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Ramanujan–Sato series for 1/π

by

Tim Huber (Edinburg, TX), Daniel Schultz (State College, PA) and
Dongxi Ye (Zhuhai)

1. Introduction. In his remarkable paper [19], Ramanujan recorded
a total of 17 series for approximating the number 1/π, of which one of the
most famous is

(1.1)
2
√
2

9801

∞∑
n=0

(
4n

2n

)(
2n

n

)2 26390n+ 1103

3964n
=

1

π
.

This was used by Gosper in 1985 to compute π up to 17 million digits (see
[2, pp. 32, 104, 202, 203, also 229]), then a world record. More incredible is
that the formula (1.1) was not proved to be true until two years later, by the
Borweins [5], using the theory of elliptic modular functions, through which
all of Ramanujan’s 17 formulas were proven. In the meantime, Ramanujan’s
series were studied by the Chudnovskys ([10], see also [4]), who succeeded
in extending Ramanujan’s list and deriving new series for 1/π of the same
form as Ramanujan’s. Interestingly, it was known [5, p. 188] that in both
the Borweins’ and the Chudnovskys’ work, a key ingredient for deriving the
relevant series for 1/π is Clausen’s identity for hypergeometric functions.
These facts motivated study of series for 1/π, tentatively called Ramanujan-
type series, of the form

(1.2)
∞∑
n=0

an
An+B

Cn
=

1

π
,

with Clausen-type transformation formulas as a starting point. However,
such a point of view was changed by Sato [20], who discovered a Ramanujan-
type series that did not require Clausen’s formula in its derivation. This new
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discovery opened the door to a larger family of series for 1/π of Ramanujan
type not restricted to the Clausen-type transformation framework. Thus, it
has now become common practice to give credit to Sato and call a series for
1/π of the form (1.2) a Ramanujan–Sato-type series.

Sato’s series motivated Chan, Chan and Liu [6] to derive a general Raman-
ujan–Sato-type series without using Clausen’s identity, and remarkably, they
showed that all the existing series for 1/π are special cases of their general
series. Roughly speaking, Chan et al. [6] showed that Ramanujan–Sato-type
series can be generally derived from certain complex functions with some
prescribed transformation properties which are, in particular, modular func-
tions and modular forms of weight 2. Besides giving a general interpretation
to Ramanujan–Sato-type series, the work of Chan et al. also provided a
systematic classification of these series according to the level of the modular
forms from which they are derived. In the latest terminology, we now call
Ramanujan’s formula (1.1) a series for 1/π of level 2.

Based on [6], theories of Ramanujan–Sato-type series corresponding to
various levels have been systematically studied and established by many
mathematicians. We refer the reader to Cooper’s recent book [13] for a nice
summary of work regarding levels 1–12, and to [1, 14, 15, 16, 17, 18, 26] for
levels ranging from 13 to 35, with some exceptions.

By a careful observation of the previous work, one may note that all of
these existing theories are related to some subgroup of SL2(R) of genus zero.
The connection between their developments and the genus zero property
of their associated subgroups has recently been explicitly indicated by the
authors of the present work in [18], in which they derive a brand new family
of Ramanujan–Sato series corresponding to Γ0(17)+, the group obtained
from Γ0(17) by adjoining its Fricke involution. By taking a Hauptmodul
for Γ0(17)+ as a starting point, whose existence is due to the genus zero
property of Γ0(17)+, they construct a family of series from this Hauptmodul
and its values at imaginary quadratic points. The prototype case in [18]
motivates the present work, in which the aim is to establish a general theory
of Ramanujan–Sato-type series and show how they naturally arise from the
general Hauptmodul for the so-called moonshine groups and their modular
equations. The study is limited to these groups because the corresponding
differential equations for the modular forms in terms of the Hauptmodul
have rational coefficients (cf. Theorem 2.1 below).

Much of the theory needed to derive Ramanujan–Sato series at each level
is well known and beautifully presented in a number of works. However, no
guide exists that incorporates comprehensive theoretical and algorithmic de-
tails allowing one to formulate complete classes of series at each level. The
following provides such a primer. For each genus zero subgroup and a corre-
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sponding Hauptmodul, a uniquely determined modular form of weight 2 will
be constructed in Section 2 that satisfies a third order differential equation
whose polynomial coefficients are explicitly determined. In Section 3, funda-
mental properties of the modular equation satisfied by each Hauptmodul are
derived. The other important contribution in the present work is a recipe
for a complete list of singular values of the Hauptmodul with fixed degree
over Q in a fundamental domain. Restricted singular values are established
from modular equations satisfied by the Hauptmodul. Formulas for coeffi-
cients of Ramanujan–Sato series of the form (1.2) are given in terms of the
singular values. This allows one to formulate all Ramanujan–Sato series in
which the coefficients have fixed degree over Q. We conclude the paper with
a set of tables collecting the q-expansions of the Hauptmoduln for the groups
from [12]; singular values for the Hauptmoduln of select levels; and explicit
formulations of the coefficients in the differential equations that give rise to
the series expansion defining the Ramanujan–Sato series.

2. Differential equations. In this section, we determine a procedure
for constructing a weight 2 modular form z from a Hauptmodul x for moon-
shine groups. This parameter z satisfies a linear third order differential equa-
tion with respect to x that can be described explicitly from the construction.
The form of the equation may be anticipated from a general theorem [22, 25].

Theorem 2.1. Let Γ be subgroup of SL2(R) commensurable with SL2(Z).
If t(τ) is a non-constant meromorphic modular function and F (t(τ)) is a
meromorphic modular form of weight k with respect to Γ , then F, τF, . . . , τkF
are linearly independent solutions to a (k+1)st order differential linear equa-
tion with coefficients that are algebraic functions of t. The coefficients are
rational functions when Γ \ H has genus zero and t generates the field of
modular functions on Γ . The differential equation takes the form

0 =
W (y, F, τF, . . . , τkF )

W (F, τF, . . . , τkF )
, W (f0, . . . , fm) = det

(
difj
dti

)
i,j=0,...,m

.(2.1)

We first recall that for a genus zero congruence subgroup Γ of SL2(R)
commensurable with SL2(Z), the function field on X(Γ ) can be generated
by a single modular function tΓ (τ), and such a function is called a Haupt-
modul for Γ if it has a unique simple pole of residue 1 at the cusp i∞,
i.e., it has Fourier expansion of the form q−1/h + c(0) + c(1)q1/h + · · · with
q = exp(2πiτ) at the cusp i∞ where h is the width of the cusp i∞. In their
Monstrous Moonshine paper [12], Conway and Norton proposed an inter-
esting family of congruence subgroups which are defined as follows. For any
natural number N and e ‖N , i.e., e |N and gcd(e,N/e) = 1, consider the
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set of so-called Atkin–Lehner involutions

We =

{(
ea b

Nc ed

) ∣∣∣∣ (a, b, c, d) ∈ Z4

ead− N
e bc = 1

}
.

Each We is a coset of Γ0(N) with the multiplication rule

WeWf ≡Wef/gcd(e,f)2 mod Γ0(N).

For any set of indices e closed under this rule, the group Γ =
⋃
eWe is a

subgroup of the normalizer of Γ0(N). Such a group is denoted as Γ0(N) +
We1 ,We2 , . . . ,Wer , or more succinctly as N+e1, e2, . . . , er. This is shortened
to N+ when all of the indices are present, and shortened to N− when
no indices (except 1) are present. It is known [12] that such a group of
genus zero is of particular interest due to its connection with the famous
moonshine conjecture, and we now call it amoonshine group. In [11], Conway,
McKay and Sebbar determined a full list of genus zero Γ0(N)+We1 , . . . ,Wer ,
whose Hauptmoduln have been constructed by Conway and Norton [12].
In Section 4, we explicitly list all of these groups and Hauptmoduln as a
reference for the reader.

Although polynomial coefficients in the differential equation from Theo-
rem 2.1 may be obtained by clearing denominators, we show next that for
each choice for x(τ) as a Möbius transformation of the Hauptmodul tΓ , there
exists a polynomial choice for w(x) resulting in an a priori polynomial expan-
sion in x for other parameters in the differential equation arising from The-
orem 2.1. For consistency, from this point on we assume the Hauptmodul tΓ
to be normalized with a pole at the cusp [i∞], i.e., tΓ (τ) = 1

q +O(q), which
is uniquely determined. We will later establish a class of Möbius transforma-
tions that, in some cases, decrease the degree of the polynomials appearing
in the differential equation. Here and throughout the paper, let

fx = x
df

dx
.

Theorem 2.2. For any choice of x(τ) as a Möbius transformation of the
Hauptmodul tΓ , there exists a polynomial w(x) and a weight 2 modular form
z = (log x)q/

√
w(x) such that

R =
2zzqq − 3z2q

z4

is a polynomial in x.

Proof. Around every point τ0 ∈ H where x(τ) does not have a pole, it
has an expansion of the form

(2.2) x(τ) = a+ (τ − τ0)r(b+ c(τ − τ0)1 + d(τ − τ0)2 +O(τ − τ0)3),
where r ≥ 1 is an integer and a 6= 0. Points τ0 where r ≥ 2 will be called
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ramification points and are finite in number modulo Γ , as these points corre-
spond to the zeros of the form x′(τ) of weight 2. Assume first that x(τ) has
its only pole at ∞ and that its zero is not at any cusp or ramification point.
Around every cusp τ = −D/C that is not Γ -equivalent to i∞, x(τ) has an
expansion of the form

(2.3) x(τ) = a+ bQ+ cQ2 + dQ3 +O(Q4),

where Q = exp
(
2πiAτ+BCτ+D

)
.

Set

(2.4) w(x) =
∏

τ0∈Γ\H
r=2

(
1− x

a

) ∏
τ0∈Γ\H
r≥3

(
1− x

a

)2 ∏
τ0∈Γ\Q
x(τ0)6=∞

(
1− x

a

)2

,

where the definitions of r and a in each case are as in (2.2) and (2.3), so that
w(0) = 1, and the finiteness of the first two products is guaranteed by the
valence formula for Γ .

Define the auxilary function

(2.5) P =
2ζζqq − 3ζ2q

ζ4
, where ζ = (log x)q,

and note that

(2.6) R = wP +
3w2

x

4w
− wxx.

As the function P is invariant under Γ , it is a rational function of x. Hence
R is also a rational function of x. By considering each of the following cases
separately, we may deduce that R has poles only at ∞, which means that it
is in fact a polynomial in x.

• Around the point τ0 ∈ H where r = 1, we have w = (α + β(x − a) +
γ(x− a)2 +O(x− a)3) and the series expansion

R

3
=
a2β2

4α
− 4αa2c2

b4
+

4αa2d

b3
− 2a2γ

3
− aβ

3
+
α

3
+O(τ − τ0).

• Around a point τ0 ∈ H where r = 2, we have w = (x− a)(α+ β(x− a) +
γ(x− a)2 +O(x− a)3) and the series expansion

R

3
= −3αa2c2

8b3
+
αa2d

2b2
− a2β

6
− αa

3
+O(τ − τ0).

• Around a point τ0 ∈ H where r ≥ 3, we have w = (x− a)2(α+ β(x− a)+
γ(x− a)2 +O(x− a)3) and the series expansion

R

3
=
a2α

3r2
+O(τ − τ0).
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• Around a point τ0 ∈ Q, we have w = (x− a)2(α+ β(x− a) + γ(x− a)2 +
O(x− a)3) and the series expansion

R

3
=

(
−a

2bβ

3
+

2αa2c

3b
− 2αab

3

)
Q+O(Q2).

Finally, we show that the existence of w is unaffected by changing the
function x by a Möbius transformation. Suppose that x is such that there
is a polynomial choice for w(x) such that R(x) is a polynomial in x. If x is
replaced by any new x′ with x = A′x′+B′

C′x′+D′ , then the new choice

w′(x′) = (C′x′ +D′)2+deg(w)w

(
A′x′ + B′

C′x′ +D′

)
is a choice for w′(x′) such that the new R′(x′) is also a polynomial in x′. Jus-
tification for this claim may be given as above. The extra 2 in the exponent
can be omitted if D′ = 0.

Theorem 2.3. If z, w,R are as in the last theorem, then the differential
equation for z with respect to x takes the form

(2.7) 2wzxxx + 3wxzxx + (wxx − 2R)zx −Rxz = 0,

with polynomial coefficients.

