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Force and torque model sensitivity and coarse graining for
bedload-dominated sediment transport

Liheng Guana, Jorge Salinasa,∗, Nadim Zgheibb, S. Balachandara

aDepartment of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
bSchool of Engineering, Lebanese American University, Byblos, Lebanon

Abstract

We present results from Euler-Lagrange simulations of turbulent flow over an erodible monodisperse bed
of particles at a shear Reynolds number of Reτ = 180. The Galileo number Ga and the ratio of Shields
to the critical Shields number Θ/θcr were varied in the range 11.4 to 29.8 and 1.32 to 5.98, respectively.
Two drag force models were investigated along with the influence of lift, particle rotation, and tangential
collision forces for each model. Both models give similar results as far as mean particle flux and Shields stress
are concerned, however we find that excluding particle rotation, without ignoring the associated tangential
collisional force, significantly reduces the particle flux with little influence on Shields stress. On the other
hand, when both particle rotation and tangential collision forces are not taken into account, the particle flux
is practically unchanged, but the excess Shields stress slightly increases compared to the case where both
effects are considered. We also find the lift force to substantially influence particle flux. Additionally, we
show the importance of spatial coarse graining and time averaging for Euler-Euler simulations and quantify
the reduction in scatter for space and time dependent variables such as sediment flux, Shields stress, and
bed surface fluid velocities.

Keywords: Sediment transport, Euler-Lagrange simulations, particle-flow simulations, drag model, coarse
graining, turbulent flow.

1. Introduction1

Sediment particles are set in motion when an erodible particle bed is placed below a turbulent shearing2

flow. Such flows are ubiquitous in nature and examples include turbidity currents (e.g. [1]), rivers (e.g.3

[2]), and coastal sea waves (e.g. [3]), to name a few. It is important to estimate the amount of sediment4

that is transported by such shearing flows (e.g. [4, 5]). Transport can occur as bedload or as suspended5

load depending on how particles are transported. When transported particles remain at close proximity to6

the bed and their motion consists primarily of rolling, sliding, and saltation, sediment transport is labeled7

as bedload (e.g. [6]). Bedload transport occurs when the bed shear stress at the sediment-fluid interface8

is marginally in excess of the critical shear stress necessary for incipient motion of particles. The bedload9

transport rate is a statistical quantity and is usually obtained from empirical relations as a function of the10

non-dimensional shear stress at the bed (e.g. [7, 8]). On the other hand, if the overlying turbulent flow is11

relatively vigorous such that the bed shear stress is well above the critical shear stress, particles may be12

entrained into and remain suspended by the flow. This mode of transport is labeled as suspended load (e.g13

[9]). In the present study, we will restrict our attention to bedload-dominated transport.14

Predicting sediment transport at the grain level is a daunting task because of the large variability in15

the flow velocity around a grain due to turbulent fluctuations in addition to the stochastic arrangement16
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of neighboring particles around that grain within the bed (e.g. [10, 11]). However, upon averaging over a17

large enough area or over long enough times, the variability in both the flow field and the bed arrangement18

become less important. Under such conditions, simple empirical expressions for the sediment flux can be19

obtained as a function of the bed shear stress. In fact, many such expressions have been proposed. Meyer-20

Peter and Müller [5] were among the first to propose an expression for the sediment flux as a function of21

the excess Shields stress. Their expression came to be known as the ”Swiss formula”. Wong and Parker [4]22

(WP) suggested a correction to the Swiss formula, namely q = 4.93(θ− θcr)1.6, where q is the sediment flux23

per unit width, θ is the average Shields stress at the sediment bed, and θcr is the critical Shields stress for24

incipient motion.25

The Swiss formula, and consequently the WP expression, were derived to estimate the sediment flux26

under temporally- and spatially-averaged conditions. Turbulence-resolved simulations of the flow above a27

sediment bed is becoming increasingly possible with the application of bedload transport models such as28

the Swiss formula or the WP expression as the bottom boundary conditions (e.g. [12, 13]). Care however29

must be taken with such an application. Due to turbulence resolution, the near-bed grid can be of the order30

of sediment size and correspondingly the time step is small enough for temporal resolution of turbulence.31

It therefore becomes important to average the turbulent shear stress over space (on the order of a hundred32

particle diameters) and over time in order to apply the bedload transport models as appropriate boundary33

conditions [14, 15, 12, 13]. In this study, we start with Euler-Lagrange simulations, where the dynamics34

of every sediment grain within the computational domain is accurately tracked. The simulations results35

thus yield highly accurate space and time-dependent bedload transport information that has been obtained36

with sediment-level resolution. This accurate information is then space-time averaged as a post-processing37

step for different levels of spatial and temporal filter widths. With such a coarse-graining post-processing38

operation, we plan to compare the average bedload transport obtained from the simulations against the WP39

expression. We propose to identify an optimal length scale of averaging below which local fluctuations of40

bedload transport will substantially deviate from that predicted by the model and above which the averaging41

will match closely the model prediction.42

For the sake of clarity, We want to stress that the present simulations do not use the Swiss formula or43

any other bedload transport correlation. We solve the motion of each and every particle within the bed. The44

coarse graining operation is only a post-processing step. We also would like to stress the difference between45

the coarse graining and the filtering process represented by the anisotropic Gaussian filter in (1). The latter46

is on the order of a few particle diameters, while the former is on the order of 100 particle diameters. The47

coarse graining filter will not modify the flow nor the sediment transport. The coarse graining operation48

reveals that only when averaged over lengths of the order of 100 particle diameters the averaged shear49

stress and the averaged bedload transport are correlated in accordance with the Swiss formula and other50

such correlations. When averaged over smaller lengths, the departure between average bedload calculated51

from post-processing the simulations results and that estimated with the Swiss formula increased. Thus the52

optimal coarse graining filter widths are an order of magnitude larger than the length scale of the feedback53

filter in (1).54

Euler-Lagrange (EL) simulations of particle-laden flows have been used in many physical contexts, from55

the study of fluidized beds (e.g. [16]) to particle dispersal in sprays (e.g. [17]). Particle-resolved simulations56

are the best, if they can be afforded, since they resolve all the relevant physics of particle-fluid interaction57

accurately and only the inter-particle collisional physics is modeled (e.g. [18, 19, 20, 21, 22, 23, 24]). The58

high computational cost of particle-resolved simulations of particle-laden flows makes EL simulations a useful59

alternative when modeling flows with large number of particles (> O(106)). However, adequate selection of60

closure models for hydrodynamic forces and torques acting on particles is fundamental for accurate modeling61

of the physics of a specific problem. Dilute flows where volume fraction is small allow for the use of “one62

way” coupled simulations where particle-particle collisions as well as back-coupling from particles to the63

surrounding fluid is ignored. On the other hand, flows with high concentration of particles, as in the present64

work, must use “four-way” coupled simulations that account for the back-coupling from the particles to65

the fluid and particle-particle collisions. In the present context of bedload transport, the high gradient of66

volume fraction at the particle bed surface requires models that accurately capture the forces on particles67

saltating above the surface as well as those rolling and sliding at or below the surface.68
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Another purpose of this paper is to test the influence of different force models on the accuracy of bedload69

transport in EL simulations by comparing the resulting mean sediment flux and excess Shields to the Wong70

and Parker formula [4]. We also test the influence of different force and torque components within the model,71

specifically the role of such force and torque contributions for accurate representation of sediment flux. These72

components include the lift force, the tangential collision force, the particle rotation and the associated torque73

on the particle. Additionally, we examine the effect spatial coarse graining (or spatial averaging) and time74

averaging on the relation between sediment flux and the excess Shields stress. Existence of a unique relation75

between the coarse-grained excess Shields stress and sediment flux is important in the implementation of76

Euler-Euler (EE) simulations where individual sediment grains are not tracked. Furthermore, improved77

empirical sediment flux correlations such as in [4, 5] can be advanced for use in EE simulations. We quantify78

the effect of coarse graining and time averaging by computing the standard deviation of the scatter for the79

sediment flux, the excess Shields stress, and the fluid velocity components at the sediment bed surface.80

