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SUSPENSION-DRIVEN GRAVITY SURGES ON HORIZONTAL 

SURFACES: EFFECT OF THE INITIAL SHAPE 

N. Zgheib1,2
†, T. Bonometti2, and S. Balachandar1 

1Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, 

USA 

2Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, Toulouse, 

France 

We present results from highly resolved direct numerical simulations of canonical 

(axisymmetric and planar) and non-canonical (rectangular) configurations of horizontal 

suspension-driven gravity surges. We show that the dynamics along the initial minor and major 

axis of a rectangular release are roughly similar to that of a planar and axisymmetric current, 

respectively. However, contrary to expectation, we observe under certain conditions the final 

extent of the deposit from finite releases to surpass that from an equivalent planar current. This 

is attributed to a converging flow of the particle-laden mixture towards the initial minor axis, 

a behaviour that was previously reported for scalar-driven currents on uniform slopes (Zgheib 

et al. 2016). This flow is observed to be correlated with the travelling of a perturbation wave 

generated at the extremity of the longest side that reaches the front of the shortest side in a 

finite time. A semi-empirical explicit expression (based on established relations for planar and 

axisymmetric currents) is proposed to predict the extent of the deposit in the entire 𝑥-𝑦 plane. 

Finally, we observe that for the same initial volume of a suspension-driven gravity surge, a 

release of larger initial horizontal aspect-ratio is able to retain particles in suspension for longer 

periods of time. 

                                                      

† Address for correspondence: Department of Mechanical and Aerospace Engineering, University of 

Florida, Gainesville, FL 32611, USA 
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1. Introduction 

Gravity currents are primarily horizontal flows that are driven by streamwise pressure 

gradient induced by difference in density between the current and the ambient. Of particular 

interest to the present work are sediment-laden or suspension-driven currents where the density 

difference is due to the suspended sediments. An important feature of suspension-driven currents 

is their active interaction with the bed. Depending on the intensity and erosive power of the current 

and on the availability and size of sediments on the bed, a suspension-driven current can be in net-

depositional, net-erosive or by-pass mode. In contrast to suspension-driven currents, scalar gravity 

currents, which are driven by temperature or salinity induced density difference, are conservative 

since the source of density difference is conserved over time.  

Both scalar and suspension-driven currents are actively studied in their canonical geometric 

configurations of planar and cylindrical releases (see figure 1 for schematics of the planar and 

cylindrical releases). These canonical setups have been extensively researched (Kuenen 1966, 

Middleton 1966, Fisher 1971, Simpson 1972, Lowe 1979, Huppert & Simpson 1980, Parker et al. 

1986, Maxworthy 1999, Meiburg & Kneller 2010) resulting in the development of a wide range 

of simple yet robust models. Indeed, one of the advantages of dealing with a simple geometric 

configuration is that at times the dimensional space may be reduced to two or even a single 

dimension making the derivation of elegant theoretical solutions possible. One model that has been 

particularly popular is the Navier-Stokes-based shallow water equations (Fannelop & Waldman 

1972, Hoult 1972, Rottman & Simpson 1983, Ungarish 2009).  

Along with the box model (Huppert & Simpson 1980), the shallow water equations form 

a powerful tool in the sense that they have the ability to produce simple algebraic scaling relations 

to predict certain key aspects of gravity currents. For example, the extent of the deposit of a 
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suspension-driven gravity surge initially confined within a circular cylinder may be expressed in 

terms of the initial parameters: cylinder dimensions, particle settling velocity, and particle volume 

fraction (Bonnecaze et al. 1995). A similar relation exists for the extent of the deposit resulting 

from a planar, lock-release suspension-driven current as well (Bonnecaze et al. 1993, Dade & 

Huppert 1994). The scaling relations that have proven very useful in the context of planar and 

cylindrical releases are however not readily extendable to more complex configurations. 

A planar or axisymmetric release (see Figure 1) is defined only by the initial vertical cross-

section whose shape is characterized by the height to length (or height to radius) aspect ratio. For 

non-canonical finite releases, the horizontal cross-section of the release (or the shape of the release) 

must be additionally defined. In case of a rectangular or elliptic horizontal cross-section, these 

shapes can be characterized in terms of the initial length to width aspect ratio. Zgheib et al. (2015a) 

observed that the horizontal cross-sectional shape of the initial release is an important factor which 

heavily influences the speed and direction of spreading. From both experiments and direct 

numerical simulations, they observed strong azimuthal dependence along the current-ambient 

interface in terms of the front velocity. This study was later extended to suspension-driven gravity 

surges (Zgheib et al. 2015b) where the extent of the deposit was also observed to be significantly 

affected by the initial shape. In their study they assessed the importance of bedload transport in 

correctly predicting the profile of the deposit as well as the short and long term effects of the inherit 

initial disturbance in laboratory experiments. 

The preferential spreading direction of non-planar and non-circular releases of arbitrary 

horizontal cross-sections depends primarily on the initial shape of the release. However, in the 

case of gravity surges spreading over an inclined bottom surface (Ross et al. 2002, Felix & Peakall 

2006), the preferential spreading direction is dictated by the presence of the slope. There, the 
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spreading of a heavy fluid, initially confined within a slanted circular cylinder, down a uniform 

slope breaks axisymmetry, and a three-dimensional self-similar shape was seen to evolve. Zgheib 

et al. (2016) observed gravity surges on sloping boundaries to exhibit a converging phase of 

spreading where the fluid near the head of the current converged towards the symmetry plane. 

During this phase, the velocity within the head of the current exhibits a strong spanwise 

component. The relative amplitude of this spanwise component is magnified with steeper slopes, 

and vanishes, as expected, when the bottom inclination becomes horizontal. These findings on the 

effects of initial shape and bottom inclination will prove to be important for the present analysis. 

Some of the real-world applications of non-canonical suspension-driven gravity currents 

include dredging, landslides, and building demolitions. In the case of dredging, it is often important 

to know how the extent of the deposit relates to the conditions at the time of release so that the 

accurate placement of the dredged material becomes possible. Similarly, in the case of a controlled 

building demolition, the resulting debris cloud, which constitutes a gravity surge, is inherently 

related to the geometric properties of the building among other parameters. 

The purpose of the present study is to investigate the dynamics of non-canonical 

suspension-driven gravity surges resulting from rectangular initial releases of various horizontal 

aspect ratios. The currents to be considered are in the net-depositional regime and therefore after 

a well-defined period the suspended sediments settle on the bed and the current dies. Based on 

scaling relations of planar and cylindrical geometries, we propose simple semi-empirical relations 

which can predict with a reasonable degree of accuracy the shape of the final extent of the deposit 

for non-canonical releases. We consider large scale simulations of both scalar-driven and 

suspension-driven gravity surges, whose results are used to test the validity of the semi-empirical 

relations. In the remainder of the paper, we will use the term scalar-driven to refer to 
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conservative/non-depositional currents (surges with zero settling velocity), the term suspension-

driven to refer to non-conservative/depositional currents (surges with non-zero settling velocity), 

and the term gravity surge to refer to either scalar-driven or suspension-driven currents. 

The following sections are organized as follows. In § 2, we discuss some of the simple 

relations that have been established for planar and axisymmetric configurations. The mathematical 

formulation is briefly described in § 3. In §4, we present the main findings of the papers. In §5, we 

propose a semi-empirical expression for predicting the extent of the deposit from rectangular 

releases. This is followed by an analysis of different scenarios of release depending on the 

horizontal cross-sectional ratio in §6. Finally, conclusions are drawn in §7.  

