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SUSPENSION-DRIVEN GRAVITY SURGES ON HORIZONTAL
SURFACES: EFFECT OF THE INITIAL SHAPE

N. Zgheib'?;, T. Bonometti?, and S. Balachandar*

!Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611,
USA

2Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, Toulouse,
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We present results from highly resolved direct numerical simulations of canonical
(axisymmetric and planar) and non-canonical (rectangular) configurations of horizontal
suspension-driven gravity surges. We show that the dynamics along the initial minor and major
axis of a rectangular release are roughly similar to that of a planar and axisymmetric current,
respectively. However, contrary to expectation, we observe under certain conditions the final
extent of the deposit from finite releases to surpass that from an equivalent planar current. This
is attributed to a converging flow of the particle-laden mixture towards the initial minor axis,
a behaviour that was previously reported for scalar-driven currents on uniform slopes (Zgheib
et al. 2016). This flow is observed to be correlated with the travelling of a perturbation wave
generated at the extremity of the longest side that reaches the front of the shortest side in a
finite time. A semi-empirical explicit expression (based on established relations for planar and
axisymmetric currents) is proposed to predict the extent of the deposit in the entire x-y plane.
Finally, we observe that for the same initial volume of a suspension-driven gravity surge, a
release of larger initial horizontal aspect-ratio is able to retain particles in suspension for longer

periods of time.
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1. Introduction

Gravity currents are primarily horizontal flows that are driven by streamwise pressure
gradient induced by difference in density between the current and the ambient. Of particular
interest to the present work are sediment-laden or suspension-driven currents where the density
difference is due to the suspended sediments. An important feature of suspension-driven currents
iIs their active interaction with the bed. Depending on the intensity and erosive power of the current
and on the availability and size of sediments on the bed, a suspension-driven current can be in net-
depositional, net-erosive or by-pass mode. In contrast to suspension-driven currents, scalar gravity
currents, which are driven by temperature or salinity induced density difference, are conservative
since the source of density difference is conserved over time.

Both scalar and suspension-driven currents are actively studied in their canonical geometric
configurations of planar and cylindrical releases (see figure 1 for schematics of the planar and
cylindrical releases). These canonical setups have been extensively researched (Kuenen 1966,
Middleton 1966, Fisher 1971, Simpson 1972, Lowe 1979, Huppert & Simpson 1980, Parker et al.
1986, Maxworthy 1999, Meiburg & Kneller 2010) resulting in the development of a wide range
of simple yet robust models. Indeed, one of the advantages of dealing with a simple geometric
configuration is that at times the dimensional space may be reduced to two or even a single
dimension making the derivation of elegant theoretical solutions possible. One model that has been
particularly popular is the Navier-Stokes-based shallow water equations (Fannelop & Waldman
1972, Hoult 1972, Rottman & Simpson 1983, Ungarish 2009).

Along with the box model (Huppert & Simpson 1980), the shallow water equations form
a powerful tool in the sense that they have the ability to produce simple algebraic scaling relations

to predict certain key aspects of gravity currents. For example, the extent of the deposit of a



suspension-driven gravity surge initially confined within a circular cylinder may be expressed in
terms of the initial parameters: cylinder dimensions, particle settling velocity, and particle volume
fraction (Bonnecaze et al. 1995). A similar relation exists for the extent of the deposit resulting
from a planar, lock-release suspension-driven current as well (Bonnecaze et al. 1993, Dade &
Huppert 1994). The scaling relations that have proven very useful in the context of planar and
cylindrical releases are however not readily extendable to more complex configurations.

A planar or axisymmetric release (see Figure 1) is defined only by the initial vertical cross-
section whose shape is characterized by the height to length (or height to radius) aspect ratio. For
non-canonical finite releases, the horizontal cross-section of the release (or the shape of the release)
must be additionally defined. In case of a rectangular or elliptic horizontal cross-section, these
shapes can be characterized in terms of the initial length to width aspect ratio. Zgheib et al. (2015a)
observed that the horizontal cross-sectional shape of the initial release is an important factor which
heavily influences the speed and direction of spreading. From both experiments and direct
numerical simulations, they observed strong azimuthal dependence along the current-ambient
interface in terms of the front velocity. This study was later extended to suspension-driven gravity
surges (Zgheib et al. 2015b) where the extent of the deposit was also observed to be significantly
affected by the initial shape. In their study they assessed the importance of bedload transport in
correctly predicting the profile of the deposit as well as the short and long term effects of the inherit
initial disturbance in laboratory experiments.

The preferential spreading direction of non-planar and non-circular releases of arbitrary
horizontal cross-sections depends primarily on the initial shape of the release. However, in the
case of gravity surges spreading over an inclined bottom surface (Ross et al. 2002, Felix & Peakall

2006), the preferential spreading direction is dictated by the presence of the slope. There, the



spreading of a heavy fluid, initially confined within a slanted circular cylinder, down a uniform
slope breaks axisymmetry, and a three-dimensional self-similar shape was seen to evolve. Zgheib
et al. (2016) observed gravity surges on sloping boundaries to exhibit a converging phase of
spreading where the fluid near the head of the current converged towards the symmetry plane.
During this phase, the velocity within the head of the current exhibits a strong spanwise
component. The relative amplitude of this spanwise component is magnified with steeper slopes,
and vanishes, as expected, when the bottom inclination becomes horizontal. These findings on the
effects of initial shape and bottom inclination will prove to be important for the present analysis.