2. Numerical Model81

In the present setup, a large number of monodispersed particles are placed at the bottom of the domain82

to form a random close-packed bed. The process of generating the bed consists of first placing a layer of83

hexagonally arranged particles at the bottom of the numerical domain, in which every second particle is84

lifted by a random vertical distance ranging between one particle radius to one particle diameter. Moreover,85

these particles, which form the bottommost layer are kept fixed during the simulations to prevent artificial86

locking of particles in the upper layers. The purpose of such an arrangement is to introduce randomness to87

the particle distribution inside the bed. The additional layers are generated by conducting a sedimentation88

simulation in which particles can settle to form the close-packed bed. A schematic representation of the89

numerical domain is shown in Figure 1. Before the start of the simulation, the bed is frozen, and the flow90

is allowed to reach a stationary state (see schematic velocity profile uf in red). After the flow reaches a91

stationary state and the particle bed is unfrozen, each simulation is run for sufficiently long time such that92

accurate statistics can be gathered. When the bed is allowed to evolve, chevron-shaped regions of higher93

bed elevation initially form at random locations within the bed, due to the action of turbulent vortical94

structures. Over time these chevron regions link laterally to one another and eventually form spanwise-95

coherent incipient ripples (e.g.[12, 13, 25]). These ripples grow in height and as they travel downstream96

adjacent ripples sometimes merge to form a larger ripple (e.g. [26]). But these bedforms appear only after97

a non-dimensional time of two units, before which the bed remains featureless. During this early period98

bed-related statistics are obtained by averaging spatially over the horizontal bed as well as over time.99

The EL methodology is characterized by a three-dimensional, anisotropic Gaussian filter functionG (x,xp),
which is used to project the properties of the Lagrangian particles to the Eulerian grid [16],

G (x,xp) =
1

σxσyσz
(√

2π
)3 exp

[
−|x− xp|

2

2σ2
x

− |y − yp|
2

2σ2
y

− |z − zp|
2

2σ2
z

]
, (1)

where x = {x, y, z} and xp = {xp, yp, zp}. Also, σi = δi/
(

2
√

2 ln 2
)

, with i = {x, y, z} represents the

standard deviation of G along the ith direction. Here, δi is the kernel width in the ith direction, which is
defined as the width of G at half of its maximum value. The filter function G satisfies the following integral
constraint ∫∫∫

Ω

G (x,xp) dx→ 1 ∀xp , (2)

where Ω is a very large ellipsoidal volume centered at xp. In practical implementation, the volume of
integration is limited with a cut-off distance rc, which is defined as the distance where G decays to a small
value ε relative to its maximum value. The relation between rc and δi is given by [16]

rc =
δi
2

√
− ln ε

ln 2
. (3)
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In the simulations, we adjust the Gaussian width δi such that it spreads over 5 grid points in any direction. It100

must be emphasized that the above filter function that is used for the spreading of the Lagrangian sediment-101

related quantities to the Eulerian grid must be distinguished from the filter function to be later used for102

coarse graining in the post-processing operation.103

The filter function is used to first define the Eulerian particle volume fraction field as follows

φ(x, t) =

Np∑
n=1

G (x,xp,n)Vp , (4)

where xp,n is the location of the nth particle, Vp = π
6 d

3
p is the particle volume, and dp is the particle104

diameter. Though the summation is formally defined over all the Np particles within the computational105

domain, it is only carried out over the np particles that are in the neighborhood of point x, whose Gaussian106

has a non-zero influence. Thus, the filter function allows the definition of a smooth volume fraction field107

from the discrete Lagrangian particles and this process will be applied to other Lagrangian quantities as108

well, when needed. A schematic profile of the mean particle volume fraction 〈φ〉 (in green) is also shown109

in Figure 1, where the angle brackets indicate an ensemble average over the horizontal directions and over110

time. In the following sections, the dimensionless governing equations for the particle and fluid phases are111

presented. Here and throughout the manuscript, the asterisk denotes dimensional quantities, and all other112

quantities are to be understood as non-dimensional. The length scale H∗f is taken as the mean flow depth,113

and the velocity scale U∗τ as the mean shear velocity at the particle bed surface, which is defined as the114

vertical location where the particle volume fraction attains a value of φ = 0.1 (e.g. [20]).115

x

z y <uf> <Φ>

<Φ>=0.1

g

Hf

Hb

A1

Ly
z

0.27

0.37

A2

xi,yj

<upΦ>

Figure 1: Isometric view of a portion of the numerical domain. The uppermost layer of the particle bed is colored by the
particle’s vertical location. Schematics of mean profiles of the streamwise component of the flow, volume fraction, and particle
flux are shown in red, green, and yellow, respectively. A1 and A2 highlight two surfaces centered at (xi, yj) with different areas
and aspect ratios overwhich coarse graining is implemented.

2.1. Particle Motion116

The motion of the Lagrangian particles is computed by evaluating the forces and torques acting on them117

and integrating the following equations for the particle positions xp = x∗p/H
∗
f , center velocities vp = v∗p/U

∗
τ ,118
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and angular velocities ωp = ω∗p/(U
∗
τ /H

∗
f ),119

dxp
dt

= vp, (5)

π

6
βd3

p

dvp
dt

= Fun + Fd + Fl + Fam + Fc + Fb, (6)

Ip
dωp
dt

= Th + Tc + Tr. (7)

In the above, β = ρ∗p/ρ
∗
f is the ratio of particle (ρ∗p) to fluid (ρ∗f ) density. In this work, particles are taken120

to be spheres of diameter dp = d∗p/H
∗
f . As a result, the particle moment of inertia is Ip = π

60βd
5
p.121

In equation 6, the terms on the right-hand side correspond to the undisturbed force (Fun), the drag force122

(Fd), the lift force (Fl), the added-mass force (Fam), the particle-particle and particle-wall collision force123

(Fc), and the body force (Fb). As for equation 7, Th, Tc, and Tr represent the hydrodynamic, collision,124

and rolling torques, respectively.125

2.1.1. Undisturbed Flow Force126

The undisturbed flow force, Fun, depends on the ambient flow conditions.127

Fun = −Vp∇p, (8)

where ∇p is the fluid pressure gradient as computed in the EL simulation interpolated to the particle center.128

Note that the fluid pressure p is obtained after subtracting the hydrostatic component and thus the buoyancy129

force is explicitly included in the definition of the body force. When evaluating this and other hydrodynamic130

force contributions, fluid quantities such as ∇p (and later fluid velocity and fluid acceleration) are required131

at the particle locations. These fluid properties are interpolated from the Eulerian grid to the center of132

the particle using trilinear interpolation, which uses the eight Eulerian grid points surrounding the particle133

center in question.134

2.1.2. Quasi-steady Drag Force135

The quasi-steady drag force Fd is perhaps the most dominant of all the hydrodynamic force contri-136

butions and it arises from the flow disturbance due to the presence of the particle. The drag force is a137

function of the velocity difference between the ambient flow and the particle but it is also influenced by138

the presence of neighboring particles. The drag correlation of an isolated particle as a function of particle139

Reynolds number, which can be considered as a non-dimensional measure of relative velocity, has been well140

established (e.g. [27]). Although correlations of mean drag have been advanced taking into account the141

effect of neighboring particles (e.g. [28]), there still remains considerable differences between the different142

correlations. Furthermore, these correlations are intended for homogeneous systems where particle volume143

fraction remains spatially uniform. The problem of bedload transport presents a different scenario where144

there is strong volume fraction variation at the surface of the bed, where the particle motion is strong. We145

consider two different models of drag force that will be tested in the present work.146

First, we test a simple model originally designed to compute drag on particles where the volume fraction
is homogeneous in the domain [29]

Fd1 =
3πdp (uf − vp)

Reτ
Φ (φ,Rep) , (9)

where uf is the fluid velocity at the particle center and Reτ = U∗τH
∗
f /ν

∗ is the shear Reynolds number. ν∗

here represents the fluid kinematic visocity, and Φ (φ,Rep) is the correction factor to the steady Stokes drag
to account for the finite Reynolds number and finite volume fraction. In the present work, Φ is modeled as
a function of the particle volume fraction φ and the particle Reynolds number Rep [29]