2. Theoretical Estimates for Planar and Axisymmetric Configurations  

The two-layer shallow water model, which is based on the vertically integrated Navier-

Stokes equations both in the heavy bottom current and in the ambient, was shown by Bonnecaze 

et al. (1993) to offer a rigorous mathematical approach for the planar suspension-driven gravity 

surges. Dade and Huppert (1995) developed a box model for horizontal suspension-driven currents 

to obtain simple theoretical estimates of the horizontal extent of the deposit. The characteristic 

thickness of the deposit and the run-out time were compared against experimental measurements 

to remarkable success (see also Dade and Huppert 1994). The run-out time marks the time when 

the current comes to a full stop as a result of all the particles settling out. Similarly, the run-out 

distance corresponds to the distance travelled by the current before it comes to a full stop (i.e. the 

maximum extent of the deposit). Additionally, the characteristic thickness of the deposit refers to 

the average deposit thickness over the area where the deposit occurs. The key results of the planar 

box model can be recovered with a scaling argument.  
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We consider a fixed volume 𝑉0
∗ of release (per unit width) of particle-laden fluid of initial 

reduced gravity 𝑔0
′∗ defined as  

 
𝑔0
′∗ = 𝑔∗𝜙0  

𝜌𝑝
∗ − 𝜌𝑎

∗

𝜌𝑎∗
 , (1) 

where 𝜌𝑝
∗  and 𝜌𝑎

∗  denote the particle and ambient fluid densities, respectively, and 𝜙0 is the initial 

volume fraction of particles in the current. In the above, and for the remainder of the manuscript, 

the asterisk superscript denotes a dimensional quantity, and zero subscript refers to initial time. 

For the planar current, the volume of release per unit width of the current can be expressed in terms 

of the lock height and lock length as 𝑉0
∗ = 𝐻0

∗ 𝑋0
∗. We now define the characteristic height of the 

current to be 𝐻∗ and the corresponding length of the current to be 𝑋∗ = 𝑉0
∗/𝐻∗, which ignores the 

effects of entrainment or detrainment of ambient fluid or particles into or out of the current. The 

front velocity of the current scales as √𝑔0
′∗𝐻∗ and the characteristic time scale of the collapse is 

given by the characteristic sedimentation time 𝑇∗ = 𝐻∗/𝑣𝑠
∗, where the settling velocity 𝑣𝑠

∗ is that 

of a single isolated particle settling in a quiescent ambient fluid. This time roughly corresponds to 

the time required by a particle to cross a distance equivalent to the initial/characteristic height of 

the release. We now use the above scaling to properly non-dimensionalize the shallow water 

concentration equation 

 

𝜕𝜙

𝜕𝑡∗
+ 𝑢∗

𝜕𝜙

𝜕𝑥∗
= −𝑣𝑠

∗
𝜙

ℎ∗
  . (2) 

where 𝑢∗ is the local horizontal velocity in the current, 𝜙 is the local volume fraction of particles 

and ℎ∗ is the local height of the current. In particular, we demand the resulting non-dimensional 

equation to be independent of 𝑣𝑠
∗, which yields the condition 
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𝑣𝑠
∗ 

𝐻∗
=
√𝑔0

′∗𝐻∗ 

𝑋∗
 . (3) 

This is equivalent to assuming that the characteristic time of sedimentation 𝑇∗ is of the same order 

of magnitude as the characteristic time of propagation 𝑋∗/√𝑔0
′∗𝐻∗. Substituting for 𝑋∗ and 

rearranging we obtain 𝐻∗ = (𝑣𝑠
∗2𝑉0

∗2/ 𝑔0
′∗)1/5 from which we can obtain 𝑋∗ and 𝑇∗. The above 

scales can be shown to properly non-dimensionalize the shallow water mass and streamwise 

momentum balances as well. Thus, in the case of a planar current the appropriate scaling of the 

run-out distance (𝑋𝑝𝑑
∗ ), run-out time (𝑇𝑝𝑑

∗ ), and characteristic deposit height (𝐻𝑝𝑑
∗ ) are 

 
𝑋𝑝𝑑
∗ ~(

𝑔0
′∗𝑉0

∗3

𝑣𝑠∗2
)

1/5

 ,    𝑇𝑝𝑑
∗ ~(

𝑉0
∗2

𝑔0
′∗𝑣𝑠

∗3)

1/5

 ,    𝐻𝑝𝑑
∗ ~

𝜙0
𝜙𝑏
(
𝑣𝑠
∗2𝑉0

∗2

𝑔0
′∗ )

1/5

, (4) 

where 𝜙0 is the initial volumetric particle concentration of the release and 𝜙𝑏 is the final 

volumetric particle concentration within the deposit, which can be taken to be around 0.5 following 

Dade and Huppert (1994). In the above the subscript “𝑝𝑑” stands for planar deposit. Based on 

comparison against experimental measurements and shallow water solutions, Dade and Huppert 

(1994) recommended the constants of proportionality in the above relations to be 3, 2 and 1/3, 

respectively. 

The scaling analysis for the axisymmetric suspension-driven surge was presented by 

Bonnecaze et al. (1995). Here the volume of the cylindrical release is given by 𝑉0
∗ = 𝜋𝑅0

∗2𝐻0
∗, 

where again 𝑅0
∗ and 𝐻0

∗ are the initial radius and height of the cylindrical release. In an 

axisymmetric current the radius of the current, in terms of the characteristic height of the current, 

goes as 𝑅∗ = √𝑉0
∗/(𝜋𝐻∗). The scaling of the front velocity and time remain the same as in the 

planar release. We again use the same scales to properly non-dimensionalize the shallow water 

governing equations, which now yields the condition 
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𝑣𝑠
∗ 

𝐻∗
=
√𝑔0

′∗𝐻∗ 

𝑅∗
 . (5) 

Substituting for 𝑅∗ and rearranging we now obtain 𝐻∗ = (𝑣𝑠
∗2𝑉0

∗/ (𝜋𝑔0
′∗))1/4 from which we can 

obtain 𝑅∗ and 𝑇∗. The appropriate scaling in the case of a cylindrical deposit of the run-out distance 

(𝑅𝑐𝑑
∗ ), run-out time (𝑇𝑐𝑑

∗ ), and characteristic deposit height (𝐻𝑐𝑑
∗ ) are 

 
𝑅𝑐𝑑
∗ ~(

𝑔0
′∗𝑉0

∗3

𝑣𝑠∗2
)

1/8

 ,    𝑇𝑐𝑑
∗ ~(

𝑉0
∗

𝑔0
′∗𝑣𝑠∗2

)

1/4

 ,    𝐻𝑐𝑑
∗ ~

𝜙0
𝜙𝑏
(
𝑣𝑠
∗2𝑉0

∗

𝑔0
′∗ )

1/4

, (6) 

In the above the subscript “𝑐𝑑” stands for cylindrical deposit. Based on comparison against 

experimental measurements and shallow water solutions, Bonnecaze et al. (1995) found the 

constant of proportionality for the run-out radius to be 1.9. In the case of a full depth release they 

also observed the above scaling to be valid only when the initial release satisfied the following 

condition 

 
𝑅0
∗ (

𝑣𝑠
∗2

𝑔0
′∗ 𝑉0

∗3)

1/8

≲ 0.1 . (7) 

Instead, if the initial release is in a deep ambient then the right hand side of the above condition 

changes to 0.3. If the initial release violates condition (7) then the run-out radial distance given in 

(6) is only an upper bound and an empirical lower bound is defined as (Bonnecaze et al. 1995) 

 
𝑅𝑐𝑑
∗ ≃ 0.92 (

𝑔0
′∗3𝑉0

∗7

𝑣𝑠
∗6 )

1/18

 . (8) 

3. Mathematical Formulation 

We performed a number of simulations for which a sediment-laden mixture confined 

within a rounded-rectangular cross-sectional cylinder is released on a horizontal boundary (Figure 
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2). The sediment-laden mixture is treated as a continuum and a two-fluid formulation is adopted. 

