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Borsuk–Ulam type theorems for G-spaces with
applications to Tucker type lemmas

Oleg R. Musin and Alexey Yu. Volovikov

Abstract

In this paper we consider several generalizations of the Borsuk–Ulam theorem for

G-spaces and apply these results to Tucker type lemmas for G-simplicial complexes

and PL-manifolds.

Keywords: Borsuk–Ulam theorem, Tucker’s lemma, G–space, G–index

1 Introduction

The classical Borsuk–Ulam theorem [4] states that for any continuous mapping f : Sd → Rd

there is a point x ∈ Sd such that f(−x) = f(x). In the same paper [4] Borsuk showed that
this result is equivalent to the following statement:

Theorem A. For any continuous mapping f : Bd → R
d such that f is odd on the boundary

∂ Bd = Sd−1, there exists a point x ∈ Bd such that f(x) = 0 ∈ Rd.

In [19] it was shown that similar statement holds in a case when Sd−1 = ∂Md where Md

is a manifold. In [23] we extended this result for more general spaces. Namely we considered
a space X with a closed subspace Y ⊂ X which is a free Z2-space (such a space is called
bounded). In [23] we discussed conditions on X and Y under which for any map f : X → Rd

such that f |Y : Y → Rd is equivariant there exists a point x ∈ X such that f(x) = 0 ∈ Rd.
Note that Theorem A follows from odd mapping theorem that states “Every contin-

uous odd mapping h : Sd → S
d has odd degree”, in particular, any odd mapping h : Sd → S

d

can not be homotopic to zero (see [1], [13], [14], [22, Sect. 2]). This theorem follows also from
the Conner–Floyd generalization of the Borsuk–Ulam theorem given in [8]. In [22] the odd
mapping theorem has been extended for BUT–manifolds.

One more Conner–Floyd’s generalization of odd mapping theorem is in their earlier
paper [7], where they proved that if there is an equivariant map h : X → Y of free
Z2–spaces X and Y with the same Yang’s cohomological index [35] which equals n, then
h∗ : Hn(Y ;Z2) → Hn(X ;Z2) is a nontrivial homomorphism (of nonzero groups). In [23] we
used this fact as well as other properties of indexes of the free Z2–spaces.
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In this paper as a main tool in our considerations we use indexes of G-spaces where G
is a finite group. For groups other than Z2 indexes were introduced by Yang, Wu, Schwarz,
Conner–Floyd and others.

In this paper we prove G-analogs of the above results for maps of G–spaces where G is
a finite group. We use G-analogs of the odd mapping theorem such as the Krasnosel’skii
theorem on the degree of G-maps of a sphere and G–analogs of the Conner–Floyd result on
cohomological indexes of free Z2–spaces.

Let X be a free G-space. As a main tool in our consideration we use indexes of G-spaces,
topological index t-indGX and cohomological index indGX , whose definitions and properties
are given in Sections 2 and 3 respectively.

In Section 4 we give first applications of cohomological index and present generalizations
of Dold’s results from his highly cited paper [10]. In particular we discuss nonexistence of the
equivariant map X ∗G→ X for compact or finite-dimensional paracompact free G-space X
proved in [32] with the help of the cohomological index (alternative proof is given in [25]).
We show that this fact follows directly from one of Dold’s result proved in his paper [10].
Besides we give homological versions of Dold’s results proved in [10].

In Sections 5 and 6 we use these notions to obtain G–generalizations of Theorem A.
Assume that G can act freely on S

d−1. Then there is an obvious semi-free G-action on
Rd with the unique fixed point 0 ∈ Rd (and free on Rd \ 0). Note that the degree of any
equivariant map Sd−1 → Sd−1 equals 1 modulo |G| (see [14]). Actually, it implies that for
any continues map f : Bd → Rd which is equivariant on the boundary the zero set f−1(0) is
not empty. Theorem 5.5 extends this fact for a case when Sd−1 is embedded into a space X .

In particular, Theorems 5.1–5.3 for G-spaces imply the following result for manifolds (or
pseudomanifolds):

Theorem 5.4. Let Mn be a compact connected orientable manifold (or a pseudomanifold)
with the connected boundary ∂M , and assume that G can act freely on ∂M . Consider a
continuous mapping f : M → Rn such that f |∂M : ∂M → Rn is an equivariant map, where
Rn is considered as a semifree G-space with the unique fixed point in the origin 0 ∈ Rn. If
indG ∂M = n− 1 then the zero set Zf = f−1(0) is not empty.

In Section 6 we discuss an alternative approach for G-versions of the Borsuk–Ulam the-
orem and prove also Bourgin–Yang type theorems for G-spaces.

Last section is devoted to G-versions of the Tucker lemma [28], which is known to be a
discrete analog of the Borsuk–Ulam theorem.

Let T be some triangulation of the d-dimensional ball Bd. We call T antipodally symmetric
on the boundary if the set of simplices of T contained in the boundary ∂ Bd = Sd−1 of the
ball Bd is an antipodally symmetric triangulation of Sd−1, that is if s ⊂ S

d−1 is a simplex of
T , then −s is also a simplex of T .
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Theorem B. (Tucker’s lemma) Let T be a triangulation of Bd that is antipodally sym-
metric on the boundary. Let

L : V (T ) → {+1,−1,+2,−2, . . . ,+d,−d}

be a labeling of the vertices of T that satisfies L(−v) = −L(v) for every vertex v on the
boundary. Then there exists an edge in T that is complementary, i.e. its two vertices are
labeled by opposite numbers.

Consider also the following version of Tucker’s lemma:

Theorem C. Let T be a centrally symmetric triangulation of the sphere Sd. Let

L : V (T ) → {+1,−1,+2,−2, . . . ,+d,−d}

be an equivariant labeling, i.e. L(−v) = −L(v)). Then there exists a complementary edge.

It is well known, see [17], that these theorems are equivalent to the Borsuk–Ulam theorem.