Φ (φ,Rep) =


1−2φ

(1−φ)3

(
1 + 0.15Re0.687

p + 0.42
1+42500/Re1.16p

)
, if φ ≤ 0.2

1.172
(

1 + 0.15Re0.687
p + 0.42

1+42500/Re1.16p

)
, if φ > 0.2

(10)
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where the particle Reynolds number Rep is given by

Rep = Reτ |uf − vp| dp. (11)

Instead of the above expression, where the volume fraction correction was based on the analytical results of147

[30], we could instead use one of the more recent correlations by [28, 31].148

The second model for drag force tested in this work, and the one used in most of our simulations is of a
different flavor. This model’s primary focus are the mobile particles that roll on the surface of the bed or
those that are in saltation motion. We use the model proposed by [32] and [33] that is designed to compute
drag on a particle at a distance δ over a bed of particles (see schematics in Figure 2a)

Fd2 =
π

8
CDd

2
p |uf − vp| (uf − vp) , (12)

where the subscript ’2’ in the force indicates the second model. The drag coefficient CD is computed as

CD =
24

Rep

[
1 + 0.138 exp(−2δ/dp) +

9

16(1 + 2δ/dp)

] (
1 + αDRe

βD
p

)
, (13)

where149

αD = 0.15− 0.046
(
1− 0.16(δ/dp)

2
)

exp (−0.7δ/dp) (14)

βD = 0.687 + 0.066
(
1− 0.76)(δ/dp)

2
)

exp
(
−(δ/dp)

0.9
)

(15)

The above correlation was originally developed for a laminar shear flow past a spherical particle sitting over150

a flat wall [34], in which case δ was defined as the gap between the bottom of the particle and the flat wall.151

The applicability of the above correlation in a turbulent flow was then established through particle-resolved152

simulations of wall turbulence over a spherical particle sitting on a flat wall [33]. The problem of a particle153

sitting on a rough wall made up of similar-sized particles was then considered by [35] in the laminar flow154

regime and by [32] in the turbulent flow regime. These particle-resolved investigations confirmed that the155

above drag correlation provided adequate description of the instantaneous force on the particle, provided δ156

is defined as the distance between the bottom of the particle and the bed level. The bed level is defined as157

the lowest point to which the bottom of the particle could be lowered to, which for a sheet of monodispersed158

particles correspond to a height of 0.3165dp from the plane of the centers of the bed-particles.159

For a hexagonally packed layer of particles the bed level corresponds to a volume fraction of about160

φ = 0.4. The value of φ corresponding to the bed level decreases for a random arrangement of particles. We161

simply take δ to be the normal distance from the surface of φ = 0.1 to the bottom of the particle, whose162

quasi-steady force is being evaluated. Particles whose δ is negative are taken to be inside the bed. When163

a particle is deep inside the bed, then its neighborhood can be considered locally homogeneous at the local164

volume fraction. Nevertheless, the flow inside the bed is far weaker and therefore we take the hydrodynamic165

force on the particles to be evaluated with δ/dp set to zero, making CD solely a function of particle Reynolds166

number Rep.167

2.1.3. Quasi-steady Lift Force168

The lift force on a particle can arise from three sources: (i) shear-induced lift due to ambient shear or
vorticity, (ii) wall-induced lift due to the motion of a particle near a wall, or in this case a bed of stationary
particles, and (iii) rotation-induced Magnus lift force due to the rotation of the particle [36, 10]. For a
particle in incipient motion, the shear-induced lift is the dominant contribution. However, it has been
established that the intensity of the shear-induced lift force is substantially modified by the presence of a
nearby boundary. We follow the approach pursued in the second drag model and define the shear-induced
lift force as [37]

Fl =
π

8
CLd

2
p(δ +

dp
2

) [(uf − vp)×Ω] , (16)
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Figure 2: a) Schematics of particle moving of bed of particles; b) Schematic diagram of collision between a pair of particles.

where Ω = ∇× uf is the vorticity at the particle’s center. The lift coefficient is computed as [32]

CL =
3.663

(Re2
p + 0.1173)0.22

exp

[
−0.5(δ/dp)

(
Rep
250

)4/3
] [

exp(αL(δ/dp)
βL)− λL

]
, (17)

where169

αL = − exp (−0.3 + 0.025Rep) , (18)

βL = 0.8 + 0.01Rep, (19)

λL = [1− exp(−δ/dp)]
(
Rep
250

)5/2

. (20)

The lift force was also originally obtained from particle-resolved simulations of a laminar linear shear flow170

past a spherical particle sitting on a flat wall [34]. This correlation was later extended to be applicable for171

a particle sitting on a rough wall in a turbulent flow [33, 35, 32].172

2.1.4. Added-Mass and Body Forces173

As for the added-mass force Fam, it arises from the relative acceleration between the ambient flow and
the particle. The model for this force is [38]

Fam = CmVp

(
Duf
Dt
− dvp

dt

)
, (21)

where Duf/Dt is the material or total derivative of the fluid macroscale velocity computed in the EL174

approach evaluated at the particle’s center and the added-mass coefficient Cm = 1/2. This expression for175

added-mass force is strictly applicable for an isolated particle. Clearly, the presence of neighboring particles176

will alter the value of the added-mass coefficient to be different from 1/2. Here we ignore this influence, since177

we do not have adequate knowledge of the added-mass effect on a particle sitting on a flat or a rough wall.178

We also ignore the history effect. Fortunately, the acceleration of the flow and the particle are sufficiently179

mild in the present application that both the added-mass and history forces are quite small compared to180

the quasi-steady force.181

Finally, Fb is the body force of the particle. In the present work, Fb can be computed as the difference
between the gravitational force and the buoyancy force, which in its dimensionless form reduces to

Fb =
π

6
d2
p

1

Θ
eg, (22)
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where eg is a unit vector in the direction of gravity and Θ is the Shields number imposed by the flow,

Θ =
U∗2τ
Rg∗d∗p

. (23)

Here, g∗ is the magnitude of the gravitational acceleration and R = ρ∗p/ρ
∗
f − 1 is the submerged specific182

gravity of the particles. Note that Θ is an input to the simulations and accounts for the ratio between the183

shear and gravitational forces. As Θ increases, the particle body force decreases and the flow is able to move184

particles more easily.185

2.1.5. Collisional Force186

In the present setup, the large number of monodispersed particles form a random near-close-packed bed
and as a result, particle-particle collisions occur very frequently within the bed. In order to account for the
collision forces in a physically realistic way, a soft-sphere spring-damper model is implemented. This type
of model has been extensively used (e.g. [39], [18], [38]). To describe the model, we consider two colliding
particles labeled i and j in the schematic of Figure 2b. The particle centers are located at xp,i and xp,j . At
the time instance shown, the particles are rotating with angular velocities ωp,i and ωp,j , and the particle
center velocities are vp,i and vp,j . The collision model allows for particles to have a slight overlap, which is
defined as

δij = 0.5 (dp,i + dp,j)− |xp,i − xp,j | , (24)

where nij is the unit normal vector which points from particle i to particle j, through the centers of the two
particles

nij =
xp,j − xp,i
|xp,j − xp,i|

. (25)

The relative velocity between the two particles at the point of contact can be computed as

vp,ij = vp,i − vp,j + (0.5dp,iωp,i + 0.5dp,jωp,j)× nij . (26)

This relative velocity can be decomposed into a normal component vnp,ij and a tangential component vtp,ij .
These components are given by

vnp,ij = (vp,ij · nij) nij and vtp,ij = vp,ij − vnp,ij . (27)

We define the tangential unit vector tij to point in the direction of vtp,ij as

tij =
vtp,ij∣∣vtp,ij∣∣ . (28)

The total collision force, Fc, acting on particle i represents the summation of normal and tangential
collision forces resulting from collisions with neighboring particles.