Some of the real-world applications of non-canonical suspension-driven gravity currents
include dredging, landslides, and building demolitions. In the case of dredging, it is often important
to know how the extent of the deposit relates to the conditions at the time of release so that the
accurate placement of the dredged material becomes possible. Similarly, in the case of a controlled
building demolition, the resulting debris cloud, which constitutes a gravity surge, is inherently
related to the geometric properties of the building among other parameters.

The purpose of the present study is to investigate the dynamics of non-canonical
suspension-driven gravity surges resulting from rectangular initial releases of various horizontal
aspect ratios. The currents to be considered are in the net-depositional regime and therefore after
a well-defined period the suspended sediments settle on the bed and the current dies. Based on
scaling relations of planar and cylindrical geometries, we propose simple semi-empirical relations
which can predict with a reasonable degree of accuracy the shape of the final extent of the deposit
for non-canonical releases. We consider large scale simulations of both scalar-driven and
suspension-driven gravity surges, whose results are used to test the validity of the semi-empirical

relations. In the remainder of the paper, we will use the term scalar-driven to refer to



conservative/non-depositional currents (surges with zero settling velocity), the term suspension-
driven to refer to non-conservative/depositional currents (surges with non-zero settling velocity),
and the term gravity surge to refer to either scalar-driven or suspension-driven currents.

The following sections are organized as follows. In § 2, we discuss some of the simple
relations that have been established for planar and axisymmetric configurations. The mathematical
formulation is briefly described in § 3. In 84, we present the main findings of the papers. In 85, we
propose a semi-empirical expression for predicting the extent of the deposit from rectangular
releases. This is followed by an analysis of different scenarios of release depending on the

horizontal cross-sectional ratio in 86. Finally, conclusions are drawn in 87.

2. Theoretical Estimates for Planar and Axisymmetric Configurations

The two-layer shallow water model, which is based on the vertically integrated Navier-
Stokes equations both in the heavy bottom current and in the ambient, was shown by Bonnecaze
et al. (1993) to offer a rigorous mathematical approach for the planar suspension-driven gravity
surges. Dade and Huppert (1995) developed a box model for horizontal suspension-driven currents
to obtain simple theoretical estimates of the horizontal extent of the deposit. The characteristic
thickness of the deposit and the run-out time were compared against experimental measurements
to remarkable success (see also Dade and Huppert 1994). The run-out time marks the time when
the current comes to a full stop as a result of all the particles settling out. Similarly, the run-out
distance corresponds to the distance travelled by the current before it comes to a full stop (i.e. the
maximum extent of the deposit). Additionally, the characteristic thickness of the deposit refers to
the average deposit thickness over the area where the deposit occurs. The key results of the planar

box model can be recovered with a scaling argument.



We consider a fixed volume Vj of release (per unit width) of particle-laden fluid of initial
reduced gravity g, defined as

Pp — Pa
Pa

9o =9 do : (1)

where p;, and p, denote the particle and ambient fluid densities, respectively, and ¢, is the initial
volume fraction of particles in the current. In the above, and for the remainder of the manuscript,
the asterisk superscript denotes a dimensional quantity, and zero subscript refers to initial time.
For the planar current, the volume of release per unit width of the current can be expressed in terms
of the lock height and lock length as Vg = Hg X;. We now define the characteristic height of the
current to be H* and the corresponding length of the current to be X* = V;/H"*, which ignores the

effects of entrainment or detrainment of ambient fluid or particles into or out of the current. The

front velocity of the current scales as \/g(’)*_H and the characteristic time scale of the collapse is
given by the characteristic sedimentation time T* = H* /v;, where the settling velocity v is that
of a single isolated particle settling in a quiescent ambient fluid. This time roughly corresponds to
the time required by a particle to cross a distance equivalent to the initial/characteristic height of
the release. We now use the above scaling to properly non-dimensionalize the shallow water
concentration equation

0 , 09
o % 9

= @

where u* is the local horizontal velocity in the current, ¢ is the local volume fraction of particles
and h* is the local height of the current. In particular, we demand the resulting non-dimensional

equation to be independent of v;, which yields the condition



Vs _goH (3)

H* X*

This is equivalent to assuming that the characteristic time of sedimentation T* is of the same order
of magnitude as the characteristic time of propagation X*/./gy H*. Substituting for X* and

rearranging we obtain H* = (v32V4?/ g6)Y/> from which we can obtain X* and T*. The above
scales can be shown to properly non-dimensionalize the shallow water mass and streamwise
momentum balances as well. Thus, in the case of a planar current the appropriate scaling of the

run-out distance (X,4), run-out time (T,4), and characteristic deposit height (H,,,) are

~<g0 03> T* ~< VOZ ) H* ~@<vSZV02> (4)
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where ¢, is the initial volumetric particle concentration of the release and ¢, is the final

volumetric particle concentration within the deposit, which can be taken to be around 0.5 following
Dade and Huppert (1994). In the above the subscript “pd” stands for planar deposit. Based on
comparison against experimental measurements and shallow water solutions, Dade and Huppert
(1994) recommended the constants of proportionality in the above relations to be 3, 2 and 1/3,
respectively.