We follow Cantero et al. (2008) by implementing an Eulerian-Eulerian model of the two-phase 

flow equations. We solve the conservation of mass and momentum equations for the continuum 

fluid phase, an algebraic equation for the particle phase momentum, as well as the transport 

equation for the normalized sediment phase concentration field 𝜌. The non-dimensional system of 

equations reads 

 ∇ ∙ 𝒖 = 0, (9) 

  
𝐷𝒖

𝐷𝑡
= 𝜌𝒆𝑔 − ∇p +

1

𝑅𝑒
∇2𝒖, (10) 

 𝒖𝑝 = 𝒖+ 𝑣𝑠𝒆
𝑔, (11) 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝑝) =

1

𝑆𝑐 𝑅𝑒
∇2𝜌 . (12) 

Here 𝒖𝑝 and 𝒖 are the velocities of the particle and continuum fluid phases, respectively. Implicit 

in (11) is the assumption that the time scale of the particles is much smaller than the time flow 

timescales and thus the particle faithfully follows the local fluid velocity except for the vertical 

drift due to gravitational settling (Necker et al. 2005, Balachandar & Eaton 2010). The settling 

velocity 𝑣𝑠 corresponds to the balance between the Stokes drag force, acting on a single spherical 

particle assuming a small particle Reynolds number, and the buoyancy force. For the present set 

of simulations, 𝑣𝑠 is an input and its value is prescribed in Table 1. 𝒆𝑔 is a unit vector pointing in 

the direction of gravity, and p represents the total pressure field. The variables 𝑆𝑐 and 𝑅𝑒 are the 

Schmidt and Reynolds numbers defined as 

 
𝑆𝑐 =

𝜈∗

𝜅∗
     , 𝑅𝑒 =

𝐿∗𝑈∗

𝜈∗
 , (13) 
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where 𝜈∗ represents the kinematic viscosity of the continuous phase and 𝜅∗ is the effective mass 

diffusivity of the particle-laden mixture in the ambient fluid. The particle phase concentration is 

normalized between 0 and 1 as shown in (14). The length, velocity, and time scales are defined 

respectively as 

 

{
 
 

 
 
𝐿∗ = 𝐻0

∗,     𝑈∗ = √𝑔∗𝜙0
𝜌𝑝∗ − 𝜌𝑎∗

𝜌𝑎∗
𝐿∗,     𝑇∗ =

𝐿∗

𝑈∗

𝜌 =
𝜌∗ − 𝜌𝑎

∗

𝜌𝑚0
∗ − 𝜌𝑎

∗
                                                            

 . (14) 

In the above, 𝜌∗ and 𝜌𝑚0
∗  represent the local and initial mixture densities, respectively. Here, we 

consider the Boussinesq approximation of small density difference between the particle-laden 

mixture and the ambient fluid in that the concentration only appears in the buoyancy term of the 

momentum equation (first term on the right hand side of (10)). (9)-(12) are solved using a spectral 

code (Cortese and Balachandar 1995, Cantero et al. 2007) within a rectangular computational 

domain shown in Figure 2. Periodic boundary conditions are used for all variables in the 

streamwise, 𝑥, and spanwise, 𝑦, directions. At the bottom wall (𝑧 = 0) no-slip and no-penetration 

boundary conditions and at the top wall (𝑧 = 1) free-slip and no-penetration boundary conditions 

are imposed for the continuous phase velocity. As for the dispersed phase concentration field, 

Neumann and mixed boundary conditions are enforced at the bottom (𝑧 = 0) and top (𝑧 = 1) 

walls, which translate into zero net particle resuspension flux and zero particle net flux, 

respectively. 

 (
𝜕𝜌

𝜕𝑧
)
𝑧=0

= 0     ;      (
1

𝑆𝑐 𝑅𝑒

𝜕𝜌

𝜕𝑧
− 𝑣𝑠𝜌)

𝑧=1
= 0. (15) 

The lengths of the domain in the streamwise and spanwise directions are chosen to 

ascertain that there is uninterrupted development of the gravity current. Details of the numerical 
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simulations are described in Table 1. It was demonstrated in Zgheib et al. (2015b) that the 

propagation of the current is not affected by the lateral boundaries of the computational domain as 

long as the front of the propagating current is one or more current heights from the boundary. In 

all the simulation cases considered the horizontal extent of the computational domain was chosen 

to be large enough to satisfy the above criterion. The grid resolution for suspension-driven and 

scalar-driven surges is the same as that used in Zgheib et al. (2015 a&b) for rectangular releases, 

where the adequacy of the grid for converged solution has been established. Also the grid 

resolution employed is consistent with the requirement that the grid spacing must be of the order 

of 𝑂(𝑅𝑒𝑆𝑐)−1/2 (Birman et al. 2005, Hartel et al. 2000). We use two values for the Reynolds 

number 𝑅𝑒 = 8430 and 𝑅𝑒 = 8950 for suspension-driven and scalar-driven gravity surges, 

respectively. The Schmidt number is set to one for all simulations. This is common practice in 

these types of flows (Necker et al. 2005). Furthermore, Bonometti & Balachandar (2008) and 

Necker et al. (2005) demonstrate that the effect of the Schmidt number on the flow in the range of 

𝑅𝑒 numbers considered here is not important as long as it is of order 1. We therefore do not expect 

the results to be presented below to be sensitive to the precise value of Schmidt number. These 𝑅𝑒 

and 𝑆𝑐 number values were also chosen to allow for a meaningful comparison with previously 

published results (e.g. Zgheib et al. 2015 a&b). The time step is chosen such that the Courant 

number remains below 0.5. We impose a small random disturbance to the initial concentration 

field to stimulate a faster transition to turbulence. The amplitude of the disturbance amounts to 5% 

of the density difference between the sediment-laden mixture and the ambient fluid. The initial 

interface of the concentration field between the sediment-laden mixture and the ambient fluid is 

smoothened such that the jump from 0 to 1 occurs over a small distance of 3 grid cells. 
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4. Results 

4.1 Rectangular vs planar or axisymmetric suspension-driven gravity surges 

In a planar configuration, the gravity surge does not have any mean spanwise motion and 

is restricted to flow in a single direction along the channel length. Similarly, in an axisymmetric 

configuration, the flow is radially outward with no mean azimuthal motion. In both cases the final 

deposit pattern remains statistically planar and axisymmetric, respectively. The three-dimensional 

spatio-temporal evolution of a current of initial horizontal rectangular shape is presented in Figure 

3. The surge is visualized by multiple semi-transparent iso-surfaces of the concentration field 𝜌 at 

three time instances 𝑡 = 3, 9 and 20, respectively. The current exhibits strong azimuthal 

dependence and is the most (resp. least) energetic along the initial shorter (resp. longer) axis. In 

other words, for rectangular configurations, the initial shape dictates the preferential spreading 

direction of the current, and as a result the final deposit exhibits azimuthal dependency in both the 

extent and the areal density. In particular, the current extends the farthest along its initial 

minor/short axis and propagates the shortest distance along its initial major/long axis. 

For a scalar-driven gravity surge, Zgheib et al. (2015a) observed that at early times a 

rectangular release advances along its initial minor axis at a speed equivalent to that of an effective 

planar current if one takes the initial lock length of the latter as half the width of the rectangular 

release, and the height equal to that of the rectangular release. On the other hand, along the initial 

major axis the current was observed to spread as an effective axisymmetric current of lock radius 

equal to half the width of the initial rectangular release, and of similar height.  

In order to test if the above observations extend to suspension-driven gravity surges, fully 

resolved direct numerical simulations have been conducted here. These simulations are fully 
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resolved only at the macroscale in the computation of the continuum equation (9) to (12), but they 

do not resolve the flow at the microscale around individual sediments. When the particle settling 

velocity is much smaller than the characteristic velocity of the large scale flow, i.e. 𝑣𝑠
∗ ≪ √𝑔0

′∗𝐻0
∗ , 

or equivalently 𝑣𝑠 ≪ 1, a suspension-driven gravity surge is likely to behave as a scalar-driven 

surge to leading order. The simulations consisted of suspension-driven rectangular releases with 

different initial cross-sectional aspect ratios χ0, defined as the ratio of the longest to the shortest 

side, along with simulations in planar and axisymmetric configurations. Some scalar-driven 

releases were also performed for comparison. It should be noted that the initial cross-sectional 

shape of the release in the present study is a rectangle in which the short edges have been replaced 

with semi-circles, thus they are rounded rectangles. The spreading is however nearly identical to 

a true rectangle with right-angled corners (see Figure 19 in Zgheib et al. 2015a), and therefore the 

subsequent discussion is equally applicable to “true” right-angled rectangles. 