Fc =
∑
j 6=i

Fnc,ij + Ftc,ij , (29)

where Fnc,ij and Ftc,ij are the normal and tangential components of the collision force between particles i
and j, respectively. The normal collision force Fnc,ij can be modeled as a linear spring-damper system,

Fnc,ij =

{
−kcδijnij − ηnvnp,ij if δij > 0,

0 otherwise.
(30)

The first term on the right-hand side is the elastic part of the normal force component and its magnitude is
proportional to the overlap distance δij . The dimensionless spring stiffness coefficient kc is defined as

kc =
k∗c

ρ∗fH
∗
fU
∗2
τ

. (31)
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In terms of spring stiffness coefficient, a simple estimate of non-dimensional collisional time during which the
colliding particles are in contact can be obtained as tc = 2(πdp)

3/2/
√

6kc. To ensure adequate resolution of
particle collisions, kc has been chosen such that tc ≈ 10∆t, where ∆t is the simulation time step. In the force
expression, the second term on the right-hand side is the dissipative part of the normal force component. It
is a linear function of the normal component of relative particle velocity. The parameter ηn is the damping
coefficient in the normal direction. According to [38], it can be computed based on the spring stiffness
coefficient kc, the normal coefficient of restitution en, and the mass of particles involved in the collision,

ηn =
−2 ln en√
π2 + (ln en)

2

√
kc
π

6
β

d3
p,id

3
p,j

d3
p,i + d3

p,j

. (32)

The values of kc and en used in the present work are 507 and 0.3, respectively [18].187

The Bagnold number Ba plays an important role in asessing the importance of collisional stresses. The
Bagnold number is computed as [40]

Ba = βReτλ
1
2 d2
p

dup
dz

, (33)

where λ is expressed as

λ =
1

(C0/C)1/3 − 1
. (34)

Here, C is the average ratio of the sediment-occupied space to the whole space within the bed and C0 is188

the maximum possible static volume concentration, which for spheres reach a value of about 0.64. The189

maximum value of the Bagnold number for the different cases ranges from around 30 to about 200. These190

estimates will somewhat decrease if we consider the value of C to decrease at the very top of the bed, while191

the estimates will somewhat increase in regions of more intense turbulence where the local shear is large.192

Nevertheless, according to [40], our simulations fall in the macro-viscous to transitional regime. In these193

regimes, the coefficient of restitution has been found to range between 0 and 0.65 [41]. We also emphasize194

that the conditions of the present simulations are similar to those of particle-resolved simulations of [20],195

whose collision model along with the value of coefficient of restitution have been adopted here. We should196

also note that the simulation results continue to reinforce the notion that when grains are flowing the details197

of the granular rheology are not critical to predicting the bulk statistics of the flow, but rather the bulk198

energy dissipation is the key factor. This is accounted for in the present simulations by using a value of 0.3199

for the coefficient of restitution, which appears to be a suitable average value as the actual coefficient of200

restitution for individual collisions would range from 0 to 0.65.201

The tangential component of the collision force is computed as indicated by [18]

Ftc,ij =

{
−
[
min

(
µc
∣∣Fnc,ij∣∣ , ηt ∣∣vtp,ij∣∣)] tij if

∣∣vtp,ij∣∣ 6= 0,

0 otherwise,
(35)

where µc = 0.4 [18] is the friction coefficient and ηt is the damping coefficient in the tangential direction.202

In the present work, ηt is chosen to be the same as ηn [18]. It has been shown in the literature that these203

values of collisional parameters are appropriate for sediment migration in water and that the results are not204

sensitive to their variation [18].205

2.1.6. Torques206

Now, we shift our attention to the evaluation of torques for application in the particle angular momentum
equation, equation 7. First, the hydrodynamic torque Th can be computed as in [38],

Th = Ip
60

64π

1

β
Ct |ωrel|ωrel, (36)

where ωrel is the relative rate of rotation in a viscous fluid,

ωrel =
1

2
Ω− ωp. (37)

9



The hydrodynamic torque coefficient Ct can be computed as

Ct =
Ct1√
Rer

+
Ct2
Rer

+ Ct3Rer, (38)

where the coefficients Ct1, Ct2 and Ct3 are chosen from Table 1. These coefficients are a function of particle

Rer Ct1 Ct2 Ct3
Rer < 1 0 16π 0

1 ≤ Rer < 10 0 16π 0.0418
10 ≤ Rer < 20 5.32 37.2 0
20 ≤ Rer < 50 6.44 32.2 0
50 ≤ Rer < 100 6.45 32.1 0

Table 1: Values of the hydrodynamic torque coefficients [38].

rotational Reynolds number Rer, defined as

Rer =
d2
p |ωrel|Reτ

4
. (39)

The tangential collision force described in the previous section will induce a collision torque on particle i
[38],

Tc =
∑
j 6=i

dp,i
2

nij × Ftc,ij . (40)

The rolling torque Tr is also included in equation 7 to account for the rolling resistance on particle i [38]

Tr =
∑
j 6=i

−ϑr
∣∣Fnc,ij∣∣ rij ω∆

|ω∆|
. (41)

This torque is in the direction of relative angular velocity ω∆ = ωp,i − ωp,j . Here ϑr = 0.06 [38] is the207

coefficient of rolling friction, and rij =
dp,idp,j

2(dp,i+dp,j) is the reduced radius. For the case of particle-wall208

collision, the reduced radius and relative angular velocity become rij = dp,i/2 and ω∆ = ωp,i, respectively.209

2.2. Fluid Motion210

In the EL approach, the flow on the scale of the particles is not resolved and thus the fluid phase governing211

equations have been averaged by a filtering operation [42, 43]. Here the filter function has been chosen to212

be the Gaussian filter defined earlier in equation 1. Unlike the particle-resolved velocity and pressure fields213

which are only defined in the region occupied by the fluid, the filtered velocity and pressure fields uf and p214

are defined over the entire volume, including the regions inside the particle and thus the filtered governing215

equations are solved over the entire cuboidal computational domain. The Gaussian filtered dimensionless216

conservation equations of mass and momentum of the fluid phase are217

∇ · uf = − 1

φf

Dφf
Dt

(42)

Duf
Dt

= G−∇p+
1

Reτ
∇2uf +

fpf
φf

. (43)

Here p = p∗/ρ∗fU
∗2
τ is the perturbation pressure after subtraction of the hydrostatic contribution. φf = 1−φ

and uf are the volume fraction and velocity of the fluid phase, respectively. The anisotropic filtering
operation and the interaction of the filter with the top and bottom computational boundaries lead to
additional commutation terms in the governing equations, which are commonly ignored. Here we also ignore
the Reynolds stress term arising from the sub-grid velocity fluctuations. Following this standard procedure
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we obtain the above standard approximate form of the filtered EL equations. In all our simulations we
impose a constant non-dimensional streamwise external pressure gradient G = (1, 0, 0) which drives the
flow. The shear Reynolds number Reτ = 180 is the same for all simulations [44]. The back-coupling of
hydrodynamic force from the particle to the fluid fpf = f∗pf/(ρ

∗
fU
∗2
τ /H∗f ) is defined as

fpf = −
np∑
n=1

G (x,xp) (Fd + Fl + Fam) , (44)

where np is the number of particles that influence the position x in the Eulerian reference frame. Note that218

only the perturbation hydrodynamic force contributions from quasi-steady drag, lift and added-mass forces219

must be applied back onto the fluid.220

2.3. Problem Setup221

The fluid and particle equations are solved using a highly scalable spectral element solver [45, 46, 16]
with a domain size Lx×Ly×Lz = 4π×4π/3×1.31 along the streamwise, spanwise, and vertical directions.
The domain is discretized using 30× 30× 13 hexahedral elements with 123 Gauss-Lobatto-Legendre (GLL)
grid points within each element. This gives a total of ≈ 20.2 million grid points per simulation. Unless
otherwise stated, data that is spatially averaged over the entire horizontal plane and temporally averaged
from t = 0.5 to t = 2 is presented with angular brackets 〈·〉. The chosen time duration over which quantities
are averaged is long enough to account for turbulent fluctuations but short enough so that the particle
bed remains featureless. Furthermore, a vector quantity with an x or y subscript denotes respectively the
streamwise and spanwise components of that vector quantity. Such vector quantities include the Shields
number θ = τ ∗/(Rg∗d∗p), defined in terms of the bed shear stress τ ∗, and the sediment flux per unit width

q (x, y, t) =

∫ Lz

0

(
np∑
n=1

G (x,xp) vpVp

)
dz, (45)

where the integrand is the Eulerian-phase weighted particle velocity field upφ. The projected particle velocity222

field up = {up, vp, wp}.223

Periodic boundary conditions are applied for both the fluid and particle phases along the horizontal224

directions. For the fluid phase this implies that the velocity and perturbation pressure fields on the left225