Proof. From Theorem 2.1, the third order linear equation satisfied by
f = z can be written

det


f fx fxx fxxx

(z) (z)x (z)xx (z)xxx

(z log q) (z log q)x (z log q)xx (z log q)xxx

(z log2 q) (z log2 q)x (z log2 q)xx (z log2 q)xxx

 = 0.

Using the conditions and definitions given,

x
∂

∂x
=

1

z
√
w
q
∂

∂q
, xq =

√
w zx, zqq =

3z2q
2z

+
Rz3

2
,

the vanishing of the determinant may be written as in the theorem.

Example 2.4. We first consider the level 1 case where Γ is the full
modular group. Define

x(τ) =
1

j(τ)
,

where the modular j-invariant j(τ) is given by

j(τ) = 1728
E3

4

E3
4 − E2

6

= tSL2(Z) + 744 =
1

q
+ 744 + 19688q +O(q2),
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with

E4 = E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
and E6 = E6(τ) = 1− 504

∞∑
n=1

n5qn

1− qn
,

the normalized Eisenstein series for SL2(Z) of weight 4 and 6, respectively.
Now

j′(τ) = −j(τ)E6

E4
,

from which it follows that the only zeros of j′(τ) occur at τ = i. Since

j(i) = 1728, x(i) =
1

j(i)
=

1

1728
,

we see that
x(τ) =

1

1728
+O((τ − i)2).

Therefore (2.4) implies
w(x) = 1− 1728x.

Since P is a modular function, it is a rational function of x. From (2.5), we
obtain

(2.8) P =
2x2xqqqxq − 3x2x2qq + x4q

x4q
,

Since xq has only a simple pole at i∞, the valence formula implies that the
number of zeros counting multiplicity of xq is bounded by b1/6 + 1c in x.
Thus, as a polynomial in x, the denominator of (2.8) is of degree at most
b2/3+ 4c. Similarly, one can check that the numerator of (2.8) has the only
pole at i∞ of order bounded by 2, so the number of zeros of P is bounded
by b1/6 + 2c. Therefore, for some coefficients ai, bi,

(2.9)
a0 + a1x+ a2x

2

b0 + b1x+ b2x2 + b3x3 + b4x4
− P = 0.

The vanishing of the coefficients of the q-expansion of the left side of (2.9)
implies a0 = b3 = b4 = 0, a1 6= 0 and
(2.10)

a2 = −
1

31
(6912a1), b0 = −

a1
1488

, b1 =
72a1
31

, b2 = −
1

31
(62208a1).

Hence, from (2.9)–(2.10),

(2.11) P =
48x(6912x− 31)

(1728x− 1)2
, R = 240x,

so that the weight 2 modular form

z(τ) =
1√

1− 1728x

x′(τ)

2πix(τ)
= 1 + 120q − 6120q2 + · · · =

√
E4
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satisfies

(1728x− 1)zxxx + 2592xzxx + 1104xzx + 120xz = 0.

One can verify that a holomorphic local solution at x = 0 to this equation
is given by

z = 3F2

(
1

6
,
1

2
,
5

6
; 1, 1;x

)
,

which coincides with Ramanujan’s result of signature 6 (see, e.g., [13, Chap-
ter 4]).

The previous example demonstrates a general method for computing P
as a rational function of x. The recipe is formalized in the next lemma.

Lemma 2.5. For a Hauptmodul x of Γ ≤ Γ0(N), we have P = f(x)/g(x)
for polynomials f, g with

deg f(x) ≤
⌊
1

6
[SL2(Z) : Γ0(N)] + 2

⌋
,

deg g(x) ≤
⌊
2

3
[SL2(Z) : Γ0(N)] + 4

⌋
.

Proof. Since P is invariant under Γ , it must be a rational function in x.
From (2.8), the poles of P occur only at the zeros of xq. Since xq has only
a simple pole at i∞, the valence formula implies that the number of zeros
counting multiplicity of xq is bounded by 1

6 [SL2(Z) : Γ0(N)] + 1, since xq
may be considered a modular form of weight 2 on some Γ ⊂ Γ0(N). Thus
the number of poles of P is bounded by 2

3 [SL2(Z) : Γ0(N)] + 4. Similarly,
since the numerator of P has the only pole at i∞ of order bounded by 2,
the number of zeros of P is bounded by 1

6 [SL2(Z) : Γ0(N)] + 2. Therefore,
P = f(x)/g(x) for some polynomials f and g in x of degrees up to the given
bounds. From these bounds and from

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

the coefficients of f and g may be determined from the q-expansion of P.

The construction in the last proof implies that knowledge of ramification
points of x(τ) is not needed to compute w(x). As it is only necessary to
compute the rational function P in (2.5), the calculations can stay in Q. The
polynomial w(x) can then be built up from factors of the denominator of P.
The resulting polynomial may not agree with that from Theorem 2.2 defined
in terms of ramification points of x. In some cases, a different choice of w(x)
can be made so that R(x) is a polynomial in x. The resulting degree of both
w(x) and R(x) may be less than the degree of the corresponding polynomials
in Theorem 2.2. We illustrate the optimization of the choice of w(x) in the
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next example. A full list of such choices for w(x) for each level is given in
Table 5 (see Section 4).

Example 2.6. For the group Γ = 7+, we have the normalized Haupt-
modul

t(τ) =
η(τ)4

η(7τ)4
+ 49

η(7τ)4

η(τ)4
+ 4 =

1

q
+ 51q + 204q2 + · · · .

The choice x(τ) = 1
t(τ) = q−51q3−204q4+ · · · and an application of Lemma

2.5 result in

P(x) =
24x2(109350x4 + 34020x3 + 414x2 − 527x− 34)

(9x+ 1)2(10x+ 1)2(18x− 1)2
.

The square root of the denominator of P(x) suggests that w(x) is at
least a cubic in x. However, if we make the Möbius transformation X =
(at+ b)/(ct+ d), then the denominator of P(x) = P(X) as a function of X
is given by

(2.12) (18a+b−18cX−dX)2(10a−b−10cX+dX)2(9a−b−9cX+dX)2.

It is impossible to choose c, d such that the expression (2.12) is the square
of a linear factor. The degree of the polynomial in (2.12) will be minimized
and non-constant when either

(2.13) d = −18c, d = 10c, or d = 9c.

Any of these choices will make (2.12) the product of two squared linear
factors. Choosing d = 9c leads to

(2.14) (9a− b)2(18a+ b− 27cX)2(10a− b− cX)2.

Later we will require that w(0) = 1. This means

(2.15) 9a− b = ±1, 18a+ b = ±1, 10a− b = ±1.

Only two of these eight sets of equations have a solution, namely a = 0 and
b = ±1. Therefore, with a = 0 and b = 1, (2.12) becomes

(2.16) (1 + cX)2(1− 27cX)2.

Hence, with c = 1, we have

x(τ) =
1

t(τ) + 9
= q − 9q2 + 30q2 + · · · .

This leads via (2.5) to

P =
3x(27x3 + 188x2 − 41x− 6)

(x+ 1)2(27x− 1)2
.
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With w(x) = (1 + x)(1 − 27x), equation (2.6) gives the polynomial R =
8x(1 + 3x). Finally, Theorem 2.3 gives the differential equation

(x+ 1)(27x− 1)zxxx + 3x(27x+ 13)zxx + 3x(26x+ 7)zx + 4x(6x+ 1)z = 0

for the function

z(τ) =
1√

(1 + x(τ))(1− 27x(τ))

x′(τ)

2πix(τ)
= 1 + 4q + 12q2 + · · ·

=
7E2(7τ)− E2(τ)

6
,

where E2(τ) denotes the Eisenstein series of weight 2 for SL2(Z) defined by

E2(τ) = 1− 24

∞∑
n=1

nqn

1− qn
.

The last equality coincides with Cooper’s result on the case of level 7 [13,
Theorem 7.23].

Since we have established a mechanism for deriving the polynomial w(x)
for which the differential equation for z with respect to x has polynomial
coefficients, we can attempt to write z as a power series in x and solve for
the coefficients An in the expansion

(2.17) z =
∞∑
n=0

Anx
n.

We will require A0 = 1, and the rest of the An to be integers when pos-
sible. As the q-series coefficients of the normalized Hauptmodul t(τ) are
integers, this will require that 1/x(τ) = t(τ) + C for some integer C such
that x(τ) = q+O(q2) with all integer coefficients. This will also require that
the polynomial w(x) has integer coefficients and constant term 1. The fact
that this last property can be satisfied will be clear in Section 3, where it
will be shown that the values of t(τ) at cusps and ramification points are al-
gebraic integers. The differential equation (2.7) implies a recurrence relation
for the series coefficients An in (2.17) of order

max
(
deg(w(x)),deg(R(x))

)
.

These sequences have appeared at many places in the literature and many
formulas for An are known (see [7] and the references therein). When the
order of the recurrence relation is 1, the solution for An follows immediately
in Table 1. When the order of the recurrence relation is higher, the formula
may be verified using other means such as the WZ-algorithm [23]. A label
from The Online Encyclopedia of Integer Sequences (OEIS) is given for each
indexed sequence.
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Table 1

Γ 1/x w(x) R(x)

Formula for An OEIS ref.

1+ t+ 744 1− 1728x 240x

An =
(
2n
n

)(
3n
n

)(
6n
3n

)
A001421

2+ t+ 104 1− 256x 48x

An =
(
2n
n

)2(4n
2n

)
A008977

3+ t+ 42 1− 108x 24x

An =
(
2n
n

)2(3n
n

)
A184423

4+ t+ 42 1− 64x 16x

An =
(
2n
n

)3 A002897

5+ t+ 16 1− 44x− 16x2 12x(1 + x)

An =
∑n
k=0

(
2n
n

)(
n
k

)2(k+n
k

)
A274786

6+ t+ 10 (1 + 4x)(1− 32x) 8x(1 + 12x)

An =
∑n
k=0

(
2n
n

)(
n
k

)3 A181418

7+ t+ 9 (1 + x)(1− 27x) 8x(1 + 3x)

An =
∑n
k=0

(
2k
n

)(
n
k

)2(k+n
k

)
=
∑n
k=0

(
n
k

)2(k+n
k

)(
2n−k
n

)
A183204

8− t (4x− 1)2(4x+ 1)2 64x2(1− 4x)(1 + 4x)

An =
∑n
k=0

(
2k
k

)2(2(n−k)
n−k

)2
A036917

9+ t+ 6 1− 18x− 27x2 3x(2 + 9x)

An =
∑n
k1=0

∑k1
k2=0

(
k1
k2

)(
n
k1

)2( n
k2

)(
k1+k2
n

)
A290576

10+ t+ 4 (1 + 4x)(1− 16x) 4x(1 + 15x)

An =
∑n
k=0

(
n
k

)4 A005260

12+ t+ 6 (4x− 1)(16x− 1) 8x(1− 8x)

An =
∑n
k=0

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
A002895

3. Modular equations and series for 1/π. We begin with the set of
matrices

∆∗n(N) =


(
α β

γ δ

)∣∣∣∣∣∣∣
gcd(α, β, γ, δ) = 1

αδ − βγ = n

N | γ, gcd(α,N) = 1

 ⊂ Z2×2.

The following lemma collects some facts proven in [8].
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Lemma 3.1. If gcd(n,N) = 1, then

(1) ∆∗n(N) has the decomposition

∆∗n(N) =
⊔

gcd(α,β,δ)=1
0≤β<δ
αδ=n

Γ0(N)

(
α β

0 δ

)
,

(2) and the double coset representation

∆∗n(N) = Γ0(N)

(
1 0

0 n

)
Γ0(N).

The following proposition is associated to a Hauptmodul x(τ) with the
Fourier expansion q−1 + O(1) at the cusp i∞. Note that in most instances
in the rest of the paper, including the derivation of the differential equation,
we take a Hauptmodul with the Fourier expansion q+O(q2) at the cusp i∞.