Let X be a finite simplicial complex, V (X) denote its vertex set and C be a finite set that
we call the set of colors. Recall that a C–labeling (coloring) of V (X) is a map V (X) → C.
In case X is a finite G-simplicial complex and C is a G-set we say that a C–labeling is
equivariant if the map V (X) → C is equivariant. When C = G × {1, . . . , n} we call a C–
labeling a (G, n)–labeling. Thus, a (G, n)-labeling prescribes to each vertex some pair (g, k),
g ∈ G, k ∈ {1, . . . , n}. In what follows we consider G×{1, . . . , n} with the following G-action:
h · (g, k) = (hg, k).

An edge of X is called complementary if labels of its vertices are (g1, k1) and (g2, k2) with
g1 6= g2 and k1 = k2.

If G = Z2
∼= C2 = {1,−1} is the cyclic group of order 2 then a (G, n)–labeling is a

Tucker labeling. Indeed, it follows from the obvious bijection (±1, k) ↔ ±k between sets
{1,−1} × {1, . . . , n} and {+1,−1,+2,−2, . . . ,+n,−n}.

The main result of Section 7 is the following extension of Tucker’s lemma:

Theorem 7.1. Let X be a simplicial complex with a free simplicial G-action. Then
t-indGX ≥ n if and only if for any equivariant (G, n)–labeling of the vertex set of an
arbitrary equivariant triangulation of X there exists a complementary edge.

We consider also Tucker type lemmas for bounded spaces. In particular, Theorem 7.2
yields the following theorem for manifolds:

Theorem 7.3. Let Mn be a connected compact orientable PL–manifold such that its bound-
ary ∂M is homeomorphic to the sphere Sn−1. Let T be a triangulation of M . Suppose that
there exists a free simplicial action of a finite group G on ∂T . Then for any (G, n)–labeling
of V (T ) that is an equivariant on ∂T there exists a complementary edge.

In what follows we assume that all spaces in consideration are paracompact.
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2 Topological index

Consider a group G as a discrete free G-space. Let Jm(G) = G∗· · ·∗G be the join ofm-copies
of G with the diagonal action of G.

Definition 2.1. Let X be a free G-space. Topological index t-indGX equals minimal n such
that there exists an equivariant map X → Jn+1(G). If no such n exists, then t-indGX = ∞.

Correctness of this definition follows from the fact (discussed below) that there exists no
equivariant map Jn+1(G) → Jn(G).

Remark 2.1. 1) We can take EG = G∗· · ·∗G∗· · · = J∞(G) as a total space of the universal
G-bundle EG → BG.

2) If G = Z2 then Jm+1(Z2) is equivariantly homeomorphic to Sm, since SY = Y ∗ Z2,
where SY is the suspension, and

Sm = SSm−1 = Sm−1 ∗ Z2 = Sm−2 ∗ Z2 ∗ Z2 = · · · = Jm+1(Z2).

3) For a cyclic group G = Zq, q > 2, we can take in the definition of index the following
sequence of test spaces: G, S1, S1 ∗G, S3, S3 ∗G, S5, S5 ∗G, . . . , where each odd dimensional
sphere is considered with some free action of G = Zq. For example we can use the following
free action of Zq on spheres. Let S2n−1 be considered as a standard unit sphere in Cn. Then
the generator of G acts as multiplication of coordinates of n-tuples by e2πi/q.

The main property of the topological index:

If X → Y is equivariant then t-indGX ≤ t-indG Y .

It is not hard to see that if X is either compact, or paracompact and finite-dimensional,
then t-indGX <∞, in the second case t-indGX ≤ dimX . For the proof one can use nerves
of G-invariant coverings of a G-space and the fact that Jn+1(G) is n-universal, i.e. any G-
CW -complex of dimension not exceeding n can be mapped equivariantly to Jn+1(G). If G
can act freely on a sphere of some dimension N then this sphere is N -universal.

The equality t-indG Jn+1(G) = n provides correctness of the definition of topological
index. This fact can be proved using (co)homological index (see next section), which is a
lower bound for topological index. Proofs that don’t use cohomological indexes can be found
in [17]. One more or less elementary proof is sketched below.

We need to show that there exists no equivariant map JN+1(G) → JN (G) for any N .
Let us call continuous equivariant map of G-spaces also as a G-map. Obviously a G-map
J2(G) = G ∗ G → J1(G) = G cannot exist, since G ∗ G is connected while G is not. Thus
we can assume that N > 1.

First let G = Zp and suppose that a G-map JN+1(G) → JN (G) exists for some N > 1. If
p = 2, then this map is just a map of spheres and the contradiction follows from the Borsuk–
Ulam theorem. If p is odd then taking join with G we obtain also a G-map JN+2(G) →
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JN+1(G). One of N +1 and N+2 is even, say equals 2m, hence we have a G-map J2m(G) →
J2m−1(G). Taking the composition of this map with the embedding J2m−1(G) ⊂ J2m(G) we
obtain an equivariant nullhomotopic map J2m(G) → J2m(G). Now there exist equivariant
maps S2m−1 → J2m(G) and J2m(G) → S2m−1. Taking composition of these three maps we
obtain an equivariant nullhomotopic map S2m−1 → S2m−1, a contradiction, since the degree
of an equivariant map of spheres equals 1 modulo order of G by Krasnosel’skii theorem
(see e.g. [13, 14]). Also at this point one can apply Dold’s arguments [10] (based only on
the notion of fixed point index) showing that an equivariant selfmap of a sphere cannot be
nullhomotopic.

In general case let G0 be any nontrivial subgroup of G. Consider Jn(G) as a G0-space.
Then it is easy to see that Jn(G) like Jn(G0) is a (n − 1)-universal G0-space. Hence there
exist G0-maps Jn(G0) → Jn(G) and Jn(G) → Jn(G0). Therefore the existence of a G-map
JN+1(G) → JN (G) implies the existence of a G0-map JN+1(G0) → JN (G0). To finish the
proof it remains to take G0

∼= Zp where p is any prime divisor of the order of G .