The scaling analysis for the axisymmetric suspension-driven surge was presented by
Bonnecaze et al. (1995). Here the volume of the cylindrical release is given by Vy = nR§*Hj,
where again R; and Hg are the initial radius and height of the cylindrical release. In an

axisymmetric current the radius of the current, in terms of the characteristic height of the current,
goes as R* = /Vy/(mH*). The scaling of the front velocity and time remain the same as in the

planar release. We again use the same scales to properly non-dimensionalize the shallow water

governing equations, which now yields the condition

7



Vs _NgoH (5)

H* R*

Substituting for R* and rearranging we now obtain H* = (v;2V{/ (mg))** from which we can
obtain R* and T*. The appropriate scaling in the case of a cylindrical deposit of the run-out distance

(R;4), run-out time (T;;), and characteristic deposit height (H},) are

ey %3\ 1/8 « \1/4 £217%\ 1/4
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In the above the subscript “cd” stands for cylindrical deposit. Based on comparison against
experimental measurements and shallow water solutions, Bonnecaze et al. (1995) found the
constant of proportionality for the run-out radius to be 1.9. In the case of a full depth release they
also observed the above scaling to be valid only when the initial release satisfied the following

condition

v*z 1/8
R3< e ) $0.1. (7)
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Instead, if the initial release is in a deep ambient then the right hand side of the above condition
changes to 0.3. If the initial release violates condition (7) then the run-out radial distance given in

(6) is only an upper bound and an empirical lower bound is defined as (Bonnecaze et al. 1995)

131757 1/18
R, =~ 0.92 <g° — ) . (8)
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3. Mathematical Formulation

We performed a number of simulations for which a sediment-laden mixture confined

within a rounded-rectangular cross-sectional cylinder is released on a horizontal boundary (Figure



2). The sediment-laden mixture is treated as a continuum and a two-fluid formulation is adopted.
We follow Cantero et al. (2008) by implementing an Eulerian-Eulerian model of the two-phase
flow equations. We solve the conservation of mass and momentum equations for the continuum
fluid phase, an algebraic equation for the particle phase momentum, as well as the transport
equation for the normalized sediment phase concentration field p. The non-dimensional system of

equations reads

V-u=0, 9)
Du 1
D_t = peg — Vp + R—eVZu, (10)
u, = u+v;eJ, (11)
ap 1
o7 TV (oup) = —— Vp. (12)

Here u,, and u are the velocities of the particle and continuum fluid phases, respectively. Implicit
in (11) is the assumption that the time scale of the particles is much smaller than the time flow
timescales and thus the particle faithfully follows the local fluid velocity except for the vertical
drift due to gravitational settling (Necker et al. 2005, Balachandar & Eaton 2010). The settling
velocity v, corresponds to the balance between the Stokes drag force, acting on a single spherical
particle assuming a small particle Reynolds number, and the buoyancy force. For the present set
of simulations, v, is an input and its value is prescribed in Table 1. e9 is a unit vector pointing in
the direction of gravity, and p represents the total pressure field. The variables Sc and Re are the

Schmidt and Reynolds numbers defined as

Sc = ’Re = , (13)
K



where v* represents the kinematic viscosity of the continuous phase and k* is the effective mass
diffusivity of the particle-laden mixture in the ambient fluid. The particle phase concentration is
normalized between 0 and 1 as shown in (14). The length, velocity, and time scales are defined

respectively as

I(L* =H,, U= \/g*q—(’o_pp _*paL*' T = L_*

{ Pa v (14)
| P —pa

\P Pmo ~ Pa

In the above, p* and p;,,, represent the local and initial mixture densities, respectively. Here, we
consider the Boussinesq approximation of small density difference between the particle-laden
mixture and the ambient fluid in that the concentration only appears in the buoyancy term of the
momentum equation (first term on the right hand side of (10)). (9)-(12) are solved using a spectral
code (Cortese and Balachandar 1995, Cantero et al. 2007) within a rectangular computational
domain shown in Figure 2. Periodic boundary conditions are used for all variables in the
streamwise, x, and spanwise, y, directions. At the bottom wall (z = 0) no-slip and no-penetration
boundary conditions and at the top wall (z = 1) free-slip and no-penetration boundary conditions
are imposed for the continuous phase velocity. As for the dispersed phase concentration field,
Neumann and mixed boundary conditions are enforced at the bottom (z = 0) and top (z = 1)
walls, which translate into zero net particle resuspension flux and zero particle net flux,

respectively.

(6,0) —0 ; (1 o» ) =o (15)
0z/),.0 * \ScRedz o1

The lengths of the domain in the streamwise and spanwise directions are chosen to

ascertain that there is uninterrupted development of the gravity current. Details of the numerical
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simulations are described in Table 1. It was demonstrated in Zgheib et al. (2015b) that the
propagation of the current is not affected by the lateral boundaries of the computational domain as
long as the front of the propagating current is one or more current heights from the boundary. In
all the simulation cases considered the horizontal extent of the computational domain was chosen
to be large enough to satisfy the above criterion. The grid resolution for suspension-driven and
scalar-driven surges is the same as that used in Zgheib et al. (2015 a&b) for rectangular releases,
where the adequacy of the grid for converged solution has been established. Also the grid
resolution employed is consistent with the requirement that the grid spacing must be of the order
of O(ReSc)~'/? (Birman et al. 2005, Hartel et al. 2000). We use two values for the Reynolds
number Re = 8430 and Re = 8950 for suspension-driven and scalar-driven gravity surges,
respectively. The Schmidt number is set to one for all simulations. This is common practice in
these types of flows (Necker et al. 2005). Furthermore, Bonometti & Balachandar (2008) and
Necker et al. (2005) demonstrate that the effect of the Schmidt number on the flow in the range of
Re numbers considered here is not important as long as it is of order 1. We therefore do not expect
the results to be presented below to be sensitive to the precise value of Schmidt number. These Re
and Sc number values were also chosen to allow for a meaningful comparison with previously
published results (e.g. Zgheib et al. 2015 a&b). The time step is chosen such that the Courant
number remains below 0.5. We impose a small random disturbance to the initial concentration
field to stimulate a faster transition to turbulence. The amplitude of the disturbance amounts to 5%
of the density difference between the sediment-laden mixture and the ambient fluid. The initial
interface of the concentration field between the sediment-laden mixture and the ambient fluid is

smoothened such that the jump from 0 to 1 occurs over a small distance of 3 grid cells.
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4. Results

