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Ramanujan—Sato series for 1/7
by

Tim HUBER (Edinburg, TX), DANIEL SCHULTZ (State College, PA) and
DONGXI YE (Zhuhai)

1. Introduction. In his remarkable paper [19], Ramanujan recorded
a total of 17 series for approximating the number 1/7, of which one of the
most famous is

(1.1)
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This was used by Gosper in 1985 to compute 7 up to 17 million digits (see
[2, pp. 32, 104, 202, 203, also 229|), then a world record. More incredible is
that the formula was not proved to be true until two years later, by the
Borweins [0, using the theory of elliptic modular functions, through which
all of Ramanujan’s 17 formulas were proven. In the meantime, Ramanujan’s
series were studied by the Chudnovskys ([10], see also [4]), who succeeded
in extending Ramanujan’s list and deriving new series for 1/7 of the same
form as Ramanujan’s. Interestingly, it was known [5, p. 188| that in both
the Borweins’ and the Chudnovskys’ work, a key ingredient for deriving the
relevant series for 1/m is Clausen’s identity for hypergeometric functions.
These facts motivated study of series for 1/, tentatively called Ramanujan-
type series, of the form

> An+ B 1
1.2 ——— = —,
(1.2) ZO G T

with Clausen-type transformation formulas as a starting point. However,
such a point of view was changed by Sato [20], who discovered a Ramanujan-
type series that did not require Clausen’s formula in its derivation. This new
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discovery opened the door to a larger family of series for 1/7 of Ramanujan
type not restricted to the Clausen-type transformation framework. Thus, it
has now become common practice to give credit to Sato and call a series for
1/7 of the form a Ramanujan—Sato-type series.

Sato’s series motivated Chan, Chan and Liu [6] to derive a general Raman-
ujan—Sato-type series without using Clausen’s identity, and remarkably, they
showed that all the existing series for 1/ are special cases of their general
series. Roughly speaking, Chan et al. [6] showed that Ramanujan—Sato-type
series can be generally derived from certain complex functions with some
prescribed transformation properties which are, in particular, modular func-
tions and modular forms of weight 2. Besides giving a general interpretation
to Ramanujan—Sato-type series, the work of Chan et al. also provided a
systematic classification of these series according to the level of the modular
forms from which they are derived. In the latest terminology, we now call
Ramanujan’s formula a series for 1/7 of level 2.

Based on [6], theories of Ramanujan—Sato-type series corresponding to
various levels have been systematically studied and established by many
mathematicians. We refer the reader to Cooper’s recent book [I3] for a nice
summary of work regarding levels 1-12, and to [T}, 14} (15} [16, 17, [I8] 26] for
levels ranging from 13 to 35, with some exceptions.

By a careful observation of the previous work, one may note that all of
these existing theories are related to some subgroup of SLa(R) of genus zero.
The connection between their developments and the genus zero property
of their associated subgroups has recently been explicitly indicated by the
authors of the present work in [I8], in which they derive a brand new family
of Ramanujan—Sato series corresponding to I'n(17)4, the group obtained
from Ih(17) by adjoining its Fricke involution. By taking a Hauptmodul
for IH(17)+ as a starting point, whose existence is due to the genus zero
property of I(17)+, they construct a family of series from this Hauptmodul
and its values at imaginary quadratic points. The prototype case in [18]
motivates the present work, in which the aim is to establish a general theory
of Ramanujan—Sato-type series and show how they naturally arise from the
general Hauptmodul for the so-called moonshine groups and their modular
equations. The study is limited to these groups because the corresponding
differential equations for the modular forms in terms of the Hauptmodul
have rational coefficients (cf. Theorem below).

Much of the theory needed to derive Ramanujan—Sato series at each level
is well known and beautifully presented in a number of works. However, no
guide exists that incorporates comprehensive theoretical and algorithmic de-
tails allowing one to formulate complete classes of series at each level. The
following provides such a primer. For each genus zero subgroup and a corre-
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sponding Hauptmodul, a uniquely determined modular form of weight 2 will
be constructed in Section 2 that satisfies a third order differential equation
whose polynomial coefficients are explicitly determined. In Section 3, funda-
mental properties of the modular equation satisfied by each Hauptmodul are
derived. The other important contribution in the present work is a recipe
for a complete list of singular values of the Hauptmodul with fixed degree
over Q in a fundamental domain. Restricted singular values are established
from modular equations satisfied by the Hauptmodul. Formulas for coeffi-
cients of Ramanujan—Sato series of the form are given in terms of the
singular values. This allows one to formulate all Ramanujan—Sato series in
which the coefficients have fixed degree over Q. We conclude the paper with
a set of tables collecting the g-expansions of the Hauptmoduln for the groups
from [12]; singular values for the Hauptmoduln of select levels; and explicit
formulations of the coefficients in the differential equations that give rise to
the series expansion defining the Ramanujan—Sato series.

2. Differential equations. In this section, we determine a procedure
for constructing a weight 2 modular form z from a Hauptmodul z for moon-
shine groups. This parameter z satisfies a linear third order differential equa-
tion with respect to x that can be described explicitly from the construction.
The form of the equation may be anticipated from a general theorem [22, 25].

THEOREM 2.1. Let I' be subgroup of SLa(R) commensurable with SLa(Z).
If t(T) is a non-constant meromorphic modular function and F(t(T)) is a
meromorphic modular form of weight k with respect to I', then F,TF, ..., TFF
are linearly independent solutions to a (k+1)st order differential linear equa-
tion with coefficients that are algebraic functions of t. The coefficients are
rational functions when I' \ $ has genus zero and t generates the field of
modular functions on I'. The differential equation takes the form

Wy, F,7F,..., TFF)

2.1 =
(21) 0 W(F,7F,...,7FF)

o W(foroo, fm) = de (dtz )i,j:o,...,m

We first recall that for a genus zero congruence subgroup I" of SLa(RR)
commensurable with SLy(Z), the function field on X (I") can be generated
by a single modular function ¢r(7), and such a function is called a Haupt-
modul for I' if it has a unique simple pole of residue 1 at the cusp ‘oo,
i.e., it has Fourier expansion of the form ¢~/ 4 ¢(0) 4 ¢(1)¢*/" + - - with
q = exp(2miT) at the cusp ico where h is the width of the cusp ioco. In their
Monstrous Moonshine paper [12], Conway and Norton proposed an inter-
esting family of congruence subgroups which are defined as follows. For any
natural number N and e|| N, i.e., e| N and ged(e, N/e) = 1, consider the
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set of so-called Atkin—Lehner involutions

W€:{<ea b) (a,b,c,d)eZ‘*}.
Nc ed

ead — %bc =1
Each W, is a coset of I'hH(/N) with the multiplication rule
Wve = Wef/gcd(e,f)2 mod Fo(N)

For any set of indices e closed under this rule, the group I' = |J, W, is a
subgroup of the normalizer of IH(N). Such a group is denoted as IH(N) +
Wey, Wey, ..., We,., or more succinctly as N +-eq, ea, ..., e,. This is shortened
to N+ when all of the indices are present, and shortened to N— when
no indices (except 1) are present. It is known [I2] that such a group of
genus zero is of particular interest due to its connection with the famous
moonshine conjecture, and we now call it a moonshine group. In [11], Conway,
McKay and Sebbar determined a full list of genus zero IH(N)+We,, ..., We,,
whose Hauptmoduln have been constructed by Conway and Norton [12].
In Section [d we explicitly list all of these groups and Hauptmoduln as a
reference for the reader.

Although polynomial coefficients in the differential equation from Theo-
rem may be obtained by clearing denominators, we show next that for
each choice for z(7) as a Mobius transformation of the Hauptmodul ¢, there
exists a polynomial choice for w(z) resulting in an a priori polynomial expan-
sion in x for other parameters in the differential equation arising from The-
orem [2.1] For consistency, from this point on we assume the Hauptmodul ¢,
to be normalized with a pole at the cusp [ico], i.e., tp(7) = % + O(q), which
is uniquely determined. We will later establish a class of M&bius transforma-
tions that, in some cases, decrease the degree of the polynomials appearing
in the differential equation. Here and throughout the paper, let

THEOREM 2.2. For any choice of x(7) as a Mébius transformation of the
Hauptmodul tp, there exists a polynomial w(zx) and a weight 2 modular form

z = (logz)q//w(x) such that

2
B 2z22¢q — qu
4

z
s a polynomial in x.

Proof. Around every point 79 € H where z(7) does not have a pole, it
has an expansion of the form

(2.2) z(t)=a+ (1t —70)"(b+c(r — 7'0)1 +d(r — 7'0)2 +O(1 — 7'0)3),

where r > 1 is an integer and a # 0. Points 79 where r > 2 will be called
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ramification points and are finite in number modulo I', as these points corre-
spond to the zeros of the form 2/(7) of weight 2. Assume first that z(7) has
its only pole at co and that its zero is not at any cusp or ramification point.

Around every cusp 7 = —D/C that is not I'-equivalent to ico, x(7) has an
expansion of the form
(2.3) 2(7) = a+bQ + cQ* + dQ° + 0(QY),
where Q = exp(2mi é’iig)'
Set

x 2\ 2 z\?

(2.4) wiz)= ][] <1—> 11 <1—> 11 (1—),
TOEF\H a T()GF\H a T()GF\Q a
r=2 r>3 z(70)F#00

where the definitions of r and a in each case are as in and , so that
w(0) = 1, and the finiteness of the first two products is guaranteed by the
valence formula for I.

Define the auxilary function

P— 2C<qq B 3<§

(2.5) ;i ,  where (= (logx),,
and note that
3w?
2. = wP + —Z — Wy
(2.6) R =wP + 1w Y

As the function P is invariant under I, it is a rational function of z. Hence
R is also a rational function of . By considering each of the following cases
separately, we may deduce that R has poles only at co, which means that it
is in fact a polynomial in x.

e Around the point 79 € H where r = 1, we have w = (a + (z — a) +
y(x — a)? + O(x — a)3) and the series expansion
R a?p% 4dad*c?®  4dad’d 24y af  «

o - Y Y L Ot — 7).
3 da T 3 5 T3 +00—m)

e Around a point 79 € H where r = 2, we have w = (z — a)(a + B(z — a) +
y(x — a)? + O(x — a)3) and the series expansion
R 3aa’c®  ad’d  d’B  aa
3 ap Tz ¢ 3 TOr-m)
e Around a point 79 € H where 7 > 3, we have w = (z — a)?(a + B(z —a) +
y(x — a)? + O(x — a)3) and the series expansion
R d’a

§:3?+O(T—T0).