Figure 4 shows the extent of the deposit for the suspension driven rectangular surges and 

how they compare to the planar and axisymmetric configurations. The extent of the deposit in the 

rectangular release along the initial minor axis (𝑥-axis) can be directly compared with the 

corresponding deposit for a planar release. For a meaningful comparison along the initial major 

axis, the centre of the axisymmetric current has been translated to coincide with the centre of the 

circular portion of the rounded-rectangular configuration. Several observations can be made from 

Figure 4: i) the extent of the deposit along the initial major axis agrees reasonably well with that 

of an axisymmetric release irrespective of the initial horizontal cross-sectional aspect ratio χ0. ii) 

The extent of the deposit along the initial minor axis depends on  χ0, and increases as χ0 is 

increased. iii) For relatively large values of the cross-sectional aspect ratio (χ0 ≳  8) the extent of 

the deposit seems to reach a sort of plateau. iv) The extent of the deposit along the initial minor 
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axis of the rectangular surges of large χ0, namely χ0 = 8 and 12, exceeds that of the planar release 

by about 9 and 13%, respectively. Figure 4d shows the maximum extent of the deposit along the 

𝑥 and 𝑦 axes as a function of χ0 for the depositional cases in Table 1. When the release is 

axisymmetric (χ0 = 1), the maximum extent of the deposit is the same along the 𝑥 and  𝑦 axes as 

expected, however as χ0 increases, the distance travelled by the current along the 𝑥-axis appears 

to increase whereas that along the 𝑦-axis seems to remain unchanged. Interestingly, as we approach 

the planar limit (χ0 → ∞), the maximum value of the extent of the deposit is below that for χ0 = 8 

and 12 by 9 and 13%, respectively. We will address this somewhat unexpected observation in §6. 

We may now look at the local dynamics of the front of rectangular surges at some specific 

locations, namely along the initial minor and major axes. Figure 5 shows the temporal evolution 

of the travelled distance along the major and minor axes for some of the simulations shown in 

Table 1. The dynamics of the front along the initial major axis is observed to be nearly independent 

of χ0 and in very good agreement with that of an axisymmetric release both in terms of front 

position and velocity, as already shown for the final extent of the deposit in Figure 4. Note that 

this is in line with the dynamics observed for scalar-driven gravity surges (see e.g. Figure 14b in 

Zgheib et al. 2015a).  

The dynamics of the front along the initial minor axis is more complicated. Considering 

the front velocity (Figure 5b), one can see that the dynamics is similar in the acceleration phase up 

to time 𝑡 = 1 while in the slumping phase, the mean value of the front velocity 𝑢𝑆 and the 

corresponding duration 𝑡𝑆 depend on  χ0. In particular, 𝑢𝑆 decreases from 0.45 to 0.40 while 𝑡𝑆 

increases from 3 to 5, approximately, when  χ0 is increased from 3.8 to 12. Beyond 𝑡𝑆, all the 

gravity surges experience a deceleration phase of roughly similar trend but for which it is difficult 

to draw any definite dependency relative to the initial horizontal aspect ratio. Recall that the present 
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front velocity is computed at a specific location of the front contour, and hence the instantaneous 

variation of the front position, due to the evolution of the lobes and clefts, is likely to introduce 

some fluctuations in the front velocity, as observed in Figure 5b. The subtle but noticeable 

influence of  χ0 observed for the front velocity is also visible in the plots of the time evolution of 

the front position (Figure 5a). For instance, the front extent of the  χ0 = 3.8 surge is slightly above 

the others for times 𝑡 ≲ 6, then that of the  χ0 = 8 surge is the largest up to 𝑡 ≲ 18 and finally the 

 χ0 = 12 surge overcomes the others at later times.  

The comparison of front dynamics along the initial minor axis with that of the planar surge 

is somewhat atypical since the instantaneous front extent of the planar surge is closer to that of the 

 χ0 = 3.8 surge rather than that of the  χ0 = 8 and  χ0 =12 surges. This is in line with the 

observation made for the final extent of the deposit in Figure 4d. Again, this point will be addressed 

in §6. 

4.2 Converging flow in rectangular gravity surges 

As observed in Figures 4d and 5a, it is somewhat surprising that the finite rectangular 

releases extend farther or even advance faster than a planar release. Indeed, one may wonder what 

is the mechanism by which a finite release, whose planform area increases quadratically with size, 

advances faster or even extends farther than a planar release whose planform increases linearly. A 

possible explanation can be proposed from the results presented in Figure 6, where we plot the x 

and z integrated concentration field, ℎ𝑥(𝑦, 𝑡), defined as 

 
ℎ𝑥(𝑦, 𝑡)  = ∫ ∫ 𝜌(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑧

𝐿𝑧

0

𝑑𝑥 
𝐿𝑥

0

, (16) 
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as a function of 𝑦 for the suspension-driven (S1 and S4) and scalar-driven (S3 and S6) gravity 

surges. For the planar release, we further average ℎ𝑥 in the homogeneous 𝑦-direction and use it for 

comparison with the rectangular releases. Because of integration along 𝑥 and 𝑧, the profiles in 

Figure 6 are less susceptible to turbulent fluctuations compared to the local concentration field 

(see Figure 3). However, in the case of particle-driven surges, as more and more sediments deposit 

on the bottom wall and exit the computational domain, the mean value of the concentration 

decreases. Consequently, the fluctuations in the concentration field about the decaying mean 

concentration value become more pronounced. This could explain the strong symmetry (about 𝑦 =

0) at early times in the profiles of Figure 6a and the moderate deviation, from symmetry, at later 

times. On the other hand, because of the conservative nature of the flow for scalar-driven currents, 

the profiles in frame b remain very symmetric up to the times considered herein. 

First, we notice that the mean value of ℎ𝑥(𝑦, 𝑡) decreases over time as a result of 

sedimentation. It is also clear that the relative amount of dense fluid gradually increases with time 

at the centre plane (𝑦 = 0) above that of the corresponding planar release. For instance, the 

maximum value of ℎ𝑥 is 2%, 11%, and 42% higher than the corresponding average of the planar 

suspension-driven gravity surge at times 𝑡 = 2, 6 and 10, respectively. This may indicate the 

presence of a converging flow towards the initial minor axis and supports the observation 

regarding the faster spreading and longer depositional extent of finite releases (see e.g. Figure 5). 

A subtle point that should be stressed is that the converging flow initiates at the two extremities of 

the rectangle and slowly makes its way towards the initial minor axis (𝑦 = 0). One may observe 

that at 𝑡 = 2, ℎ𝑥(𝑦, 𝑡) in the vicinity of the initial minor axis (|𝑦| < 0.5) for S1 (χ0 = 12) is nearly 

identical to the mean value obtained from the planar case (S4), while ℎ𝑥(𝑦, 𝑡) for |𝑦| = 1.5 is 

noticeably larger than the mean planar value.  

The same behaviour is observed for scalar-driven gravity surges (Figure 6b). A converging 

flow was also observed in the case of surges spreading on sloping boundaries (Zgheib et al. 2016). 