Proposition 3.2. Set x(τ)= tΓ (τ). For any integer n≥ 2 satisfying
gcd(n,N) = 1, there is a polynomial Ψn(X,Y ) of degree

ψ(n) = n
∏
q|n

q prime

(
1 +

1

q

)

in X and Y such that:

(1) Ψn(X,Y ) is irreducible and has degree ψ(n) in X and degree ψ(n) in Y .
(2) Ψn(X,Y ) is symmetric in X and Y .
(3) Ψn(X,X) has leading coefficient ±eΛ(

√
n), where Λ is the Mangoldt

function.
(4) The roots of Ψn(x(τ), Y )= 0 are precisely the numbers Y =x((ατ+β)/δ)

for integers α, β and δ such that αδ=n, 0≤β <δ, and gcd(α, β, δ)= 1.

Proof. This modular equation, without the computation of the leading
coefficient, is proven in [8, Section 2]. The polynomial Ψn can be written as

(3.1) Ψn(X,Y ) =
∏

(α,β,δ)=1
0≤β<δ
αδ=n

(
Y − x

(
ατ + β

δ

))
,

where the coefficients of Y k on the right hand side should be expressed as
polynomials in X for X = x(τ). This can be done since the coefficients
of Y k are symmetric polynomials in x

(ατ+β
δ

)
, and the product runs over

the equivalence class of the set of matrices of discriminant n modulo the ac-
tion of Γ0(N). Therefore, one can check that these polynomials are actually
modular functions for Γ0(N), and thus are polynomials in x(τ). The coeffi-
cient of Xψ(n)Y ψ(n) in Ψn(X,Y ) is the constant term of the product on the
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right hand side of (3.1), which is clearly non-zero because the function x(τ)
does not have poles at the cusps of H/Γ0(N). Therefore, Ψn(X,Y ) has the
claimed degree ψ(n) in X and Y . The symmetry can be proven by noting
that τ 7→ −1/(Nnτ) interchanges x(τ) and x(nτ).

For the third assertion, we first assume that n = p2t for some prime p
and positive integer t. Note that∏

(α,β,δ)=1
0≤β<δ
αδ=n

(
Y − x

(
ατ + β

δ

))

= Y ψ(n) +

ψ(n)∑
k=1

(−1)kSk
(
x(nτ), . . . , x

(
τ + n− 1

n

))
Y ψ(n)−k,

where Sk is a homogeneous symmetric polynomial of degree k in the variables

F =

{
x(nτ), . . . , x

(
τ + n− 1

n

)}
.

We know that Sk is a modular function for Γ0(N) with poles supported at
i∞ only, and thus it must be a polynomial in x(τ), which we will denote
by sk(X) for X = x(τ). The degree of sk(X) is determined by the order of
vanishing of Sk at τ = i∞. Since the Fourier expansion of x(τ) is of the form
q−1 +O(1), this order, in turn, is determined by terms of Sk with k factors
in which the sum of the order of vanishing of the factors at i∞ is maximized
under the constraints in the product (3.1). Define

Ek(τ) :=
∑
f∈F

f1 · · · fk.

From conditions in the product (3.1), non-constant factors of Ek consist of
x(p2tτ) and

x

(
p2t−mτ + j

pm

)
, 1 ≤ m ≤ 2t, j ∈ (Z/pmZ)×.(3.2)

The order of vanishing at i∞ of the expression in (3.2) is decreasing in m.
For m ≥ t, this order is less than or equal to 1. For m < t, the order of
vanishing is at least 2. In particular, for k = pt−1, the product of factors
comprising the unique term of Sk with the greatest order of vanishing is

Ept−1(τ) = x(p2tτ)
∏

1≤m≤t−1
j∈(Z/pmZ)×

x

(
p2t−mτ + j

pm

)
,

with each factor having order of vanishing at least p2. The order of vanishing
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of Ept−1(τ) at i∞ is

p2t +
t−1∑
m=1

(pm − pm−1)p2t−2m = p2t + p2t−1 − pt = ψ(n)− pt.

For k = pt−1+1, the terms of Sk with maximal order of vanishing ψ(n)−pt+1
are

Ept−1+1(τ) = x(p2tτ)
∑

j∈(Z/ptZ)×
Ept−1(τ)x

(
p2t−tτ + j

pt

)
.

Similarly, for k = pt−1 +2, the terms of Sk with maximal order of vanishing
ψ(n)− pt + 2 are

Ept−1+2(τ)

= x(p2tτ)
∑

j1<j2∈(Z/ptZ)×
Ept−1(τ)x

(
p2t−tτ + j1

pt

)
x

(
p2t−tτ + j2

pt

)
.

As k increases, each additional factor in the inductive formulation has order
of vanishing 1. Therefore, for pt−1 ≤ k ≤ pt, the order of vanishing of Ek(τ)
is ψ(n) − pt + k − pt−1. From the above calculations, and the fact that the
order of vanishing of X = x(τ) at i∞ is 1, we get

deg sk(X)Xψ(n)−k = 2ψ(n)− pt − pt−1, pt−1 ≤ k ≤ pt.

Since one fewer factor of order at least p2 appears in the product com-
prising terms of Ept−1−1 than in that for Ept−1 , the order of vanishing of
Ept−1−1(τ) is at most ψ(n) − pt − p2. Therefore, the contribution to the
degree of Ψn(X,X) is

deg spt−1−1(X)Xψ(n)−(pt−1−1) ≤ 2ψ(n)− pt − pt−1 + (1− p2)

< 2ψ(n)− pt − pt−1.

Similarly, for k ≤ pt−1 − 1, we have deg sk(x)Y
ψ(n)−k < 2ψ(n) − pt − pt−1.

For k > pt, we observe that products contributing to Ept+1(τ) have one more
factor of order at most p−2 than those for Ept(τ). Thus,

deg spt+1(X)Xψ(n)−(pt+1) ≤ 2ψ(n)− pt − pt−1 + (p−2 − 1)

≤ 2ψ(n)− pt − pt−1.

By similar reasoning, we see that deg sk(X)Xψ(n)−k < 2ψ(n) − pt − pt−1

for all k > pt. This shows that terms of maximal degree for Ψn(X,X) come
solely from terms of degree 2ψ(n)− pt − pt−1 in the polynomial
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pt∑
k=pt−1

(−1)ksk(X)Xψ(n)−k.(3.3)

The corresponding terms of Ψn(X,Y ) of maximal degree are, up to sign,

pt∑
k=pt−1

(−1)kEk(τ)Y ψ(n)−k

= (−1)pt−1
Y ψ(n)−pt−1

x(p2tτ)
∏

1≤m≤t−1
j∈(Z/pmZ)×

x

(
p2t−mτ + j

pm

)

+ (−1)pt−1+1Y ψ(n)−pt−1−1x(p2tτ)
∏

1≤m≤t−1
j∈(Z/pmZ)×

x

(
p2t−mτ + j

pm

)

×
∑

j∈(Z/ptZ)×
x

(
p2t−tτ + j

pt

)

+ (−1)pt−1+2Y ψ(n)−pt−1−2x(p2tτ)
∏

1≤m≤t−1
j∈(Z/pmZ)×

x

(
p2t−mτ + j

pm

)

×
∑

j1<j2∈(Z/ptZ)×
x

(
p2t−tτ + j1

pt

)
x

(
p2t−tτ + j2

pt

)

+ · · ·+ (−1)ptY ψ(n)−ptx(p2tτ)
∏

1≤m≤t
j∈(Z/pmZ)×

x

(
p2t−mτ + j

pm

)

= (−1)pt−1
Y ψ(n)−pt−1

Xψ(n)−pt

+ (−1)pt−1+1Y ψ(n)−pt−1−1Xψ(n)−pt+1
∑

j∈(Z/ptZ)×
ζjpt

+ (−1)pt−1+2Y ψ(n)−pt−1−2Xψ(n)−pt+2
∑

j1<j2∈(Z/ptZ)×
ζj1pt ζ

j2
pt

+ · · ·+ (−1)ptY ψ(n)−ptXψ(n)−pt−1
.

Thus the leading term of Ψn(X,X) is

(−1)pt−1
(
1−

∑
j∈(Z/ptZ)×

ζjpt +
∑
j1<j2

j1,j2∈(Z/ptZ)×

ζj1pt ζ
j2
pt + · · ·+ (−1)pt−pt−1

)
,
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where ζpt is the primitive ptth root of unity, which is

(−1)pt−1
∏

j∈(Z/ptZ)×
(1− ζjpt) = (−1)pt−1

p = (−1)pt−1
eΛ(
√
p2t).

Now for n a composite square with at least two distinct prime factors,
a similar argument can be applied, and one can check that the leading coef-
ficient of Ψn(X,X) turns out to be, up to sign,∏

j∈(Z/
√
nZ)×

(1− ζj√
n
) = 1 = e0 = eΛ(

√
n).

For n not a square, the contribution of terms with maximal degree in the
expansion of sk(x)xψ(n)−k over multiple values of k is due to factors of order 1

x

( n
mτ + j

m

)
,

which offset the decrease of the degree of xψ(n)−k when k increases by 1.
However, this will not occur for n not a square since, for m |n, we have
n
m2 6= 1, so the order of vanishing of each factor

x

( n
mτ + j

m

)
of Ek(τ) cannot be 1. By reasoning similarly to the base case and grouping
factors with contributions at least 1, we observe that the leading coefficient
of Ψn(x, x) has a coefficient, up to sign,∏

d|n

∏
j∈(Z/dZ)×

ζjd = 1 = e0 = eΛ(
√
n).

This establishes the claimed properties of the modular equation Ψn(X,Y ).

Proposition 3.3. Let X(τ) = t11+, where t11+ is as given in Table 3
(see Section 4). Then

Φ2(X,Y ) = 44− 56X + 20X2 −X3 − 56Y + 53XY

− 12X2Y + 20Y 2 − 12XY 2 +X2Y 2 − Y 3,

Φ3(X,Y ) = 144X2 + 24X3 +X4

− 112XY − 48X2Y − 57X3Y + 144Y 2 − 48XY 2

+ 24X2Y 2+18X3Y 2+24Y 3−57XY 3+18X2Y 3−X3Y 3+Y 4,

Φ4(X,X) = 2(−1 +X)2(11−X −X2)2(242− 176X + 54X2 −X3).

From these modular equations we can deduce that x(τ) is an alge-
braic integer when τ is quadratic irrational. A complete list of the τ where
[Q(x(τ)) : Q] ≤ 2 in the case of Γ = 17+ and Γ = 11+ is given in Tables 6
and 7, respectively.
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Proposition 3.4. There is a polynomial Υ (X, J) of the form

A0(X)J t +A1(X)J t−1 + · · ·+At(X),

where t = [Γ : Γ0(N)] for some Γ of level N with Hauptmodul x(τ), such
that Υ (x(τ), j(τ)) = 0.

Now suppose that τ ∈ H satisfies aτ2 + bτ + c = 0 with a > 0 and
gcd(a, b, c) = 1, and Q(τ) has no non-trivial roots of unity. If M ∈ ∆∗n(N)

and x(Mτ) = x(τ), then weMτ = τ for some we =
( αe β
γN δe

)
∈ W . Since the

non-trivial matrices fixing τ have the form
( x −cy
ay x+by

)
for x, y ∈ R and y 6= 0,

we see, after replacing x by ex, that(
eα β

Nγ eδ

)
M =

(
ex −cy
ay ex+ by

)
.

From this equality it follows that ex, y ∈ Z since gcd(a, b, c) = 1. Multiplying
this equality on the left by

(
0 −1
e 0

)−1 gives

(3.4)
( Nγ

e δ

−eα −β

)
M =

( a
ey x+ b

ey

−ex cy

)
.

Since the first matrix on the left hand side is in Γ (1) and M is primitive,
the matrix on the right must also be primitive. It follows that x, y ∈ Z,
gcd(ex, y) = 1, and e | gcd(a, b). Set

(3.5) Me(x, y) =

( a
ey x+ b

ey

−ex cy

)
.

The determinant of this matrix is the quadratic form

(3.6) |Me|(x, y) = ex2 + bxy +
ac

e
y2,

which equals n by (3.4). Now set Y (τ) = x(
(
0 −1
e 0

)
Meτ) and X = x(τ).

Notice that

(3.7)
1 + (∂XY )1/r

1− (∂XY )1/r
=
b+ 2ex/y√
b2 − 4ac

,

where r is the ramification index of the function x at τ . This implies that
the slopes of the tangents to Φn(X,Y ) = 0 at (X(τ), X(τ)) are never 0 or 1
and are distinct for different choices of Me(x, y) and fixed n = |Me|(x, y).
Therefore the modular equation Ψn(X,Y ) = 0 has only ordinary singularities
along the diagonal X = Y . Hence knowledge of Ψn and the value of the
tangent in (3.7) is sufficient to expand Y as a power series in X in the
neighborhood of the singular value.