6 T. Huber et al.

e Around a point 79 € Q, we have w = (v — a)?(a + B(x — a) +v(z — a)® +
O(z — a)?®) and the series expansion

R a’bp 2aa2c 2acab 9
3 <— 3 + 30 )Q o(Q7).

Finally, we show that the existence of w is unaffected by changing the
function = by a Mobius transformation. Suppose that « is such that there

is a polynomial choice for w(z) such that R(x) is a polynomial in z. If z is
A/m/+B/
C'z'+D">

w’(f) _ (C/SU/ + D/)2+deg(w)w<

then the new choice

Az + B
C/:L‘/ + D/

replaced by any new z’ with z =

is a choice for w’(2’) such that the new R'(z’) is also a polynomial in 2. Jus-
tification for this claim may be given as above. The extra 2 in the exponent
can be omitted if D' =0. m

THEOREM 2.3. If z,w, R are as in the last theorem, then the differential
equation for z with respect to x takes the form

(2.7) 2W2pgr + 3WrZpy + (Wyy — 2R) 2y — Ryz =0,
with polynomial coefficients.

Proof. From Theorem the third order linear equation satisfied by
f = z can be written

f Jz Jza Jraa
(zlogq) (zlogq)s (zlog@)us (2108 q)uws
(zlog”q) (zlog?q)e (210g?@)uw (21087 @)gaw

=0.

Using the conditions and definitions given,

d 1 9 3z RZ
Tor ~ aymlog T T VWEL Fa= oot

the vanishing of the determinant may be written as in the theorem.

EXAMPLE 2.4. We first consider the level 1 case where I' is the full
modular group. Define

where the modular j-invariant j(7) is given by

3

25, 1
j(r) = 1728 ——% iy = ts1,(z) + T44 = 4 T4+ 19688¢ +O(q 2,

E3
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with
By = Ey(r and FEg = Eg(r _1—50421_qn,
the normalized Elsensteln series for SLa(Z) of weight 4 and 6, respectively.
Now )
-/ _ I\ Eg
J (T> - E4 ’
from which it follows that the only zeros of j'(7) occur at 7 = 4. Since
1 1
(1) = 1728 )= —= = ——
) =178, (i) = =5 = e
we see that )
—_— J— ) 2
x(r) = 1798 +O((t —14)7).

Therefore ([2.4]) implies
w(r) =1—1728z.

Since P is a modular function, it is a rational function of z. From ([2.5)), we
obtain
2 2.2 4
(2.8) p_ 202 qqqxq — 30 g, + 2,
: P )
Since x4 has only a simple pole at ico, the valence formula implies that the
number of zeros counting multiplicity of x4 is bounded by [1/6 4+ 1] in .
Thus, as a polynomial in x, the denominator of ({2.8]) is of degree at most
|2/3 +4]. Similarly, one can check that the numerator of (2.8]) has the only
pole at 700 of order bounded by 2, so the number of zeros of P is bounded

by [1/6 + 2|. Therefore, for some coefficients a;, b;,

ag + arx + a2x2
by + b1z + box? + bgx3 + byxt
The vanishing of the coeflicients of the g-expansion of the left side of
implies ag = b3 = by =0, a1 # 0 and

-P=0.

(2.9)

(2.10)
1 ai T2a;
= _—_—(6912 bg = ——— by = —— b:—— 22
as 31 (6912a1),  bo 1488 1 TR a1 (62208ay1 ).
Hence, from ([2.9)—(2.10]),
482(6912z — 31)
2.11 = R =240
(2.11) (1728z — 1)2 “
so that the weight 2 modular form
1 /
z(1) = z(7) =14 120g — 6120¢> + - -- = \/E,4

V1 — 1728z 2miz(7)
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satisfies
(1728x — 1) zpgx + 259222,, + 110422, + 12022 = 0.

One can verify that a holomorphic local solution at x = 0 to this equation

is given by
115
=3F| -, =,=;1,1;
z 3 2(672767 ) 71.)7
which coincides with Ramanujan’s result of signature 6 (see, e.g., [13, Chap-
ter 4]).

The previous example demonstrates a general method for computing P
as a rational function of x. The recipe is formalized in the next lemma.

LEMMA 2.5. For a Hauptmodul x of I' < I't(N), we have P = f(x)/g(x)
for polynomials f, g with

dog () < | §181a(2) : TN + 2],

degg(a) < | 21812(2) : To(N)] 44

Proof. Since P is invariant under I', it must be a rational function in z.
From , the poles of P occur only at the zeros of z,. Since z, has only
a simple pole at ioco, the valence formula implies that the number of zeros
counting multiplicity of z, is bounded by #[SL2(Z) : IH(N)] + 1, since x4
may be considered a modular form of weight 2 on some I' C IH(N). Thus
the number of poles of P is bounded by 2[SL(Z) : IH(N)] + 4. Similarly,
since the numerator of P has the only pole at ico of order bounded by 2,
the number of zeros of P is bounded by #[SL2(Z) : IH(N)] + 2. Therefore,
P = f(x)/g(x) for some polynomials f and g in z of degrees up to the given
bounds. From these bounds and from

SLa(z) : To(N)] = N (1 + ;) ,

pIN
the coefficients of f and g may be determined from the g-expansion of P.

The construction in the last proof implies that knowledge of ramification
points of z(7) is not needed to compute w(z). As it is only necessary to
compute the rational function P in , the calculations can stay in Q. The
polynomial w(x) can then be built up from factors of the denominator of P.
The resulting polynomial may not agree with that from Theorem [2.2] defined
in terms of ramification points of . In some cases, a different choice of w(x)
can be made so that R(z) is a polynomial in z. The resulting degree of both
w(z) and R(x) may be less than the degree of the corresponding polynomials
in Theorem . We illustrate the optimization of the choice of w(z) in the
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next example. A full list of such choices for w(zx) for each level is given in
Table [f] (see Section [4)).

EXAMPLE 2.6. For the group I' = 7+, we have the normalized Haupt-
modul

7)4 77)
_ )4 +49nn((T))4

The choice z(7) = ﬁ = q—51¢>—204¢*+- - and an application of Lemma
result in

1
+4=—451qg+204¢> +---.
q

P(2) 2472(1093502* + 3402023 + 4142% — 5272 — 34)
x) = .

(92 + 1)2(10z + 1)2(18z — 1)?
The square root of the denominator of P(x) suggests that w(x) is at
least a cubic in x. However, if we make the Mobius transformation X =

(at +b)/(ct + d), then the denominator of P(z) = P(X) as a function of X
is given by

(2.12)  (18a+b—18cX —dX)?*(10a—b—10cX +dX)?*(9a—b—9cX +dX)>2.

It is impossible to choose ¢, d such that the expression (2.12)) is the square
of a linear factor. The degree of the polynomial in (2.12)) will be minimized
and non-constant when either

(2.13) d=—-18c, d=10c, or d=9c.

Any of these choices will make (2.12)) the product of two squared linear
factors. Choosing d = 9¢ leads to

(2.14) (9a — b)*(18a + b — 27¢X)*(10a — b — ¢X)2.
Later we will require that w(0) = 1. This means
(2.15) 9a —b==£1, 18a+b==£1, 10a—-b==l.

Only two of these eight sets of equations have a solution, namely a = 0 and
b = +1. Therefore, with a = 0 and b = 1, (2.12)) becomes

(2.16) (1+¢cX)?(1 —27cX)>.
Hence, with ¢ = 1, we have
1
= =q—9¢° +30¢* + - .
(7) (o 47 % +300+
This leads via (2.5) to
p_ 3z(2723 + 18822 — 41z — 6)

(z +1)2(27z — 1)2
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With w(z) = (1 4+ x)(1 — 27z), equation (2.6) gives the polynomial R =
8z(1 + 3z). Finally, Theorem gives the differential equation

(x 4+ 1)(27Tx — 1) 2gpq + 32(27x + 13) 255 + 32(262 + 7) 2y + 42 (62 + 1)z =0

for the function
1 ' (1) 2
A7) = T 14 4g 41242+ -
) = e =2 () 2wials) B
_ TEo(T7) — Ex(7)
= c 7
where Es(7) denotes the Eisenstein series of weight 2 for SLy(Z) defined by

0o 7’an
Ey(r)=1-24) e

n=1
The last equality coincides with Cooper’s result on the case of level 7 [13]
Theorem 7.23|.

Since we have established a mechanism for deriving the polynomial w(z)
for which the differential equation for z with respect to x has polynomial
coefficients, we can attempt to write z as a power series in = and solve for
the coefficients A, in the expansion

o0
(2.17) z = ZAn:B".
n=0

We will require A9 = 1, and the rest of the A, to be integers when pos-
sible. As the g¢-series coefficients of the normalized Hauptmodul ¢(7) are
integers, this will require that 1/z(7) = t(7) + C for some integer C' such
that z(7) = ¢+ O(¢?) with all integer coefficients. This will also require that
the polynomial w(x) has integer coefficients and constant term 1. The fact
that this last property can be satisfied will be clear in Section [3| where it
will be shown that the values of ¢(7) at cusps and ramification points are al-
gebraic integers. The differential equation implies a recurrence relation
for the series coefficients A,, in of order

max (deg(w(az)), deg(R(x))).

These sequences have appeared at many places in the literature and many
formulas for A,, are known (see [7] and the references therein). When the
order of the recurrence relation is 1, the solution for A,, follows immediately
in Table [I When the order of the recurrence relation is higher, the formula
may be verified using other means such as the WZ-algorithm [23]. A label
from The Online Encyclopedia of Integer Sequences (OEIS) is given for each
indexed sequence.
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Table 1

r| oy | w(z) \ R(z)

Formula for A, OEIS ref.
1+ 1— 1728z 240z

A, = o) A001421
2+ 1 — 256z 48z

A, = A008977
3+ 1 — 108z 24z

Ap = A184423
4+ 1 — 64z 16z

An = A002897
5+ 1 — 44z — 1622 122(1 + )

An ) ()7 (") A274786
6+ (1+ 4z)(1 — 32z) 8z(1+ 12z)

An )()° A181418
T+ (1+2)(1—27x) 8z (1 + 3x)

An ) ()7 (1) =i ()7 (T ) A183204

8— (42 — 1)%(4z + 1)? 6422 (1 — 4z)(1 + 4x)
An = ) ()’ A036917
9+ 1— 18z — 27 3z(2 + 9z)
n k k n\2(n ki1+k
An =300 20 a0 () () (o) (713 A290576
10+ (1+ 4z)(1 — 162) 4z(1 4+ 15z)
Ay '8 A005260
12+ (42 — 1)(162 — 1) 8z(1 — 8x)
n n\ 2 n—*k
An =300 (D7) (2(717]5)) A002895

3. Modular equations and series for 1/m. We begin with the set of

son-{(0)

matrices

ged(av, B,7,0) =1
ad—fBy=n C Z2%2,

N |, ged(a, N) =1

The following lemma collects some facts proven in [§].
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LEMMA 3.1. Ifged(n, N) =1, then
(1) Ax(N) has the decomposition

am= [ am(; ),

0<B<é
ad=n

(2) and the double coset representation

) =1 () ().

n

The following proposition is associated to a Hauptmodul z(7) with the
Fourier expansion ¢! + O(1) at the cusp ico. Note that in most instances
in the rest of the paper, including the derivation of the differential equation,
we take a Hauptmodul with the Fourier expansion ¢+ O(q?) at the cusp ioo.