In that case, a relatively strong cross-flow velocity component relative to the streamwise velocity 
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component was present and the converging flow was easily identified using a vector plot of the 

velocity field in the head of the gravity current. This is not the case, however, for rectangular initial 

releases of suspension-driven gravity surges on horizontal boundaries where the magnitude of the 

cross-flow velocity component is about an order of magnitude smaller than that of the streamwise 

component (not shown). Instead, in Figure 7, we present iso-contours of a modified depth-

integrated y component of the velocity field v𝜌 in the 𝑥-𝑦 plane. In each of the 4 frames in Figure 

7, the iso-contours of v𝜌 are bounded by an outer solid black line, which corresponds to the location 

of the front. Here, v𝜌 is defined as 

 
v𝜌(𝑥, 𝑦, 𝑡)  =

−𝑦

|𝑦|
∫ 𝜌
𝐿𝑧

0

v 𝑑𝑧 , (17) 

where v represents the y component of the three-dimensional velocity field 𝒖. Therefore, in regions 

where v𝜌 > 0, the flow converges towards the symmetry plane 𝑦 = 0 and vice versa. At early 

times 𝑡 = 2, we can see the presence of two zones of converging flow in the region 1 ≤ |𝑦| ≤ 2  

within the suspension-driven gravity surge. As time evolves, these regions spread and tend to 

approach the symmetry plane, such that at time 𝑡 = 5, the flow inside the current located in the 

region close to the initial minor axis, i.e. |𝑦| ≤ 2  is mostly oriented toward the symmetry 

plane 𝑦 = 0. This observation confirms the presence a converging flow toward the initial minor 

axis which may be responsible for the mass buildup observed in Figure 6 initiating at the 

extremities and propagating towards the plane 𝑦 = 0. Consequently, such a mass buildup may 

modify the local front velocity since the latter scales as the square-root of the front height 

(Benjamin 1968).  
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4.3 Travelling informational perturbation along the front contour 

One way to track how information travels along the front is to see how certain parameters 

that are otherwise uniform in space (along the 𝑦-axis) for a planar release spatially evolve when 

the release is of finite size. The normal-to-the-front angle (𝜗) and the normal-to-the-front velocity 

𝑢𝑁 are two such parameters. We choose 𝜗 as one of the two parameters because it provides 

information on the instantaneous local spatial and temporal evolution of the front. Another 

parameter analogous to 𝜗 that could potentially provide equivalent information is the local 

curvature of the front. However, to evaluate 𝜗 only first order derivatives are required, unlike 

evaluation of the local curvature.  Here, 𝜗(𝑦, 𝑡) is computed as 

 
𝜗(𝑦, 𝑡)  = 𝑎𝑟𝑐𝑡𝑎𝑛(𝜕𝑥𝑁/𝜕𝑦) , (18) 

where, 𝑥𝑁 corresponds to the front position in the upper symmetry plane (𝑥 ≥ 0). At the time of 

release 𝑡 = 0, 𝜗(𝑦, 0) is such that 

 

  |𝜗(𝑦, 0)| = 0   for |𝑦| < 𝜂 ,   

(19) 

  |𝜗(𝑦, 0)| > 0   for |𝑦| > 𝜂 .   

where 𝜂 is the distance from the geometric centre of the rectangular cross-section to the local centre 

of the rounded portion of the rectangle (see Figure 4). To monitor when the flat portion of the front 

ceases to remain flat, we need to see when |𝜗| > 𝜖, where 𝜖 is a small number. We therefore need 

a suitable value of 𝜖 that is small, to accurately detect the change in the direction of the front as 

early as possible. However, 𝜖 must be large enough to obtain a clear signal-to-noise ratio. We 

found that for the present problem, the iso-value 𝜗 = 0.1 was a reasonable choice. As for the 

normal-to-the-front velocity 𝑢𝑁 the value 𝑢𝑁 = 0.39 was chosen as a reference since it is close to 
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the value of the mean slumping velocity of the planar current (see Figure 5b, S4). This is likely to 

be the slumping velocity that the flat portion of the rectangular release experiences before the 

information on the “finiteness” of the release reaches it. 

Figures 8a and 8b show contours of |𝜗| and 𝑢𝑁, respectively, in the 𝑦-𝑡 plane for early 

times 𝑡 ≤ 4, whereas Figure 8c overlays the iso-contours of 𝜗 = 0.1 and 𝑢𝑁 = 0.39 on top of the 

front position in the upper symmetry plane (𝑥 ≥ 0). As time evolves, the region along which the 

front remains flat (|𝜗| ≤ 0.1) and advances at a speed close to that of the planar release (𝑢𝑁 ≥

0.39) decreases. The rate at which the flat portion of the release decreases is roughly constant at 

early times (𝑡 ≤ 4). From Figure 8a, we can estimate the slope 𝑑𝑦/𝑑𝑡 of the |𝜗| = 0.1 iso-contour 

to be 𝑑𝑦/𝑑𝑡 ≈ 0.23. On the other hand, the slope 𝑑𝑦/𝑑𝑡 of the 𝑢𝑁 = 0.39 iso-contour is estimated 

from Figure 8b to be 𝑑𝑦/𝑑𝑡 ≈ 0.32. 

The iso-contours of 𝜗 = 0.1 and 𝑢𝑁 = 0.39 are easily extracted at early times (𝑡 ≤ 4) 

when the front is still relatively smooth. At later times, the front becomes more complex and highly 

three-dimensional due to the lobe and cleft instability, which makes it more difficult to precisely 

extract the above iso-contours. However, we can obtain a time estimate (𝑡𝑝,𝑑𝑦/𝑑𝑡) of when the 

perturbation reaches the symmetry plane (𝑦 = 0), by assuming that the slope 𝑑𝑦/𝑑𝑡 remains 

constant as the perturbation advances inwards. We should note nonetheless that this assumption 

may not necessarily be true, as the perturbation speed may change as it advances. A better estimate 

may be obtained by marking the time (𝑡𝑝,𝑟𝑁) when the front position 𝑟𝑁(𝑡) along the 𝑥-axis from 

S1, S2, and S7 exceeds that from S4. From Figure 5a, we find 𝑡𝑝,𝑟𝑁 ≈ 2, 3, and 6 for S1, S2, and 

S7, respectively. A comparison of the characteristic perturbation times as well as the characteristic 

sedimentation and propagation times are shown in Table 2. The observed perturbation time 𝑡𝑝,𝑟𝑁 
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is smaller than the estimated time 𝑡𝑝,𝑑𝑦/𝑑𝑡, which suggests that the perturbation speed does not 

remain constant, but rather increases at later times (𝑡 > 4) as it advances inwards. 

In all the simulations considered herein, the perturbation reaches the symmetry plane (𝑦 =

0) before the current stops. Indeed, as the perturbation and propagation characteristic times are of 

the same order, we should expect the converging flow to reach the symmetry plane before the 

current arrives at a standstill. On the other hand, if the horizontal aspect ratio of the release is very 

large, i.e.  𝜒0 ≫ 1, the characteristic perturbation time will be correspondingly very large as well, 

whereas the characteristic propagation time will approach that of the planar release (S4). For such 

a case, the converging flow will have no effect on the dynamics of the current along the symmetry 

plane (𝑦 = 0). As for the characteristic sedimentation time, we observe 𝑇𝑠 to be about an order of 

magnitude larger than the perturbation times 𝑡𝑝,𝑑𝑦/𝑑𝑡 and 𝑡𝑝,𝑟𝑁. This implies that the effect of 

sedimentation is not likely to be an important factor in the dynamics of the converging flow before 

it reaches the symmetry plane. 