Theorem 3.5 (Series for 1/π). Suppose τ0 ∈ H satisfies aτ20 +bτ0+c = 0
with a > 0 and gcd(a, b, c) = 1. Choose a matrix Me(x, y) with we ∈ Γ
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so that w−1e
(
0 −1
e 0

)
Me(x, y) ∈ ∆∗n(N) with n = |Me|(x, y). Let X0 be the

appropriate root of Ψn(X,X) = 0, and determine the series expansion of
Y (τ) = X(Mτ),

Y = X0 + ∂XY (X0)(X −X0) +
1
2∂

2
XY (X0)(X −X0)

2 + · · · ,

from the modular equation Ψn(X,Y ) = 0 and the value of ∂XY (X0) given
in (3.7). If Z denotes the function z(τ) as a function of X and W denotes√
w(τ), then

(3.8)
1

2π Im(τ0)
=W

(
X∂XZ+

(
1+

X∂XW

W
+

X∂2XY

∂XY (1− ∂XY )

)
Z

)∣∣∣∣
X=X0

.

Proof. Let τ0 be fixed by the matrix M =
( α β
γ δ

)
. There is an expansion

(3.9) x(Mt) = X0+∂XY (X0)(x(t)−X0)+
1
2∂XY (X0)(x(t)−X0)

2+· · · .

Applying 1
2πi

d
dτ to (3.9) gives

(3.10)
αδ − βγ
(γτ + δ)2

w(Mτ)x(Mτ)z(Mτ)

= (∂XY (X0) + ∂2XY (X0)(x(τ)−X0) + · · · )w(τ)x(τ)z(τ).

Setting τ = τ0 gives

(3.11) ∂XY (X0) =
αδ − βγ
(γτ0 + δ)2

,

which is in agreement with (3.7). Applying now 1
2πi

d
dτ to (3.10) gives

(3.12)
iγ

π

αδ − βγ
(γτ + δ)3

w(Mτ)x(Mτ)z(Mτ)

+
(αδ − βγ)2

(γt+ δ)4
{∂xw(Mτ)x(Mτ)z(Mτ)

+ w(Mτ)z(Mτ) + w(Mτ)x(Mτ)∂xz(Mτ)}w(Mτ)x(Mτ)z(Mτ)

= (∂2XY (X0) + · · · )w(τ)2x(τ)2z(τ)2

+ (∂XY (X0) + ∂2XY (X0)(x(τ)−X0) + · · · ){∂xw(τ)x(τ)z(τ)
+ w(τ)z(τ) + w(τ)x(τ)∂xz(τ)}w(τ)x(τ)z(τ).

Setting τ = τ0 and suppressing τ0 from the arguments, we get

(3.13)
iγ

π

αδ − βγ
(γτ0 + δ)3

WXZ +
(αδ − βγ)2

(γτ0 + δ)4
{XZ∂XW +WZ +WX∂XZ}WXZ

=W 2X2Z2∂2XY + ∂XY {XZ∂XW +WZ +WX∂XZ}WXZ.
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Transposing the second term on the left and dividing by ∂XY (1−∂XY )W 2XZ
while keeping in mind (3.11) gives

iγ

πW (1− ∂XY )(γτ0 + δ)
= X∂XZ +

(
1 +

X∂XW

W
+

X∂2XY

∂XY (1− ∂XY )

)
Z.

Simplifying the left hand side while keeping in mind that the minimal poly-
nomial of τ0 is aτ20 + bτ0 + c = 0 gives the desired series.

As Z =
∑∞

n=0AnX
n, the series for 1

π is of the form

(3.14)
1

π
=

∞∑
n=0

An(Bn+ C)Xn
0 .

The most tedious part of evaluating such a series for π is the calculation of
the coefficient of Z, which is the number C in (3.14). This requires the second
order term from the modular equation. Since an application of Theorem 3.5
implies a computation of Φn(X,Y ), which can be very large in practice, it
is necessary to give a more effective procedure.

Example 3.6. It should be remarked at this point that in their series

426880
√
10005

π
=

∞∑
n=0

(
2n

n

)(
3n

n

)(
6n

3n

)
13591409 + 545140134n

(−640320)3n
,

D. V. Chudnovsky and G. V. Chudnovsky do not specify how the number
13591409 was obtained. In similar series, J. M. Borwein and P. B. Borwein
indicated that this term was calculated using known approximations of π. By
rearranging Theorem 3.5 slightly, we see that what we are in fact calculating
is the value of

(3.15)
1

z(τ)

(
1

2πi Im(τ)
√
w(τ)

− x(τ)zx(τ)
)

for imaginary quadratic points τ .

Ramanujan’s series converge rapidly and have been used to calculate
record numbers of digits of π (cf. [3]). The extensions to formulas derived by
the Chudnovskys [10] are still the basis of most record-breaking calculations.
Less is known about the efficiency of subsequently derived series. A compre-
hensive study of the rate of convergence of Ramanujan–Sato series should
be undertaken. In the next remark, we provide evidence that Ramanujan’s
original series expansions converge more rapidly than series corresponding
to groups from [12] of higher level.

Remark 3.7. For a Hauptmodul t(τ) of level n, it is known [15] that
the Galois conjugates over Q of t(τ0), where τ0 = d+

√
d

2 , are t(τQ) as Q
ranges over Qd(n)/Γ0(n), where d is a negative fundamental discriminant,
Qd(n) denotes the set of positive definite quadratic forms aX2+ bXY + cY 2
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of discriminant d with (a, n) = 1, and τQ is the imaginary quadratic point
in H induced by the quadratic form Q. Then for two Hauptmoduln t1(τ) and
t2(τ) of level n1 and n2, respectively, with n1 |n2 and simple poles at i∞, the
rational norm of t1(τ0) is roughly larger than that of t2(τ0). This is apparent
since, by the assumption n1 |n2, the algebraic integrality of t2(τ0), and the
fact that t(τ0)� 1, we have

t2(τ0) ≈ t1(τ0)1/k

for some

k ≥ [Γ0(n1) : Γ0(n2)] =

(
n2
n1

)2 ∏
p|n2

p-n1

(1 + p−1).

By the surjection

Qd(n2)/Γ0(n2) � Qd(n1)/Γ0(n1),
one can see that roughly

NQ(t2(τ0)) ≈ NQ(t1(τ0))
r/k

where

r = [Qd(n2)/Γ0(n2) : Qd(n1)/Γ0(n1)] =
n2
n1

∏
p|n2

p-n1

(1− χd(p)p−1) < k.

Therefore, in the order of divisibility, a Ramanujan–Sato series of prime level
has a smaller dominant exponential decay term than a series of composite
level. Since Ramanujan’s series correspond to small levels, these tend to
converge more rapidly than most of the recently discovered series.

Theorem 3.5 shows that (3.15) is algebraic, and gives a rigorous proce-
dure for evaluating it. The procedure implied by Theorem 3.8 is much more
effective, as it essentially bounds the denominator of (3.15).

Theorem 3.8. Set t(τ) = tΓ (τ) and suppose that t(τ0) = t(Mτ0) for
some M ∈ ∆∗n(N). Suppose further that either t(τ) does not ramify at τ = τ0
or Q(τ0) contains no roots of unity. Let Ψn(T, S) be the modular equation
from Proposition 3.2.

(1) T0 = t(τ0) is a root of the monic polynomial Ψ(T, T ) ∈ Z[T ].
(2) Set S = s(τ) = t(Mτ), let k denote the multiplicity of T0 as a root of

Ψ(T, T ), and let η1, . . . , ηk be the set of tangents ∂TS to the modular
curve Ψ(T, S) = 0 at (T, S) = (T0, T0) as found, for example, in (3.7).
Then

k

(
∂kTΨ(T, T )

k!

∣∣∣∣
T=T0

)3( k∏
i=1

ηi
1− ηi

)2( ∂2TS

∂TS(1− ∂TS)

∣∣∣∣
T=T0

)
∈ Z[T0].
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(3) If x(τ) = αt(τ)+β
γt(τ)+δ is another choice of the Hauptmodul and y(τ) =

x(Mτ), then

∂2XY

∂XY (1− ∂XY )

∣∣∣∣
X=X0

=
γ(δ + γT0)

αδ − βγ
− (δ + γT0)

2

αδ − βγ
∂2TS

∂TS(1− ∂TS)

∣∣∣∣
T=T0

.

Proof. Item (1) is a restatement of Proposition 3.2, and (3) is a straight-
forward calculation. For (2), expand the modular equation in the form

Ψ(T0 + u, T0 + ηu) = f(η)uk + g(η)uk+1 +O(uk+2),

where f(η), g(η) ∈ Z[T0][η]. By the symmetry of Ψ , we know that f and g
are self-reciprocal polynomials and deg(f) ≤ k and deg(g) ≤ k + 1. In fact,
f has degree exactly k and its k distinct roots are the tangents to the modular
curve at (T0, T0), none of which is 0 or 1. By setting η = ηi to be one of
the actual tangents, which fixes the branch on which S lies, we arrive at the
equality

(3.16) ξ :=
∂2TS

∂TS(1− ∂TS)
=

2g(ηi)

ηi(1− ηi)f ′(ηi)
.

However, the presence of ξ in, for example, the main formula (3.8) of The-
orem 3.5 implies that its value is independent of the particular choice of
branch of the function S. Therefore, we have the identity

(3.17) ξf(0)f(1)η(1− η)f ′(η)
= 2f(0)f(1)g(η) + 2g(0)f(1)(1− η)f(η) + 2g(1)f(0)ηf(η)

of polynomials in Z[T0][η]. Since the leading coefficient of f(η) is also f(0),
extracting the coefficient of ηk in (3.17) shows that

(3.18) −kξf(0)f(1)f(0) ∈ Z[T0].

The proof of (2) is complete once the following formula for f(η) is substituted
into (3.18):

f(η) =

(
∂kTΨ(T, T )

k!

∣∣∣∣
T=T0

) k∏
i=1

η − ηi
1− ηi

.

Example 3.9. Let Γ = 7+, n = 11, and τ = τ(7, 7, 11). Table 2 lists
all roots of Ψ11(T, T ) = 0 and their multiplicities. In the table, M = T 4 −
2564T 3 − 184242T 2 − 2945940T − 24113575.

Accordingly,

Ψ11(T, T ) = (T − 116)2(T − 18)2(T + 1)2(T + 10)2(T + 17)2

× (T 2 + 10T + 225)2(T 2 + 1378T + 10593)2

× (T 4 − 2564T 3 − 184242T 2 − 2945940T − 24113575),
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Table 2

τ(a, b, c) Branch(es) and tangent value(s) Minimal polynomial for T0

(14,−14, 9) s = t
(
τ+5
11

)
, ∂TS = −1 M

(21,−14, 6) s = t
(
τ+7
11

)
, ∂TS = −1 M

(14,−14, 9) s = t
(
τ+5
11

)
, ∂TS = −1 M

(7, 0, 11) s = t
(
τ+0
11

)
, ∂TS = −1 M

(7, 7, 11)

(
s = t

(
τ+0
11

)
, ∂TS = − 15

22
+
√
−259
22

s = t
(
τ+1
11

)
, ∂TS = − 15

22
−
√
−259
22

)
T 2 + 1378T + 10593

(35,−21, 5)

(
s = t

(
τ+4
11

)
, ∂TS = − 15

22
+
√
−259
22

s = t
(
τ+2
11

)
, ∂TS = − 15

22
−
√
−259
22

)
T 2 + 1378T + 10593

(7,−14, 11)

(
s = t

(
τ+0
11

)
, ∂TS = 3

11
− 4
√
−7

11

s = t
(
τ+9
11

)
, ∂TS = 3

11
+ 4
√
−7

11

)
T − 116

(7,−4, 2)

(
s = t

(
τ+3
11

)
, ∂TS = − 9

11
− 2
√
−10
11

s = t
(
τ+9
11

)
, ∂TS = − 9

11
+ 2
√
−10
11

)
T 2 + 10T + 225

(7,−10, 5)

(
s = t

(
τ+6
11

)
, ∂TS = − 9

11
− 2
√
−10
11

s = t
(
τ+7
11

)
, ∂TS = − 9

11
+ 2
√
−10
11

)
T 2 + 10T + 225

(7,−7, 3)

(
s = t

(
τ+4
11

)
, ∂TS = − 13

22
+ 3
√
−35
22

s = t
(
τ+6
11

)
, ∂TS = − 13

22
− 3
√
−35
22

)
T + 17

(7,−14, 8)

(
s = t

(
τ+4
11

)
, ∂TS = − 103

121
+ 24

√
−7

121

s = t
(
τ+5
11

)
, ∂TS = − 103

121
− 24

√
−7

121

)
T − 18

(7,−3, 1)

(
s = t

(
τ+1
11

)
, ∂TS = 3

22
+ 5
√
−19
22

s = t
(
τ+8
11

)
, ∂TS = 3

22
− 5
√
−19
22

)
T + 1

(7,−7, 2)

(
s = t

(
τ+2
11

)
, ∂TS = − 103

121
+ 24

√
−7

121

s = t
(
τ+8
11

)
, ∂TS = − 103

121
− 24

√
−7

121

)
T + 10

and

f(1)(T ) :=
∂2TΨ(T, T )

2!
mod (T 2 + 1378T + 10593)

= −235318714261257(531055149531498561216467T
+ 4105373136885336979588851).

