essential even to
get intelligible results. In our case, each of these MEMS
flow sensors in the array has different gain sensitivity and
directivity pattern due to manufacturing and installation.
This is especially true with sensors that are still in the
laboratory stage of development. Even with commercial
sensors operating long-term in an open environment such
as an array deployed on an AUV, online calibration to
compensate for environmental drift or damage is essential
to maintain good performance. Calibration is therefore an
essential preprocessing step to enhance performance and to
support practical deployment of the system.

In Section 2.1, the total response of a sensor is modeled
as (a cosα + b sinα + c), which can be rewritten as g(cosα +
λ sinα+μ) where g = a, λ = b/a, and μ = c/a. Hence, the two
parameters λ and μ are directivity coefficients defining the
shape and orientation of a figure-8 directivity pattern, while
the parameter g is the total gain which captures both the
mechanical and electrical gains of the whole sensor channel
from the mechanical bending of the hair to the output of the
final electrical signal amplifier or analog-to-digital converter.

The calibration process can be separated into the sensor
directivity-pattern calibration and the sensor gain calibra-
tion. The sensor-directivity pattern calibration determines
the two directivity parameters λ and μ. It can be done easily
before installation on the array platform by measuring the
signal strength of the sensor under test whenmoving a dipole
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source circularly around the sensor at a fixed distance. If
there are n testing points on the circle, for each point i we
have sensor reading yi = (a cosαi + b sinαi + c) with the
known angle αi. We can then formulate the problem as a
system of linear equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cosα1 sinα1 1

cosα2 sinα2 1

...
...

...

cosαn sinαn 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
a

b

c

⎤
⎥⎥⎥⎦ (11)

or

y ≈ A
[
a b c

]T
. (12)

So a, b, c in (12) can be solved as [a b c]T = (ATA)−1ATy
to best fit the sensor readings y in a least-squared error sense.
Therefore, we can estimate the directivity parameters λ = b/a
and μ = c/a, which are independent of the size of the testing
circle. This calibration process can also be applied after the
installation of sensors on the platform.

The sensor gain calibration involves computing the
relative gains of all sensors on the platform. We jointly fit
the gains of all sensors so as to minimize the squared error
with respect to the expected model. Therefore, this process

is also called the lateral-line calibration. Since each sensor
may react differently to the change of surrounding conditions
(e.g., temperature, density, biofouling, etc.), the relative gains
may deviate gradually by time and place. In this paper, we
provide an online self-calibration algorithm that can help the
system update the gains during operation.

In the rest of this section, we explain the general concept
of the self-calibration algorithm and refer readers to the
next section for a specific deployment of this algorithm in
our system. Suppose a dipole source moves along a known
path such as a straight line during the calibration process
(which would commonly occur with a moving vessel passing
a stationary dipole or vice versa), measurements are taken
for M positions spaced at equal distance along the path.

Denoting
⇀
d0 and

⇀
d
∗

as the initial position and spacing

vectors, then all M positions are
⇀
d0,

⇀
d0 +

⇀
d
∗
, . . . ,

⇀
d0 + (M −

1)
⇀
d
∗
. With N sensors attached to the platform, the expected

response of sensor i from the dipole at position j can be
computed using (2) and (4) as

gi fi

(⇀
d0 +

(
j − 1

)⇀
d
∗)

. (13)

Scanning throughM dipole positions produces the measure-
ment matrix C forM expected array patterns:

C ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 f1

(⇀
d0

)
g2 f2

(⇀
d0

)
· · · gN fN

(⇀
d0

)

g1 f1

(⇀
d0 +

⇀
d
∗)

g2 f2

(⇀
d0 +

⇀
d
∗)

· · · gN fN

(⇀
d0 +

⇀
d
∗)

...
. . .

. . .
...

g1 f1

(⇀
d0 + (M − 1)

⇀
d
∗)

g2 f2

(⇀
d0 + (M − 1)

⇀
d
∗)

· · · gN fN

(⇀
d0 + (M − 1)

⇀
d
∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

The aim of calibration is to find a set of sensor gains

[g1, g2, . . . , gN ] and position parameters
⇀
d0,

⇀
d
∗
in order to

approximate C as closely as possible. The position parame-

ters
⇀
d0,

⇀
d
∗
can be used as indicators of the approximation

accuracy.