Overall, Figure 8 clearly shows that the information of the finite size of the release along 

the 𝑦-direction propagates from the corners to the centreline (𝑦 = 0) along the front. The precise 

value of the velocity at which this information propagates, however, and its dependence on other 

parameters remain unclear. It should be noted that the slope 𝑑𝑦/𝑑𝑡 of the 𝑢𝑁 = 0.39 iso-contour 

also provides some measure for how information travels within the current. The front velocity 𝑢𝑁 

is related to the current’s thickness or height, ℎ𝑁, by the Froude condition 

 
𝑢𝑁 ~√ℎ𝑁 , (20) 

and therefore as 𝑢𝑁 varies spatially, so must ℎ𝑁. However, 𝑢𝑁 is a much easier quantity to evaluate 

than ℎ𝑁, because unlike 𝑢𝑁, there is no clear definition for the front height. 
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4.4 Particle rate of retention as a function of 𝜒0 

One aspect that is of great interest in the study of suspension-driven gravity surges is the 

depositional rate. It is often very useful to know how long a suspension-driven current can maintain 

its particles in suspension before coming to a full stop. In Figure 9, we plot the normalized amount 

of particles remaining in suspension over time, 𝛽, for all suspension-driven simulations in Table 

1. 𝛽 is defined as 

 
𝛽(𝑡) =  

∫ ∫ ∫ 𝜌(𝑥, 𝑦, 𝑧, 𝑡)
𝐿𝑧
0

𝑑𝑧
𝐿𝑦
0

𝑑𝑦
𝐿𝑥
0

𝑑𝑥

∫ ∫ ∫ 𝜌(𝑥, 𝑦, 𝑧, 0)
𝐿𝑧

0
𝑑𝑧

𝐿𝑦

0
𝑑𝑦

𝐿𝑥

0
𝑑𝑥
 . (21) 

As expected, circular releases have the lowest retention rate of particles, whereas planar releases 

have the largest. This is a direct result of the ever diverging spreading nature of axisymmetric 

releases as compared to the unidirectional spreading of planar currents. In addition, for the same 

initial volume of a particle-laden mixture, releases with large cross-sectional aspect ratios, χ0, 

retain their particles in suspension for longer times. For instance, the value 𝛽 = 0.15, which 

corresponds to the fact that 15% of the particles remain in suspension in the gravity surge, is 

reached at time 𝑡 = 12.1 and 15.6 for χ0 = 1 and 12, respectively. Similarly, at time 𝑡 = 10, 

approximately 24% (34%) of the particles remain suspended in the gravity surge of horizontal 

aspect ratio χ0 = 1 (12). 
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5. Predictive models for rectangular suspension-driven gravity surges 

5.1 Final extent of the deposit  

As shown in Figure 4a, the shallow water theoretical expressions (4)-(6) and the empirical 

relation (8) predicting the final extent of the deposit for the planar and axisymmetric releases, agree 

well with the present planar and axisymmetric simulations. For instance, in the planar case, the 

extent of the deposit from (4) and from the spanwise average of S4 are 5.7 and 6.0, respectively. 

Similarly, for the axisymmetric release, the azimuthal average of the extent of the deposit S5 is 

2.0, which lies between the lower and upper bounds of 1.7 and 2.6 from expressions (8) and (6), 

respectively. Here, the empirical lower bound is used because the condition in (7) is not met. In 

addition, these expressions provide a reasonably good estimate for the extent of the deposit along 

the initial minor and major axes of the rectangular release. 

Here we propose an estimate of the extent of the deposit in the entire 𝑥-𝑦 plane. Zgheib et 

al. (2015a) showed that scalar-driven rectangular releases reach a self-similar spreading phase in 

which the azimuthal variation of the front position may be described by a sinusoidal function of 

the local angle 𝜃 in the polar coordinate system, whose origin coincides with the geometrical centre 

of the release, 𝜃 being measured anticlockwise from the 𝑥-axis. We therefore suggest a similar 

sinusoidal function to describe the extent of the deposit with the help of (4), (6) and (8). The 

empirical expression describing the extent of the final deposit Γ which is the radial distance 

between the local front and the geometrical centre reads 

 
Γ(𝜃) = 𝐴 sin𝑛(𝜃) + 𝐵 , (22) 

with 
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  𝐴 =

|𝑋𝑝𝑑
∗ − (𝑅𝑐𝑑

∗ + 𝜂∗)|

𝐻0
∗  and 𝐵 =

(𝑅𝑐𝑑
∗ + 𝜂∗)

𝐻0
∗  .   (23) 

where 𝜂∗ is the distance from the geometric centre of the rectangular cross-section to the local 

centre of the rounded portion of the rectangle (see Figure 4), 𝑋𝑝𝑑
∗  is given by (4), and since the 

condition in (7) is not met, the upper and lower bounds of 𝑅𝑐𝑑
∗  are given by (6) and (8), respectively. 

Here again, the asterisk superscript denotes a dimensional variable, all other variables are to be 

understood as non-dimensional. We use the scaling given in (14) to non-dimensionalize (22). The 

exponent 𝑛 in (22) is the only fitting parameter of the function. 

Figure 10a shows the extent of the final deposit Γ as a function of 𝜃 for S2 along with the 

theoretical and semi-empirical predictions of 𝑅𝑐𝑑
∗  and 𝑋𝑐𝑑

∗ . The value 𝑛 = 6 was observed to 

provide the best agreement. Other values of 𝑛 in the range [4,8] gave roughly similar results. 

Similarly, Figures 10c-d show the extent of the deposit in the 𝑥-𝑦 plane for S1, S2 and S7 as well 

as Γ as obtained from (22). It should be noted that for the cases considered in Figure 10, the 

condition in (7) does not hold, and 𝑅𝑐𝑑
∗  is bounded by the conditions in (6) and (8) (Bonnecaze et 

al. 1995). Good agreement is observed in all 3 cases, the relative discrepancy between the 

simulated and predicted extents of the deposit along the 𝑥 axis being approximately −17, 9, and 

13%, for χ0 = 3.8, 8 and 12, respectively. Along the 𝑦 axis, the extent of the deposit from the 

simulations lie within the predicted bounds and are closer to the empirical lower bound given in 

(8). 

5.2 Horizontal aspect ratio of the deposit 

Using (22), one may also predict the final aspect ratio of the deposit χ∞. Noting that with 

the present coordinate system the minimum and maximum extent of the deposit correspond to 𝜃 =
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0 and 𝜃 = π/2 , respectively, we have χ∞ = (𝐴 + 𝐵)/𝐴 = 𝑋𝑝𝑑
∗ /(𝑅𝑐𝑑

∗ + 𝜂∗). Using the fact that 

χ0 = (𝑅0
∗ + 𝜂∗)/𝑅0

∗, we can eliminate 𝜂∗ in the expression for χ∞ and obtain a prediction of the 

final horizontal aspect ratio of the deposit as a function of the initial geometric parameters, viz  

 
 χ∞ =

𝑋𝑝𝑑
∗

𝑅𝑐𝑑
∗ + 𝑅0

∗( χ0 − 1)
 . (24) 

A plot of χ∞ vs χ0 for the present set of parameters is shown in Figure 11. For small values 

of χ0, (24) performs poorly as expected. Indeed, as the initial cross-sectional aspect ratio tends to 

unity, one would expect both the “minor” and “major” axis of the release to behave identically as 

an axisymmetric current and hence χ∞ ≈ 1. In contrast, (24) gives χ∞ ≈ 𝑋𝑝𝑑
∗ 𝑅𝑐𝑑

∗⁄  which is larger 

than unity since with the present model, the initial minor axis of the rectangular release can only 

exhibit a planar-like type of spreading. On the other hand, for the present set of parameters, as χ0 

is increased, (24) agrees very well with experimental and numerical data. Let us recall that (24) is 

applicable whenever (4), (6) and (8) are valid, i.e. to a much wider set of parameters than in the 

present case.  

 

6. Scenarios of dynamics and deposition of a suspension-driven gravity surge 

Here, we propose a scenario for the dynamics of a suspension-driven gravity surge of initial 

arbitrary shape depending on the competition between the characteristic times of sedimentation, 

propagation, and reflection of the perturbation. 

We may now consider the planar and axisymmetric configurations as limiting cases for 

rectangular cross-sectional releases. When the initial cross-sectional aspect ratio χ0 = 1, the 

rectangular release reduces to an approximate axisymmetric circular release. On the other hand, 
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as χ0 → ∞, we retrieve the planar release. All other rectangular releases with finite values of χ0 

exhibit a behaviour that is a combination of both canonical releases. That is the broad edge of the 

rectangular cross-section behaves, at least for some finite initial time, as a planar current, whereas 

the short edge acts as a diverging axisymmetric release until the current comes to a full stop. 