Remark 2.2. For G = Z2 this index was introduced by Yang [35] under the name B-
index (Yang also introduced homological index which is discussed below). For finite groups
topological index was introduced by M.Krasnosel’skii and in general case (for topological
groups) by Albert Schwarz under the name genus (more precise genus is by 1 greater than
topological index). In fact Schwarz [26] introduced and studied more general notion of genus
of a fiber space which generalize the notions of the Lusternik–Shnirelman category and of
Krasnosel’skii genus of a covering (it is valid for a continuous surjective map).

On his web page Schwarz [27] writes: ”The same notion was rediscovered (under another
name) 25 years later by S. Smale who used to estimate topological complexity of algorithms”.

Nowadays this notion is usually called sectional category.

3 Cohomological index

Consider first the case of an action of the group Zp of prime order p (the case p = 2 was con-
sidered in [23]). Using Smith’s sequences we can define for a free Zp-space its cohomological
index indpX ∈ {0, 1, 2, . . . ;∞} possessing the following properties (see [32] for details):

1. If there exists an equivariant map X → Y of free Zp-spaces then indp(X) ≤ indp(Y ).
2. If X = A

⋃
B are open invariant subspaces, then

indp(X) ≤ indp(A) + indp(B) + 1.

3. Tautness: If Y is a closed invariant subspace of X , then there exists an open invariant
neighborhood of Y such that indp(Y ) = indp(U).

4. indp(X) > 0 if X is connected.
5. Let X be either compact, or paracompact and finite dimensional. Then indp(X) <∞.
6. Assume that X is connected and H i(X ;Zp) = 0 for 0 < i < N . Then indp(X) ≥ N .
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7. Assume that X is finite dimensional and H i(X ;Zp) = 0 for i > d. Then indp(X) ≤ d.
8. If there exists an equivariant map f : X → Y and indp(X) = indp(Y ) = k < ∞ then

0 6= f ∗ : Hk(Y ;Zp) → Hk(X ;Zp).

Here C̆ech cohomology groups are used.

For G = Z2 this index was introduced by Yang [35]. In [36] Yang actually used this index
for G = Z3 without naming it. Conner & Floyd in [7] introduced for any finite group G
and a commutative ring with unit L a cohomological index for which they used notation
co-indL( · ). At the same time A.S. Schwarz [26] introduced homological genus. It can be
shown that homological genus equals co-indZ( · ) + 1, and co-indZp

( · ) for G = Zp coincides
with indp( · ).

In what follows the property 8 will serve as our main tool.
For example, from properties 1 and 8 we immediately obtain that indp( · ) is stable, i.e.

indp X ∗ Zp = indpX + 1 (see [32, Corollary 3.1]), so if indpX is finite then there exists no
equivariant map X ∗ Zp → X .

Now we recall the definition of indp( · ). Denote by π : X → X/Zp the projection. Then
there are two Smith sequences (see e.g. [5]):

· · · → Hk
ρ (X) −−−→ Hk(X)

π!

−−−→ Hk(X/Zp)
δ1−−−→ Hk+1

ρ (X) → . . .

and

· · · → Hk(X/Zp)
π∗

−−−→ Hk(X) −−−→ Hk
ρ (X)

δ2−−−→ Hk+1(X/Zp) → . . .

Here coefficients Zp are omitted, groups H∗

ρ(X) are called special Smith cohomology groups,
and π! is called the transfer (see [5]).

Let us define s2d : H0(X/Zp) → H2d(X/Zp) and s2d+1 : H0(X/Zp) → H2d+1
ρ (X) as

s2d+1 = δ1s2d and s2d+2 = δ2s2d+1 where s0 = id, and put un(X) = sn(1), 1 ∈ H0(X/Zp).
Then indpX equals maximal n such that un(X) 6= 0.

The following proposition is a partial converse to Property 8 (see also [31, Proposi-
tion 3.3]).

Proposition 3.1. Let X and Y be free Zp-spaces and f : X → Y an equivariant map.
Assume that k is odd and

a) indp(Y ) = k,
b) dimX = k,
c) Hk(X ;Zp) = Hk(Y ;Zp) = Zp,
d) f ∗ : Hk(Y ;Zp) → Hk(X ;Zp) is an isomorphism.
Then indp(X) = k.

Proof. Put k = 2n+ 1.

6



An equivariant map f : X → Y between free Zp-spaces induces a map of factor spaces
X/Zp → Y/Zp and we have two commutative diagrams (for p odd) since Smith’s sequences
are functorial. Consider one of these diagrams:

Hk(X/Zp)
π∗

−−−→ Hk(X) −−−→ Hk
ρ (X)

δ2−−−→ Hk+1(X/Zp)x
xf∗

x
x

Hk(Y/Zp) −−−→ Hk(Y ) −−−→ Hk
ρ (Y ) −−−→

δ2
Hk+1(Y/Zp)

Since uk(Y ) 6= 0 and δ2uk(Y ) = 0, there is a nontrivial element α ∈ Hk(Y ) = Zp which is
mapped onto uk(Y ). Now uk(Y ) is mapped to uk(X) and from assumption d) it follows that
0 6= f ∗α ∈ Hk(X) = Zp is mapped onto uk(X). Now we argue by contradiction. If uk(X) = 0
then Hk(X) → Hk

ρ (X) is trivial. Since Hk+1(X/Zp) = 0, we obtain Hk
ρ (X) = 0. We have

also Hk+1
ρ (X) = 0, since dimX = k. From Smith’s sequence

Hk
ρ (X) −−−→ Hk(X)

π!

−−−→ Hk(X/Zp)
δ1−−−→ Hk+1

ρ (X)

we see that π! is an isomorphism and Hk(X/Zp) = Zp. From the first row of the above
diagram it follows that π∗ : Hk(X/Zp) → Hk(X) is also an isomorphism, so π! ◦ π∗ is an
isomorphism, but this contradicts with the fact that π! ◦ π∗ is the multiplication by p, i.e.
zero homomorphism.

Note that if X is a free Zp-space where p is an odd prime and dimX = 2n+1, then there
exists an equivariant map f : X → S2n+1.