In the model for the measurement matrix C above, the
right-hand side can be separated into two matrices, one as a
linear function of sensor gains [g1, g2, . . . , gN ]

T and the other

as a nonlinear function of
⇀
d0,

⇀
d
∗
:

C ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

(⇀
d0

)
f2

(⇀
d0

)
· · · fN

(⇀
d0

)

f1

(⇀
d0 +

⇀
d
∗)

f2

(⇀
d0 +

⇀
d
∗)

· · · fN

(⇀
d0 +

⇀
d
∗)

...
. . .

. . .
...

f1

(⇀
d0 + (M − 1)

⇀
d
∗)

f2

(⇀
d0 + (M − 1)

⇀
d
∗)

· · · fN

(⇀
d0 + (M − 1)

⇀
d
∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 · · · 0

0 g2 · · · 0

...
. . .

. . .
...

0 0 · · · gN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (15)
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The problem becomes a mixed linear-nonlinear least-squares
problem, which can be solved via an iterative approach
by alternately optimizing between nonlinear and linear
coefficients while keeping the other fixed [19]. The algorithm
is summarized as follows.

Step 1. Initialize with uniform gains g1 = g2 = · · · = gN = 1

and initial values for
⇀
d0,

⇀
d
∗
.

Step 2. Fix the position vectors
⇀
d0,

⇀
d
∗
, and compute the

gains g1, g2, . . . , gN as a least-squares solution to best fit the
measurement matrix C in (15).

Step 3. Fix the gains, then use a gradientmethod to search for

next values of the nonlinear parameters
⇀
d0,

⇀
d
∗
that minimize

the Frobenius norm between the measurement matrix C and
the optimized product on the right-hand side of (15).

Step 4. Iterate Steps 2 and 3 until the Frobenius norm is small

enough or
⇀
d0,

⇀
d
∗
converge asymptotically to some values.

Usually the number of iterations can be set manually after
some trials.

Note that the algorithm can be applied for any number
of nonlinear parameters as long as the number of mea-
surements exceed that of the unknowns. To simplify the

explanation, we just use two position parameters
⇀
d0,

⇀
d
∗
to

specify M locations of the dipole source (i.e., a straight-line
path) for calibration. However, we actually use four position
parameters (two along the axis and two along the arc of the
cylinder) to define locations of the calibrated source in our
experiment.

5. Experiments

So far, we have presented all main components of our lateral-
line system from sensor hardware, analytical sensor response
models, to self-calibration and signal processing algorithms.
To show how those components work together in practice,
we present the results of a complete experimental procedure
from setting up the system, calibrating sensors and the lateral
line, to generating the final outputs.

5.1. Experiment Setup. Figure 3 displays the setup of the
experiment. A dipole source powered by an electric motor
and moving up and down at a frequency of 45Hz with a
peak-to-peak amplitude of 10mm is fixed at the center of
a large water tank. A cylinder is used to attach 15 sensors
in a cross formation as described in Section 2. The cylinder
is attached on a metal frame to allow easy adjustment of its
position and angle relative to the dipole source. Denoting the
effective length of the cylinder (the largest distance between
any two sensors) as one body length unit (BL = 240mm),
we mainly work with the dipole source within the near-
field range of 0.5BL to the surface of the cylinder. Beyond
this distance, the signal strength and localization resolution
fall off rapidly. The dipole orientation and offset position

A

B C

Figure 3: Experiment setup with the sensor arrays installed on a
cylinder. A shakingmachine controls the vibration of an dipole. The
cylinder can be slid on a vertical frame to change relative vibration
direction of the dipole to the sensors.

(position projected on the cylinder surface) can be changed
by adjusting the cylinder frame position and sliding the
cylinder on the frame.