The front along the initial minor axis advances as a planar front until the information of the 

“finiteness” of the release is received. This can be seen in Figure 5a as to when the front locations 

for χ0 = 8 and 12 separate from that of a planar current. This statement implies that there is an 

information wave that travels along the front of the current and carries with it the information that 

the release is of finite length in the 𝑦-direction and does not extend indefinitely along the initial 

major axis. 

The reason the final extent of the deposit along the minor and major axes of the rectangular 

release conforms well to planar and axisymmetric releases is in fact due to the fronts along those 

specific directions behaving in a similar fashion to their respective canonical currents from the 

time of the release onward. Figure 5 shows the temporal evolution of the travelled distance along 

the major and minor axes for some of the simulations shown in Table 1. The following 

observations can be made. 

i) It confirms that the temporal evolution along the initial major axis is equivalent to that from 

an axisymmetric release and is nearly independent of χ0. The same behaviour was observed 

for scalar-driven currents (Figure 14b in Zgheib et al. 2015a). 

ii) There appears to be some critical initial cross-sectional aspect ratio χ0𝑐𝑟1 above which the 

extent of the deposit exceeds that from an equivalent planar current. For the present set of 

parameters, we observe a value of χ0𝑐𝑟1 ≈ 5. 
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iii) There exists another higher initial critical aspect ratio χ0𝑐𝑟2, above which the extent of the 

deposit along the initial minor axis becomes completely independent of χ0 and matches 

exactly the extent from an equivalent planar release.  χ0𝑐𝑟2 corresponds to an initial release 

for which the converging flow never reaches the symmetry plane (𝑦 = 0). 

iv) There exists an initial aspect ratio χ0𝑚𝑎𝑥 such that  χ0𝑐𝑟1 < χ0𝑚𝑎𝑥 <  χ0𝑐𝑟2 for which the 

deposit attains its largest possible extent along the initial minor axis. 

v) For values of χ0 below χ0𝑚𝑎𝑥, the current (along the initial minor axis) experiences a larger 

slumping (nearly constant) velocity for smaller values of χ0, but the duration of this nearly 

constant velocity phase increases as χ0 increases (see Figure 5b). The same behaviour was 

also observed for scalar-driven gravity surges (Figure 14b in Zgheib et al. 2015a). 

vi) For values of  χ0 such that  χ0𝑐𝑟1 < χ0 <  χ0𝑐𝑟2, the planar front velocity provides a lower 

limit to the front velocity along the initial minor axis for the entire duration of the flow. 

Indeed as seen from Figure 5b, the front velocity along the initial minor axis from S1 and 

S2 is always larger than or equal to the corresponding planar release of S4. 

 

Indeed, as χ0 attains larger and larger values, there comes a point for which the current 

comes to a full stop before the converging flow ever reaches the symmetry plane (𝑦 = 0). In that 

case, the front along the initial minor axis advances as a planar current. Furthermore, as discussed 

in point (v), rectangular releases with values of 𝜒0 such that 1 < 𝜒0 < 𝜒0𝑚𝑎𝑥, experience a larger 

slumping (nearly constant) velocity for smaller values of χ0. This may be due to the fact that for 

small values of χ0, the converging flow reaches the initial minor axis earlier when the current is 

already relatively more energetic than at later times. The converging flow would further increase 
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the thickness of the current and therefore raise the slumping velocity along the initial minor axis 

(recall that 𝑢𝑁~ℎ𝑁
1/2

).  

7. Conclusions 

We presented results from highly resolved direct numerical simulations of finite release 

horizontal gravity surges, both suspension-driven and scalar-driven. Canonical (axisymmetric and 

planar) and non-canonical (rectangular) configurations were studied, which allowed us to vary the 

initial horizontal cross-sectional aspect ratio χ0 over a wide range. The purpose of the study was 

to build on the knowledge regarding axisymmetric and planar releases and use it to propose simple 

relations for certain key parameters of rectangular configurations. 

We showed that the final extent of the deposit along the initial minor (resp. major) axis of 

an initially rectangular suspension-driven gravity surge resembles that of a planar (resp. 

axisymmetric) release with the same initial height and half the width of the rectangular release. In 

addition, rectangular gravity surges with the same initial volume but with larger χ0, retain their 

particles in suspension for longer times compared to surges of smaller χ0. 

A prediction for the final extent of the deposit in the entire 𝑥-𝑦 plane (and not just along 

the major and minor axes) was proposed using available theoretical and empirical models for 

canonical suspension-driven gravity surges. Following Zgheib et al. (2015a), we proposed a 

sinusoidal empirical relation (22), for the final extent of the deposit as a function of azimuthal 

orientation whose amplitude is obtained from previously established relations on axisymmetric 

and planar currents. Additionally, a simple explicit expression (24), relating the final aspect ratio 

of the deposit,  χ∞ as a function of the initial cross-sectional aspect ratio of the release, χ0 was 

proposed. While the present simulations are based on specific values for the settling velocity as 

well as the Reynolds and Schmidt numbers, the proposed semi-empirical expressions (22) and 
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(24), because of their inherent coupling with equations (4), (6), and (8), are applicable to a wide 

range of parameters including the Reynolds and Schmidt numbers, the height and cross-sectional 

aspect ratio of the release, the particle settling velocity, the particle volume fraction, as well as the 

initial reduced gravity. Therefore, the expected effects of changing these parameters may be 

directly inferred from the canonical, semi empirical expressions of (4), (6), and (8). Therefore, 

with the knowledge of the initial conditions of the release, it is possible to predict the extent of the 

final deposit of a rectangular release. Conversely, using (22) and (24), one can choose the initial 

parameters of the release to control the final extent of the deposit. 

One of the most counterintuitive outcomes is that contrary to expectation, some 

suspension-driven gravity surges may advance slightly but noticeably faster and extend farther 

than equivalent planar surges that exclusively undergo unidirectional spreading (up to 13% of the 

extent for the present range of parameters). Intuitively, one would expect the final extent of the 

deposit from planar gravity surges to act as an asymptotic limit to the extent of the deposit along 

the initial minor axis of rectangular gravity surges. This is shown not to be the case. This 

unexpected outcome is attributed to a converging flow inside the surge towards the initial minor 

axis of the rectangular cross-section. A converging flow behaviour was also observed for finite 

release scalar-driven gravity surges on uniform slopes (Zgheib et al. 2016), the intensity of which 

increases sharply for steeper slopes. This leads us to conjecture that for suspension-driven gravity 

surges released on a uniform slope, the extent of the deposit along the initial minor axis of a 

rectangular release might significantly exceed that of a planar release. The discrepancy is expected 

to be further highlighted as the slopes become steeper. 

This converging flow is brought upon by a non-uniform spatial distribution due to the finite 

nature of the release as opposed to planar releases that extend indefinitely along the 𝑦-axis. By 



29 
 

tracking the spatiotemporal evolution of otherwise spatially uniform variables for planar releases, 

we provided some estimate for the speed of propagation of the informational wave and the 

characteristic time of reflection at the symmetry plane. We do not currently know what parameters 

control or affect the speed of the perturbation wave. This is an interesting subject that requires 

further investigation. 
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Tables and Figures 

Table 1: Details of the numerical simulations: The shape variable refers to the horizontal cross-sectional shape of the 

cylinder, which can be either planar (P), circular (C), or rectangular (R). 𝜒0 is the initial cross-sectional aspect ratio 

defined as the ratio of the total length (𝑙) to total width (𝑤) of the release. 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 and 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 refer to the 

domain size and corresponding grid resolution, respectively. 𝑣𝑠, 𝑅𝑒, and 𝑆𝑐 are the non-dimensional settling velocity, 

Reynolds number and Schmidt number, respectively.  