Corollary 3.1. Let X be a free Zp-space where p is an odd prime. Assume that dimX =
2n + 1 and H2n+1(X ;Zp) = Zp, and denote by f : X → S2n+1 an equivariant map. Then
indp(X) = 2n+ 1 if and only if f ∗ : H2n+1(S2n+1;Zp) → H2n+1(X ;Zp) is an isomorphism.

In what follows we will use cohomological index with integer coefficients. This index is
defined via homological genus introduced by Albert Schwarz in [26].

Definition 3.1. Let X be a free G-space. We define indGX, the integer cohomological index
of X, as its Schwarz’s homological genus minus 1.

Remark 3.1. 1) Using notation of Conner and Floyd [7] we have indG ( · ) = co-indZ( · ).
2) indG ( · ) is the largest cohomological index. In particular for G = Zp we have indp( · ) ≤

indG ( · ). Also for any G we have indG ( · ) ≤ t-indG ( · ).

This cohomological index possesses similar properties:

1. If there exists an equivariant map X → Y then indG (X) ≤ indG (Y ).
2. If X = A

⋃
B are open invariant subspaces, then

indG (X) ≤ indG (A) + indG (B) + 1.

7



3. Tautness: If Y is a closed invariant subspace of X , then there exists an open invariant
neighborhood of Y such that indG (Y ) = indG (U).

4. indG (X) > 0 if X is connected.
5. If X is either compact, or paracompact and finite dimensional then indG (X) <∞.
6. Assume that X is connected and H i(X ;Z) = 0 for 0 < i < N . Then indG (X) ≥ N .
7. Assume that X is finite dimensional and H i(X ;Z) = 0 for i > d. Then indG (X) ≤ d.
8. If there exists an equivariant map f : X → Y and indG (X) = indG (Y ) = k <∞ then

0 6= f ∗ : Hk(Y ;Z) → Hk(X ;Z).

4 Dold theorems and generalizations

Note that from properties 1 and 8 we immediately obtain that indp( · ) is stable, i.e. indp X ∗
Zp = indpX+1 (see [32, Corollary 3.1]), so if indpX is finite then there exists no equivariant
map X ∗ Zp → X . As a direct consequence we have the following assertion:

Proposition 4.1. Let H be any topological group which has a nontrivial finite subgroup and
X be either compact or paracompact and finite dimensional space with a free action of H.
Then there exists no equivariant map X ∗H → X.

An independent, alternative proof of this result is given by Passer in [25]. One of his
arguments is used below in a more simple proof of this proposition. Also we show below that
proposition 4.1 follows directly from the paper of Dold [10].

Proposition 4.1 gives the partial solution to the following conjecture of Baum, D
‘
abrowski

and Hajac:

Conjecture 4.1 ([3], Conjecture 2.2). LetX be a compact Hausdorff space with a continuous
free action of a nontrivial compact Hausdorff group G. Then, for the diagonal action of G
on the join X ∗G, there does not exist an equivariant continuous map f : X ∗G→ X .

In [6], Chirvasitu and Passer proposed a possible approach to the open part of Conjec-
ture 4.1 (and its analogue for compact group actions on C∗-algebras) using the ideas of [25]
and [10]. The case of certain compact quantum group actions on C∗-algebras was considered
by D

‘
abrowski, Hajac, and Neshveyev in [9].

Let us deduce proposition 4.1 directly from Dold’s [10] result and give one more simple
proof.

Dold in the proof of his last theorem in paper [10] showed for finite group G 6= {1} that

If there exists an equivariant nullhomotopic map X → X of a free G-space X to itself then
for every free G-space Y such that Y/G is a finite cell complex there exists an equivariant
map Y → X.

8



Proposition 4.1 is a consequence of this Dold’s result. In particular we can take Y = JN(G)
with any N and obtain an equivariant map JN(G) → X . Thus if there exists an equivariant
nullhomotopic selfmap X → X then t-indGX = ∞. Also it follows that an equivariant map
Y → X exists for any free G-space Y such that t-indG Y < ∞ because we can take the
composition of maps Y → Jn(G) and Jn(G) → X where t-indG Y = n− 1.

Now if we assume equivariant map F : X ∗G→ X then its composition with the natural
embedding X ⊂ X∗G gives us the equivariant nullhomotopic mapX → X , so t-indGX = ∞.
Thus in case t-indGX < ∞ a G-map X ∗ G → X does not exist. In particular no such a
G-map exists for compact X (with no restriction on dimension) and for finite dimensional
paracompact X since in these cases t-indGX <∞.

Note that for existence of a G-map X ∗G→ X some restrictions on X are needed since
there is an obvious equivariant homeomorphism X ∗ G ≈ X for X = J∞(G). Note also
that if a G-map X ∗ G → X exists then we can prove the equality t-indGX = ∞ by the
following simple argument used in [25]1. Taking the join with G we obtain an equivariant
map X ∗ G ∗ G → X ∗ G, and hence a map X ∗ G ∗ G → X . Iterating this procedure we
obtain for any n an equivariant map X ∗Jn(G) → X (this argument was used in [25]). Since
Jn(G) is a G-subspace of X ∗ Jn(G) we obtain an equivariant map Jn(G) → X for any n,
and therefore t-indGX = ∞.

The following assertion clarifies the situation.

Lemma 4.1. Let X and Y be free G-spaces. There exists an equivariant map F : X ∗G→ Y
if and only if there exists a nullhomotopic equivariant map f : X → Y .

Proof. Given F : X ∗G → Y we can define the equivariant nullhomotopic map f : X → Y
as a composition of the natural embedding X ⊂ X ∗G with F , i.e. f = F |X .