(or front) face of the computational domain is the same as the right (or back) face. For the Lagrangian226

particles this implies that a particle whose center exits the right (or back) face will be reintroduced into the227

computational domain from the left (or front) face. The periodic nature of the problem is also recognized228

in the application of the filter function and as a result Eulerian quantities derived from the Lagrangian229

particles, such as φ(x, t) are also periodic. The periodic nature of the problem is also observed in detecting230

collisions across the lateral boundaries of the computational domain [47, 16].231

3. Results and discussion232

The simulations consist of a particle bed composed of nearly 1.3 million particles of dimensionless di-233

ameter dp = 0.025 below a unidirectional open-channel turbulent flow. Ten simulations are considered, the234

details of which are shown in Tables 2, 3, and 4. The Galileo number is defined as Ga =
√
Rg∗d∗3p /ν

∗. In the235

present study, the particle and fluid densities are chosen to be ρ∗p = 1.57 g/cm3 and ρ∗f = 1.00 g/cm3, and236

consequently, R = 0.57 is fixed for all simulations. Furthermore, we use g∗ = 9.81m/s2 and ν∗ = 10−6m2/s237

for all simulations. The value of d∗p varies from one simulation to the other, however the non-dimensional238

particle diameter remains fixed as stated earlier. The critical Shields number can be computed as θcr =239

1
2 [0.22Ga−0.6 + 0.06 exp(−17.77Ga−0.6)] [8]. We should note here that each simulation corresponds to a240

unique set of physical parameters [12, 13], which are shown in Table 3.241

We should note here that we use spectral element methodology. Furthermore, based on the smallest242

element, the grid resolution along different directions are ∆x = 0.038, ∆y = 0.013 and ∆z = 0.0027. Since243
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the particle diameter is 0.025, this yields dp/∆x = 0.66, dp/∆y = 1.97, and dp/∆z = 9.31. However, it244

should be also pointed out that the feedback force has been smoothened with an anisotropic filter whose245

size is 9dp, 3dp, and 1.2dp along the streamwise, spanwise, and vertical directions. The size of the filter is246

on the same order as that used in similar studies [39, 48]. Thus, due to the finite size of the particles, an247

approximation is made in calculating particle forces, since the local fluid velocity is somewhat influenced by248

the self-induced flow of each particle. Recent works [43] have devised ways to reduce this self-induced effect.249

The correction is however of the order of other uncertainties that are involved in the force modeling, and is250

not taken into account in the present work.251

Case dp R Ga θcr Θ Θ/θcr Reτ Lx × Ly × Lz Nx ×Ny ×Nz
EL1 0.025 0.57 29.8 0.0173 0.0229 1.32 180 4π × 4π/3× 1.31 360× 360× 156
EL2 0.025 0.57 21.0 0.0194 0.0457 2.36 180 4π × 4π/3× 1.31 360× 360× 156
EL3 0.025 0.57 14.9 0.0227 0.0914 4.04 180 4π × 4π/3× 1.31 360× 360× 156
EL4 0.025 0.57 11.4 0.0260 0.1554 5.98 180 4π × 4π/3× 1.31 360× 360× 156

Table 2: Details of the numerical simulation. Please see text for definitions. Lx, Ly , Lz and Nx, Ny , Nz correspond to the
domain size and number of grid points along the streamwise, spanwise, and vertical directions, respectively.

Case d∗p
(µm)

ρ∗p(
g/cm3

) ρ∗f(
g/cm3

) U∗τ
(cm/s)

H∗f
(cm)

H∗b
(cm)

Np
(million)

EL1 541 1.57 1.00 0.83 2.16 0.670 1.30
EL2 429 1.57 1.00 1.05 1.72 0.559 1.30
EL3 341 1.57 1.00 1.32 1.36 0.442 1.30
EL4 286 1.57 1.00 1.58 1.14 0.353 1.30

Table 3: Physical parameters corresponding to the non-dimensional parameters in Table 2. The choice of the sediment density
is motivated by previous studies [49, 50].

3.1. Sensitivity analysis252

We present in Table 4 seven different simulations of case EL3 where we test different models for the253

closure of particle equations of motion. The second column shows the particle motion equations that are254

solved for each case, while the third column shows the force and torque models that are implemented.255

In case EL3 we integrate the particle equations of translational and rotational motion to obtain the256

location as well as the linear and angular velocities of the particles. We use the drag Fd2 and lift Fl force257

models that account for particle distance from the bed (equations 12 and 16, also see figure 2a). This258

numerical setup is well suited for bedload-dominated sediment transport and will be used in the subsequent259

simulations of cases EL1-EL4. Case EL3a is the same as EL3 except in that the drag force model Fd1260

does not account for particle distance from the bed (see equation 9), and it does not include a lift force261

model. In case EL3b, we use the same force model as in case EL3 but do not solve the equation for particle262

angular velocity (equation 7). As a result, torque models are not needed. Case EL3c is the same as EL3b263

but without including a model for the tangential collision force Ftc (equation 35). Case EL3d is the same264

as EL3c but with no lift force model Fl and with the drag force model Fd1 from equation 9. Finally, case265

EL3e (resp. El3f) is the same as EL3 (resp. EL3c) but with no lift force model Fl. The objective of this set266

of simulations is to test the effect of different components of the force/torque model on bedload-dominated267

sediment transport by comparing the mean sediment flux and excess Shields stress to those predicted by [4].268

Figure 3 shows the streamwise particle flux 〈qx〉 as a function of the streamwise excess Shields stress269

〈θx〉 − θcr for all simulations. The inset shows a closeup view of the cases shown in Table 4, where different270

components of the force/torque model are tested. Comparing the different cases in the inset it can be271

observed that there are small differences and the largest difference is in the streamwise particle flux 〈qx〉 of272

EL3b. Before we investigate the mechanisms responsible for such differences, it is important to establish the273

vertical and horizontal error bars associated with these data points. The sample size used in the calculation274
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Case Particle motion equations. Particle Models

EL3 xp: 5 ; vp: 6 ; ωp: 7 Forces: Fun: 8; Fd2: 12; Fl: 16; Fam: 21; Fb: 22; Fnc : 30; Ftc: 35
Torques: Th: 36; Tc: 40; Tr: 41

EL3a xp: 5 ; vp: 6 ; ωp: 7 Forces: Fun: 8; Fd1: 9; Fl: −; Fam: 21; Fb: 22; Fnc : 30; Ftc: 35
Torques: Th: 36; Tc: 40; Tr: 41

EL3b xp: 5 ; vp: 6 Forces: Fun: 8; Fd2: 12; Fl: 16; Fam: 21; Fb: 22; Fnc : 30; Ftc: 35
Torques: −

EL3c xp: 5 ; vp: 6 Forces: Fun: 8; Fd2: 12; Fl: 16; Fam: 21; Fb: 22; Fnc : 30; Ftc: −
Torques: −

EL3d xp: 5 ; vp: 6 Forces: Fun: 8; Fd1: 9; Fl: −; Fam: 21; Fb: 22; Fnc : 30; Ftc: −
Torques: −

EL3e xp: 5 ; vp: 6 ; ωp: 7 Forces: Fun: 8; Fd2: 12; Fl: −; Fam: 21; Fb: 22; Fnc : 30; Ftc: 35
Torques: Th: 36; Tc: 40; Tr: 41

EL3f xp: 5 ; vp: 6 Forces: Fun: 8; Fd2: 12; Fl: −; Fam: 21; Fb: 22; Fnc : 30; Ftc: −
Torques: −