Sim # Shape 𝜒0 𝑙 𝑤 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 𝑣𝑠 𝑅𝑒 𝑆𝑐 

S1 R 12 5.68 0.47 18 × 13 × 1 960 × 694 × 159 0.02 8430 1 

S2 R 8 3.78 0.47 18 × 12 × 1 960 × 640 × 159 0.02 8430 1 

S3 R 12 5.68 0.47 20 × 16 × 1 1170 × 936 × 179 0 8950 1 

S4 P ∞ ∞ 0.47 20 × 1.5 × 1 1086 × 82 × 159 0.02 8430 1 

S5 C 1 0.47 0.47 7 × 7 × 1 380 × 380 × 159 0.02 8430 1 

S6 P ∞ ∞ 0.47 20 × 1.5 × 1 1228 × 122 × 179 0 8950 1 

  S7* R 3.8 1.78 0.47 15 × 10 × 1 800 × 534 × 159 0.02 8430 1 

* Details of the simulation previously reported in Zgheib et al. (2015b) 
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Table 2: Characteristic perturbation, sedimentation, and propagation times from S1, S2, S4, and S7. 

Sim # 𝜒0 

Characteristic  

perturbation time# 

𝑡𝑝,𝑑𝑦/𝑑𝑡 = [𝑙
∗/(𝑑𝑦∗/𝑑𝑡∗ )]/𝑇∗ 

Characteristic  

perturbation time£ 

𝑡𝑝,𝑟𝑁 

Characteristic 

sedimentation time 

𝑇𝑠 = (𝐻0
∗/𝑣𝑠

∗)/𝑇∗ 

Characteristic 

propagation time 

𝑇𝑝 = [max (Γ
∗, 𝑥)/√𝑔0

′∗𝐻0
∗] /𝑇∗ 

S7 3.8 [2.8 − 3.9] 2 50 5.2 

S2 8 [5.9 − 8.2] 3 50 6.5 

S1  12 [8.9 − 12.3] 6 50 6.9 

S4 ∞ ∞ - 50 6.0 

# Both values of 𝑑𝑦/𝑑𝑡 are considered: 𝑑𝑦/𝑑𝑡|𝜗=0.1and 𝑑𝑦/𝑑𝑡|𝑢𝑁=0.39 

£ 𝑡𝑝,𝑟𝑁 is the time when the front position along the 𝑥-axis from S1, S2, and S7 exceeds that from S4 

 

            

Figure 1: Schematic of a planar (left) and an axisymmetric (right) configuration. In the planar setup, the 

particle-laden mixture is initially confined behind a gate whereas in the axisymmetric setup, the mixture is 

initially confined inside a hollow circular cylinder. 
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mixture 

Ambient fluid 

Gate 

Cylinder 
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Figure 2: Computational domain and initial shape of the release (here in the case 𝜒0 =
l

w
= 12). We 

consider a lock-exchange configuration, that is the initial height of the gravity surge 𝐻0
∗ is equal to that of 

the ambient fluid 𝐿𝑧
∗ , i.e. 𝐿𝑧 = 1. 

 

Figure 3: (Colour online) Flow visualization of S1 using semi-transparent iso-surfaces of concentration 

(𝜌) at three time instances, 𝑡 = 3 (blue), 9 (green), and 20 (red). We observe strong azimuthal 

dependence for which the current is noticeably the weakest along the initial longer axis. A length scale of 

4 non-dimensional units is shown above the iso-surfaces. 
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Figure 4: Final extent of the deposit for the depositional cases in Table 1. For a meaningful comparison 

with S5, the centre of the cylindrical release was shifted by – 𝜂 units in the 𝑦-direction to coincide with the 

geometric centre of the rounded portion of the rectangle (circular dot in frames a, b, and c). The empirical 

lower bound in (8) for 𝑅𝑐𝑑 is needed because condition (7) is not met. (d) Maximum extent of the deposit 

Γ (see frame b) along the 𝑥 and 𝑦 axes as a function of  χ0. For a meaningful comparison, Γ has been shifted 

by – 𝜂 units along the 𝑦-axis. For comparison, the maximum extent predicted by (4) for the planar  χ0 = ∞ 

case is 6.0, while those predicted by (6) and (8) for the axisymmetric  χ0 = 1 case are 2.6 and 1.7, 

respectively. 
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Figure 5: Temporal evolution of (a) the front position and (b) the front velocity for all suspension-driven 

gravity surges in Table 1 (the legend in (b) applies to (a)). For rectangular releases, 𝑟𝑁 and 𝑢𝑁 are shown at 

both the initial minor (𝑦 = 0) and major (𝑥 = 0) axes of the rectangular cross-section. The solid ellipse on 

the time axis in frame (a) corresponds to the time 𝑡 = 6 where the front evolution of the 𝜒0 = 12 and 𝜒0 =

∞ currents begin to diverge from one another. 
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Figure 6: 𝑥-𝑧 integrated concentration field ℎ𝑥 vs 𝑦 at 𝑡 = 0 (□), 2 (●), 4 (+), 6 (∎), 8 ( )0 , and 10 (○) for (a) 

suspension-driven [S1 (solid lines) & S4 (dashed lines)] and (b) scalar-driven [S3 (solid lines) & S6 (dashed lines)] 

gravity surges. The symbols mark the spanwise locations 𝑦 where ℎ𝑥 of the 𝜒0 = 12 current is equal to that of the 

𝜒0 = ∞ planar current. 
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Figure 7: Contours from S1 in the 𝑥-𝑦 plane of the depth-integrated (within the current) 𝑦 component of the 

instantaneous velocity field v𝜌 (see text for definition). Regions in red corresponds to v𝜌 ≥ 5 × 10
−3 and indicate a 

converging flow toward the 𝑦 = 0 plane whereas regions in blue corresponds to v𝜌 ≤ −5 × 10
−3 and indicate a 

diverging flow away from the 𝑦 = 0 plane. The outer black solid line in each frame corresponds to the location of the 

front and represents the iso-contour ℎ = 5 × 10−2 where ℎ is the vertically integrated density field defined as ℎ =

∫ 𝜌
𝐿𝑧
0

𝑑𝑧. 
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Figure 8: Contours in the 𝑦-𝑡 plane from S1 of (a) the absolute value of the normal-to-the-front angle 𝜗 =

tan−1(𝜕𝑥𝑁/𝜕𝑦) and (b) the normal to the front velocity 𝑢𝑁(𝑦, 𝑡). (c) Temporal evolution of the front in the upper 

symmetry plane (𝑥 ≥ 0) at equal increments in time of (Δ𝑡 = 0.1). The thick blue and red lines correspond to the iso-

contours of |𝜗| = 0.1 and 𝑢𝑁 = 0.39, respectively. Inset shows schematic of 𝜗 on the curved portion of the front. 
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Figure 9: Retention rate of particles in suspension as a function of time. For the same initial volume of a suspension-

driven gravity surge, larger cross-sectional aspect ratio releases are able to retain particles in suspension for longer 

periods of time. 
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Figure 10: (Colour online) a) Extent of the final deposit vs the polar coordinate 𝜃 from S2 (thick black line). The pink 

shaded region is the prediction from (22) using both bounds of the axisymmetric release from (6) and (8). For 

comparison, the prediction from (4) of the final extent for a planar gravity surge (green horizontal dash-dot line) and 

those from (6) and (8) for an axisymmetric gravity surge (blue horizontal long dashed lines) are also plotted. (b)-(d): 

Extent of the final deposit in the 𝑥-𝑦 plane from S7 ( χ0 = 3.8), S2 ( χ0 = 8), and S1 ( χ0 = 12) respectively. The 

dashed red lines correspond to the prediction from (22) using the upper and lower bounds from (6) and (8). 
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Figure 11: Final deposit aspect ratio  χ∞ vs χ0 for all the suspension-driven simulations (black square symbols) in

Table 1. The blue circle corresponds to experiment 1 in Zgheib et al. (2015b). The experiment is equivalent to S7 in 

Table 1. The shaded region corresponds to (24) using the upper and lower bounds in (6) and (8). 
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