Now let f : X → Y be an equivariant nullhomotopic map. Elements of X ∗G are written
as [x, t, h], where x ∈ X , t ∈ [0, 1], h ∈ G, and [x, 0, h] = [x, 0, e] and [x, 1, h] = [x′, 1, h] for
any x, x′ ∈ X and h ∈ G. Then G acts on X ∗G as g[x, t, h] = [gx, t, gh], g ∈ G, and there
is an equivariant inclusion of X into X ∗ G given as x 7→ [x, 0, e]. Denote by ft a homotopy
between the equivariant map f = f0 and a constant map f1 such that f1(X) = {y}, where
y ∈ X is some point. Define F : X ∗G→ Y by the formula F ([x, t, h]) := hft(h

−1x).
We have F ([x, 0, h]) = hf0(h

−1x) = hf(h−1x) = f(x) and F ([x, 1, h]) = hf1(h
−1x) = hy,

so F is correctly defined. The following calculation

F (g[x, t, h]) = F ([gx, t, gh]) = ghft((gh)
−1gx) = ghft(h

−1x) = gF ([x, t, h])

shows that F is equivariant.

Remark 4.1. Gottlieb [12] proved that the order of G divides the Lefschetz number of an
equivariant selfmap of a finitely dominated manifold with a free G-action. As a corollary [12,

1The authors thanks Benjamin Passer for his useful comments on the first version of this paper. The

discussion with him led to our better understanding of the problem.

9



Corollary 4] he obtained that no equivariant nullhomotopic selfmap of a finitely dominated
manifold with a free G-action exists when G 6= {1}. Dold [10] deduced his more general result
from the partial case that there exists no equivariant nullhomotopic selfmap of a sphere with
a free G-action, and therefore if there exists an equivariant map of spheres Sn → SN with
free G-actions then n ≤ N . Dold’s argument (calculation of fixed point indices of a map
of factor spaces) for a selfmap of a sphere is just the same as Gottlieb’s for a selfmap of a
compact manifold. As was mentioned above this result for spheres follows also from earlier
stronger theorem of Krasnosel’skii [13, 14] who proved that the degree of an equivariant map
of a sphere to itself is 1 modulo the order of G.

Dold proved (see Remark and Theorem on page 68 in [10]) the following:

If a map f : X → Y commutes with some free actions of a notrivial finite group G on X
and Y then

dim Y ≥ 1 + Connectivity(X).

If dim Y = 1 + Connectivity(X) < ∞ then f is not nullhomotopic (assuming Y para-
compact).

If X is a finite-dimensional paracompact space and f : X → X is a nullhomotopic map
then f does not commute with any free G-action on X for any finite group G 6= {1}.

Here are homological versions of these results.

Proposition 4.2. Let H be a subgroup of G of prime order p and denote by n = indpX the
cohomological index of a space X with respect to H. If 0 < n <∞, then Hn(X ;Zp) 6= 0 and
the induced endomorphism f ∗ : Hn(X ;Zp) → Hn(X ;Zp) is nontrivial.

Proposition 4.3. Let X and Y be free G-spaces and p is a prime divisor of the order of
G. Assume that H̃ i(X ;Zp) = 0 for i ≤ n and that f : X → Y is an equivariant map. Then
t-indG Y ≥ n+1, in particular dimY ≥ n+1. If t-indG Y = n+1, then f ∗ : Hn+1(Y ;Zp) →
Hn+1(X ;Zp) is a nontrivial homomorphism.

Proof. The problem reduces to the case G = Zp. Then the first assertion follows from
properties 1 and 6 of the index indp( · ) and the fact that indpY ≤ t-indG Y ≤ dim Y ,
where Y is a free finite-dimensional Zp-space. In particular it follows that indpJ

n+1(G) =
t-indG Jn+1(G) = n.

For the proof of the second assertion note that there exists an equivariant map h : Y →
Jn+2(G), and from property 8 it follows that the composition h ◦ f induces a nontrivial
homomorphism of (n + 1)-dimensional cohomology groups (with Zp-coefficients). Therefore
f ∗ 6= 0 in dimension n+ 1.

Actually for the proof the first assertion it is easier to use more simple index inp( · ) which
equals weak homological genus (introduced in [26]) minus 1.

To define inp(X) for a paracompact free Zp-space X consider an equivariant map X →
J∞(Zp) = EZp

and the map of factor-spaces µ : X/Zp → BZp
. Recall that H i(BZp

;Zp) = Zp.
Say that inp(X) ≥ n if µ∗ 6= 0 in dimension n. It is easy to see that this assumption is
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equivalent to the assumption that µ∗ : H i(BZp
;Zp) → H i(X/Zp;Zp) is a monomorphism for

i ≤ n. To prove proposition 4.3 we need only to show that index inp( · ) satisfies properties 1,
5 and 6. The most complicated property 6 follows easily from the consideration of the spectral
sequence of a covering X → X/Zp (from the spectral sequence of a bundleX×Zp

EZp
→ X/Zp

with fiber X).

Remark 4.2. 1) Results like the first statement of proposition 4.3 (generalizations can be
obtained using [26, Theorem 17]) belong to A.S. Schwarz, since they follow trivially from [26,
Theorem 17] and its corollaries 1 and 2 and properties of homological and weak homological
genus introduced in [26].

2) inp( · ) possesses all other properties except 2 and 8, and it can be shown that inp( · ) ≤
indp( · ) with the equality for p = 2, see [32].

3) The definition of inp( · ) and its property 6 was rediscovered many times, see e.g. [16],
[29, 30]. In [15] Liulevicius actually used this index without naming it.

4) It is easy to deduce from proposition 4.3 that inp S
n = indp S

n = t-indG
S
n = n and

inp J
n(G) = indp J

n(G) = t-indG Jn(G) = n− 1 where p is a prime divisor of the order of G
and cohomological indicies are taken in respect with any subgroup of G of prime order p.

5 Borsuk–Ulam type theorems for bounded spaces

Definition 5.1. We say that h : X0 → X is n-cohomological trivial (n-c.t. map) over
R if h∗ : Hn(X ;R) → Hn(X0;R) is the trivial homomorphism of cohomology groups with
coefficients in R in dimension n. In the case when h is an embedding we call X0 an n-c.t.-
subspace of X over R.