PROPOSITION 3.2. Set x(7)=tr(r). For any integer n>2 satisfying
ged(n, N) =1, there is a polynomial ¥,,(X,Y") of degree

dvn)=n [] <1+;>

qln
q prime

m X andY such that:

(1) ¥, (X,Y) is irreducible and has degree 1»(n) in X and degree 1)(n) in Y.

(2) ¥, (X,Y) is symmetric in X and Y.

(3) ¥, (X, X) has leading coefficient +eAV™  where A is the Mangoldt
function.

(4) The roots of ¥, (x(7),Y) =0 are precisely the numbers Y =x((at+[)/0)
for integers o, B and § such that ad=mn, 0< B <4, and ged(, 3,0) =1.

Proof. This modular equation, without the computation of the leading
coefficient, is proven in [8, Section 2|. The polynomial ¥, can be written as

(3.1) v,(x,Y)= ] <Y—x(m—5+ﬁ>>,

(a7676):1
0<B8<d
ad=n

where the coefficients of Y* on the right hand side should be expressed as
polynomials in X for X = z(7). This can be done since the coefficients
of Y* are symmetric polynomials in x(%%), and the product runs over
the equivalence class of the set of matrices of discriminant n modulo the ac-
tion of I'y(N). Therefore, one can check that these polynomials are actually
modular functions for I'h(IV), and thus are polynomials in (7). The coeffi-

cient of X¥(MY¥(") in ¥, (X,Y) is the constant term of the product on the
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right hand side of (3.1)), which is clearly non-zero because the function z(r)
does not have poles at the cusps of H/Iy(N). Therefore, ¥, (X,Y") has the
claimed degree ¥(n) in X and Y. The symmetry can be proven by noting
that 7 — —1/(Nn7) interchanges z(7) and z(nT).

For the third assertion, we first assume that n = p? for some prime p
and positive integer ¢t. Note that

aT +
I (-5~
)
(a7576):1
0<3<8

ad=n

n

sy T+n-—1
=YY 4 37 ()b, (:U(m—), o x<>>Y¢(">"“,
k=1

where S}, is a homogeneous symmetric polynomial of degree k in the variables

= fotumne (7271

We know that S is a modular function for I'hH(IN) with poles supported at
ioo only, and thus it must be a polynomial in z(7), which we will denote
by si(X) for X = x(7). The degree of s;(X) is determined by the order of
vanishing of Sy, at 7 = ioo. Since the Fourier expansion of z(7) is of the form
¢~ + O(1), this order, in turn, is determined by terms of Sy with k factors
in which the sum of the order of vanishing of the factors at ico is maximized
under the constraints in the product . Define

Eu(r):==>_ fifi

fer

From conditions in the product (3.1)), non-constant factors of Ej consist of
x(p?'7) and

2t—m :
(3.2) x(ﬁfﬂ

pm
The order of vanishing at 700 of the expression in is decreasing in m.
For m > ¢, this order is less than or equal to 1. For m < ¢, the order of
vanishing is at least 2. In particular, for k = p'~!, the product of factors
comprising the unique term of Sy with the greatest order of vanishing is

By (r) =a(”r) ][ a:(ZMT“)

m
1<m<t—1 p
je@/pmz)>

>, 1<m<2tje(Z/p"L)".

with each factor having order of vanishing at least p?. The order of vanishing
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of E,i-1(7T) at oo is

p2t + Z 2t 2m _ p2t Jrp%—l 7pt — ¢(n) 7pt‘

For k = p'~141, the terms of S}, with maximal order of vanishing 1(n)—p‘+1
are

2t tT+]
pt '

Ey-14(7) = z(p*'r) Z By (T)x<

Je(Z/p'L)*

Similarly, for k = p'~! 4 2, the terms of S}, with maximal order of vanishing
Y(n) — pt + 2 are

Epi-142(T)

P2t Pt
= z2(p*'7) Z Ept1(7>1’< Tt+]1)aﬁ< . +‘]2)

t
J1<j2€(Z/ptL)* P b

As k increases, each additional factor in the inductive formulation has order
of vanishing 1. Therefore, for p!~! < k < p, the order of vanishing of Ej(7)
is 1(n) — p' + k — p'~1. From the above calculations, and the fact that the
order of vanishing of X = x(7) at ico is 1, we get

deg sp(X) XYMk = 2p(n) —pt —p'~1,  ptTt <k <ph

Since one fewer factor of order at least p? appears in the product com-
prising terms of E:-1_; than in that for E,-1, the order of vanishing of
Ey-1_y(7) is at most ¢(n) — p' — p?. Therefore, the contribution to the
degree of ¥, (X, X) is

—p=p"t+ (1 -p?)
t—1

deg Sptfl_l(X)Xw(n)_(ptil_l) < 2¢Y(n
< 2¢(n

)

)
Similarly, for k& < p'~' — 1, we have deg sj,(z)Y ¥ =F < 2¢(n) — pt — pt—1.
For k > p!, we observe that products contributing to Eyi41(7) have one more
factor of order at most p~2 than those for E: (7). Thus,

—p'—p

deg 5,011 (X)XV=FHD <9y (n) —pt — p=t 4 (p72 1)
< 2p(n) —p' —p' L.

By similar reasoning, we see that deg s;(X)X¥("~F < 2¢(n) — p! — p

for all k > pt. This shows that terms of maximal degree for ¥, (X, X) come

solely from terms of degree 2¢(n) — p* — p'~! in the polynomial

t—1
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pt

(3.3) D (—1)ksp(x)x v

k=pt—1

The corresponding terms of ¥, (X,Y") of maximal degree are, up to sign,

P
Z DFEL(r Y¢( n)—k
k=pt—1
2t—m -
= (_1)Pt‘1yw(n)*pt‘1x(p2t7) H m(p n:+])
1<m<t—1 p
JE(@/p™Z)*
2% -
+ (_1)pt*1+1yw(n)—pf*1—1$(p2t7) H $<p mT+J>
m
1<m<it—1 p
jeZ/pmz)>
pi—t
T+
<X e
@) P
2— -
+ (,1)pt‘1+2yw(n)—pt—1—2$(p2t7_) H x<p mT+J>
m
1<m<t—1 p
Je(@/p™L)*
p2tr 4 4 P2t 4y
- 2 x( P >$< P )
J1<j2€(Z/ptZ)*

2t—m ;
4ot (_1)pty¢(n)fpt$(p2t7.) H CU(W)

m
1<m<t p
je@z/pmz)>

= (=1 Yy )t
TNE At S S S N A
JeZ/ptz)*
+(—1)P P2y p(n) —pt =2 i (n)—pt+2 Z Czj)xzj;?
J1<j2€(Z/p*Z)*

-1

Fo o (1P YV ()t
Thus the leading term of ¥, (X, X) is

- X G X i),

Jje(Z/ptZ)* J1<J2
J1.52€(Z/p' L)
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where (¢ is the primitive p’th root of unity, which is

-1 ; t—1 t—1 2
o T a=go =0 =y eV,
Je@/p'z)*
Now for n a composite square with at least two distinct prime factors,
a similar argument can be applied, and one can check that the leading coef-
ficient of ¥, (X, X) turns out to be, up to sign,

j 0 A
H (I—Cz/ﬁ):l:e = VP,
JE(Z/v/nZ)*
For n not a square, the contribution of terms with maximal degree in the
expansion of sy, (z)z¥ ™ ~* over multiple values of k is due to factors of order 1

. =T+
m )

which offset the decrease of the degree of 2¥(™~F when k increases by 1.
However, this will not occur for n not a square since, for m|n, we have
—5 # 1, so the order of vanishing of each factor

. =T+ ]
m

of Ex(7) cannot be 1. By reasoning similarly to the base case and grouping
factors with contributions at least 1, we observe that the leading coefficient
of ¥, (x, ) has a coefficient, up to sign,

H H nglzeozeA(ﬁ).

dln jE(Z,/dZ)*

This establishes the claimed properties of the modular equation ¥, (X,Y). =

PROPOSITION 3.3. Let X(7) = t114, where t114+ s as given in Table
(see Section[d]). Then

Do(X,Y) =44 — 56X +20X? — X3 — 56Y + 53XY

—12X2%Y 42072 — 12XY? + X?2Y2 - V3,
$3(X,Y) = 144X2% 4+ 24X3 + X4

—112XY — 48X%Y — 57X3Y +144Y? — 48XY?

+24X2Y2 4 18X3Y2 +24Y3 — 57X Y3 +18X2Y3 — X3Y3 4+ V4,
Dy(X,X)=2(—1+X)*(11 — X — X?)?(242 — 176X + 54X? — X?).

From these modular equations we can deduce that x(7) is an alge-
braic integer when 7 is quadratic irrational. A complete list of the 7 where
[Q(z(7)) : Q] < 2 in the case of I' = 17+ and I" = 11+ is given in Tables [f]
and [7] respectively.
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PROPOSITION 3.4. There is a polynomial T (X, J) of the form
Ag(X)J" + Ay (X)) 4+ A(X),
where t = [I" : IH(N)] for some I' of level N with Hauptmodul x(T), such
that T(x(7),j(7)) = 0.

Now suppose that 7 € H satisfies am® + br + ¢ = 0 with a > 0 and
ged(a,b,¢) = 1, and Q(7) has no non-trivial roots of unity. If M € A’ (N)

and x(M7) = x(7), then w. M7 = 7 for some w, = (5}3 fe) € W. Since the

non-trivial matrices fixing 7 have the form ( a”; xfgjy) for x,y € R and y # 0,
we see, after replacing x by ex, that

(ea ﬁ)M:(ex —cy )
N~ eé ay ex+by

From this equality it follows that ex,y € Z since ged(a, b, ¢) = 1. Multiplying
this equality on the left by (2 _01 )_1 gives

Ny a b
(3.4) ( z 5>M_<€y x+ey>.
—ea —f3 —ex cy

Since the first matrix on the left hand side is in I'(1) and M is primitive,
the matrix on the right must also be primitive. It follows that x,y € Z,
ged(ex,y) =1, and e| ged(a,b). Set

a

by r+ly
(3.5) AM%w—< )
—ex cy

The determinant of this matrix is the quadratic form
ac
(3.6) Mol(2,9) = e® + by + 247,

which equals n by (3.4). Now set Y(r) = z((% ') M.7) and X = z(7).
Notice that

L+ (OxY)Y" b+ 2ex/y

1—(OxY)Y" /b2 — dac’

where r is the ramification index of the function x at 7. This implies that
the slopes of the tangents to @,(X,Y) =0 at (X(7), X (7)) are never 0 or 1
and are distinct for different choices of M,(x,y) and fixed n = |M.|(x,y).
Therefore the modular equation ¥,,(X,Y) = 0 has only ordinary singularities
along the diagonal X = Y. Hence knowledge of ¥, and the value of the
tangent in is sufficient to expand Y as a power series in X in the
neighborhood of the singular value.