4.1 Rectangular vs planar or axisymmetric suspension-driven gravity surges

In a planar configuration, the gravity surge does not have any mean spanwise motion and
is restricted to flow in a single direction along the channel length. Similarly, in an axisymmetric
configuration, the flow is radially outward with no mean azimuthal motion. In both cases the final
deposit pattern remains statistically planar and axisymmetric, respectively. The three-dimensional
spatio-temporal evolution of a current of initial horizontal rectangular shape is presented in Figure
3. The surge is visualized by multiple semi-transparent iso-surfaces of the concentration field p at
three time instancest = 3,9 and 20, respectively. The current exhibits strong azimuthal
dependence and is the most (resp. least) energetic along the initial shorter (resp. longer) axis. In
other words, for rectangular configurations, the initial shape dictates the preferential spreading
direction of the current, and as a result the final deposit exhibits azimuthal dependency in both the
extent and the areal density. In particular, the current extends the farthest along its initial
minor/short axis and propagates the shortest distance along its initial major/long axis.

For a scalar-driven gravity surge, Zgheib et al. (2015a) observed that at early times a
rectangular release advances along its initial minor axis at a speed equivalent to that of an effective
planar current if one takes the initial lock length of the latter as half the width of the rectangular
release, and the height equal to that of the rectangular release. On the other hand, along the initial
major axis the current was observed to spread as an effective axisymmetric current of lock radius
equal to half the width of the initial rectangular release, and of similar height.

In order to test if the above observations extend to suspension-driven gravity surges, fully

resolved direct numerical simulations have been conducted here. These simulations are fully
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resolved only at the macroscale in the computation of the continuum equation (9) to (12), but they
do not resolve the flow at the microscale around individual sediments. When the particle settling
velocity is much smaller than the characteristic velocity of the large scale flow, i.e. vy < \/M :
or equivalently v, « 1, a suspension-driven gravity surge is likely to behave as a scalar-driven
surge to leading order. The simulations consisted of suspension-driven rectangular releases with
different initial cross-sectional aspect ratios y,, defined as the ratio of the longest to the shortest
side, along with simulations in planar and axisymmetric configurations. Some scalar-driven
releases were also performed for comparison. It should be noted that the initial cross-sectional
shape of the release in the present study is a rectangle in which the short edges have been replaced
with semi-circles, thus they are rounded rectangles. The spreading is however nearly identical to
a true rectangle with right-angled corners (see Figure 19 in Zgheib et al. 2015a), and therefore the
subsequent discussion is equally applicable to “true” right-angled rectangles.

Figure 4 shows the extent of the deposit for the suspension driven rectangular surges and
how they compare to the planar and axisymmetric configurations. The extent of the deposit in the
rectangular release along the initial minor axis (x-axis) can be directly compared with the
corresponding deposit for a planar release. For a meaningful comparison along the initial major
axis, the centre of the axisymmetric current has been translated to coincide with the centre of the
circular portion of the rounded-rectangular configuration. Several observations can be made from
Figure 4: i) the extent of the deposit along the initial major axis agrees reasonably well with that
of an axisymmetric release irrespective of the initial horizontal cross-sectional aspect ratio . ii)
The extent of the deposit along the initial minor axis depends on ¥,, and increases as, is
increased. iii) For relatively large values of the cross-sectional aspect ratio (x, = 8) the extent of

the deposit seems to reach a sort of plateau. iv) The extent of the deposit along the initial minor
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axis of the rectangular surges of large x,, namely x, = 8 and 12, exceeds that of the planar release
by about 9 and 13%, respectively. Figure 4d shows the maximum extent of the deposit along the
x and y axes as a function of x, for the depositional cases in Table 1. When the release is
axisymmetric (xo, = 1), the maximum extent of the deposit is the same along the x and y axes as
expected, however as y, increases, the distance travelled by the current along the x-axis appears
to increase whereas that along the y-axis seems to remain unchanged. Interestingly, as we approach
the planar limit (o — o), the maximum value of the extent of the deposit is below that for y, = 8
and 12 by 9 and 13%, respectively. We will address this somewhat unexpected observation in 86.

We may now look at the local dynamics of the front of rectangular surges at some specific
locations, namely along the initial minor and major axes. Figure 5 shows the temporal evolution
of the travelled distance along the major and minor axes for some of the simulations shown in
Table 1. The dynamics of the front along the initial major axis is observed to be nearly independent
of xo and in very good agreement with that of an axisymmetric release both in terms of front
position and velocity, as already shown for the final extent of the deposit in Figure 4. Note that
this is in line with the dynamics observed for scalar-driven gravity surges (see e.g. Figure 14b in
Zgheib et al. 2015a).