Example 5.1. Let X be a compact connected (n+1)-dimensional manifold with the connected
boundary ∂X = X0. Then X0 is an n-c.t.-subspace of X over Z2, and if moreover X is
orientable then X0 is an n-c.t.-subspace of X over R for any R.

Let a space X0 be a subspace of X . Denote by i : X0 → X the inclusion. Suppose X0

admits a free action of a finite group G. (Actually, we do not assume that X is a G-space.)
These assumptions on X and X0 will be used in what follows.

Theorem 5.1. Let Y be a G-space, Y0 its invariant closed subspace such that the action on
Y \ Y0 is free, and f : X → Y a continuous map. Assume that

1) n = indGX0 = indG (Y \ Y0),
2) X0 is an n-c.t.-subspace of X over Z,
3) f |X0

: X0 → Y is equivariant,
then f−1(Y0) 6= ∅.

Proof. We argue by contradiction. If f−1(Y0) = ∅ then f maps X into Y \ Y0 and f |X0
:

X0 → Y \Y0 is equivariant. Since f |X0
= f ◦ i and i∗ is trivial in dimension n, we obtain that

(f |X0
)∗ : Hn(Y \ Y0;Z) → Hn(X0;Z) is trivial, a contradiction with property 8 of index.
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Note that if indG (Y \ Y0) < n then by property 1 of index there exists no equivariant
map from X to Y \Y0, hence (f |X)

−1(Y0) 6= ∅ (in this case we don’t need the assumption 2).

The theorem follows also from the following result.

Theorem 5.2. Let X0 be a free G-space, i : X0 ⊂ X. Let K be a free G-space and f : X → K
is a map equivariant on X0. Assume that indGX0 = d and that X0 is d-Z-c.t.-subspace of
X. Then indGK ≥ d+ 1.

If in addition K is a connected closed orientable topological (d+1)-dimensional manifold
or a pseudomanifold then for any y ∈ K at least one of the sets f−1(gy) for some g ∈ G
depending on y is nonempty.

Proof. The map f ◦ i : X → K is equivariant, so indGK ≥ indGX = d. Since (f ◦ i)∗ =
i∗ ◦ f ∗ = 0 in dimension d, it follows from property 8 of index that indGK 6= d. Therefore
indGK ≥ d+ 1.

When K is a manifold we argue by contradiction. Let y ∈ K be a point such that
f−1(Gy) = ∅ where Gy is the orbit of the point y. Then f maps X to K \ Gy and f ◦ i :
X0 → K\Gy is equivariant. Applying the first statement we obtain that indG (K\Gy) ≥ d+1.
On the other hand K \ Gy is an open manifold, hence Hj(K \ Gy;Z) = 0 for j ≥ d + 1,
and from property 7 of index we obtain indG (K \ Gy) < d+ 1. (Also Hd+1(K \ Gy;Z) = 0
contradicts with indG (K \Gy) = d+ 1 by property 8.)

Definition 5.2. Let Y be a G-space. A point y ∈ Y is a fixed point of the action if gy =
y ∀g ∈ G. Denote the set of fixed points by Y G. We say that the action of G on Y is semifree
if Y \ Y G 6= ∅ and Y G 6= ∅ and G acts freely on Y \ Y G.

Assume that Y is a semifree G-space and f : X → Y a continuous map. In this case
directly from theorem 5.1 we obtain:

Theorem 5.3. Let Y is a semifree G-space, f : X → Y a continuous map. Assume that
1) n = indGX0 = indG (Y \ Y G),
2) X0 is n-c.t.-subspace of X over Z.
3) f |X0

: X → Y is equivariant.
Then f−1(Y G) 6= ∅.

We can apply this result in the case when X = M is a manifold and X0 = ∂M is its
boundary.

Theorem 5.4. Let Mn be a compact connected orientable manifold (or a pseudomanifold)
with the connected boundary ∂M , and assume that G can act freely on ∂M . Consider a
continuous mapping f : M → Rn such that f |∂M : ∂M → Rn is an equivariant map, where
Rn is considered as a semifree G-space with the unique fixed point 0 ∈ Rn, the origin. If
indG ∂M = n− 1 then the zero set Zf = f−1(0) is not empty.
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Here we consider any semifree action of G on R
n with the unique fixed point 0 ∈ R

n, the
origin. Such an action exists since we assume that G can act freely on Sn−1. For example we
can take the action which is obtained by linearity from the G-action on Sn−1.

As a partial case of the previous assertion we obtain:

Corollary 5.1. Let Mn be a compact connected orientable manifold (or a pseudomanifold)
with the boundary ∂M which is homeomorphic to the sphere Sn−1, and assume that G can
act freely on ∂M ≈ Sn−1. Consider a continuous mapping f : M → Rn such that f |∂M :
∂M → Rn is an equivariant map, where Rn is considered as a semifree G-space with the
unique fixed point 0 ∈ R

n, the origin. Then the zero set Zf = f−1(0) is not empty.

This follows also from

Proposition 5.1. If there is an embedding i : Sd−1 → X such that

Im i∗ ∩ {k ∈ Z | k ≡ 1 mod |G|} = ∅,

where i∗ : Hd−1(X ;Z) → Hd−1(Sd−1;Z), and f : X → Rd a continuous map such that
f |Sd−1 : Sd−1 → R

d is equivariant, then 0 ∈ f(X).

Actually a more general assertion holds

Theorem 5.5. Assume that there is a map j : Sd−1 → X such that

Im j∗ ∩ {k ∈ Z | k ≡ 1 mod |G|} = ∅,

where j∗ : Hd−1(X ;Z) → Hd−1(Sd−1;Z) is induced by j, and let f : X → Rd be a continuous
map such that f ◦ j : Sd−1 → R

d is equivariant. Then 0 ∈ f(X).

Proof. We argue by a contradiction. If 0 /∈ f(X), then f ◦ j : Sd−1 → Rd \ 0 is an equivariant
map, hence its degree equals 1 modulo |G| (see e.g. [14]), but this contradicts with the
assumption Im j∗ ∩ {k ∈ Z | k ≡ 1 mod |G|} = ∅.