(3.7)

THEOREM 3.5 (Series for 1/7). Suppose 1o € H satisfies até +brop+c =0
with a > 0 and ged(a,b,c) = 1. Choose a matric M.(x,y) with we € I’
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so that w' (0 ) Me(z,y) € AL(N) with n = |M|(z,y). Let Xo be the

appropriate root of ¥, (X, X) = 0, and determine the series expansion of
Y(r) = X(Mr),

Y = Xo + OxY (Xo)(X = Xo) + 303V (Xo) (X = Xo)* + -+,

from the modular equation ¥, (X,Y) = 0 and the value of OxY (Xo) given
in (3.7). If Z denotes the function z(T) as a function of X and W denotes
(1)

T), then
1 XoxW XLy
. _— = XOoOxZ 1 A4 .
B8) S Tm(n) W< Ox +< W Tawva-oon )7 ) e,

Proof. Let 1y be fixed by the matrix M = (‘,)Y‘ ’g) There is an expansion
(3.9) x(Mt) = Xo+0xY (Xo)(z(t)—Xo)+10xY (Xo)(z(t)— Xo)*+
Applying ﬁ % to (3.9) gives

ad — By
(y7 +6)2
= (OxY (Xo) + 0%Y (Xo)(z(1) — Xo) + - - w(T)z(7) (7).

Setting 7 = 7 gives

(3.10) w(MTt)x(MT)z(MT)

ad — By
3.11 oxY (Xg) = ——=
(3-11) XY (Xo) = e
which is in agreement with (3.7). Applying now ﬁ 7= to (3.10) gives
iy ad — By
12 — —w(M M M
312 2 O Mne(M)s(0r7)
ad — By)?
+ 0O (M) (0am) (01 7)

(vt +6)*

+w(MT)z(MT) +w(MT)x(MT)0pz(MT) yw(MT)x(MT)z(MT)
= (XY (Xo) + - Jw(7)*a(7)?(7)”

+ (OxY (Xo) + 0% Y (Xo)(2(7) = Xo) + - - - {Buw(r)x(7) (1)
+ w(T)2(7) + w(T)2(7)0p2(T) }w(T)2(7)2(T).

Setting 7 = 7y and suppressing 7y from the arguments, we get

(3.13)

iy ad— By (ad — Bv)

© (y10+9)3 WXZ+ (yro+ 9

= W2X2Z220%Y + 8XY{X28XW +WZ+WXoxZYWXZ.

AXZOxW + WZ + WXOxZYWXZ
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Transposing the second term on the left and dividing by dx Y (1-0xY)W?2X Z
while keeping in mind (3.11)) gives
iy XoxW X0%Y
= X0xZ 1 Z.
WA —oxY) (£ 48) XAt < TTW T axv - axy)
Simplifying the left hand side while keeping in mind that the minimal poly-
nomial of 7y is aTg + b1y + ¢ = 0 gives the desired series. n

As Z =302 A X™, the series for 1 is of the form

1 oo
3.14 — = An(Bn+ C)X[.
(3.14) 2 = 2 (B0 + OO
The most tedious part of evaluating such a series for 7 is the calculation of
the coefficient of Z, which is the number C' in . This requires the second
order term from the modular equation. Since an application of Theorem
implies a computation of @, (X,Y’), which can be very large in practice, it

is necessary to give a more effective procedure.

EXAMPLE 3.6. It should be remarked at this point that in their series

426880+/10005 _i 2n\ /3n) /6n) 13591409 + 545140134n
- n=0 n

n ) \3n (—640320)3" ’

D. V. Chudnovsky and G. V. Chudnovsky do not specify how the number
13591409 was obtained. In similar series, J. M. Borwein and P. B. Borwein
indicated that this term was calculated using known approximations of 7. By
rearranging Theorem slightly, we see that what we are in fact calculating
is the value of

3.15) L !

(3 2(7) <2m' Im(7)y/w(T) x(T>Z$(T))

for imaginary quadratic points 7.

™

Ramanujan’s series converge rapidly and have been used to calculate
record numbers of digits of 7 (cf. [3]). The extensions to formulas derived by
the Chudnovskys [10] are still the basis of most record-breaking calculations.
Less is known about the efficiency of subsequently derived series. A compre-
hensive study of the rate of convergence of Ramanujan—Sato series should
be undertaken. In the next remark, we provide evidence that Ramanujan’s
original series expansions converge more rapidly than series corresponding
to groups from [12] of higher level.

REMARK 3.7. For a Hauptmodul ¢(7) of level n, it is known [I5] that

the Galois conjugates over Q of t(7y), where 79 = d+T\/8’ are t(1g) as @
ranges over Qq(n)/Iy(n), where d is a negative fundamental discriminant,
Q4(n) denotes the set of positive definite quadratic forms a X2 +bXY + cY?
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of discriminant d with (a,n) = 1, and 7¢ is the imaginary quadratic point
in H induced by the quadratic form @. Then for two Hauptmoduln ¢;(7) and
ta(1) of level ny and ng, respectively, with n; | ng and simple poles at ico, the
rational norm of ¢;(7g) is roughly larger than that of to(7p). This is apparent
since, by the assumption n; | ng, the algebraic integrality of t2(79), and the
fact that ¢(79) > 1, we have

ta(10) ~ tl(To)l/k

for some
n2 2 —1
k> [Io(ny) : To(n2)] = <) H(l +p ).

n
p|n2

pina
By the surjection
Qi(n2)/Iv(n2) = Qa(n1)/Iv(n),

one can see that roughly

Ng(ta2(70)) =~ N/t (m0))"/*

where
r = [Qulna)/To(na) : Qu(m)/To(m)] = 72 T (1~ xalpp™) < .
p|n2
pin1

Therefore, in the order of divisibility, a Ramanujan—Sato series of prime level
has a smaller dominant exponential decay term than a series of composite
level. Since Ramanujan’s series correspond to small levels, these tend to
converge more rapidly than most of the recently discovered series.

Theorem shows that (3.15]) is algebraic, and gives a rigorous proce-
dure for evaluating it. The procedure implied by Theorem [3.8is much more

effective, as it essentially bounds the denominator of (3.15).

THEOREM 3.8. Set t(1) = tp(7) and suppose that t(19) = t(Mmy) for
some M € A (N). Suppose further that either t(1) does not ramify at T = 19
or Q(7o) contains no roots of unity. Let W, (T,S) be the modular equation
from Proposition [3.2]

(1) Ty = t(70) is a root of the monic polynomial ¥(T,T) € Z[T].

(2) Set S = s(r) = t(MrT), let k denote the multiplicity of Ty as a root of
U(T,T), and let n,...,nx be the set of tangents OrS to the modular
curve ¥(T,S) = 0 at (T,S) = (Ty, Tp) as found, for ezample, in (3.7).

Then
k(@%w, T) )3 <ﬁ i )( 015
T=T, i—1 L—mn orS(1—0rS)

k!

> € Z[Ty).

T=Tp
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(3) If (t) = ?‘yig:gig is another choice of the Hauptmodul and y(t) =

x(MT), then
%Y 0 +9T)  (+9T0)* S

OxY (1 —0xY)|x_x, - ad— By ad — By 0rS(1—0rS)|r_g,

Proof. Item (1) is a restatement of Proposition and (3) is a straight-
forward calculation. For (2), expand the modular equation in the form

(T + u, Ty + nu) = f(n)u” + gn)uFt + O(uF2),

where f(n),9(n) € Z[To][n]. By the symmetry of ¥, we know that f and g
are self-reciprocal polynomials and deg(f) < k and deg(g) < k + 1. In fact,
f has degree exactly k and its k distinct roots are the tangents to the modular
curve at (Tp,Tp), none of which is 0 or 1. By setting n = 7; to be one of
the actual tangents, which fixes the branch on which S lies, we arrive at the
equality

02.8 29(n;
(3.16) = T = g(m), .
orS(1—0rS)  ni(1 —m)f'(m)
However, the presence of ¢ in, for example, the main formula (3.8) of The-
orem [3.5] implies that its value is independent of the particular choice of
branch of the function S. Therefore, we have the identity

(3.17) &) f()n(L —n)f'(n)
= 2f(0)f(1)g(n) +29(0)f (L)X = n)f(n) + 29(1) f(O)nf (n)

of polynomials in Z[Tp][n]. Since the leading coefficient of f(n) is also f(0),
extracting the coefficient of #* in (3.17)) shows that

(3.18) —k€f(0)f(1)£(0) € Z[To].
The proof of (2) is complete once the following formula for f(n) is substituted
okw(T,T)

into (3.18)):
k
n—"m
f(77) = ( ) . m
k! T=T, };[1 1-— M4

EXAMPLE 3.9. Let I' = 7+, n = 11, and 7 = 7(7,7,11). Table [2] lists
all roots of W11 (T, T) = 0 and their multiplicities. In the table, M = T4 —
256473 — 18424272 — 29459407 — 24113575.

Accordingly,
U (T, T) = (T — 116)*(T — 18)*(T + 1)*(T + 10)*(T 4 17)?
x (T? + 10T + 225)%(T? + 1378T + 10593)>
x (T* — 2564T3 — 18424272 — 29459407 — 24113575),
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Table 2
7(a, b, c) Branch(es) and tangent value(s) Minimal polynomial for T
(14,-14,9) s=t(52), orS = -1 M
(21,-14,6) s=1t(5T), OrS = -1 M
(14,-14,9) s=1t(552), orS = -1 M
(7,0,11) s=t(52), orS = -1 M
(7,7,11) ( z z iE}E; Z;iz :i J: g ) T2 4 13787 + 10593
11/ 22 22
(35, -21,5) ( Z Z ZE}E; Z:Z:: :f j ﬁ ) T2 4 1378T + 10593
11 /> 22 22
(7,-14,11) ( S:t(%{))’aﬁ:%_ o ) T - 116
s 1), 0 = & + 4T
(7,-4,2) ( s=UER), OrS = = = B ) T2 4+ 10T + 225
s=t(), 0r8 =~ + 240
(7, -10,5) ( Z:ZEE;Z:?::%;z ﬂz ) T? + 10T + 225
11 /° 11 11
(7,-7,3) ( S:t(%)’aTS:_£+32;35 ) T+17
s=1(50), 0rS = -5 - B5"
(7,~14,8) ( o=t OrS =~ i + Har” ) T-18
s=1(°), oS = 15 - T
(7,-3,1) (s:t(ﬁl)’aﬁ:%+5? ) T+1
D
(7,-7,2) ( o= ), oS =~ + S ) T+ 10
s=t("f), OrS = —{5} — 2"
and
FO(T) := ope(T.T) mod (T2 + 13787 + 10593)

2!
= —2%31871961257(531055149531498561216467T

+ 4105373136885336979588851).