The dynamics of the front along the initial minor axis is more complicated. Considering
the front velocity (Figure 5b), one can see that the dynamics is similar in the acceleration phase up
to time t = 1 while in the slumping phase, the mean value of the front velocity ug and the
corresponding duration tg depend on x,. In particular, ug decreases from 0.45 to 0.40 while tg
increases from 3 to 5, approximately, when ¥, is increased from 3.8 to 12. Beyond tg, all the
gravity surges experience a deceleration phase of roughly similar trend but for which it is difficult

to draw any definite dependency relative to the initial horizontal aspect ratio. Recall that the present
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front velocity is computed at a specific location of the front contour, and hence the instantaneous
variation of the front position, due to the evolution of the lobes and clefts, is likely to introduce
some fluctuations in the front velocity, as observed in Figure 5b. The subtle but noticeable
influence of y, observed for the front velocity is also visible in the plots of the time evolution of
the front position (Figure 5a). For instance, the front extent of the x, = 3.8 surge is slightly above
the others for times t < 6, then that of the x, = 8 surge is the largest up to t < 18 and finally the
Xo = 12 surge overcomes the others at later times.

The comparison of front dynamics along the initial minor axis with that of the planar surge
is somewhat atypical since the instantaneous front extent of the planar surge is closer to that of the
Xo = 3.8 surge rather than that of the x, =8 and x, =12 surges. This is in line with the
observation made for the final extent of the deposit in Figure 4d. Again, this point will be addressed

in §6.
4.2 Converging flow in rectangular gravity surges

As observed in Figures 4d and 5a, it is somewhat surprising that the finite rectangular
releases extend farther or even advance faster than a planar release. Indeed, one may wonder what
is the mechanism by which a finite release, whose planform area increases quadratically with size,
advances faster or even extends farther than a planar release whose planform increases linearly. A
possible explanation can be proposed from the results presented in Figure 6, where we plot the x

and z integrated concentration field, h, (y, t), defined as

Ly rLy
hy(y,t) = J J p(x,y,z,t)dzdx, (16)
0 0
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as a function of y for the suspension-driven (S1 and S4) and scalar-driven (S3 and S6) gravity
surges. For the planar release, we further average h, in the homogeneous y-direction and use it for
comparison with the rectangular releases. Because of integration along x and z, the profiles in
Figure 6 are less susceptible to turbulent fluctuations compared to the local concentration field
(see Figure 3). However, in the case of particle-driven surges, as more and more sediments deposit
on the bottom wall and exit the computational domain, the mean value of the concentration
decreases. Consequently, the fluctuations in the concentration field about the decaying mean
concentration value become more pronounced. This could explain the strong symmetry (about y =
0) at early times in the profiles of Figure 6a and the moderate deviation, from symmetry, at later
times. On the other hand, because of the conservative nature of the flow for scalar-driven currents,
the profiles in frame b remain very symmetric up to the times considered herein.

First, we notice that the mean value of h,(y,t) decreases over time as a result of
sedimentation. It is also clear that the relative amount of dense fluid gradually increases with time
at the centre plane (y = 0) above that of the corresponding planar release. For instance, the
maximum value of h, is 2%, 11%, and 42% higher than the corresponding average of the planar
suspension-driven gravity surge at times t = 2, 6 and 10, respectively. This may indicate the
presence of a converging flow towards the initial minor axis and supports the observation
regarding the faster spreading and longer depositional extent of finite releases (see e.g. Figure 5).
A subtle point that should be stressed is that the converging flow initiates at the two extremities of
the rectangle and slowly makes its way towards the initial minor axis (y = 0). One may observe
thatat t = 2, h,.(y, t) in the vicinity of the initial minor axis (|y| < 0.5) for S1 (x, = 12) is nearly
identical to the mean value obtained from the planar case (S4), while h,(y,t) for |y| = 1.5 is
noticeably larger than the mean planar value.

The same behaviour is observed for scalar-driven gravity surges (Figure 6b). A converging
flow was also observed in the case of surges spreading on sloping boundaries (Zgheib et al. 2016).

In that case, a relatively strong cross-flow velocity component relative to the streamwise velocity

16



component was present and the converging flow was easily identified using a vector plot of the
velocity field in the head of the gravity current. This is not the case, however, for rectangular initial
releases of suspension-driven gravity surges on horizontal boundaries where the magnitude of the
cross-flow velocity component is about an order of magnitude smaller than that of the streamwise
component (not shown). Instead, in Figure 7, we present iso-contours of a modified depth-
integrated y component of the velocity field v, in the x-y plane. In each of the 4 frames in Figure

7, the iso-contours of v, are bounded by an outer solid black line, which corresponds to the location

of the front. Here, vp is defined as

_y LZ
vo(x,y,t) = mf pvdz, a7)
0

where v represents the y component of the three-dimensional velocity field u. Therefore, in regions
where v, > 0, the flow converges towards the symmetry plane y = 0 and vice versa. At early
times t = 2, we can see the presence of two zones of converging flow in the region 1 < |y| < 2
within the suspension-driven gravity surge. As time evolves, these regions spread and tend to
approach the symmetry plane, such that at time t = 5, the flow inside the current located in the
region close to the initial minor axis, i.e. |y| <2 is mostly oriented toward the symmetry
plane y = 0. This observation confirms the presence a converging flow toward the initial minor
axis which may be responsible for the mass buildup observed in Figure 6 initiating at the
extremities and propagating towards the plane y = 0. Consequently, such a mass buildup may
modify the local front velocity since the latter scales as the square-root of the front height

(Benjamin 1968).
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4.3 Travelling informational perturbation along the front contour