6 Bourgin–Yang type theorems

Definition 6.1. Let X be a space and X0 its subspace which is a G-space. A camomile C
is a G-space for which there is an embedding X ⊂ C such that C = GX, induced embedding
X0 ⊂ C is equivariant, the action of G on C \X0 is free, and C \X0 =

⋃
g∈G

g(X \X0).

Example 6.1. If X is a cone over X0, i.e. X = X0 ∗ pt, then C = X0 ∗G.

Let Y be a G-space and Y0 its invariant subspace such that the G-action on Y \ Y0 is
free. From the definition of camomile we easily obtain the following assertion.
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Theorem 6.1. There exists f : X → Y equivariant on X0 and such that f−1(Y0) = ∅ if and
only if there exists an equivariant map C → Y \ Y0 where C is the camomile associated with
the embedding X0 ⊂ X of the G-space X0 into X.

Theorem 6.2. Let X0 be an n-c.t.-subspace of X over Z such that indGX0 = n. Then
indG C = n+ 1.

Proof. Since the inclusion X0 ⊂ C is equivariant, we have from property 1 that indG C ≥ n
and from property 8 obtain that indGC ≥ n + 1. By property 3 there exists an invariant
neighborhood of X0 in C of index n. A complement of this neighborhood is a G-space that
can be mapped equivariantly to G, so its index equals zero. Hence from property 2 we obtain
that indG C ≤ n+ 1.

Now we show how to construct a camomile in the case when X is a finite-dimensional
compact space and X0 its closed subspace (so X0 is a compactum also).

By Mostow theorem [18] we can equivariantly embed X0 into finite-dimensional Euclidean
G-space V . By Tietze lemma we can extend this embedding to the map ϕ : X → V . If
dimX = k then using Nöbeling–Pontryagin theorem (see e.g. [2]) we can embed X into
the unit sphere S2k+1 ⊂ R2k+2. Denote this embedding by ψ : X → R2k+2. Define a real-
valued function h : X → R as h(x) = ρ(x,X0), the distance between a point x and X0.
This function takes zero values on X0 and is positive on X \ X0. Define η : X → R2k+2

as η(x) = h(x)ψ(x). Then ζ : X → V ⊕ R2k+2, ζ(x) = (ϕ(x), η(x)), is an embedding. We
will consider V ⊕ R2k+2 as a Euclidean G-space (G acts trivially on R2k+2). Then ζ is the
embedding which is equivariant on X0. Finally put W = V ⊕R2k+2⊕R[G] where R[G] is the
group ring considered as Euclidean space of dimension |G|, the order of G. The group acts
on R[G] by left multiplication and it is convenient to denote basis vectors as elements of the
group G, so R[G] = ⊕g∈GR · g. Now we define an embedding µ : X → V ⊕R2k+2⊕R · e ⊂W
where e ∈ G is the unit of G by the formula (ϕ(x), h(x)ψ(x), h(x) · e). Then µ : X → W is
equivariant on X0 and C = Gµ(X) is a camomile.

In fact the same construction of the camomile is valid for finite-dimensional separable
metric space X and closed subspace X0 (with G-action).

Camomile is convenient for proving results of Bourgin–Yang type.

Theorem 6.3. Assume that Y is a G-space, Y0 its invariant closed subspace such that the
action on Y \ Y0 is free, and f : X → Y a continuous map. If

1) n = indGX0 > indG (Y \ Y0),
2) X0 is an n-c.t.-subspace of X over Z,
3) f |X0

: X0 → Y is equivariant,
then dim f−1(Y0) ≥ n− indG (Y \ Y0).

Proof. We have indG C = n + 1, where C is the camomile. Denote by h : C → Y the
equivariant extension of f . Then indG h−1Y0 ≥ indGC− indG (Y \P )−1 = n− indG (Y \Y0),
hence dimh−1Y0 ≥ n− indG (Y \ Y0). Since h

−1Y0 =
⋃

g∈G g · f
−1(Y0) and dim g · f−1(Y0) =

dim f−1(Y0) for any g ∈ G, we are done.
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Since a free G-space is a free space with respect to any subgroup we have analogs of the
above results in which indG ( · ) is replaced by indp( · ) where p = |H| is a prime and H is
some subgroup of G. For example we have the following result:

Theorem 6.4. Let Y be a G-space, Y0 its invariant closed subspace such that the action on
Y \ Y0 is free, and f : X → Y a continuous map. Let H = Zp, p is a prime, be a subgroup
of G. Assume that

1) n = indpX0 ≥ indp(Y \ Y0),
2) X0 is an n-c.t.-subspace of X over Zp,
3) f |X0

: X → Y is equivariant.
Then f−1(Y0) 6= ∅.
If n = indpX > indp(Y \ Y0) then dim f−1(Y0) ≥ n− indp(Y \ Y0).

7 Tucker type lemmas

7.1 Tucker type lemmas for G-spaces

Let X be a simplicial complex and C be a finite set. Recall that a C-labeling (coloring) of
X is a map V (X) → C of the vertex set V (X) to C. For C = G × {1, . . . , n} we say that
we have a (G, n)-labeling. Thus a (G, n)-labeling prescribes to each vertex some pair (g, k)
where g ∈ G and k ∈ {1, . . . , n}.

Now we define equivariant labelings.

Definition 7.1. Let X be a simplicial complex with a simplicial G-action, where G is a finite
group, and C is a finite G-set. An equivariant C-labeling (coloring) of X is an equivariant
map V (X) → C of the vertex set V (X) to C. For C = G × {1, . . . , n}, where G acts on
the first factor by left multiplication and on the second factor the action is trivial, we call
C-labeling as equivariant (G, n)-labeling.

Definition 7.2. An edge in X is called complementary if labels of its vertices belong to the
same orbit in C. For (G, n)-labeling it means that vertices of a complementary edge have the
form (g1, k) and (g2, k), g1 6= g2, for some k ∈ {1, . . . , n}.