Therefore, when 79 = (7,7,11) or (35, —21,5), the following equation should
hold for some integers ag and ay:

11\ 2 028
2(f(1)(To))3<37> <6TS(1T—8TS)

) =ag + a17p.
T=Tpy
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Evaluating the third term on the left hand side numerically for 7o = (7,7,11)
and (35, —21, 5) gives integer solutions for ag and a; of size about 180 decimal
digits, which is the minimum precision needed when applying Theorem
to this example.

THEOREM 3.10. For each Hauptmodul x of Iy(p)+, the following algo-
rithm results in a complete list of algebraic (1, x(7)) with [Q(x(7)) : Q] < 2:

Let P(x,j) be the polynomial relation between z(7) and j(7). For each
discriminant —1555 < d < —1:

(1) List all primitive reduced T = 7(a,b,c) of discriminant d in a funda-
mental domain for PSLa(Z). Translate these values via a set of coset
representatives for I'y(p)+ to a fundamental domain for I'y(p)+.

(2) Factor the resultant of P(X,Y) and the class polynomial

- I ((5)

(a,b,c) reduced, primitive
d=b%—4ac

The linear and quadratic factors of the resultant correspond to a complete
list of x = x(7), for T of discriminant d, such that [Q(z(7)) : Q] < 2.
Associate candidate values T from Step (1) to x by numerically approxi-
mating x(7). For each tentative pair, (1,z), prove x = x(7) by deriving
a modular equation for which x(T) is a root.

Proof. We use well-known facts about the j-invariant [2I]. For alge-
braic 7, the only algebraic values of j(7) occur at Im(7) > 0 satisfying
ar? +br + ¢ = 0 for a,b,c € Z, with d = b*> — 4ac < 0 not necessarily a
fundamental discriminant. Moreover, [Q(j(7)) : Q] = h(d), where h(d) is the
class number. Since there is a polynomial relation P(z,j) between x and j
of degree W = [I" : IH(N)] (cf. |8 Remark 1.5.3]), we have

[Q(i(7) - Q] < [Qj(7), z(7)) : Q] < W[Q(z(7)) : Q]
and so values 7 with [Q(z(7)) : Q] < 2 satisfy [Q(j(7)) : Q] = h(d) < 2W,
which is a necessary condition for x(7) being quadratic. Therefore, an ap-
propriate bound (from [24]) on |d| for which h(d) < 2W allows us to ap-
ply the above steps to find a complete list of algebraic (7,z(7)) satisfying
[Q(z(7)): Q] <2. =

REMARK 3.11. Suppose that 7y is an imaginary quadratic point arising
from a quadratic form Q(z,y) = ax® + bry + cy® with (a, N) = 1 and
d = b> — 4ac, a fundamental discriminant. For a Hauptmodul ¢ of level N,

it is known [9] that ¢ (70) generates the ring class field of conductor N over
Q(+/d). Then one has
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where O}, is the ring of integers of k = Q(v/d) and O(N) is an order of
conductor N of k, i.e., a full rank Z-submodule of index N of Oy.

REMARK 3.12. The differential equations resulting from Table [3] corre-
spond to results in the literature or improve upon those results by decreasing
the degree of the coefficients.

(1) For the cases I' = 144,15+, I' = 20+ and " = 21+, 22+, 33+, 35+,
the results given in Table [3| agree with those given in [16], [18] and [1]. The
explicit differential equations for the cases of I' = 224+ and 33+ are omitted
in the original references, so we present them for the reader’s convenience.
The differential equation associated with I" = 22+ is given by
d3z d*z

4 3 2
i 3z(962" — 902° 4 8z~ + 122 — 1)@

d
— (6002 — 44823 + 2822 + 287 — 1)di — 2(1202% — 6622 + 22 + 1)z = 0,
i

22(1 — 8z) (42 — 42 4 1)

and the differential equation associated with I" = 33+ is given by

d3
221 — 2z — 112?) (42> + 822 + 4 + 1>T§
T
5 4 3 2 d*z
T
dz

— (11882° 4 18442 + 71223 4 812% — 8z — N
X

— (6602 + 8082° + 22822 4+ 152 — 1)z = 0.

(2) We improve the result for the case of I" = 13+ given in [I5]. The
authors of [I5] obtained a third order differential equation of degree 7. Our
choice of Mébius transformation of ¢134 results in a third order differential
equation of degree 5 as follows:
8z2(1 + x)(1 — 10z — 27x2)@ — 122(13523 + 1482% 4 272 — 2)&

dz3 dz?
d
—2(3z + 2)(4372% 4 63z — 2)di — (6932% + 3502 + 12)z = 0.
x

The differential equation for the case I' = 174 from Table 3 has lower
degree than the one given in our previous work [I7], which is of degree 9.
The differential equation in the present work is of degree 6 and reads

2?1 — 6z — 2722 — 2823 — 16x4)@
dx?
2

d
— 32(32 + 1)(1623 + 1822 + 122 — 1)d7§
— (300z" +3482° +1972* 4 20z — 1)% —(1202® +1022% + 352 + 1)z = 0.
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(3) The respective results in [I3, Table 14.1, levels 8 and 9|, |26] and [13]
pp. 420-421] do not correspond to the cases I' = 8—,9+, I' = 16+ and
I' = 18+ given here. Rather, the results from [I3], 26] correspond to other
subgroups of SL(R) in which I" = 8— is of index 4, and I' = 9+, I' = 16+
and I' = 184 are of index 2. This explains why the formulas for A,’s for
I' = 8—,9+ given in Table |l| are different from those given in [13, Table
14.1, levels 8 and 9|. For reference, we give relations between the x’s used
in [26, I3] (called X in both references), and the Hauptmoduln tg_, toy, t16+
and t1g4 defined in Section {4} The values of the parameters z used in [13]
Table 14.1, levels 8 and 9] are respectively

tg_(tg— —4)(ts— +4 t 6
x:8§8 (ts—+4) and x = ot + )
(t5_ — 8tg— — 16)? tg, — 6tgr — 99

the value used in [20] is

tig+ +4
rT=— ,
125, — Aligs — 28
and the corresponding value used in |13, pp. 420-421] is
tig+ +2
(tis+ +5)%

4. Tables. The canonical Hauptmodul for each group from [12] is listed
in Table [3] Each Hauptmodul is written in normalized form except for those
given implicitly. The table uses the following notation for theta and eta
functions:

9] oo
=B LA, = Y g,
n=1 x,y=—00
(4.1) o 2 2 o 2 2
exa,b,c _ Z q(a;r +bry+cy )/2’ eyabc _ Z q(a;t +bry+cy )/2
T,Yy=—00 T,Yy=—00
z odd y odd

Moreover, we write ty4 for I' = N+ and S(d,N) = tn4(7) + tn+(d7T).
Those not given by formulas from [I2] are determined from the g-expansions

of the Hauptmodul.
Table 3

I tr I tr

24
2— Z;ﬁ+24 4— L4y
7]%4

12 73 ns®
2 Lo +2@l 4o |4y o om

Ny

1
12 6
3— Z;ﬁ+12 5— L +6

12 12 6 6
3+ My 435 412 |54 4578 46
13 m 5 1
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Table 3 [cont.]

r t[‘ I tF
12 1 2, 2 2, 2
646 Thay — 12 15+ 49 42
6+3 11 16 16— 2049
n3Mg 2176
4. 4 6,6
6-+2 :%Zg +4 16+ ni‘%f%ﬁ —4
12,12 (6z —6 )2
6+ Z%QZEQ Z%Qj’ﬁz —12 | 17+ RIS, RIS 9
3
_ 7771 _ M6 Mg
7 7 +d 18 n3nig
T+ L7y 1842 mmog
";1 nt 79118
_ 711714 ’71776779
8 n2n8 +4 18+9 n2n37718 +3
"2"4 _ Uzﬁg _
8+ s 8 18418 i, 3
3 4 4
_ 1 1316 _
9 g T 3 e nin3ngnis
12 4602
m3t _ 409210
9+ n¥ng 6 19+ (01,2,20—04,2,5)2 4
5 2, 2
10— L | 20420 e —
1170 n1M20
2, 2 2,2 2
112 M1M4"M10
10+2 it + 2 2044 nning, +2
4.4 8, 8
015 k4 00 ikl -
10+10 2% 6 21421 W 2
n%nS, ning,
2 2 2, 2
n1"M2 N5 M10 n1M3
10+ 77?)77%0 +25 nin3 +2 21+3 n7TN21 +1
93.2,6 n113 717021
T+ nini —6 21+ n7TN21 + n1M3 +1
3 2,2
12— U5 22+11 AL 42
N117o N53M55
4.4 2,2
773774 _ nin1 4712’722
12412 ’717112 4 22+ i, + o +2
m 02,212 _
12+4 772”3”12 +4 23+ 71723
711773 771’06"137112
1243 2ot +2 2448 77”"3”4”24 + 2
n12n12 _ nan3ngma
12+ nlnsnwm 6 24+24 n2naneni, 2
2.2 2 2
13— :1 +2 24+ Pt =2
1.5 17737872
2
13+ 4370 4o 25— AL 4]
i3 1 n25
3,3
1447 B 4+3 25+ | 5025 4 ]
N2M14 n25 71
4.4 2,2 2,2
N2M7 n2M13 MiM26 __
lat1d niniy 4 26+ nin3s | m3nis 2
3,3 2.2
niny 8712?714 "2”13 _
14+ nint, + wind +3 26+26 N2, 2
2 2
1545 ;%1:%55 +2 27+ 374 + 3tory +3 =
15415 4% _3 9847 M 4
ninds nan2s




Ramanugan—Sato series for 1/m

Table 3 [cont.]