One way to track how information travels along the front is to see how certain parameters
that are otherwise uniform in space (along the y-axis) for a planar release spatially evolve when
the release is of finite size. The normal-to-the-front angle (9) and the normal-to-the-front velocity
uy are two such parameters. We choose 9 as one of the two parameters because it provides
information on the instantaneous local spatial and temporal evolution of the front. Another
parameter analogous to ¥ that could potentially provide equivalent information is the local
curvature of the front. However, to evaluate 9 only first order derivatives are required, unlike
evaluation of the local curvature. Here, 9(y,t) is computed as

I(y, t) = arctan(dxy/dy), (18)

where, x, corresponds to the front position in the upper symmetry plane (x = 0). At the time of
release t = 0, 9(y, 0) is such that
[9(y,0)| =0 for Iyl <m,
(19)
[9(y,0)| >0 for lyl >n.
where 7 is the distance from the geometric centre of the rectangular cross-section to the local centre
of the rounded portion of the rectangle (see Figure 4). To monitor when the flat portion of the front
ceases to remain flat, we need to see when [9| > €, where € is a small number. We therefore need
a suitable value of € that is small, to accurately detect the change in the direction of the front as
early as possible. However, e must be large enough to obtain a clear signal-to-noise ratio. We
found that for the present problem, the iso-value 9 = 0.1 was a reasonable choice. As for the

normal-to-the-front velocity u, the value uy = 0.39 was chosen as a reference since it is close to
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the value of the mean slumping velocity of the planar current (see Figure 5b, S4). This is likely to
be the slumping velocity that the flat portion of the rectangular release experiences before the
information on the “finiteness” of the release reaches it.

Figures 8a and 8b show contours of 9] and u,, respectively, in the y-t plane for early
times t < 4, whereas Figure 8c overlays the iso-contours of ¥ = 0.1 and uy = 0.39 on top of the
front position in the upper symmetry plane (x > 0). As time evolves, the region along which the
front remains flat (|]9] < 0.1) and advances at a speed close to that of the planar release (uy =
0.39) decreases. The rate at which the flat portion of the release decreases is roughly constant at
early times (t < 4). From Figure 8a, we can estimate the slope dy/dt of the |9] = 0.1 iso-contour
to be dy/dt ~ 0.23. On the other hand, the slope dy/dt of the uy = 0.39 iso-contour is estimated
from Figure 8b to be dy/dt ~ 0.32.

The iso-contours of ¥ = 0.1 and uy = 0.39 are easily extracted at early times (t < 4)
when the front is still relatively smooth. At later times, the front becomes more complex and highly
three-dimensional due to the lobe and cleft instability, which makes it more difficult to precisely
extract the above iso-contours. However, we can obtain a time estimate (t, 4y,q4:) Of when the
perturbation reaches the symmetry plane (y = 0), by assuming that the slope dy/dt remains
constant as the perturbation advances inwards. We should note nonetheless that this assumption
may not necessarily be true, as the perturbation speed may change as it advances. A better estimate

may be obtained by marking the time (¢, ,-.,) when the front position ry (t) along the x-axis from

DN

S1, S2, and S7 exceeds that from S4. From Figure 5a, we find t ~ 2, 3, and 6 for S1, S2, and

p'TN

S7, respectively. A comparison of the characteristic perturbation times as well as the characteristic

sedimentation and propagation times are shown in Table 2. The observed perturbation time ¢, ..,
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is smaller than the estimated time t,, 4, /q¢, Which suggests that the perturbation speed does not

remain constant, but rather increases at later times (t > 4) as it advances inwards.

In all the simulations considered herein, the perturbation reaches the symmetry plane (y =
0) before the current stops. Indeed, as the perturbation and propagation characteristic times are of
the same order, we should expect the converging flow to reach the symmetry plane before the
current arrives at a standstill. On the other hand, if the horizontal aspect ratio of the release is very
large, i.e. y, > 1, the characteristic perturbation time will be correspondingly very large as well,
whereas the characteristic propagation time will approach that of the planar release (S4). For such
a case, the converging flow will have no effect on the dynamics of the current along the symmetry
plane (y = 0). As for the characteristic sedimentation time, we observe T to be about an order of

magnitude larger than the perturbation times t;, 4, /4, and ¢ This implies that the effect of

DTN
sedimentation is not likely to be an important factor in the dynamics of the converging flow before
it reaches the symmetry plane.

Overall, Figure 8 clearly shows that the information of the finite size of the release along
the y-direction propagates from the corners to the centreline (y = 0) along the front. The precise
value of the velocity at which this information propagates, however, and its dependence on other
parameters remain unclear. It should be noted that the slope dy/dt of the uy = 0.39 iso-contour

also provides some measure for how information travels within the current. The front velocity uy

is related to the current’s thickness or height, hy, by the Froude condition

Uy ~ hN ) (20)

and therefore as u, varies spatially, so must hy. However, uy is a much easier quantity to evaluate

than h,, because unlike u,, there is no clear definition for the front height.