Table 4: Cases performed for sensitivity analysis of the force and torque models. In each case, the equation number of each
model is also provided.

of the ensemble averages 〈qx〉 and 〈θx〉−θcr consists of 5.6 million data points. These data points correspond275

to 330 × 330 grid points in the horizontal plane and 51 time instances equally spread over 1.5 time units.276

When the sample size is tripled with the use of 151 time instances instead of 51, the statistics remains277

nearly unchanged. For example for case EL3, we find 〈qx〉 and 〈θx〉 to differ by less than 0.12% and 0.025%,278

respectively. Thus, the error bars associated with the data points shown in Figure 3 are quite small.279

Comparing cases EL3 and EL3e, we find the lift force to substantially reduce the sediment flux, namely280

by 40%. A similar effect is also observed by comparing cases EL3c and EL3f, where the lift force model in281

the latter is also omitted. Here also we find a sediment flux reduction of approximately 43%. Inspecting282

both cases that do not possess a lift force model, namely EL3a and EL3e, we see that the drag force model283

equation 9 results in a particle flux increase of approximately 21%. A similar conclusion can be drawn for284

cases EL3d and EL3f where the drag model, equation 9, in the absence of lift force, particle rotation, and285

tangential collision, results in a particle flux increase of 15%. The difference between the two drag models286

on the mean Shields stress is quite small.287

On the other hand, a more significant difference can be seen when particle angular velocity is not288

computed (case EL3b). Comparing cases EL3 and EL3b we find that sediment flux decreases by ≈ 68% in289

the latter. In EL3b, while particles are not allowed to rotate, the tangential collision force is still computed,290

thus reducing the sliding motion possibility of a particle as well. This contributes to a substantially lower291

sediment flux. In contrast, in case EL3c, though particles are not allowed to roll, the tangential collision292

force is also not taken into account. In this case the sediment flux changes little compared to case EL3293

where the rotational motion and tangential force are taken into account. Thus, in case EL3c, the reduction294

in streamwise sediment flux due to lack of rolling motion is compensated by allowing the particle to freely295

slide without the penalty of a tangential force. This small difference can also be seen with the use of the296

quasi-steady force model in cases EL3a and EL3d, where the average streamwise sediment flux is nearly the297

same.298

It can be observed that the average excess Shields stress of case EL3c is noticeably higher than that of299

case EL3, and correspondingly 〈θx〉 − θcr of case EL3d is higher than EL3a. This increase in Shields stress300

can be explained in terms of global energy balance. Due to the constancy of applied pressure gradient, the301

streamwise momentum supplied remains the same in all cases considered. The energy supplied is balanced302

by the dissipative processes associated with the form drag and the shear stress in the fluid and with the303

dissipation associated with the normal and tangential collisional processes. Thus, with the elimination of304

the tangential collisional force, the corresponding dissipation is absent. This contributes to an increase in305

the excess Shields stress.306

13



Figure 3: Streamwise particle flux 〈qx〉 as a function of excess Shields 〈θx〉 − θcr. Inset: enlarged view for the EL3 cases in
table 4.

For all cases in Table 4, the probability distribution functions (pdf) for qx and θx are shown in Figure 4.307

As expected, we find the distribution of qx from case EL3b to show the largest difference compared to all308

other cases, while the Shields stress distribution shows little variation among all cases including EL3b. It is309

interesting to note that 〈qx〉 in cases EL3, EL3a, and EL3e is comparable to the corresponding non-rotating310

cases, namely EL3c, EL3d, and EL3f, respectively. In contrast to the average statistics, it can be observed311

that the probability of very large sediment flux values slightly increases with the absence of rotation.312

The sediment flux represents the collective motion of particles in the entire domain. This includes313

saltating particles above the sediment bed as well as particles that roll and slide within or at the surface314

of the bed. In Figure 5, we show the fluid (filled symbols) and particle (open symbols) mean streamwise315

and positive bed-normal components of velocity at the surface of the particle bed as a function of mean316

excess Shields stress. When averaged over the horizontal direction, the particle flux 〈upφ〉 usually attains its317

maximum value at around the height where 〈φ〉 = 0.1, hence demonstrating the consistency of the definition318

of the bed surface. Here 〈ubed〉 and 〈w+
bed〉 (resp. 〈up,bed〉 and 〈w+

p,bed〉) denote the mean streamwise and319

positive bed-normal components of fluid (resp. particle) velocity at the sediment bed surface. Only the320

positive component of bed-normal velocity is considered since the mean bed-normal velocity of the fluid321

or the particle phase is identically zero at the bed surface. In fact, in the present simulations and at any322

instance in time, the bed-normal component of velocity at the bed surface is positive over approximately one323

half of the domain, and negative over the other half. The corresponding mean values (positive or negative)324

over the respective grid points are the same.325

Since the particles are driven by the flow, the mean fluid velocities are substantially larger than the mean326

particle velocities. This difference in velocity may however also be caused by the preferential accumulation327

of particles in low-speed streaks, which are observed in the present simulations. We note that the differences328

in 〈θx〉 − θcr between the different cases observed in Figure 3 apply to Figure 5a as well. Except for the329

slightly lower value in case EL3b, the mean streamwise velocity of the fluid at the bed surface is about330

the same for all other cases. The mean streamwise particle velocity 〈up,bed〉 for cases EL3b and EL3d are331

lower than the results for the corresponding rotation-included cases EL3 and EL3a, which is consistent with332

the slightly lower mean sediment flux seen in Figure 3. This shows that, the near-bed turbulence remains333

about the same whether or not particles are allowed rotational degree of freedom, but the effect of this334

turbulence on particle motion depends on inclusion or exclusion of rotational particle motion. In Figure335

5b, the mean excess Shields stress value for postive bed-normal fluid velocity (〈θx〉 − θcr ≈ 0.038) is less336

than the corresponding mean excess Shields stress value averaged over the entire bed surface (see frame337

a). On the other hand, the mean excess Shields stress in regions of positive wall-normal particle velocity338

14



a) b)

Figure 4: Mean subtracted pdf for a) qx and b) θx.

(〈θx〉 − θcr ≈ 0.055) is higher. This is to be expected since the grid points over which w+
p,bed is averaged339

will generally have a larger Shields stress, owing to the fact that particles will only move when the net340

force exerted on them is above a critical value. Whereas, the grid points over which w+
bed is averaged (i.e.,341

upwelling through the porous bed) will be associated with lower streamwise fluid velocity and thus account342

for a lower value of 〈θx〉 − θcr.343

We summarize the results of the sensitivity analysis as follows:344

• Since both drag models compare favorably with [4], lying well within the scatter used to generate345

the WP fit, we conclude that both models are adequate for modeling bedload-dominated sediment346

transport. We cannot determine if one model is preferable over the other with the data at hand.347

In fact, it can be conjectured that a variety of reasonably constructed drag and lift models will be348

adequate, since the differences between them are small.349

• Models that do not take particle rotation into account must also omit the tangential collision force350

from their computations in order to be consistent. Otherwise, if only particle rotation is ignored, then351

the particle flux will be substantially reduced. This result is due to the loss of the rolling/sliding352

component of bedload transport. While tangential collisional force hinders sliding motion of particles,353

lack of rotation hinders rolling motion.354

• Models that ignore both particle rotation and tangential collision force appear to correctly predict355

the mean particle flux, but to overpredict the Shields stress. This overestimation is attributed to the356

reallocation of dissipative mechanisms associated with particle rotation and tangential collision.357

Finally, we note that while the current study focuses on bedload transport in a span of time where the358

bed remains mostly featureless (almost flat), long time evolution of the simulations indicate that the effect359

of not including particle rotation could become important at later times, when bedforms appear.360

3.2. Effect of coarse graining361

The instantaneous sediment flux has been shown to exhibit large scatter when plotted as a function of362

excess Shields stress [51]. To be specific, the scatter shows that for a particular value of the excess Shields363

stress, the sediment flux could attain a value over a range of a few orders of magnitude. Additionally, the364

scatter also shows that the same value of the sediment flux may occur for a range of excess Shields stress of365

also a few orders of magnitude. This large scatter suggests that temporally and spatially averaged empirical366

relations such as the WP correlation may not be adequate for use in a local and instantaneous setting. This367

is because such correlations have a one to one relation between excess Shields stress and sediment flux.368
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Figure 5: a)Time- and space-averaged streamwise component of fluid, ubed (filled symbols) and particle up,bed (open symbols)

velocities at the bed surface. b) Time- and space-averaged positive bed-normal component of fluid, w+
bed (filled symbols) and

particle w+
p,bed (open symbols) velocities at the bed surface.