r tr
6. 6
28+ M2M14 _
ningngnis
20+ 071/2,0,20/2=9Y1/2,0,20/2 1
2n1m29
1 13M5
30+15 12130
3.3 3 3
3046,10,15 ﬁ%ﬁ%ﬁ%?i%i +3
M2M3M5"30
N1M315M15
30+3,5,15 7216710730 +1
30+2,15,30 131576110 __ |
N1M2M15M30
2 2 2 2
30+5,6,30 ﬁ%ﬁ%ﬁ%?2§é -2
n1M5M6M30
30+ 737576710 4 MLM2715730 _ |
N1M2M15M30 131516110
02,2,16—04,2,8)°
31 ( 14y 14
+ 87]%7]%1
3 3
32+ 4§ﬁ3ﬂ1977 -2
niNanN8 N3y
33+ 13N33 +
n1in11 13133
33+ 1N3M33 + 37717111 +1
Ox —0vY9/2,1,1\2
4 1/2,1,9 /2,
34+ ( 2n1mi7 )
n57M7
35+35 Tinas
4 n1Manis 1
36+ 12M9736 +
11136
16
36"’ "71774776 l"79"736 + 1
n3n3nSynis
1
38+ 5(\/1 —4(—t19+(7’) —t19+(27') —4) — 1)
39439 d3fis _ ]
n1M39
39_|_ n3mni3 nin3g __
n1M39 13113
41+ 0x3/9.215/2—0Y3/2,2,15/2 _1
2n1m41
2 2 2 2
42+6,14,21 LIS 4 9
[ n3ngngngs
42+3,14,42 n2M6MTN21 |
N1M3M14M42
49+ 12M6MN7N21 n1M3N14N42
N1M3M14742 N216M7M21
4.4
44+ 2722
nEngniinia
2 2
4 n3Ms
5+ N1M5M9M45
n1M23
46423 e +1
2
4 n1M23 12146 1
6+ 1N2M46 + n1123 +
A7+ 02,2, 24—04.212

211 M47

27
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Table 3 [cont.]

r tr
3 2 E
49+ tloy + 2thgy —taor — 1 = =5
M1 "M19
na2mas
50+50
50+ 204 + tsor — 4 = S(2,25)
51+ S(2,19) =t> +t —4
2 — M3menomn
54+ tttt+l= 7113772677297771584
55+ S(5,11) = t°> — 10t> — 5¢* + 16t
n2M4M147M2 _
5 6 + W21 7;17 'W184"7 5268
206,2,10
59+ 02.2.30—06,2,10
60+12,15,20 ~ MMM
60+4 15 60 M2M3M5M12M20M30 __ 1
[ 1114161107160
60+ n%”g"%o"?’o _
M1M3M4M5M127M157M207160
62+ 304 +tooyr — 2 = 5(2,31)
n2ms3n22mn _
66+6,11,66 ninznﬁnzz
66+ 1364 +tos + —4 = S(2,33)
69+ ooy — 2teor — 3 = S(3,23)
Mm1mM10M147M
70+10,14,35 B 41
04,2,18—06,2,12
71+ 2mnn
Mninen26m
784-6,26,39 ,z;ngnfgngg +1
87+ 1374 +tsry — 3 = S(3,29)
92+ "757726 _
Mn1M4M231M92
94+ 134y +toay — 2 = S(2,47)
95+ 954 — 5tass 4 tosy — b = S(5,19)
105+ 3054 — 2ti0s+ — 3 = S(3,35)
110+ %(\/1 —4(—t55+(7’) —t55+(27’)) — 1)
119+ t’1719+ - 7t§19+ - 7t%19+ - 6t119+ - 7 = S(77 17)

Table 4. Transformations x = 1/(¢tr + ¢) of the normalized Hauptmoduln that decrease
the degree D of the coefficients in the corresponding differential equation compared to
T = 1/tp

r c D r c D r c D
1+ 744 1| 2— —24 1| 2+ 104 1
3— -12 2| 3+ 42 1| 4— 8 2
4+ 24 1| 5— -6 2| 5+ 16 2
6— 3 4| 6+6 12 2]64+43 -6 2
6-+2 -4 2| 6+ 10 2| 7—- -4 4
7+ 9 2| 8- 4 4| 8+ 8 2
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Table 4 [cont.|

r c D r c D r c D
9— -3 4| 94 6 2 | 10— 1 6
10+2 -2 4 | 10+5 —4 3 | 10+10 6 3
10+ 4 2 | 11+ 6 3| 12— 0 8
12+12 4 4 | 1244 5 4 | 1243 2 4
12+ 6 2 | 13— -2 6 | 13+ 3 3
1447 -3 4 | 14414 4 4 | 14+ 9 3
15+5 -2 4 | 15415 3 4 | 15+ 4 3
16— 0 8 | 16+ 4 4 | 17+ 2 4
18— 0 12 | 1842 -1 6 | 1849 1 6
18418 3 6 | 184 1 4 | 19+ 3 4
20+ 4 3 | 20+4 -2 6 | 20+20 2 6
21+21 2 6 | 2143 -1 6 | 21+ 0 3
224+ 2 4 | 22411 —2 6 | 23+ 2 6
24+8 -1 8 | 24424 2 8 | 24+ 2 4
25+ 1 6 | 25— —1 10 | 26426 2 7
26+ 0 4| 27+ 3 7| 2847 -1 8
29+ 2 6 | 30+15 -1 12 | 30+6,10,15 -3 6
304-3,5,15 -1 6 | 30+2,15,30 1 6 | 30+5,6,30 2 6
30+ -1 4| 31+ 0 6 | 32+ 2 8
33+11 -1 8 | 33+ 0 5 | 34+ 2 5
35435 1 8 | 35+ 2 5 | 36+4 0 12
36+36 1 12| 36+ 2 6 | 38+ 0 6
39+ 3 5 | 39439 1 10 | 41+ 0 8
4246,14,21 -2 8 | 4243,14,42 1 8 | 42+ -1
44+ 2 6 | 45+ 1 6 | 46+ 0
46423 -1 12 | 47+ 0 10 | 49+ 2 10
50+50 -1 8 | 50+ -1 8 | 51+ 2
54+ 1 10 | 55+ 1 7 | 56+ 1
59+ 0 12 | 604+12,1520 -1 12 | 60+4,15,60 1 12
60+ 1 62+ 0 10 | 66+46,11,66 1 12
66+ 0 69+ 0 10 | 70+10,14,35 -1 12
71+ 0 14 | 7846,26,39 -1 14 | 87+ 0 12
92+ 1 12 | 94+ 0 14 | 95+ -1 11
105+ -1 9 | 110+ -1 10 | 119+ 0 14

29

With the Hauptmodul z(7) as given in Table [4] we list the parameters

w(z) and R(z) defining the differential equation (2.7) from Theorem [2.3]
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Table 5. Parameters w(z) and R(z) defining the differential equation (2.7) for the Haupt-

modul z(7)

r w(zx) R(z)
1+ 1— 1728z 240
2— 1+ 64x —16x
2+ 1 — 256x 48x
3— (1+27z)2 —3z(10 + 243z),
3+ 1— 108z 24x
4— (1 —16z)? 16z(1 — 16z)
4+ 1 — 64x 16x
5— 1+ 22z 4 12522 —5z(2 + 25z)
54 1 — 44z — 1627 12z(1 + )
6— (14 z)*(1 — 8x)? —8x(1 +2)(1 +4z)(—1 + 8x)
6+6 1— 34z + 22 (10 — x)
6+3 (1+4z)(1+ 162) —8z(1 + 8x)
64-2 1+ 14z + 8122 —3z(2 + 27x)
6+ (14 4x)(1 — 32z) 8z(1+ 12x)
7— (1 + 13z + 4922)2 —(18 + 433z + 34302 + 960423)
T+ (1+2)(1—272) 8z (1 + 3x)
8— (1 —4z)%*(1 — 8x)? 162(1 — 4z)(1 — 8x)?
8+ 1 — 24z + 1622 8z(1 — 2x)
9— (14 92 + 2727)2 —12x(1 4 92)(1 + 9z + 27x?)
9+ 1— 18z — 27z 3z(2 + 9z)
10— (14 2)?(1 — 42)*(1 + 42?) 4z(1+ 2)(1 — 4x)
x (14 3z + 132” + 362%)
1042 (1 + 6z + 252%)? —4x(2 + 382 + 20022 + 6252%)
1045 (14 4x)(1 + 12z + 1622) —8x(1 + 10z + 1827)
10410 (1 —2)(1 — 18z + 2?) x(28 — 85z + 9z2)/4
10+ (1+4z)(1 - 162) 4x(1 + 15x)
114 1 — 20x 4 5622 — 4423 8z(1 — 8z + 11z?)
12— (1—2)%(1 +z)? 48(1 — )2 (1 + ) (1 — 32)
x (=14 3z)2(1 + 3z)? x (14 32)(1 — 32%)
12412 (14 2)%(1 — 142 + 2?) 4z(1 +2)(1 + 8z — 2?)
1244 (1 —82)%(1 —92)? 24x(1 — 82)(1 — 92)(1 — 12z)
1243 (1 —42)*(1 — 4o + 162?) 8x(1 — 4z)(1 — 8z + 3227)
12+ (1 —4z)(1 — 16x) 8x(1 — 8x)
13— (14 52 + 1322)? —12z — 2362 — 1858z°
x (1 + 62 + 132?) — 7904z* — 182522° — 19773x°
13+ (14 z)(1 — 10z — 272?) (12 + 1752 + 23122) /4
1447 (1 +2)(1+8z)(1+ 5z +8z%) —8z(1 +42)(1 + 7z + 827)
144+14 1 — 14z + 192° — 142° + z* 2(6 — 257 + 342° — 42°)
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Table 5 [cont.]