Therefore, when τ0 = (7, 7, 11) or (35,−21, 5), the following equation should
hold for some integers a0 and a1:

2(f(1)(T0))
3

(
11

37

)2( ∂2TS

∂TS(1− ∂TS)

∣∣∣∣
T=T0

)
= a0 + a1T0.
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Evaluating the third term on the left hand side numerically for τ0 = (7, 7, 11)
and (35,−21, 5) gives integer solutions for a0 and a1 of size about 180 decimal
digits, which is the minimum precision needed when applying Theorem 3.8
to this example.

Theorem 3.10. For each Hauptmodul x of Γ0(p)+, the following algo-
rithm results in a complete list of algebraic (τ, x(τ)) with [Q(x(τ)) : Q] ≤ 2:

Let P (x, j) be the polynomial relation between x(τ) and j(τ). For each
discriminant −1555 ≤ d ≤ −1:
(1) List all primitive reduced τ = τ(a, b, c) of discriminant d in a funda-

mental domain for PSL2(Z). Translate these values via a set of coset
representatives for Γ0(p)+ to a fundamental domain for Γ0(p)+.

(2) Factor the resultant of P (X,Y ) and the class polynomial

Hd(Y ) =
∏

(a,b,c) reduced, primitive
d=b2−4ac

(
Y − j

(
−b+

√
d

2a

))
.

The linear and quadratic factors of the resultant correspond to a complete
list of x = x(τ), for τ of discriminant d, such that [Q(x(τ)) : Q] ≤ 2.
Associate candidate values τ from Step (1) to x by numerically approxi-
mating x(τ). For each tentative pair, (τ, x), prove x = x(τ) by deriving
a modular equation for which x(τ) is a root.

Proof. We use well-known facts about the j-invariant [21]. For alge-
braic τ , the only algebraic values of j(τ) occur at Im(τ) > 0 satisfying
aτ2 + bτ + c = 0 for a, b, c ∈ Z, with d = b2 − 4ac < 0 not necessarily a
fundamental discriminant. Moreover, [Q(j(τ)) : Q] = h(d), where h(d) is the
class number. Since there is a polynomial relation P (x, j) between x and j
of degree W = [Γ : Γ0(N)] (cf. [8, Remark 1.5.3]), we have

[Q(j(τ)) : Q] ≤ [Q(j(τ), x(τ)) : Q] ≤W [Q(x(τ)) : Q],

and so values τ with [Q(x(τ)) : Q] ≤ 2 satisfy [Q(j(τ)) : Q] = h(d) ≤ 2W ,
which is a necessary condition for x(τ) being quadratic. Therefore, an ap-
propriate bound (from [24]) on |d| for which h(d) ≤ 2W allows us to ap-
ply the above steps to find a complete list of algebraic (τ, x(τ)) satisfying
[Q(x(τ)) : Q] ≤ 2.

Remark 3.11. Suppose that τ0 is an imaginary quadratic point arising
from a quadratic form Q(x, y) = ax2 + bxy + cy2 with (a,N) = 1 and
d = b2 − 4ac, a fundamental discriminant. For a Hauptmodul tΓ of level N ,
it is known [9] that tΓ (τ0) generates the ring class field of conductor N over
Q(
√
d). Then one has

[Q(tΓ (τ0) : Q] = h(N2d) =
h(d)N

[O×k : Ok(N)×]

∏
p|N

(
1−

(
d

p

)
1

p

)
,



24 T. Huber et al.

where Ok is the ring of integers of k = Q(
√
d) and Ok(N) is an order of

conductor N of k, i.e., a full rank Z-submodule of index N of Ok.
Remark 3.12. The differential equations resulting from Table 3 corre-

spond to results in the literature or improve upon those results by decreasing
the degree of the coefficients.

(1) For the cases Γ = 14+, 15+, Γ = 20+ and Γ = 21+, 22+, 33+, 35+,
the results given in Table 3 agree with those given in [16], [18] and [1]. The
explicit differential equations for the cases of Γ = 22+ and 33+ are omitted
in the original references, so we present them for the reader’s convenience.
The differential equation associated with Γ = 22+ is given by

x2(1− 8x)(4x3 − 4x2 + 1)
d3z

dx3
− 3x(96x4 − 90x3 + 8x2 + 12x− 1)

d2z

dx2

− (600x4 − 448x3 + 28x2 + 28x− 1)
dz

dx
− 2(120x3 − 66x2 + 2x+ 1)z = 0,

and the differential equation associated with Γ = 33+ is given by

x2(1− 2x− 11x2)(4x3 + 8x2 + 4x+ 1)
d3z

dx3

− 3x(154x5 + 288x4 + 140x3 + 22x2 − 3x− 1)
d2z

dx2

− (1188x5 + 1844x4 + 712x3 + 81x2 − 8x− 1)
dz

dx
− (660x4 + 808x3 + 228x2 + 15x− 1)z = 0.

(2) We improve the result for the case of Γ = 13+ given in [15]. The
authors of [15] obtained a third order differential equation of degree 7. Our
choice of Möbius transformation of t13+ results in a third order differential
equation of degree 5 as follows:

8x2(1 + x)(1− 10x− 27x2)
d3z

dx3
− 12x(135x3 + 148x2 + 27x− 2)

d2z

dx2

− 2(3x+ 2)(437x2 + 63x− 2)
dz

dx
− (693x2 + 350x+ 12)z = 0.

The differential equation for the case Γ = 17+ from Table 3 has lower
degree than the one given in our previous work [17], which is of degree 9.
The differential equation in the present work is of degree 6 and reads

x2(1− 6x− 27x2 − 28x3 − 16x4)
d3z

dx3

− 3x(3x+ 1)(16x3 + 18x2 + 12x− 1)
d2z

dx2

− (300x4+348x3+197x2+20x−1)
dz

dx
−(120x3+102x2+35x+1)z = 0.
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(3) The respective results in [13, Table 14.1, levels 8 and 9], [26] and [13,
pp. 420–421] do not correspond to the cases Γ = 8−, 9+, Γ = 16+ and
Γ = 18+ given here. Rather, the results from [13, 26] correspond to other
subgroups of SL2(R) in which Γ = 8− is of index 4, and Γ = 9+, Γ = 16+
and Γ = 18+ are of index 2. This explains why the formulas for An’s for
Γ = 8−, 9+ given in Table 1 are different from those given in [13, Table
14.1, levels 8 and 9]. For reference, we give relations between the x’s used
in [26, 13] (called X in both references), and the Hauptmoduln t8−, t9+, t16+
and t18+ defined in Section 4. The values of the parameters x used in [13,
Table 14.1, levels 8 and 9] are respectively

x =
t8−(t8− − 4)(t8− + 4)

(t28− − 8t8− − 16)2
and x =

t9+ + 6

t29+ − 6t9+ − 99
,

the value used in [26] is

x =
t16+ + 4

t216+ − 4t16+ − 28
,

and the corresponding value used in [13, pp. 420–421] is

x =
t18+ + 2

(t18+ + 5)2
.

4. Tables. The canonical Hauptmodul for each group from [12] is listed
in Table 3. Each Hauptmodul is written in normalized form except for those
given implicitly. The table uses the following notation for theta and eta
functions:

(4.1)

ηa = qa/24
∞∏
n=1

(1− qan), θa,b,c =

∞∑
x,y=−∞

q(ax
2+bxy+cy2)/2,

θxa,b,c =
∞∑

x,y=−∞
x odd

q(ax
2+bxy+cy2)/2, θya,b,c =

∞∑
x,y=−∞
y odd

q(ax
2+bxy+cy2)/2.

Moreover, we write tN+ for Γ = N+ and S(d,N) = tN+(τ) + tN+(dτ).
Those not given by formulas from [12] are determined from the q-expansions
of the Hauptmodul.

Table 3

Γ tΓ Γ tΓ

2− η241
η242

+ 24 4− η81
η84

+ 8

2+
η241
η242

+ 212
η242
η241

+ 24 4+
η482

η241 η244
− 24

3− η121
η123

+ 12 5− η61
η65

+ 6

3+
η121
η123

+ 36
η123
η121

+ 12 5+
η61
η65

+ 53
η65
η61

+ 6



26 T. Huber et al.

Table 3 [cont.]

Γ tΓ Γ tΓ

6+6 η122 η123
η121 η126

− 12 15+
η21η

2
5

η23η
2
15

+ 9
η23η

2
15

η21η
2
5
+ 2

6+3 η61η
6
3

η62η
6
6
+ 6 16− η8η

2
1

η2η
2
16

+ 2

6+2 η41η
4
2

η43η
4
6
+ 4 16+

η62η
6
8

η41η
4
4η

4
16
− 4

6+
η122 η123
η121 η126

+
η121 η126
η122 η123

− 12 17+
(θx1/2,0,17/2−θy1/2,0,17/2)

2

4η21η
2
17

− 2

7− η41
η47

+ 4 18− η6η
3
9

η3η
3
18

7+
η41
η47

+ 72
η47
η41

+ 4 18+2 η1η2
η9η18

+ 1

8− η41η
2
4

η22η
4
8
+ 4 18+9 η31η

2
6η

3
9

η32η
2
3η

3
18

+ 3

8+
η82η

8
4

η81η
8
8
− 8 18+18 η32η

3
9

η31η
3
18
− 3

9− η31
η39

+ 3 18+
η43η

4
6

η21η
2
2η

2
9η

2
18
− 2

9+
η123
η61η

6
9
− 6 19+

4θ22,2,10
(θ1,2,20−θ4,2,5)2

− 4

10− η2η
5
5

η1η
5
10
− 1 20+20 η24η

2
5

η21η
2
20
− 2

10+2 η21η
2
2

η25η
2
10

+ 2 20+4 η21η
2
4η

2
10

η22η
2
5η

2
20

+ 2

10+5 η41η
4
5

η42η
4
10

+ 4 20+
η82η

8
10

η41η
4
4η

4
5η

4
20
− 2

10+10 η62η
6
5

η61η
6
10
− 6 21+21 η23η

2
7

η21η
2
21
− 2

10+
η21η

2
2

η25η
2
10

+ 25
η25η

2
10

η21η
2
2
+ 2 21+3 η1η3

η7η21
+ 1

11+
θ22,2,6
η21η

2
11
− 6 21+ η1η3

η7η21
+ 7η7η21

η1η3
+ 1

12− η33η4
η1η

3
12
− 1 22+11 η21η

2
11

η22η
2
22

+ 2

12+12 η43η
4
4

η41η
4
12
− 4 22+

η21η
2
11

η22η
2
22

+
4η22η

2
22

η21η
2
11

+ 2

12+4 η41η
4
4η

4
6

η42η
4
3η

4
12

+ 4 23+
θ2,2,12
η1η23

− 3

12+3 η21η
2
3

η24η
2
12

+ 2 24+8 η21η6η
2
8η12

η2η
2
3η4η

2
24

+ 2

12+
η122 η126

η61η
6
3η

6
4η

6
12
− 6 24+24 η2η

2
3η

2
8η12

η21η4η6η
2
24
− 2

13− η21
η213

+ 2 24+
η22η

2
4η

2
6η

2
12

η21η
2
3η

2
8η

2
24
− 2

13+
η21
η213

+ 13
η213
η21

+ 2 25− η1
η25

+ 1

14+7 η31η
3
7

η32η
3
14

+ 3 25+ η1
η25

+ 5 η25
η1

+ 1

14+14 η42η
4
7

η41η
4
14
− 4 26+

η22η
2
13

η21η
2
26

+
η21η

2
26

η22η
2
13
− 2

14+
η31η

3
7

η32η
3
14

+
8η32η

3
14

η31η
3
7

+ 3 26+26 η22η
2
13

η21η
2
26
− 2

15+5 η21η
2
5

η23η
2
15

+ 2 27+ t227+ + 3t27+ + 3 =
η33η

3
9

η31η
2
27

15+15 η33η
3
5

η31η
3
15
− 3 28+7 η1η7

η4η28
+ 1
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Table 3 [cont.]