20



4.4 Particle rate of retention as a function of y,

One aspect that is of great interest in the study of suspension-driven gravity surges is the
depositional rate. It is often very useful to know how long a suspension-driven current can maintain
its particles in suspension before coming to a full stop. In Figure 9, we plot the normalized amount
of particles remaining in suspension over time, 8, for all suspension-driven simulations in Table

1. B is defined as

ﬁ(t) ~ fOLx fOLy fOLZ p(x, Y, Z, t) dz dy dx (21)
L2 007 p(x,y,2,0) dzdy dx

As expected, circular releases have the lowest retention rate of particles, whereas planar releases
have the largest. This is a direct result of the ever diverging spreading nature of axisymmetric
releases as compared to the unidirectional spreading of planar currents. In addition, for the same
initial volume of a particle-laden mixture, releases with large cross-sectional aspect ratios, xo,
retain their particles in suspension for longer times. For instance, the value g = 0.15, which
corresponds to the fact that 15% of the particles remain in suspension in the gravity surge, is
reached at time t = 12.1 and 15.6 for x, = 1 and 12, respectively. Similarly, at time t = 10,
approximately 24% (34%) of the particles remain suspended in the gravity surge of horizontal

aspect ratio xo = 1 (12).
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5. Predictive models for rectangular suspension-driven gravity surges

5.1 Final extent of the deposit

As shown in Figure 4a, the shallow water theoretical expressions (4)-(6) and the empirical
relation (8) predicting the final extent of the deposit for the planar and axisymmetric releases, agree
well with the present planar and axisymmetric simulations. For instance, in the planar case, the
extent of the deposit from (4) and from the spanwise average of S4 are 5.7 and 6.0, respectively.
Similarly, for the axisymmetric release, the azimuthal average of the extent of the deposit S5 is
2.0, which lies between the lower and upper bounds of 1.7 and 2.6 from expressions (8) and (6),
respectively. Here, the empirical lower bound is used because the condition in (7) is not met. In
addition, these expressions provide a reasonably good estimate for the extent of the deposit along
the initial minor and major axes of the rectangular release.

Here we propose an estimate of the extent of the deposit in the entire x-y plane. Zgheib et
al. (2015a) showed that scalar-driven rectangular releases reach a self-similar spreading phase in
which the azimuthal variation of the front position may be described by a sinusoidal function of
the local angle 6 in the polar coordinate system, whose origin coincides with the geometrical centre
of the release, 6 being measured anticlockwise from the x-axis. We therefore suggest a similar
sinusoidal function to describe the extent of the deposit with the help of (4), (6) and (8). The
empirical expression describing the extent of the final deposit I' which is the radial distance
between the local front and the geometrical centre reads

() = Asin™(0) + B, (22)

with
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A= Xpa — (Réa +17) and B= (Rea + 1)

23
H; H; (23)

where n* is the distance from the geometric centre of the rectangular cross-section to the local
centre of the rounded portion of the rectangle (see Figure 4), X, is given by (4), and since the
condition in (7) is not met, the upper and lower bounds of R;,; are given by (6) and (8), respectively.
Here again, the asterisk superscript denotes a dimensional variable, all other variables are to be
understood as non-dimensional. We use the scaling given in (14) to non-dimensionalize (22). The
exponent n in (22) is the only fitting parameter of the function.

Figure 10a shows the extent of the final deposit I'" as a function of 8 for S2 along with the
theoretical and semi-empirical predictions of R;; and X_;. The valuen = 6 was observed to
provide the best agreement. Other values of n in the range [4,8] gave roughly similar results.
Similarly, Figures 10c-d show the extent of the deposit in the x-y plane for S1, S2 and S7 as well
as I' as obtained from (22). It should be noted that for the cases considered in Figure 10, the
condition in (7) does not hold, and R, is bounded by the conditions in (6) and (8) (Bonnecaze et
al. 1995). Good agreement is observed in all 3 cases, the relative discrepancy between the
simulated and predicted extents of the deposit along the x axis being approximately —17,9, and
13%, for xo = 3.8, 8 and 12, respectively. Along the y axis, the extent of the deposit from the

simulations lie within the predicted bounds and are closer to the empirical lower bound given in

).

5.2 Horizontal aspect ratio of the deposit

Using (22), one may also predict the final aspect ratio of the deposit x.,. Noting that with
the present coordinate system the minimum and maximum extent of the deposit correspond to 8 =
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0 and 6 = /2, respectively, we have x,, = (A + B)/A = X,4/(R¢q +17). Using the fact that
Xo = (Rg + ™) /R, we can eliminate n* in the expression for x., and obtain a prediction of the

final horizontal aspect ratio of the deposit as a function of the initial geometric parameters, viz

X*
Rcd + RO(XO - 1)

Xoo

A plot of x, Vs X, for the present set of parameters is shown in Figure 11. For small values
of xo, (24) performs poorly as expected. Indeed, as the initial cross-sectional aspect ratio tends to
unity, one would expect both the “minor” and “major” axis of the release to behave identically as
an axisymmetric current and hence ., ~ 1. In contrast, (24) gives xo, = X;4/R;q Which is larger
than unity since with the present model, the initial minor axis of the rectangular release can only
exhibit a planar-like type of spreading. On the other hand, for the present set of parameters, as x,
is increased, (24) agrees very well with experimental and numerical data. Let us recall that (24) is
applicable whenever (4), (6) and (8) are valid, i.e. to a much wider set of parameters than in the

present case.

6. Scenarios of dynamics and deposition of a suspension-driven gravity surge

Here, we propose a scenario for the dynamics of a suspension-driven gravity surge of initial
arbitrary shape depending on the competition between the characteristic times of sedimentation,
propagation, and reflection of the perturbation.

We may now consider the planar and axisymmetric configurations as limiting cases for
rectangular cross-sectional releases. When the initial cross-sectional aspect ratio x, = 1, the

rectangular release reduces to an approximate axisymmetric circular release. On the other hand,
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as xo — oo, we retrieve the planar release. All other rectangular releases with finite values of y,

exhibit a behaviour that is a combination of both canonical releases. That is the broad edge of the

rectangular cross-section behaves, at least for some finite initial time, as a planar current, whereas
the short edge acts as a diverging axisymmetric release until the current comes to a full stop.