To reduce the scatter and render WP correlation more applicable, coarse graining may be used. Coarse369

graining consists of averaging local quantities such as Shields stress or sediment flux over an area so as to370

include a relatively large number of sediment grains in obtaining the average. By doing so, coarse-grained371

quantities reflect the collective behavior of particles and reduce variability due to turbulent fluctuations and372

particle pocket geometry. The larger the area over which the averaging is conducted, the smaller the net373

effects of turbulent fluctuations and particle pocket geometry.374

Figure 6 shows a view of the entire particle bed from case EL3 with two enlarged views with different375

perspectives, namely panels A (0 < x < 4, 1 < y < 2) and G. Figure 6 also shows vertical slices bisecting376

the enlarged view A (at y = 1.5). The slices correspond to iso-contours of B) streamwise fluid velocity,377

C) vertical fluid velocity, D) particle volume fraction, E) streamwise particle velocity multiplied by particle378

volume fraction, and F) vertical particle velocity multiplied by particle volume fraction. We observe from379

panels B and C that variations in streamwise fluid velocity at the particle bed surface (marked by the white380

line) occur at a lower spatial frequency compared to variations in vertical fluid velocity at the particle bed381

surface. We also observe that regions of intense particle transport (identified by the red color in panel E)382

occur when a region of high momentum in the bulk of the flow penetrates into the bed. This corresponds to383

the region in panel B where the red iso-surface is in contact with the particle bed surface downstream of the384

relatively large green patch. We also observe the particles colored in red within this region in panels A and385

G to indicate saltating sediment transport (see dashed purple circles in both panels which correspond to the386

same region). Furthermore, at the time instance shown, we find the regions of intense particle transport to387

occur at various locations over the bed as inferred by the saltating red-colored particles in the full view of388

the particle bed.389

EE simulations where individual particles are not tracked must enforce a Shields-dependent slip velocity390

at the sediment bed surface [51]. Figure 6 suggests that EE simulations must use coarse-graining so that391

fluctuations in bed surface fluid velocities and particle flux are minimized. Based on the nature of fluctuations392

in Figure 6, we find that variations in wbed will quickly diminish compared to variations in ubed as higher393

levels of coarse graining is implemented. This is due to the fact that variations in wbed occur with a relatively394

high spatial frequency as previously mentioned.395

In Figure 7, we show the scatter plot of the the coarse-grained streamwise component of flux (q̂x) versus396

coarse-grained streamwise component of excess Shields stress (θ̂x− θcr). Here, coarse-grained quantities are397

denoted by a hat symbol and are defined as398
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Figure 6: Full view of the particle bed from case EL3 with particles colored by their elevation. A) Enlarged view of a portion
of the bed (0 < x < 4, 1 < y < 2) from which fluid and particle properties are extracted in the vertical plane (y = 1.5).
B) Contours of streamwise component of fluid velocity. C) Contours of vertical component of fluid velocity. D) Contours of
particle volume fraction. E) contours of upφ. E) contours of wpφ. G) Close-up view with near-bed perspective showing nearly
half the particle bed, including the region shown in A.

ζ̂(x, y, t) =
1

A

∫∫
A

ζ(x, y, t)dxdy, (46)

where A corresponds to the horizontal area over which the coarse graining is implemented, and ζ represents399

the coarse-grained variable. Two different levels of coarse graining are shown in panels b and c. While400

no coarse graining is implemented in panel a. The level of coarse graining may be quantified by the ratio401

γ = A/d2
p. γ thus quantifies the number of particles contained, one layer in depth, within a cross-sectional402

area of A. In Figure 7, the value of γ is 0.65, 860, and 5071 for panels a, b, and c, respectively.403

The effect of coarse graining is evident from Figure 7, where we show a scatter plot colored by number404

density for the instantaneous coarse-grained sediment flux q̂x vs the instantaneous coarse-grained excess405

Shields stress θ̂x − θcr. The dashed line corresponds to the Wong & Parker sediment flux relation [4], and406

the solid line represents the power-law regression fit to the scatter. We observe the scatter cloud to shrink407

in size and the number density within the bins to rise as γ increases. We also find the reduction in scatter408
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a) b)

c) d)

Figure 7: Bin scatter plot colored by number density for flux versus excess Shields stress from EL3 for different levels of coarse
graining a) γ = 0.65, b) γ = 860, c) γ = 5071. The larger the value of γ, the smaller the scatter. The dashed and solid lines in
panels a, b, and c correspond to WP correlation and the power series regression fit to the scatter, respectively. d) Normalized

standard deviation with various levels of coarse graining for q̂x versus θ̂x − θcr. A total of 62500 bins were used in all scatter
plots.
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of the Shields stress to be more pronounced than that of the flux, especially at relatively small values of γ.409

For example, we find the range of scatter in θ̂x−θcr to be approximately reduced from [10−6 10−1], in panel410

a to [10−2 10−1] in panel b. Whereas the reduction in the flux scatter is less pronounced with the range411

being reduced approximately from [10−7 100], in panel a to [10−5 100] in panel b.412

The main purpose of coarse graining is to reduce the variability in the scatter. We use the standard
deviation as the metric for quantifying this reduction and assessing the level of coarse graining that would
be needed in future studies. A normalized plot of the standard deviation versus γ is shown in Figure 7d.
The standard deviation is defined as follows

σq̂ =

[
1

N

N∑
l=1

(q̂x − qfit(θ̂x − θcr))

]1/2

, (47)

where qfit is the value of sediment flux predicted by the power-law fit corresponding to the coarse-grained413

excess Shields stress. The standard deviation is calculated not with respect to the WP correlation so as not414

enhance the standard deviation with contribution from differences in the mean.415

We observe σq̂ to decrease with increasing γ as expected. The rate of decrease is largest for the smallest416

values of γ and diminishes progressively as γ increases. More specifically, we find a sharp decline in σq̂ when417

γ is of the order of O(103) or less, and a mild decline for larger values. We also find σq̂ to be also influenced418

by the ratio Θ/θcr (see Table 2). The smaller the ratio the larger the reduction in σq̂. The non-zero value419

of σq̂ even for large values of γ is indicative of the temporal fluctuation in the value of spatially averaged420

sediment flux.421

Coarse graining can be implemented for all spatially varying quantities. Here we additionally use coarse422

graining on ubed and wbed, the tangential and bed-normal velocity components of the fluid at the fluid423

sediment interface, respectively. Both variables are essential for EE sediment transport simulations and are424

usually set to zero at the fluid sediment interface [52, 53, 54, 55]. While the mean value of wbed is zero at425

the bed surface, the mean value of ubed is significant compared to the bulk velocity [51]. Both variables also426

experience large scatter. The normalized standard deviation versus γ is shown in Figure 8. Since the mean427

value of ubed was found to depend on the excess Shields stress [51], we compute its standard deviation σûbed
428

about its power-law fit, similar to the definition given in equation (47). On the other hand, since the average429

value of wbed over the fluid sediment interface is zero, and therefore independent of the Shields stress, we430

compute its standard deviation σŵbed
about wbed = 0.431

For the case of σûbed
, the behavior is similar to that observed in Figure 7d for σq̂. Namely, (i) the sharp432

decline in the standard deviation for small values of γ up to order O(103) and the mild decline thereafter,433

and (ii) Θ/θcr has a substantial effect on the rate of decline of the standard deviation. For the case of wall434

normal fluid velocity at the bed, σŵbed
becomes nearly zero upon modest coarse graining indicating that435

for relatively large coarse-graining areas, the vertical fluid velocity at the bed can be taken to be zero and436

the bed can be assumed to be non-penetrable. Also, the influence of Θ/θcr is marginal. The bed normal437

velocity wbed is influenced by the near-bed Kelvin-Helmholtz (KH) vortices (e.g. [56, 57, 58, 59, 60]). The438

size of these vortices is on the order of a several particle diameters in length and width [51]. As such, the439

influence of these rollers on vertical velocity fluctuations will diminish as the coarse graining area A exceeds440

the size of the rollers. This behavior is evident in σŵbed
in Figure 8b. The relatively fast decay in σŵbed