Γ tΓ

28+
η62η

6
14

η31η
3
4η

3
7η

3
28
− 3

29+
θx1/2,0,29/2−θy1/2,0,29/2

2η1η29
− 1

30+15 η3η5
η2η30

30+6,10,15 η31η
3
6η

3
10η

3
15

η32η
3
3η

3
5η

3
30

+ 3

30+3,5,15 η1η3η5η15
η2η6η10η30

+ 1

30+2,15,30 η3η5η6η10
η1η2η15η30

− 1

30+5,6,30 η22η
2
3η

2
10η

2
15

η21η
2
5η

2
6η

2
30
− 2

30+ η3η5η6η10
η1η2η15η30

+ η1η2η15η30
η3η5η6η10

− 1

31+
(θ2,2,16−θ4,2,8)3

8η31η
3
31

32+
η32η

3
16

η21η4η8η
2
32
− 2

33+11 η1η11
η3η33

+ 1

33+ η1η11
η3η33

+ 3 η3η33
η1η11

+ 1

34+
( θx1/2,1,9−θy9/2,1,1

2η1η17

)2
35+35 η5η7

η1η35
− 1

36+4 η1η4η18
η2η9η36

+ 1

36+36 η4η9
η1η36

− 1

36+
η1η4η

16
6 η9η36

η42η
6
3η

6
12η

4
18

+ 1

38+ 1
2

(√
1− 4(−t19+(τ)− t19+(2τ)− 4)− 1

)
39+39 η3η13

η1η39
− 1

39+ η3η13
η1η39

+ η1η39
η3η13

− 1

41+
θx3/2,2,15/2−θy3/2,2,15/2

2η1η41
− 1

42+6,14,21 η21η
2
6η

2
14η

2
21

η22η
2
3η

2
7η

2
42

+ 2

42+3,14,42 η2η6η7η21
η1η3η14η42

− 1

42+ η2η6η7η21
η1η3η14η42

+ η1η3η14η42
η2η6η7η21

− 1

44+
η42η

4
22

η21η
2
4η

2
11η

2
44
− 2

45+
η23η

2
15

η1η5η9η45
− 1

46+23 η1η23
η2η46

+ 1

46+ η1η23
η2η46

+ 2η2η46
η1η23

+ 1

47+
θ2,2,24−θ4,2,12

2η1η47
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Table 3 [cont.]

Γ tΓ

49+ t349+ + 2t249+ − t49+ − 1 =
η47

η21η
2
49

50+50 η2η25
η1η50

− 1

50+ t250+ + t50+ − 4 = S(2, 25)

51+ S(2, 19) = t2 + t− 4

54+ t2 + t+ 1 = η3η6η9η18
η1η2η27η54

55+ S(5, 11) = t5 − 10t3 − 5t2 + 16t

56+ η2η4η14η28
η1η7η8η56

− 1

59+
2θ6,2,10

θ2,2,30−θ6,2,10

60+12,15,20 η1η12η15η20
η3η4η5η60

+ 1

60+4,15,60 η2η3η5η12η20η30
η1η4η6η10η60

− 1

60+
η22η

2
6η

2
10η

2
30

η1η3η4η5η12η15η20η60
− 1

62+ t262+ + t62+ − 2 = S(2, 31)

66+6,11,66 η2η3η22η33
η1η6η11η66

− 1

66+ t266+ + t66 +−4 = S(2, 33)

69+ t369+ − 2t69+ − 3 = S(3, 23)

70+10,14,35 η1η10η14η35
η2η5η7η70

+ 1

71+
θ4,2,18−θ6,2,12

2η1η71

78+6,26,39 η1η6η26η39
η2η3η13η78

+ 1

87+ t387+ + t87+ − 3 = S(3, 29)

92+
η22η

2
46

η1η4η23η92
− 1

94+ t294+ + t94+ − 2 = S(2, 47)

95+ t595+ − 5t395+ + t95+ − 5 = S(5, 19)

105+ t3105+ − 2t105+ − 3 = S(3, 35)

110+ 1
2

(√
1− 4(−t55+(τ)− t55+(2τ))− 1

)
119+ t7119+ − 7t3119+ − 7t2119+ − 6t119+ − 7 = S(7, 17)

Table 4. Transformations x = 1/(tΓ + c) of the normalized Hauptmoduln that decrease
the degree D of the coefficients in the corresponding differential equation compared to
x = 1/tΓ

Γ c D Γ c D Γ c D

1+ 744 1 2− −24 1 2+ 104 1

3− −12 2 3+ 42 1 4− 8 2

4+ 24 1 5− −6 2 5+ 16 2

6− 3 4 6+6 12 2 6+3 −6 2

6+2 −4 2 6+ 10 2 7− −4 4

7+ 9 2 8− 4 4 8+ 8 2
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Table 4 [cont.]

Γ c D Γ c D Γ c D

9− −3 4 9+ 6 2 10− 1 6

10+2 −2 4 10+5 −4 3 10+10 6 3

10+ 4 2 11+ 6 3 12− 0 8

12+12 4 4 12+4 5 4 12+3 2 4

12+ 6 2 13− −2 6 13+ 3 3

14+7 −3 4 14+14 4 4 14+ 9 3

15+5 −2 4 15+15 3 4 15+ 4 3

16− 0 8 16+ 4 4 17+ 2 4

18− 0 12 18+2 −1 6 18+9 1 6

18+18 3 6 18+ 1 4 19+ 3 4

20+ 4 3 20+4 −2 6 20+20 2 6

21+21 2 6 21+3 −1 6 21+ 0 3

22+ 2 4 22+11 −2 6 23+ 2 6

24+8 −1 8 24+24 2 8 24+ 2 4

25+ 1 6 25− −1 10 26+26 2 7

26+ 0 4 27+ 3 7 28+7 −1 8

29+ 2 6 30+15 −1 12 30+6,10,15 −3 6

30+3,5,15 −1 6 30+2,15,30 1 6 30+5,6,30 2 6

30+ −1 4 31+ 0 6 32+ 2 8

33+11 −1 8 33+ 0 5 34+ 2 5

35+35 1 8 35+ 2 5 36+4 0 12

36+36 1 12 36+ 2 6 38+ 0 6

39+ 3 5 39+39 1 10 41+ 0 8

42+6,14,21 −2 8 42+3,14,42 1 8 42+ −1 5

44+ 2 6 45+ 1 6 46+ 0 8

46+23 −1 12 47+ 0 10 49+ 2 10

50+50 −1 8 50+ −1 8 51+ 2 7

54+ 1 10 55+ 1 7 56+ 1 8

59+ 0 12 60+12,15,20 −1 12 60+4,15,60 1 12

60+ 1 6 62+ 0 10 66+6,11,66 1 12

66+ 0 7 69+ 0 10 70+10,14,35 −1 12

71+ 0 14 78+6,26,39 −1 14 87+ 0 12

92+ 1 12 94+ 0 14 95+ −1 11

105+ −1 9 110+ −1 10 119+ 0 14

With the Hauptmodul x(τ) as given in Table 4, we list the parameters
w(x) and R(x) defining the differential equation (2.7) from Theorem 2.3.
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Table 5. Parameters w(x) and R(x) defining the differential equation (2.7) for the Haupt-
modul x(τ)

Γ w(x) R(x)

1+ 1− 1728x 240x

2− 1 + 64x −16x
2+ 1− 256x 48x

3− (1 + 27x)2 −3x(10 + 243x),

3+ 1− 108x 24x

4− (1− 16x)2 16x(1− 16x)

4+ 1− 64x 16x

5− 1 + 22x+ 125x2 −5x(2 + 25x)

5+ 1− 44x− 16x2 12x(1 + x)

6− (1 + x)2(1− 8x)2 −8x(1 + x)(1 + 4x)(−1 + 8x)

6+6 1− 34x+ x2 x(10− x)
6+3 (1 + 4x)(1 + 16x) −8x(1 + 8x)

6+2 1 + 14x+ 81x2 −3x(2 + 27x)

6+ (1 + 4x)(1− 32x) 8x(1 + 12x)

7− (1 + 13x+ 49x2)2 −x(18 + 433x+ 3430x2 + 9604x3)

7+ (1 + x)(1− 27x) 8x(1 + 3x)

8− (1− 4x)2(1− 8x)2 16x(1− 4x)(1− 8x)2

8+ 1− 24x+ 16x2 8x(1− 2x)

9− (1 + 9x+ 27x2)2 −12x(1 + 9x)(1 + 9x+ 27x2)

9+ 1− 18x− 27x2 3x(2 + 9x)

10− (1 + x)2(1− 4x)2(1 + 4x2) 4x(1 + x)(1− 4x)

× (1 + 3x+ 13x2 + 36x3)

10+2 (1 + 6x+ 25x2)2 −4x(2 + 38x+ 200x2 + 625x3)

10+5 (1 + 4x)(1 + 12x+ 16x2) −8x(1 + 10x+ 18x2)

10+10 (1− x)(1− 18x+ x2) x(28− 85x+ 9x2)/4

10+ (1 + 4x)(1− 16x) 4x(1 + 15x)

11+ 1− 20x+ 56x2 − 44x3 8x(1− 8x+ 11x2)

12− (1− x)2(1 + x)2 48(1− x)x2(1 + x)(1− 3x)

× (−1 + 3x)2(1 + 3x)2 × (1 + 3x)(1− 3x2)

12+12 (1 + x)2(1− 14x+ x2) 4x(1 + x)(1 + 8x− x2)
12+4 (1− 8x)2(1− 9x)2 24x(1− 8x)(1− 9x)(1− 12x)

12+3 (1− 4x)2(1− 4x+ 16x2) 8x(1− 4x)(1− 8x+ 32x2)

12+ (1− 4x)(1− 16x) 8x(1− 8x)

13− (1 + 5x+ 13x2)2 −12x− 236x2 − 1858x3

× (1 + 6x+ 13x2) − 7904x4 − 18252x5 − 19773x6

13+ (1 + x)(1− 10x− 27x2) x(12 + 175x+ 231x2)/4

14+7 (1 + x)(1 + 8x)(1 + 5x+ 8x2) −8x(1 + 4x)(1 + 7x+ 8x2)

14+14 1− 14x+ 19x2 − 14x3 + x4 x(6− 25x+ 34x2 − 4x3)
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Table 5 [cont.]