5.2. Calibration. In order to achieve best performance, both
the individual sensors and the overall lateral line need to be
calibrated. Sensor calibration aims at computing the direc-
tivity parameters defining the figure-8-shaped directivity
pattern. Ideally, this can be done after the manufacturing
process by measuring the sensor response with a dipole
source circling around it at a fixed range. In our experiment,
we ran a number of tests with different dipole positions and
used the Minimum Mean Square Estimator (MMSE) to best
fit our model to the collected data.

The calibration of the lateral line (the sensor gain
estimation) applies the self-calibration algorithm explained
in Section 4. Specifically, we collect calibration data by
stepping the dipole source from one sensor to the next one
at 0.5 BL range. For each run, we compute the array pattern
by extracting the signal strength at the dipole frequency
(45Hz). Note that the testing dipole source actually moves
along the central line and then along the cross-curvature
line at the middle. Therefore, we have two initial position
vectors and two step-sizes (longitudinal and angular) as the
nonlinear parameters to be estimated in the self-calibration
algorithm.

5.3. Dipole Imaging. Before we can apply the beamforming
algorithm to localize a dipole source at arbitrary positions
and vibrating directions, we need to compute the expected
array patterns for the dipole source at all the locations
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Figure 4: A 3D energy-like image of a dipole source at the central position and vibration along the cylinder. (a) A model of the sensor array
with a dipole on the top of the central sensor. (b) A 3D image mapping the location of the dipole in space. (c) Projections of the result in (a)
by sliding through the estimated dipole location along different surfaces.

of interest in 3D space and for dipole orientations of all
different directions. There will thus be five parameters to
scan through, including three parameters defining the dipole
source position in 3D space and two parameters defining the
dipole source vibrating direction. This computation is heavy
but can be done once offline.

Executing the beamforming algorithm is straightforward
although potentially expensive depending on the size of the
array and the scan region. However, this algorithm can be
easily implemented as a multithreaded program to enable
parallel computing.

For each experimental run, we recorded signals for 10
seconds at a 1 kHz sampling rate. The signals are then
bandpass filtered at a central frequency of 45Hz, which is

the vibrating frequency of the dipole source. This step is not
necessary although it increases the SNR somewhat; wideband
and multiple sources at different frequencies can be imaged
without this step.

Figure 4 shows a 3D energy-distribution image demon-
strating the localization of a dipole source in front of the
center point of the half-cylinder surface at a range of 0.5 BL.
There is a well-defined high-energy spot corresponding to
the location of the dipole source. Although we search for
the best match of the dipole source in both location and
vibrating direction, we only display the location on the 3D
map. In this case, the estimated vibration orientation also
matches well with that of the dipole source, which vibrates
along the cylinder’s main axis.
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Figure 5: More results of dipole imaging for different locations showing by cutting through the center of the 3D images along the cylinder,
across the cylinder, and along the curved surface of the cylinder. The actual dipole locations are represented by black open circles while the
estimated locations are indicated by solid circles.

Figure 5 presents the localization results for various
positions of the dipole source. The circles represent the actual
locations of the dipole source while the red dots represent the
estimated ones. In order to have a good view of a 3D image,
we slice the 3D image through the peak in three directions,
that is, along the cylinder, across the cylinder, and along the
curvature of the cylinder. The concentration of the high-
energy spots differs for each location of the dipole source, but
this is theoretically expected as will be shown in the Cramer-
Rao bound analysis in the next section.

5.4. Crayfish Imaging. To further explore the performance
of the artificial lateral line in a real-world environment and
with real-world signals which are not exactly from dipole
sources, we selected a tail-flicking crayfish as a hydrodynamic
stimulus. The moving tail of the crayfish was brought near
to the cylinder, close to the central sensor (Figure 6(a)).
The signal recorded from the central sensor shows a pulsed
pattern rather than the sinusoidal patterns generated by the
dipole source (Figure 6(b)). However, still using the previous
ideal template generated from the dipole source flow model,
we applied the beamforming algorithm unaltered to the
crayfish data and still achieved sharp localization results
as shown in Figure 6(c). This confirms that the proposed
method can robustly handle a real-world signal source even
just using a simple dipole signal model in the beamforming
algorithm.