r w(z) R(z)
14+ (1 — 42)(1 — 18z + 4927%) 2(10 — 141z + 392x?)
1545 1+ 10z + 472 + 902° + 81z* —3x(2 + 23z + 7827 4 108z?)
15415 (=1 —z +2?) (=14 11z + 27) 4o (1 + 4z — 622 — %)
15+ (1 —122)(1 — 2z + 527) 32(2 — 11z + 40z?)
16— (1 —2x)%(1 4 22)%(1 + 42%)? —256z*(—1 + 2z)
16+ (1 —22)%(1 — 122 + 42?) 8x(1 — 2x)(1 — 8z + 42?)
17+ 1 — 6z — 272% — 282° — 162* x(2 4 35z + 6822 + 602?)
18— (14 2)%(=1+2z)? 7223(1 + z)(1 — 22)
x (1 —z+2?)%(1 + 2z + 42°)? x (1—gz+2?)
x (14 22 4 427) (1 4 42®)
1842 (14 2z +92%)(1 + 3z + 927)2 —3z(1 + 3z + 927)
X (24 27z + 812? + 24323)
1849 (1 —32)%(1 — 42)*(—1 + 122?) 122(1 — 3z)(1 — 4x)
x (1 — 3z — 3322 + 1082®)
18418 (1 — 10z +2%)(1 — z + 2?)? 3zl — 2 + z?)
x (2 — 11z + 232 — 323)
184 (14 2)%(1 + 4x)(1 — 8z) 2472 (1 + x)(2 + 57)
19+ (14 z)(1 — 13z + 3522 — 2723) z(6 — 31z — 242% + 105z3)
20+ (1 —4z)(1 — 12z + 162?) 8z(1 — 10z + 182?)
20+4 (14 2)2(1 + 52)%(1 + 22 + 522) —5z(1 + z)(1 + 5z)
x (24 13z + 4022 + 452°)
20420 (14 x)? (14 2)(2 + 252 + 3122
x (1 — 8z — 222 — 823 + x*) + 4723 — 9z*)
21421 (1 —x)? 4z + 42° — 702°
x (1 —6x— 172 — 62> 4 %) + 162" + 5225 — 92°
2143 (1 4z 4+ 72%)?(1 + 5z + 72?) —(x/4)(20 + 257z + 145322
+ 44872 + 92122* + 123482°)
21+ (1 4+ 4z)(1 — 22 — 2727) —2(2 — 47z — 2402?)
22+ (1 —82)(1 — 4a® + 42%) 4a(1 — 3x)(1 + 4z — 1027)
22411 (14 4 + 82 + 42%) —8x(1 + 12z 4 57z
x (14 8z + 1622 + 162?) +1322° 4 160z + 722°)
23+ (1 — 2 +2°) 4ol — x — a?
x (1 — 8z + 32 — 72®) +122° — 1527 4 142°)
2448 (1 —x)*(1 + 2x)? 4z(1 — x)(1 + 22)(—1 — 3=
x (1 + 4z + 822 — 83 + 42*) + 1322 + 462 — 602* + 322°)
24+24 (1 —x)*(1 4 x)? —4(-14+2)z(1+z)(1+=z
x (1 — 8z + 22? 4 82° + z*) — 2222 + 32 4 252 4 427)
24+ (14 422)(1 — 8z + 4x?) —4x(—1 + 3z — 2022 + 162°)
25+ (142 —2%)?2(1 — 4z — 162?) 2022 (1 + = — 2°)(2 + 2z — 72?)

31
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Table 5 [cont.]

r w(z) R(z)
25— (1 4 22 + 527) —52(1 + 5z + 1522 4 2523 4 25z%)
x (1 + 5z + 1522 + 2523 + 252*)2 x (2 + 25x + 125z2
+ 37523 4 6252 + 6252°)
2626 (1 —z)(1 — 8z + 8% — 182° (x/4)(20 — 109z + 3392 — 5212°
26+ (14 42)(1 — 22 — 152 — 1623) x(1 4 22)(—2 + 35z + 12627)
27+ (1 — 3z + 32%)? 122(—1 + 3z)(1 — 3z + 32?)
(1 — 12z + 362> — 362%) x (=14 12z — 3622 + 362°%)
28+7 (14 22)*(1 + = + 227) —8x(1 + 2z)(1 + 4z + 822)
x (1 + 3z 4 42?)(1 + 22 + 82?) x (147242227 + 3223 +322%)
29+ 1 — 10z + 232 — 102* 6 — 37z + 262> + 68>
— 15z* 4 2025 — 1625 —132z* + 1402°
30+15 (1 —2*)?(1 + 4z — %) 4x(1 — 2%)(1 4 22 — 92% — 312°
x (14 + 222 — 2® + 2) — 31z* + 4325 + 92°
x (1+x—2?) — 532" + 462° — 92°
3046,10,15 (14 3z + x?)(1 + 6z + 2?) —2(10 4 123z + 42022
x (1 + 7z 4+ z?) + 3752% + 1062* + 92°)
30+3,5,15 (14 z)(1 + 4x) —4x(1 + 8z + 402°
X (14 42%)(1 4 = + 42?) + 832 4+ 160z* + 1442°)
30+2,15,30 (1 — 6z + 2?) —x(—2 — 17z + 2822
x (1 —x+2?)(1+ 32+ 2?) — 532% — 262 + 92°)
30+5,6,30 (1 — Tz +2?) —(z/4)(=20 + 77z + 252°
x (1 =3z +2?)(1 +z+ 2?) + 24523 — 2362 + 362°)
30+ (14 z)(1 — 1622)(1 + 52) 4x(—1 4+ 4x + 58x2 + 75z%)
31+ (14 42 + 32% + 2®) 4a(—1 4+ 5z 4 692
x (1 =17z — 272%) +1802° 4 1612* + 602°)
32+ (1 — 2z + 22%)? —8z(1 — 2z + 22%)(—1 + 10z
(1 — 8z + 1222 — 162° + 42*) — 3622 + 602> — 602 + 162°)
33411 1+ z + 32?) —3x(2 4 25z + 12627
x (14 Tz + 2822 4 593 + 40723 + 8102*
+ 84 + 6325 4 27x5) +11372° + 91825 + 43227)
33+ (1 -2z — 112?) (=2 + 152 + 15222
x (1 + 4z + 8z% + 42°) + 4042 + 264z*)
34+ (1—z)(1 — x — 427) —(z/4)(—28 + 197z
x (1 — 9z + 1627) + 1522 — 14842° + 15842™)
35435 14z —2?) —x(—2 — 9z — 142? — 4723
x (1 — 5z — 92® — 52° — 2%) + 30" — 5725 + 502° 4 1627)
35+ (1 — 2z + 5z%) (6 — 612429622 — 5802 +8402*)
x (1 — 8z + 162* — 28z%)
36+4 (=1 + 2)*(1 + 2x)? 72(—1+2)2*(1 + 22)(1 + = + 2?)

x (14 +22)2(1 — 22 + 42%)? x (1 — 2z 4 427)(1 — 42®)
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Table 5 [cont.]

r w(z) R(z)
3636 (1 —2?)?(1 + 2 + z?)? 12(1 — 2®)2*(1 + = + 2?)
(1 — 4z — 627 — 42 + z*) x (24 bz —z? — 172°
—202* — 8z° + 3z9)
36+ (14 z)*(—1 + 3x)? 3z(1 + z)(1 — 32)
x (1 — 6z — 32?) x (2 — 3z — 48z% — 27z%)
38+ (1 + 4z + 42 + 42°) z(—2 + 152 + 11622
x (1 — 2z — T2* — 82%) + 3162° + 3922 + 280x°)
39+ (=1 4 42)(—1 + 3z + z?) 4x(3 — 462 + 2102?)
x (1 =11z + 27z?) — 25323 — 168z*
39+39 (14 z)? x(2 4 17z — 482% — 2527
x (1 =Tz +112? — 72° + z*) +1942* — 452° — 1682°
x (14z— 2?42 +2) + 13727 4 822® — 252%)
41+ 1+ 4z — 822 — 6623 x(1 4 22)(—4 + 20z
—1202* — 562" + 532° + 17422 + 24023
4246,1421 (1 +x 4+ 2?)(1 + 5z + 2°) —(2/4)(36 + 4372 4 191522
X (14 7z 4 1622 4 72 + z*) + 38522° + 44432"
+ 25172° + 6602° + 6427)
42+43,14,42 (1 -5z + 2?)(1 — = + 2?) —(x/4)(—12 + 412 — 2872
x (14 +42? +2® + 2%) + 3602 — 639"
+ 20125 — 2522° 4 6427)
42+ (14 2)(1 —3z)(1 +4x) —(x/4)(20 + 49z
x (1 + 5z 4 8z?) — 56722 — 2508z% — 2304z)
44+ (=1 + 4z — 82 + 42®) —8x(—1+ 122 — 572>
X (=1 + 8z — 1622 + 16x°) +1322° — 160z* + 722°)
45+ 14z — 2%)(1 — 3z + 327) —(3x/4)(—4 — 13z + 12322
x (1 = 3z — 9z?%) — 8723 — 3962 + 3242°)
46+ (1 -2z —7z?%) (=2 + 23z 4 10422 + 2823
x (14 2z — 32% 4 z°) — 662" +132° — 1442° +10527)
x (14 2z 4 22 + 2®)
46+23 (1+ 2z + 222 + z°) —8z(1 + 13z + 812* + 3162
x (14 4z + 42 + 82%) + 8802 4 1851z + 299625
x (1 + 5z 4 1422 + 2523 + 377227 + 36362° 4 25602°
+ 28z 4 20z° 4 82°) + 123220 4 2882')
47+ (1 + 4z + 72% + 82 + 4z* + 2°) 4z(—1 — 3z + 232% + 1772°
x (1 = 5z% — 202 — 242" — 192) + 560z* + 1087x° + 134725
+ 109827 + 5002 + 1142°)
49+ (1 — 4 + 32 + 23)? 72(1 — 4z + 322 + %)

x (1 —10x + 272% — 102® — 272%)

X (2 — 27x + 108z> — 105z°
— 171z" + 2162° 4 962°)
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Table 5 [cont.]