Γ w(x) R(x)

14+ (1− 4x)(1− 18x+ 49x2) x(10− 141x+ 392x2)

15+5 1 + 10x+ 47x2 + 90x3 + 81x4 −3x(2 + 23x+ 78x2 + 108x3)

15+15 (−1− x+ x2)(−1 + 11x+ x2) 4x(1 + 4x− 6x2 − x3)
15+ (1− 12x)(1− 2x+ 5x2) 3x(2− 11x+ 40x2)

16− (1− 2x)2(1 + 2x)2(1 + 4x2)2 −256x4(−1 + 2x)

16+ (1− 2x)2(1− 12x+ 4x2) 8x(1− 2x)(1− 8x+ 4x2)

17+ 1− 6x− 27x2 − 28x3 − 16x4 x(2 + 35x+ 68x2 + 60x3)

18− (1 + x)2(−1 + 2x)2 72x3(1 + x)(1− 2x)

× (1− x+ x2)2(1 + 2x+ 4x2)2 × (1− x+ x2)

× (1 + 2x+ 4x2)(1 + 4x3)

18+2 (1 + 2x+ 9x2)(1 + 3x+ 9x2)2 −3x(1 + 3x+ 9x2)

× (2 + 27x+ 81x2 + 243x3)

18+9 (1− 3x)2(1− 4x)2(−1 + 12x2) 12x(1− 3x)(1− 4x)

× (1− 3x− 33x2 + 108x3)

18+18 (1− 10x+ x2)(1− x+ x2)2 3x(1− x+ x2)

× (2− 11x+ 23x2 − 3x3)

18+ (1 + x)2(1 + 4x)(1− 8x) 24x2(1 + x)(2 + 5x)

19+ (1 + x)(1− 13x+ 35x2 − 27x3) x(6− 31x− 24x2 + 105x3)

20+ (1− 4x)(1− 12x+ 16x2) 8x(1− 10x+ 18x2)

20+4 (1 + x)2(1 + 5x)2(1 + 2x+ 5x2) −5x(1 + x)(1 + 5x)

× (2 + 13x+ 40x2 + 45x3)

20+20 (1 + x)2 x(1 + x)(2 + 25x+ 31x2

× (1− 8x− 2x2 − 8x3 + x4) + 47x3 − 9x4)

21+21 (1− x)2 4x+ 4x2 − 70x3

× (1− 6x− 17x2 − 6x3 + x4) + 16x4 + 52x5 − 9x6

21+3 (1 + x+ 7x2)2(1 + 5x+ 7x2) −(x/4)(20 + 257x+ 1453x2

+ 4487x3 + 9212x4 + 12348x5)

21+ (1 + 4x)(1− 2x− 27x2) −x(2− 47x− 240x2)

22+ (1− 8x)(1− 4x2 + 4x3) 4x(1− 3x)(1 + 4x− 10x2)

22+11 (1 + 4x+ 8x2 + 4x3) −8x(1 + 12x+ 57x2

× (1 + 8x+ 16x2 + 16x3) + 132x3 + 160x4 + 72x5)

23+ (1− x2 + x3) 4x(1− x− x2

× (1− 8x+ 3x2 − 7x3) + 12x3 − 15x4 + 14x5)

24+8 (1− x)2(1 + 2x)2 4x(1− x)(1 + 2x)(−1− 3x

× (1 + 4x+ 8x2 − 8x3 + 4x4) + 13x2 + 46x3 − 60x4 + 32x5)

24+24 (1− x)2(1 + x)2 −4(−1 + x)x(1 + x)(1 + x

× (1− 8x+ 2x2 + 8x3 + x4) − 22x2 + 3x3 + 25x4 + 4x5)

24+ (1 + 4x2)(1− 8x+ 4x2) −4x(−1 + 3x− 20x2 + 16x3)

25+ (1 + x− x2)2(1− 4x− 16x2) 20x2(1 + x− x2)(2 + 2x− 7x2)
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Table 5 [cont.]

Γ w(x) R(x)

25− (1 + 2x+ 5x2) −5x(1 + 5x+ 15x2 + 25x3 + 25x4)

× (1 + 5x+ 15x2 + 25x3 + 25x4)2 × (2 + 25x+ 125x2

+ 375x3 + 625x4 + 625x5)

26+26 (1− x)(1− 8x+ 8x2 − 18x3 (x/4)(20− 109x+ 339x2 − 521x3

26+ (1 + 4x)(1− 2x− 15x2 − 16x3) x(1 + 2x)(−2 + 35x+ 126x2)

27+ (1− 3x+ 3x2)2 12x(−1 + 3x)(1− 3x+ 3x2)

(1− 12x+ 36x2 − 36x3) × (−1 + 12x− 36x2 + 36x3)

28+7 (1 + 2x)2(1 + x+ 2x2) −8x(1 + 2x)(1 + 4x+ 8x2)

× (1 + 3x+ 4x2)(1 + 2x+ 8x2) × (1+7x+22x2+32x3+32x4)

29+ 1− 10x+ 23x2 − 10x3 6− 37x+ 26x2 + 68x3

− 15x4 + 20x5 − 16x6 − 132x4 + 140x5

30+15 (1− x2)2(1 + 4x− x2) 4x(1− x2)(1 + 2x− 9x2 − 31x3

× (1 + x+ 2x2 − x3 + x4) − 31x4 + 43x5 + 9x6

× (1 + x− x2) − 53x7 + 46x8 − 9x9

30+6,10,15 (1 + 3x+ x2)(1 + 6x+ x2) −x(10 + 123x+ 420x2

× (1 + 7x+ x2) + 375x3 + 106x4 + 9x5)

30+3,5,15 (1 + x)(1 + 4x) −4x(1 + 8x+ 40x2

× (1 + 4x2)(1 + x+ 4x2) + 83x3 + 160x4 + 144x5)

30+2,15,30 (1− 6x+ x2) −x(−2− 17x+ 28x2

× (1− x+ x2)(1 + 3x+ x2) − 53x3 − 26x4 + 9x5)

30+5,6,30 (1− 7x+ x2) −(x/4)(−20 + 77x+ 25x2

× (1− 3x+ x2)(1 + x+ x2) + 245x3 − 236x4 + 36x5)

30+ (1 + x)(1− 16x2)(1 + 5x) 4x(−1 + 4x+ 58x2 + 75x3)

31+ (1 + 4x+ 3x2 + x3) 4x(−1 + 5x+ 69x2

× (1− 17x2 − 27x3) + 180x3 + 161x4 + 60x5)

32+ (1− 2x+ 2x2)2 −8x(1− 2x+ 2x2)(−1 + 10x

(1− 8x+ 12x2 − 16x3 + 4x4) − 36x2 + 60x3 − 60x4 + 16x5)

33+11 (1 + x+ 3x2) −3x(2 + 25x+ 126x2

× (1 + 7x+ 28x2 + 59x3 + 407x3 + 810x4

+ 84x4 + 63x5 + 27x6) + 1137x5 + 918x6 + 432x7)

33+ (1− 2x− 11x2) x(−2 + 15x+ 152x2

× (1 + 4x+ 8x2 + 4x3) + 404x3 + 264x4)

34+ (1− x)(1− x− 4x2) −(x/4)(−28 + 197x

× (1− 9x+ 16x2) + 15x2 − 1484x3 + 1584x4)

35+35 (1 + x− x2) −x(−2− 9x− 14x2 − 47x3

× (1− 5x− 9x3 − 5x5 − x6) + 30x4 − 57x5 + 50x6 + 16x7)

35+ (1− 2x+ 5x2) x(6−61x+296x2−580x3+840x4)

× (1− 8x+ 16x2 − 28x3)

36+4 (−1 + x)2(1 + 2x)2 72(−1 + x)x3(1 + 2x)(1 + x+ x2)

× (1 + x+ x2)2(1− 2x+ 4x2)2 × (1− 2x+ 4x2)(1− 4x3)
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Table 5 [cont.]

Γ w(x) R(x)

36+36 (1− x2)2(1 + x+ x2)2 12(1− x2)x2(1 + x+ x2)

(1− 4x− 6x2 − 4x3 + x4) × (2 + 5x− x2 − 17x3

− 20x4 − 8x5 + 3x6)

36+ (1 + x)2(−1 + 3x)2 3x(1 + x)(1− 3x)

× (1− 6x− 3x2) × (2− 3x− 48x2 − 27x3)

38+ (1 + 4x+ 4x2 + 4x3) x(−2 + 15x+ 116x2

× (1− 2x− 7x2 − 8x3) + 316x3 + 392x4 + 280x5)

39+ (−1 + 4x)(−1 + 3x+ x2) 4x(3− 46x+ 210x2)

× (1− 11x+ 27x2) − 253x3 − 168x4

39+39 (1 + x)2 x(2 + 17x− 48x2 − 25x3

× (1− 7x+ 11x2 − 7x3 + x4) + 194x4 − 45x5 − 168x6

× (1 + x− x2 + x3 + x4) + 137x7 + 82x8 − 25x9)

41+ 1 + 4x− 8x2 − 66x3 x(1 + 2x)(−4 + 20x

− 120x4 − 56x5 + 53x6 + 174x2 + 240x3

42+6,14,21 (1 + x+ x2)(1 + 5x+ x2) −(x/4)(36 + 437x+ 1915x2

× (1 + 7x+ 16x2 + 7x3 + x4) + 3852x3 + 4443x4

+ 2517x5 + 660x6 + 64x7)

42+3,14,42 (1− 5x+ x2)(1− x+ x2) −(x/4)(−12 + 41x− 287x2

× (1 + x+ 4x2 + x3 + x4) + 360x3 − 639x4

+ 201x5 − 252x6 + 64x7)

42+ (1 + x)(1− 3x)(1 + 4x) −(x/4)(20 + 49x

× (1 + 5x+ 8x2) − 567x2 − 2508x3 − 2304x4)

44+ (−1 + 4x− 8x2 + 4x3) −8x(−1 + 12x− 57x2

× (−1 + 8x− 16x2 + 16x3) + 132x3 − 160x4 + 72x5)

45+ (1 + x− x2)(1− 3x+ 3x2) −(3x/4)(−4− 13x+ 123x2

× (1− 3x− 9x2) − 87x3 − 396x4 + 324x5)

46+ (1− 2x− 7x2) x(−2 + 23x+ 104x2 + 28x3

× (1 + 2x− 3x2 + x3) − 66x4+13x5−144x6+105x7)

× (1 + 2x+ x2 + x3)

46+23 (1 + x+ 2x2 + x3) −8x(1 + 13x+ 81x2 + 316x3

× (1 + 4x+ 4x2 + 8x3) + 880x4 + 1851x5 + 2996x6

× (1 + 5x+ 14x2 + 25x3 + 3772x7 + 3636x8 + 2560x9

+ 28x4 + 20x5 + 8x6) + 1232x10 + 288x11)

47+ (1 + 4x+ 7x2 + 8x3 + 4x4 + x5) 4x(−1− 3x+ 23x2 + 177x3

× (1− 5x2 − 20x3 − 24x4 − 19x5) + 560x4 + 1087x5 + 1347x6

+ 1098x7 + 500x8 + 114x9)

49+ (1− 4x+ 3x2 + x3)2 7x(1− 4x+ 3x2 + x3)

× (1− 10x+ 27x2 − 10x3 − 27x4) × (2− 27x+ 108x2 − 105x3

− 171x4 + 216x5 + 96x6)
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Table 5 [cont.]

Γ w(x) R(x)

50+ (1 + 4x)(1 + 3x+ x2)2 5x(1 + 3x+ x2)(−2− 13x+ 17x2

× (1 + 2x− 7x2 − 16x3) + 247x3 + 472x4 + 204x5)

50+50 (1 + 4x)(1 + 3x+ x2)2 5x(1 + 3x+ x2)(−2− 13x+ 17x2

× (1 + 2x− 7x2 − 16x3) + 247x3 + 472x4 + 204x5)

51+ (1− 8x+ 16x2 − 12x3) x(10− 141x+ 798x2 − 2488x3

× (1− 6x+ 15x2 − 22x3 + 17x4) + 4656x4 − 4996x5 + 2448x6)

54+ (1− x+ x2)2(1 + 4x3) 3x(1− x+ x2)(2− 15x+ 39x2

× (1− 6x+ 9x2 − 8x3) + x3 − 156x4 + 408x5

− 424x6 + 264x7)

55+ (1 + x− x2)(1− 7x+ 11x2) −4x(−1− 2x+ 34x2 + 7x3

× (1− 4x2 − 4x3) − 148x4 − 64x5 + 132x6)

56+ (−1 + x)(−1 + 2x)(1 + x+ 2x2) −4x(−1 + 4x− 16x2 + 59x3

× (1− 4x− 8x3 + 4x4) − 64x4 +88x5− 152x6 +64x7)

59+ (1 + 2x− 4x2 − 21x3 − 44x4 x(−4− 4x+ 86x2 + 448x3

− 60x5 − 61x6 − 46x7 + 1216x4 + 2217x5 + 3024x6

− 24x8 − 11x9)(1 + 2x+ x3) + 3128x7 + 2600x8 + 1748x9

+ 720x10 + 385x11)