If G = Z2
∼= C2 = {1,−1} is the cyclic group of order 2 then a (G, n)-labeling

is just a Tucker labeling since there is an obvious bijection (±1, k) ↔ ±k between sets
{1,−1} × {1, . . . , n} and {+1,−1,+2,−2, . . . ,+n,−n}. Under this identification an equiv-
ariant (Z2, n)-labeling becomes an equivariant {±1, . . . ,±n}-labeling and a complementary
edge (for (Z2, n)-labeled complex X) is just a complementary edge in Tucker’s sense (the
sum of its labels equals zero).

Theorem 7.1. t-indGX ≥ d if and only if for any equivariant (G, d)-labeling of the vertex
set of an arbitrary equivariant triangulation of X there exists a complementary edge.
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Proof. Assume there is a (G, d)-labeling of the vertex set of an equivariant triangulation of
X without complementary edges. Then such a labeling provides an equivariant map X →
Jd(G). This contradicts with the assumption that t-indGX ≥ d.

Now assume that for any equivariant (G, d)-labeling of the vertex set of an arbitrary
equivariant triangulation ofX there exists a complementary edge. Assume that t-indGX < d.
Then there exists an equivariant continuous map X → Jd(G) and an equivariant simplicial
approximation of this map which is a simplicial map of some triangulation of X . So there
exists a (G, d)-labeling of Jd(G) without complementary edges. Thus, the inverse image of
this labeling is a (G, d)-labeling of X without complementary edges, a contradiction.

Remark 7.1. 1) From equivariance of labeling it follows that if there exists a complementary
edge, then there is a whole orbit of complementary edges, i.e. there exist at least |G| different
complementary edges.

2) The first statement of theorem 7.1 holds for any numerical index Ind( · ) which pos-
sesses the main property of index and dimension property, i.e.:

A) If there exists an equivariant map X → Y of G-spaces then Ind(X) ≤ Ind(Y ).
B) Ind Jd+1(G) = d.
All indexes considered above satisfy these properties.
Thus the following assertion holds:
Let X be a simplicial complex with a free simplicial G-action such that Ind(X) ≤ d.

Then for any equivariant (G, d)-labeling of the vertex set of X there exists a complementary
edge (actually there exist at least |G| complementary edges).

7.2 Tucker type lemmas for bounded spaces

Consider the case of simplicial complex X and its subcomplex X0. We assume that G acts
freely and simplicially on X0.

Theorem 7.2. Assume that indGX = n − 1 and that X0 is an (n − 1)-c.t.-subspace of
X over Z. Then for any (G, n)-labeling of the vertex set of an arbitrary triangulation of X
which is equivariant on X0 there exists a complementary edge.

Proof. We argue by contradiction. A (G, n)-labeling of the vertex set of a triangulation of X
without complementary edges provides a map ψ : X → Jn(G), and this map is equivariant
on X since our (G, n)-labeling is equivariant on X . Since i∗ is trivial in dimension n − 1,
where i : X0 ⊂ X is the inclusion, we see that (ψ|X)

∗ : Hn−1(Jn(G);Z) → Hn−1(X ;Z)
is trivial, and we obtain a contradiction with property 8 of cohomological index, because
indGX = n− 1 = indG Jn(G).

As a partial case we obtain:

Theorem 7.3. Let Mn be a connected compact orientable PL–manifold such that its bound-
ary ∂M is homeomorphic to the sphere Sn−1. Let T be a triangulation of M . Suppose that
there exists a free simplicial action of a finite group G on ∂T . Then for any (G, n)–labeling
of V (T ) that is an equivariant on ∂T there exists a complementary edge.
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7.3 Bourgin–Yang type results and Tucker type lemmas

Consider first the case G = Z2. By in ( · ) and t-indG ( · ), G = Z2, we denote Yang’s homo-
logical and topological indexes respectively, so in (Sn) = t-indG (Sn) = n.

Proposition 7.1. Let f : Sn → M be a continuous map to m-dimensional manifold M
where d := n−m > 0. Assume that K := {x ∈ Sn | f(x) = f(−x)} is a triangulable space.
Then for any equivariant triangulation of K and an equivariant labeling of its vertices by
{+1,−1,+2,−2, . . . ,+d,−d} there exists a complementary edge.

Proof. It follows from [24] (see also [29]) that inK ≥ d, and by Theorem 7.1 we are done.

Note that if M is a PL-manifold and f is simplicial with respect to some equivariant
triangulation of Sn, then K is a triangulable space (but not necessarily a simplicial subspace).

Similar result holds for G = Zp ⊕ · · · ⊕ Zp, elementary Abelian group, p is a prime.

Proposition 7.2. Let f : Jn+1(G) → M be a continuous map to m-dimensional manifold
M where d := n −m(|G| − 1) > 0 and G = Zp ⊕ · · · ⊕ Zp is an elementary Abelian group,
p is a prime. Assume that K := {x ∈ Jn+1(G) | f(x) = f(gx) ∀ g ∈ G} is a triangulable
space. Then for any equivariant triangulation of K and an equivariant (G, d)-labeling of its
vertices there exists a complementary edge.

Proof. It follows from [32] that t-indGK ≥ n − m(|G| − 1). Hence the result follows from
Theorem 7.1.

References

[1] P. S.Aleksandrov, H.Hopf, Topology, AMS Chelsea Publishing Series (vol. 197), 1965.

[2] A.V.Arkhangelskii, V.V. Fedorchuk, General Topology I: Basic Concepts and Con-
structions Dimension Theory, Encyclopaedia of Mathematical Sciences, vol. 17,
A.V.Arkhangelskii, L. S. Pontryagin (eds.), 1990.

[3] P. F.Baum, L.D
‘
abrowski, P.M.Hajac, Noncommutative Borsuk–Ulam-type conjec-

tures, Banach Center Publications, 106 (2015), 9–18.

[4] K.Borsuk, Drei Sätze über die n–dimensionale euklidische Sphäre, Fund. Math., 20
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