r w(zx) R(z)
50+ (1 + 42)(1 4 32 + z2)? 52(1 + 3z + 22) (=2 — 13z + 172>
x (14 2z — 722 — 1623) + 24723 + 4722 4 2042°)
50450 (1 +42)(1 + 3z + 2?)? 5z(1 + 3z + %) (=2 — 13z + 1722
x (14 2z — T2* — 162?) + 24723 4 4722 + 2042°)
51+ (1 — 8z + 162 — 122°) 2(10 — 141z + 798x? — 24882°
x (1 — 6z + 1522 — 2223 + 172%) + 46562* — 499625 + 24482°)
54+ (1 —z+ 23?1 +42%) 3z(1 — 2 4 22)(2 — 152 + 3922
x (1 — 6x + 922 — 8z3) + 23 — 1562* + 408z°
— 4242° + 26427)
55+ (1+z—2H)(1 -7z + 1127) —4x(—1 — 2z + 342 + 723
x (1 —4z* — 42®) — 148z* — 642® 4 1322°)
56+ (=14 z) (=1 +22)(1 + = + 22°) —4x(—1+ 4z — 1622 + 592°
x (1 — 4x — 82® + 4a*) — 64z* +88x° — 1522° + 6427)
59+ (14 2z — 42? — 212° — 442* x(—4 — 4o + 8622 4 4482°
— 602° — 612° — 4627 +12162* + 22172° + 30242°
—24z% — 112%) (1 + 2z + 2*) + 312827 + 26002° + 17482°
+ 72020 + 385z™)
60+12,15,20 (1 + 3z + 822 + 32% + z%) —4x(1 + 2)(2 + 262 + 14523
x (14 4z 4 1022 + 42 + z*) + 48323 + 1013z* + 13792°
x (14 2)?(1 + 2+ 2?) +12572°% + 73627 + 2902°
+68z% + 92'0)
60+4,15,60 (1 —2)*(1 4+ z)? —4(—1+ 2)z(1 +2)(1 — 22
x (1 -z —2%)(1— 4z — %) — 922 + 312 — 312* — 432°
x (1 —z+ 22 + 23 + z%) +92° + 5327 + 462° + 927)
60+ (=1 + x)(—1 + 42)(1 + 42?) —4a(—1 + 8z — 402* + 832°
x (1 —x +42?) — 1602* + 1442°)
62+ (1 +2% —2%)(1 + 4z + 522 + 32%) (=2 + Tz + 7622 + 22423
x (1 -2z — 32 — 42° + 4a*) + 214x* — 72° — 4602°
—351z" — 802® + 288z7)
66+ (=14 z)(1 + 3z) (=1 + z + 827) —(1/4)x(4 — 147z — 1332>
x (1 — 42® + 42%) + 17562 — 264z*
—5468z5 4 4608z°)
66+6,11,66 (1 — x4+ z?)(1 — 3z — 4= —(1/4)x(—=20 + 97z — 10922
—32% + 2*)(1 — 3z 4 222 + 1332 — 770x* + 12862°
+ 2% + 22* — 325 + 29) — 12262° + 32527 — 7572°
+ 14412° — 8600 4 1442'")
69+ (1 — 22 4+ 2% (1 + 4z + 72? + 52°) (=24 15z + 8222 + 682°
x (1 =2z — 5z% + 62° — 3z*) — 186x* — 77z° + 61825

+ 51z — 480z + 3602°)
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Table 5 [cont.]

r w(z) R(x)
704+10,14,35 (1 + 3z + 2%)(1 + 2 + 422 —(1/4)x(28 + 305z + 16512°
+ 2 + ") (1 + 5z + 1027 +53732% + 117022 4 1890225
+ 1723 4+ 10z* 4 52 + ) +20462x° 4 167012” + 96432°
+3953z° 4+ 11082'Y + 144z'1)
71+ (1 + 4z + 522 + 23 4z(—1+ 2 + 3822 + 11223
— 3z —22° +27) + 292 — 3622° — 5632° + 2527
x (1 —72% — 112> 4 52* + 7172% + 4752° — 248210
+182° + 42° — 1127) — 372zt — 4222 + 132213)
7846,26,39 (1 + 3z 4 2% + 32° 4+ 2*) —x(8 + 96z + 5142? 4 16782
x (14 3z 4 52 + 32° + 2) +39162* + 6973z + 99702°
x (1 + 4z + 822 + 623 + 8z* + 1117327 4 103282® 4 76632°
+ 42° + 2°) + 437820 + 17412 + 428"
+492'3)
87+ (1—2z—2? —2%(1+ 22 (=2 — 172 + 622 4 12423
+ 322 + 323 (1 + 22 + 7a? + 6462 + 185125 — 299625
+ 62% + 132" + 42° + 82) + 377227 — 36362° + 25602°
— 1232210 + 288211
92+ (=142 — 227 +2°) —8x(—1+ 132 — 81z* + 3162°
x (=1 + 4z — 42 + 82%) — 8802 + 18512 — 29962°
x (1 — bz 4 1422 — 2523 + 377227 — 36362° + 25602°
+ 282% — 2025 4 82.°) — 123220 + 2882')
94+ (1 — 8z — 4827 + 25623 — 1024x*) 22(—1 — 15z + 2327 + 41723
x (1 — 20z + 1442 — 57623 — 7362* + 18512° — 29964°
+10242* — 10242°) + 377227 — 36362° + 25602°
x (1 — 36z + 464z% — 26242° — 1232210 + 28821
+ 7168z* — 133122°)
95+ (1 + da + 42? + 423) 4x(—3 — 40z — 1992 — 4032°
x (14 5z + 72% 4 52° + 2*) +1272* 4 25162° + 63092°
x (1 + 5z + 322 — 152% — 19z%) + 860627 + 70362° + 32642°
+570z'%)
105+ 14z — 23 (-1 -z + 527) (=10 — 1432 — 83222 — 24752°
x (14 5z 4 T2?) — 31462 + 30072 + 176362°
x (=1 — 4z — 42? + 423) + 2749627 +180002® +39602°)
110+ (14 3z + 2?)(1 + 3z + 527) 2(—10 — 143z — 83222 — 2475z
x (14 4x 4 822 + 42®) — 3146z* + 30072° + 1763625
x (14 2z 4 22 — 823) + 2749627 +180002°4-39602)
119+ (14 2z + 322 + 623 + 52%) (=2 — 17z — 662> — 2623

x (14 22 4 322 + 623 + 42 + o)

x (1 — 2z 4 32% — 62 — 725)

+ 190z* + 107725 4 35782°

+ 749227 + 128362° 4 177462°
+ 186922° + 15617z

+ 7644z 4 1680z*3)
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Table 6. Complete list of values of ti74(7) with [Q(t174(7)) :
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Q] < 2 for the group

I' = 17+. The value of 7 is listed by the coefficients (a, b, ¢) of its minimal polynomial.
Starred values correspond to the reciprocals of the singular values within the radius of
convergence of the corresponding Ramanujan—Sato series.

b — 4ac 7(a, b, c) t174(7)
—1411  (85,—17,5) 515 + 126117
—1411  (17,17,25)* —515 — 126+/17
—1003  (187,—=85,11) 7(—25+ 6y/17)
-1003  (17,17,19)* 7(—25 — 64/17)
—595  (85,—85,23)  1(—95+ 21V17)
—595  (17,-17,13)*  1(-95—21V17)
—427  (17,-27,17)" (254 33iV7)
—427  (17,-41,31)" (25 — 33iV7)
—408  (17,-34,23)" 254122
—408  (34,—68,37)* 25 —12V2
—340  (17,—34,22)* 2(6 +/85)
—340 (34,34, 11) 2(6 — /85)
-323  (51,—17,3) L(=27+ 7V17)
-323 (17, 717 9) (=27 - 7V17)
-187  (17,-17,7)*  —13
—136  (17,-34,19)*  3(7+3V17)
—136  (85,—102,31) 1(7-3V17)
—123  (17,-25,11)  —144iV/3
-123 (17,9, 3) —1—4iV/3
-115  (17,-19,7) 1(-15+iv/23)
-115 (17, 15 5) (15 —iv/23)
—100  (17,-28,13) 34 2iV5
—100  (17,-6,2) 3 —2iv5
—72  (34,-8,1) 2iv/3
-72  (17,-8,2) —2iv/3
—67  (17,-33,17) 7
—-64  (17,-2,1) 24 3v2
—64  (85,-66,13) 2 —3+/2
—-60  (17,-22,8) L(=7+3iV3)
—60  (17,-12,3) L(—7-3iV3)
—52  (17,-30,14) /13
—52  (34,-38,11) —/13
—51  (51,-51,13) -5
—43  (17,-29,13) 2
—36  (17,-24,9) —2+1iV3
-36  (17,-10,2) —2—1iV/3
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Table 6 [cont.]

b> —4ac  7(a,b,c) tir4(T)
—-35  (17,-21,7)  i(-7+iV7)
-35 (17,— 13 3)  A(=7-iVT)
—32  (17,-28,12) —1++/2
—32 (51, —40,8) —1-—+/2
-19  (17,-7,1) ~1
—~16 (17, 18 5 4
-15  (17,-23,8)  1(-5+4iV3)
-15  (17,-11,2)  1(-5—1iV3)
-8  (17,-20,6) -3
-4 (17,-8,1) -2

Table 7. Complete list of values of t114(7) with [Q(¢t114(7))

I'=11+
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: Q] < 2 for the group

b — dac 7(a, b, c) t114(7)
—1507  (11,11,37) 10(—3266 — 279V/137)
—1507  (143,-77,13)  10(—3266 + 279+/137)
—1243  (11,11,31) 2(—5902 — 5551/113)
—1243  (187,-231,73)  2(—5902 4 555v/113)
—1012  (11,0,23) 2(2183 4 465+/23)
—1012  (22,-22,17) 2(2183 — 4651/23)

-715  (55,—55,17) 2(—520 + 231/5)

—715  (11,11,19) 2(—520 — 231/5)

—627  (33,-33,13) 2(—322 + 551/33)

—627  (11,11,17) 2( 322 — 551/33)

—403  (11,9,11) 10(—26 + 3i/31)

—403  (11,-31,31) 10(—26 — 3i+/31)

—352  (11,-22,19) 103 + 33v/11

—352 (44, —44,13) 103 — 3311

—275  (33,-11,3) 2(—28 + 13V/5)

—275  (11,-11,9) 2(—28 — 13/5)

—220  (11,-22,16) 1(65 + 33V5)

—220  (77,—44,7) 1(65 — 33V/5)

—187  (11,—11,7) —50

—132  (11,-22,14) 10(1 + V/3)

-132  (22,-22,7) 10(1 — v/3)

—123  (11,-19,11) 2(8 + 5iv/3)

—123  (11,-25,17) 2(8 — 5iV/3)

—112  (11,-14,7) —14 +15i
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Table 7 [cont.|

b? — dac (a b, c) t114(7)
—112  (11,-8,4) —14 — 15i
-99 (11,—11 5) 18
—88 (11,—22 13) 16
-T2 (22,-4,1) 5(1+1iv/3)
-72 (22, 40 19)  5(1 —iv3)
55 (22,-11,2)  1(-13+3V5)
—55  (11,-11,4)  1(-13-3V/5)
-52  (11,-16,7)  —2+6i
—52  (11,-6,2) —2 —6i
—51  (11,— 13 5)  2(—4+iV3)
—51  (11,-9,3) 2(—4 — iv/3)
—43  (11,— 23 13) 10
—40  (11,-2,1) 1+3v5
—40 (22, — 20 5 1-3v5
-35  (11,-19,9) 25
—35  (33,-47,17) -2V5
—32  (11,-12,4) —7+i
-32  (11,-10,3) —7—i
—28  (11,-18,8) 1
—24  (11,-14,5) —5+iV/3
—24 (11 ,—8 2) -5 —1iV3
-19  (11,-5,1) -2
-1 (11, - 11 ,3) —6
-8  (11,-6,1) —4
-7 (22,— 31 ,11) =5
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Abstract (will appear on the journal’s web site only)

We compute Ramanujan—Sato series systematically in terms of Thomp-
son series and their modular equations. A complete list of rational and
quadratic series corresponding to singular values of the parameters is de-
rived.
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