60+12,15,20 (1 + 3x+ 8x2 + 3x3 + x4) −4x(1 + x)(2 + 26x+ 145x2

× (1 + 4x+ 10x2 + 4x3 + x4) + 483x3 + 1013x4 + 1379x5

× (1 + x)2(1 + x+ x2) + 1257x6 + 736x7 + 290x8

+ 68x9 + 9x10)

60+4,15,60 (1− x)2(1 + x)2 −4(−1 + x)x(1 + x)(1− 2x

× (1− x− x2)(1− 4x− x2) − 9x2 + 31x3 − 31x4 − 43x5

× (1− x+ 2x2 + x3 + x4) + 9x6 + 53x7 + 46x8 + 9x9)

60+ (−1 + x)(−1 + 4x)(1 + 4x2) −4x(−1 + 8x− 40x2 + 83x3

× (1− x+ 4x2) − 160x4 + 144x5)

62+ (1 + x2 − x3)(1 + 4x+ 5x2 + 3x3) x(−2 + 7x+ 76x2 + 224x3

× (1− 2x− 3x2 − 4x3 + 4x4) + 214x4 − 7x5 − 460x6

− 351x7 − 80x8 + 288x9)

66+ (−1 + x)(1 + 3x)(−1 + x+ 8x2) −(1/4)x(4− 147x− 133x2

× (1− 4x2 + 4x3) + 1756x3 − 264x4

−5468x5 + 4608x6)

66+6,11,66 (1− x+ x2)(1− 3x− 4x2 −(1/4)x(−20 + 97x− 109x2

− 3x3 + x4)(1− 3x+ 2x2 + 133x3 − 770x4 + 1286x5

+ x3 + 2x4 − 3x5 + x6) − 1226x6 + 325x7 − 757x8

+ 1441x9− 860x10 +144x11)

69+ (1− x2 + x3)(1 + 4x+ 7x2 + 5x3) x(−2 + 15x+ 82x2 + 68x3

× (1− 2x− 5x2 + 6x3 − 3x4) − 186x4 − 77x5 + 618x6

+ 51x7 − 480x8 + 360x9)
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Table 5 [cont.]

Γ w(x) R(x)

70+10,14,35 (1 + 3x+ x2)(1 + x+ 4x2 −(1/4)x(28 + 305x+ 1651x2

+ x3 + x4)(1 + 5x+ 10x2 + 5373x3 + 11702x4 + 18902x5

+ 17x3 + 10x4 + 5x5 + x6) + 20462x6 + 16701x7 + 9643x8

+ 3953x9 + 1108x10 + 144x11)

71+ (1 + 4x+ 5x2 + x3 4x(−1 + x+ 38x2 + 112x3

− 3x4 − 2x5 + x7) + 29x4 − 362x5 − 563x6 + 25x7

× (1− 7x2 − 11x3 + 5x4 + 717x8 + 475x9 − 248x10

+ 18x5 + 4x6 − 11x7) − 372x11 − 42x12 + 132x13)

78+6,26,39 (1 + 3x+ x2 + 3x3 + x4) −x(8 + 96x+ 514x2 + 1678x3

× (1 + 3x+ 5x2 + 3x3 + x4) + 3916x4 + 6973x5 + 9970x6

× (1 + 4x+ 8x2 + 6x3 + 8x4 + 11173x7 + 10328x8 + 7663x9

+ 4x5 + x6) + 4378x10 + 1741x11 + 428x12

+ 49x13)

87+ (1− 2x− x2 − x3)(1 + 2x x(−2− 17x+ 6x2 + 124x3

+ 3x2 + 3x3)(1 + 2x+ 7x2 + 646x4 + 1851x5 − 2996x6

+ 6x3 + 13x4 + 4x5 + 8x6) + 3772x7 − 3636x8 + 2560x9

− 1232x10 + 288x11)

92+ (−1 + x− 2x2 + x3) −8x(−1 + 13x− 81x2 + 316x3

× (−1 + 4x− 4x2 + 8x3) − 880x4 + 1851x5 − 2996x6

× (1− 5x+ 14x2 − 25x3 + 3772x7 − 3636x8 + 2560x9

+ 28x4 − 20x5 + 8x6) − 1232x10 + 288x11)

94+ (1− 8x− 48x2 + 256x3 − 1024x4) 2x(−1− 15x+ 23x2 + 417x3

× (1− 20x+ 144x2 − 576x3 − 736x4 + 1851x5 − 2996x6

+ 1024x4 − 1024x5) + 3772x7 − 3636x8 + 2560x9

× (1− 36x+ 464x2 − 2624x3 − 1232x10 + 288x11)

+ 7168x4 − 13312x5)

95+ (1 + 4x+ 4x2 + 4x3) 4x(−3− 40x− 199x2 − 403x3

× (1 + 5x+ 7x2 + 5x3 + x4) + 127x4 + 2516x5 + 6309x6

× (1 + 5x+ 3x2 − 15x3 − 19x4) + 8606x7 + 7036x8 + 3264x9

+ 570x10)

105+ (1 + x− x2)(−1− x+ 5x2) x(−10− 143x− 832x2 − 2475x3

× (1 + 5x+ 7x2) − 3146x4 + 3007x5 + 17636x6

× (−1− 4x− 4x2 + 4x3) + 27496x7+18000x8+3960x9)

110+ (1 + 3x+ x2)(1 + 3x+ 5x2) x(−10− 143x− 832x2 − 2475x3

× (1 + 4x+ 8x2 + 4x3) − 3146x4 + 3007x5 + 17636x6

× (1 + 2x+ x2 − 8x3) + 27496x7+18000x8+3960x9)

119+ (1 + 2x+ 3x2 + 6x3 + 5x4) x(−2− 17x− 66x2 − 26x3

× (1 + 2x+ 3x2 + 6x3 + 4x4 + x5) + 190x4 + 1077x5 + 3578x6

× (1− 2x+ 3x2 − 6x3 − 7x5) + 7492x7 + 12836x8 + 17746x9

+ 18692x10 + 15617x11

+ 7644x12 + 1680x13)
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Table 6. Complete list of values of t17+(τ) with [Q(t17+(τ)) : Q] ≤ 2 for the group
Γ = 17+. The value of τ is listed by the coefficients (a, b, c) of its minimal polynomial.
Starred values correspond to the reciprocals of the singular values within the radius of
convergence of the corresponding Ramanujan–Sato series.

b2 − 4ac τ(a, b, c) t17+(τ)

−1411 (85,−17, 5) −515 + 126
√
17

−1411 (17, 17, 25)∗ −515− 126
√
17

−1003 (187,−85, 11) 7(−25 + 6
√
17)

−1003 (17, 17, 19)∗ 7(−25− 6
√
17)

−595 (85,−85, 23) 1
2
(−95 + 21

√
17)

−595 (17,−17, 13)∗ 1
2
(−95− 21

√
17)

−427 (17,−27, 17)∗ 1
2
(25 + 33i

√
7)

−427 (17,−41, 31)∗ 1
2
(25− 33i

√
7)

−408 (17,−34, 23)∗ 25 + 12
√
2

−408 (34,−68, 37)∗ 25− 12
√
2

−340 (17,−34, 22)∗ 2(6 +
√
85)

−340 (34,−34, 11) 2(6−
√
85)

−323 (51,−17, 3) 1
2
(−27 + 7

√
17)

−323 (17,−17, 9)∗ 1
2
(−27− 7

√
17)

−187 (17,−17, 7)∗ −13
−136 (17,−34, 19)∗ 1

2
(7 + 3

√
17)

−136 (85,−102, 31) 1
2
(7− 3

√
17)

−123 (17,−25, 11) −1 + 4i
√
3

−123 (17,−9, 3) −1− 4i
√
3

−115 (17,−19, 7) 1
2
(−15 + i

√
23)

−115 (17,−15, 5) 1
2
(−15− i

√
23)

−100 (17,−28, 13) 3 + 2i
√
5

−100 (17,−6, 2) 3− 2i
√
5

−72 (34,−8, 1) 2i
√
3

−72 (17,−8, 2) −2i
√
3

−67 (17,−33, 17) 7

−64 (17,−2, 1) 2 + 3
√
2

−64 (85,−66, 13) 2− 3
√
2

−60 (17,−22, 8) 1
2
(−7 + 3i

√
3)

−60 (17,−12, 3) 1
2
(−7− 3i

√
3)

−52 (17,−30, 14)
√
13

−52 (34,−38, 11) −
√
13

−51 (51,−51, 13) −5
−43 (17,−29, 13) 2

−36 (17,−24, 9) −2 + i
√
3

−36 (17,−10, 2) −2− i
√
3
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Table 6 [cont.]

b2 − 4ac τ(a, b, c) t17+(τ)

−35 (17,−21, 7) 1
2
(−7 + i

√
7)

−35 (17,−13, 3) 1
2
(−7− i

√
7)

−32 (17,−28, 12) −1 +
√
2

−32 (51,−40, 8) −1−
√
2

−19 (17,−7, 1) −1
−16 (17,−18, 5) −4
−15 (17,−23, 8) 1

2
(−5 + i

√
3)

−15 (17,−11, 2) 1
2
(−5− i

√
3)

−8 (17,−20, 6) −3
−4 (17,−8, 1) −2

Table 7. Complete list of values of t11+(τ) with [Q(t11+(τ)) : Q] ≤ 2 for the group
Γ = 11+

b2 − 4ac τ(a, b, c) t11+(τ)

−1507 (11, 11, 37) 10(−3266− 279
√
137)

−1507 (143,−77,13) 10(−3266 + 279
√
137)

−1243 (11, 11, 31) 2(−5902− 555
√
113)

−1243 (187,−231,73) 2(−5902 + 555
√
113)

−1012 (11, 0, 23) 2(2183 + 465
√
23)

−1012 (22,−22,17) 2(2183− 465
√
23)

−715 (55,−55, 17) 2(−520 + 231
√
5)

−715 (11, 11, 19) 2(−520− 231
√
5)

−627 (33,−33, 13) 2(−322 + 55
√
33)

−627 (11, 11, 17) 2(−322− 55
√
33)

−403 (11, 9, 11) 10(−26 + 3i
√
31)

−403 (11,−31, 31) 10(−26− 3i
√
31)

−352 (11,−22, 19) 103 + 33
√
11

−352 (44,−44, 13) 103− 33
√
11

−275 (33,−11, 3) 2(−28 + 13
√
5)

−275 (11,−11, 9) 2(−28− 13
√
5)

−220 (11,−22, 16) 1
2
(65 + 33

√
5)

−220 (77,−44, 7) 1
2
(65− 33

√
5)

−187 (11,−11, 7) −50
−132 (11,−22, 14) 10(1 +

√
3)

−132 (22,−22, 7) 10(1−
√
3)

−123 (11,−19, 11) 2(8 + 5i
√
3)

−123 (11,−25, 17) 2(8− 5i
√
3)

−112 (11,−14, 7) −14 + 15i
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Table 7 [cont.]

b2 − 4ac τ(a, b, c) t11+(τ)

−112 (11,−8, 4) −14− 15i

−99 (11,−11, 5) −18
−88 (11,−22, 13) 16
−72 (22,−4, 1) 5(1 + i

√
3)

−72 (22,−40, 19) 5(1− i
√
3)

−55 (22,−11, 2) 1
2
(−13 + 3

√
5)

−55 (11,−11, 4) 1
2
(−13− 3

√
5)

−52 (11,−16, 7) −2 + 6i

−52 (11,−6, 2) −2− 6i

−51 (11,−13, 5) 2(−4 + i
√
3)

−51 (11,−9, 3) 2(−4− i
√
3)

−43 (11,−23, 13) 10
−40 (11,−2, 1) 1 + 3

√
5

−40 (22,−20, 5) 1− 3
√
5

−35 (11,−19, 9) 2
√
5

−35 (33,−47, 17) −2
√
5

−32 (11,−12, 4) −7 + i

−32 (11,−10, 3) −7− i
−28 (11,−18, 8) 1
−24 (11,−14, 5) −5 + i

√
3

−24 (11,−8, 2) −5− i
√
3

−19 (11,−5, 1) −2
−11 (11,−11, 3) −6
−8 (11,−6, 1) −4
−7 (22,−31, 11) −5
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Abstract (will appear on the journal’s web site only)
We compute Ramanujan–Sato series systematically in terms of Thomp-

son series and their modular equations. A complete list of rational and
quadratic series corresponding to singular values of the parameters is de-
rived.
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