441

is also in line with what was observed in Figure 6c where fluctuations from the iso-contours of wbed were442

shown to occur at a relatively high spatial frequency compared to ubed.443

We further note that the spatial variation of wbed from Figure 6c corresponds to the spacing of the KH444

rollers observed in [51]. More specifically, we find the spacing in Figure 6C to range between 10 and 16445

particle diameters, which is similar to the spacing of the KH rollers in [51], which ranged between 12 and446

20 particle diameters. This leads us to believe that the reduction in the standard deviation in Figure 8b is447

due to KH rollers being averaged out.448

In Figures 7 and 8, the employed coarse graining area had an aspect ratio of unity, which implies that449

A corresponds to a square. It should be noted this aspect ratio need not be the case. In fact, we tested450

additional values of aspect ratio, namely 3 and 1/3 and found that its value is not important, at least in the451

considered range.452
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a) b)

Figure 8: Normalized standard deviation with various levels of coarse graining for a) ûbed versus θ̂x − θcr, and b) ŵbed.

3.3. Effect of time averaging453

Another approach for reducing the scatter is through time averaging. Instead of averaging over a window454

in space at a specific time instance, we average over a window in time at a specific bed location. Time-455

averaged values are denoted by an overbar and defined as456

ζ(x, y, t) =
1

T

∫
T

ζ(x, y, τ)dτ. (48)

Figure 9 shows the bin scatter plot for flux versus excess Shields stress colored by number density as well457

as the normalized standard deviation versus the time averaging window, T for the flux and the streamwise458

and bed-normal components of fluid velocity. The effect of time averaging is similar to what was observed459

for coarse graining.460

Here we should note that the time window for averaging, T , must be chosen such that the particle461

bed remains macroscopically homogeneous during the averaging period. In the present case, since the bed462

remains featureless for the entire duration of the simulation, any time span T may be considered. However,463

once macroscopic features such as bedforms emerge, T cannot be arbitrarily chosen to be too large. In fact,464

it must remain smaller than the characteristic time scale of bedforms, which may be defined as the ratio of465

bedform length to celerity. A similar argument may be made for coarse graining where the dimensions of466

the averaging window along each horizontal direction must remain below the characteristic bedform length467

along that direction. Though the results of both spatial and temporal averaging are qualitatively similar,468

quantitative differences can be observed. In particular, temporal averaging is less effective in reducing the469

fluctuations as measured by the standard deviations. The bed normal velocity fails to converge to zero470

standard deviation even after long time integration. This is perhaps due to the persistence of long streaky471

vortical structures and their effect of near-bed fluid and particle velocity.472

While the Meyer-Peter and Müller (MPM) equation or the corrected model of Wong & Parker (WPMPM)473

and other similar correlations were put forth using averaged data to compute the sediment flux, they are474

presently used to determine local and instantaneous sediment flux in Euler-Euler simulations. This practice475

is due to the ease of application of these models and for lack of a better alternative [14, 15, 12]. To476

resolve the flow dynamics in the boundary layer, a fine mesh and a correspondingly small time step are477

needed in the near-bed region. The fine resolution and small time step may impair the applicability of the478

aforementioned correlations. This difference can be expected since the correlations are not intended to be479

used on a local, instantaneous basis. Nevertheless, the degree of departure between the actual sediment flux480

and that predicted by such models, i.e. the extent of the scatter, has never been quantified and provides481

a useful measure of how spatially and temporally the sediment flux varies over and above their averaged482

behavior predicted by the correlations Clearly, coarse graining will reduce the variability of particle flux and483

other parameters. However, the level of coarse graining that is necessary to improve the applicability of the484
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aformentioned correlations in the context of Euler-Euler simulations has not been addressed and constitutes485

one of the objectives of the present study. Following the results in Figure 7, we recommend the coarse486

graining in Euler-Euler simulations to be on the order of γ = 5000 (i.e., coarse graining must be on a length487

scale of the order of hundred particle diameters). Here one could speculate as to why the statistics seem488

to converge at an order of magnitude increase in the averaging length scale (i.e. the Gaussian filter width).489

This may be related to the integral length scale of the turbulence or some other turbulent statistic.490

a) b)

c) d)

Figure 9: a) Bin scatter plot colored by number density for sediment flux versus excess Shields stress from EL3 for T = 0.5.
The dashed and solid lines represent the WP correlation and the power series regression fit to the scatter, respectively. The
number of bins for the scatter plot is 62500. b), c), and d) Normalized standard deviation for different time averaging intervals
T for sediment flux, streamwise component of the bed surface fluid velocity, and normal component of the bed surface fluid
velocity, respectively.

4. Conclusions491

We presented results from Euler-Lagrange simulations of a turbulent flow over a monodisperse erodible492

particle bed at a shear Reynolds number of Reτ = 180 and over a range of Θ/θcr between 1.32 and 5.98. Two493

drag models were investigated along with the influence of lift force, particle rotation, and tangential collision494

force for each model. We find the temporally and spatially-averaged particle flux and excess Shields stress to495

vary little between the two drag models and to compare well with WP correlation [4]. The simulation results496

show that ignoring particle rotation, but accounting for tangential collisional force to be inconsistent. Since497

this prevents both the rolling and sliding particle motion on the bed, the resulting particle flux is substantially498

lowered. Thus, if the rotational motion of the particle is ignored, it is appropriate to ignore the tangential499

collisional force as well. This results in a quite accurate mean sediment flux. This indifference is attributed500

to the fact that particles can now easily slide, when though they are prevented from rolling and as a result the501

increased sliding transport compensates for the rolling transport. However, the mean excess Shields stress502
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slightly increases, since without rotational motion and tangential collisional force, inter-particle dissipation503

decreases, which contributes to a higher fluid shear stress at the bed. Furthermore, we find that ignoring504

the lift force model, equation 16, which should be applied in conjunction with the drag model of equation505

12, results in a substantial reduction of sediment flux.506

Empirical relations such as [4, 5] were developed to estimate the mean, time- and space-averaged, sed-507

iment flux as a function of the excess Shields stress. However, these relations are used in a local and508

instantaneous setting where fluctuations due to the turbulent nature of the flow and the stochastic bed ar-509

rangement can significantly affect their accuracy. This work explores the possibility of reducing the scatter510

and departure from empirical correlations in sediment flux as a function of excess Shields stress upon spatial511

and temporal averaging. The reduction in the scatter was also explored for other quantities of interest such512

as streamwise and bed-normal fluid velocity at the bed surface. The reduction in scatter was quantified513

using the standard deviation of the scatter. As far as spatial coarse graining is concerned, we tested averages514

over rectangular cross-sections of different aspect ratios and observe the results to be insensitive to the shape515

of the averaging area, but strongly dependent on the size of the averaging area. The reduction in scatter is516

rapid with an increase in the averaging area when the ratio of averaging area to the square of the particle517

diameter is relatively small, less than O(103). For larger averaging areas, the scatter continues to reduce518

albeit at a slower rate. The reduction of scatter is more pronounced for smaller ratios of Shields to critical519

Shields, Θ/θcr. Similar qualitative conclusions can be drawn for time averaging as well, but in general520

time-averaging is observed to be less effective than spatial coarse graining in reducing the scatter. Finally,521

we note that while a large area for coarse graining and a long period for time averaging are preferred to522

achieve the largest reduction in scatter, the area or the time window over which averaging is performed must523

ensure that the particle bed is homogeneous within. This is especially important when bedforms emerge.524

So the dimensions of the area for coarse graining must be less than the characteristic length of bedforms,525

and the time window for averaging must be less than the characteristic time of bedforms.526
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