6. Cramer-Rao Bound

As mentioned in Section 2, the configuration of the lateral
line was designed based on knowledge of the fundamental
performance limits of our system. Cramer-Rao Lower Bound
(CRLB) provides an upper bound on the smallest average
estimation error the system could possibly achieve, so
we derive the CLRB for a lateral-line array and use it
both to optimize the array design and to understand the
fundamental performance limits of any lateral-line system.

Consider the model for a signal seen by sensor n in the
lateral line as

cn = fn

(⇀
d

)
+wn, (16)

where wn is additive white Gaussian noise with distribution

N (0, σ2N ), and fn(
⇀
d) is the expected reading at sensor n pro-

duced by a dipole at location
⇀
d . In our case, fn(

⇀
d) can be

computed by (4) and
⇀
d= (xd, yd, zd), the spatial coodinates

of the dipole source. Then the CRLB theorem in [20] states

that the variance matrix in estimating position vector
⇀
d is

limited by

Var
[⇀
d

]
≥ [F]−1, (17)
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Figure 6: Crayfish imaging: (a) An image of a real crayfish flicking its tail near the center of the cylinder. (b) A sample of the tail-flicking
signal waveform detected by one sensor in the array. (c) 3D energy image showing the relative level of dynamic flow activities caused by the
crayfish (d) Three projections of the 3D image on different surfaces.

where F is the Fisher Information Matrix, which can be
derived as

F = 1
σ2N

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
n=1

(
∂ fn(xd, yd, zd)

∂xd

)2 N∑
n=1

∂ fn
(
xd, yd, zd

)
∂xd

∂ fn
(
xd, yd, zd

)
∂yd

N∑
n=1

∂ fn
(
xd, yd, zd

)
∂xd

∂ fn
(
xd, yd, zd

)
∂zd

N∑
n=1

∂ fn
(
xd, yd, zd

)
∂xd

∂ fn
(
xd, yd, zd

)
∂yd

N∑
n=1

(
∂ fn(xd, yd, zd)

∂yd

)2 N∑
n=1

∂ fn
(
xd, yd, zd

)
∂yd

∂ fn
(
xd, yd, zd

)
∂zd

N∑
n=1

∂ fn
(
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)
∂xd
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(
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)
∂zd

N∑
n=1

∂ fn
(
xd, yd, zd

)
∂yd

∂ fn
(
xd, yd, zd

)
∂zd

N∑
n=1

(
∂ fn(xd, yd, zd)

∂zd

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

Applying the results above, we computed the CRLB for
our system with 14 sensors (N = 14), as one sensor was
broken during installation. Figure 7 illustrates the CRLB
ellipses after projecting onto three planes. The size of each
ellipse indicates the performance limit at the corresponding

point. The smaller size an ellipse has, the better estimation
performance the system could achieve. The slight asymmetry
of these uncertainty ellipses is due to a broken sensor at
the second position on the right side of the array. From the
graphs, we can conclude that the system performs better
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Figure 7: Ellipses display Cramer Rao bounds for different dipole locations by projecting on three planes.

at points in front of the center of the cylinder. As the
dipole source moves to the end or the edge of the array, the
performance is degraded. Also, the system seems to perform
well within the range of one body length of the array. Beyond
that one-body-length range, the performance decays very
quickly. Thus a lateral-line sense is inherently a short-range,
near-field sense.

The CRLB can help to evaluate the performance limit of
the system before actually installing sensors on the platform.
It can be used as a guide to design a complex sensor array
with many sensors.

7. Conclusion

Our results demonstrate the ability of an artificial lateral
line system to imitate the sophisticated near-field sensing
capability of fish. By showing a complete development
from building the MEMS hair-cell sensors, assembling an
artificial lateral line, providing signal processing framework
and self-calibration algorithms, and deriving the theoretical
performance limit, we have confirmed the opportunity of a
new application class for near-field sensing in autonomous
vehicles and machines. The Cramer-Rao bound confirms
mathematically the biological observation that the lateral line
imaging capability is confined to the near field. While the
method was derived mainly from an idealized dipole model
of the signal source, our system shows a good performance
and robustness in detecting the tail-flicking signals from a
crayfish. This promises a possibility of applying this work on
more complicated natural signals.
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