The front along the initial minor axis advances as a planar front until the information of the
“finiteness” of the release is received. This can be seen in Figure 5a as to when the front locations
for x, = 8 and 12 separate from that of a planar current. This statement implies that there is an
information wave that travels along the front of the current and carries with it the information that
the release is of finite length in the y-direction and does not extend indefinitely along the initial
major axis.

The reason the final extent of the deposit along the minor and major axes of the rectangular
release conforms well to planar and axisymmetric releases is in fact due to the fronts along those
specific directions behaving in a similar fashion to their respective canonical currents from the
time of the release onward. Figure 5 shows the temporal evolution of the travelled distance along
the major and minor axes for some of the simulations shown in Table 1. The following
observations can be made.

) It confirms that the temporal evolution along the initial major axis is equivalent to that from
an axisymmetric release and is nearly independent of x,. The same behaviour was observed
for scalar-driven currents (Figure 14b in Zgheib et al. 2015a).

i) There appears to be some critical initial cross-sectional aspect ratio x,.-; above which the
extent of the deposit exceeds that from an equivalent planar current. For the present set of

parameters, we observe a value of xo.1 = 5.
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i)

vi)

There exists another higher initial critical aspect ratio x,.», above which the extent of the
deposit along the initial minor axis becomes completely independent of x, and matches
exactly the extent from an equivalent planar release. x,., corresponds to an initial release
for which the converging flow never reaches the symmetry plane (y = 0).

There exists an initial aspect ratio Xg;mqr SUCh that Xocr1 < Xomax < Xocrz fOr which the
deposit attains its largest possible extent along the initial minor axis.

For values of x, below xomqx, the current (along the initial minor axis) experiences a larger
slumping (nearly constant) velocity for smaller values of x,, but the duration of this nearly
constant velocity phase increases as x, increases (see Figure 5b). The same behaviour was
also observed for scalar-driven gravity surges (Figure 14b in Zgheib et al. 2015a).

For values of y, such that xo:1 < Xo < Xoer2, the planar front velocity provides a lower
limit to the front velocity along the initial minor axis for the entire duration of the flow.
Indeed as seen from Figure 5b, the front velocity along the initial minor axis from S1 and

S2 is always larger than or equal to the corresponding planar release of S4.

Indeed, as ¥, attains larger and larger values, there comes a point for which the current

comes to a full stop before the converging flow ever reaches the symmetry plane (y = 0). In that

case, the front along the initial minor axis advances as a planar current. Furthermore, as discussed

in point (v), rectangular releases with values of y, such that 1 < y, < Xomax, €Xperience a larger

slumping (nearly constant) velocity for smaller values of x,. This may be due to the fact that for

small values of x,, the converging flow reaches the initial minor axis earlier when the current is

already relatively more energetic than at later times. The converging flow would further increase
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the thickness of the current and therefore raise the slumping velocity along the initial minor axis

(recall that uy~hy %),

7. Conclusions

We presented results from highly resolved direct numerical simulations of finite release
horizontal gravity surges, both suspension-driven and scalar-driven. Canonical (axisymmetric and
planar) and non-canonical (rectangular) configurations were studied, which allowed us to vary the
initial horizontal cross-sectional aspect ratio x, over a wide range. The purpose of the study was
to build on the knowledge regarding axisymmetric and planar releases and use it to propose simple
relations for certain key parameters of rectangular configurations.

We showed that the final extent of the deposit along the initial minor (resp. major) axis of
an initially rectangular suspension-driven gravity surge resembles that of a planar (resp.
axisymmetric) release with the same initial height and half the width of the rectangular release. In
addition, rectangular gravity surges with the same initial volume but with larger x,, retain their
particles in suspension for longer times compared to surges of smaller y,.

A prediction for the final extent of the deposit in the entire x-y plane (and not just along
the major and minor axes) was proposed using available theoretical and empirical models for
canonical suspension-driven gravity surges. Following Zgheib et al. (2015a), we proposed a
sinusoidal empirical relation (22), for the final extent of the deposit as a function of azimuthal
orientation whose amplitude is obtained from previously established relations on axisymmetric
and planar currents. Additionally, a simple explicit expression (24), relating the final aspect ratio
of the deposit, x. as a function of the initial cross-sectional aspect ratio of the release, x, was
proposed. While the present simulations are based on specific values for the settling velocity as

well as the Reynolds and Schmidt numbers, the proposed semi-empirical expressions (22) and
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(24), because of their inherent coupling with equations (4), (6), and (8), are applicable to a wide
range of parameters including the Reynolds and Schmidt numbers, the height and cross-sectional
aspect ratio of the release, the particle settling velocity, the particle volume fraction, as well as the
initial reduced gravity. Therefore, the expected effects of changing these parameters may be
directly inferred from the canonical, semi empirical expressions of (4), (6), and (8). Therefore,
with the knowledge of the initial conditions of the release, it is possible to predict the extent of the
final deposit of a rectangular release. Conversely, using (22) and (24), one can choose the initial
parameters of the release to control the final extent of the deposit.

One of the most counterintuitive outcomes is that contrary to expectation, some
suspension-driven gravity surges may advance slightly but noticeably faster and extend farther
than equivalent planar surges that exclusively undergo unidirectional spreading (up to 13% of the
extent for the present range of parameters). Intuitively, one would expect the final extent of the
deposit from planar gravity surges to act as an asymptotic limit to the extent of the deposit along
the initial minor axis of rectangular gravity surges. This is shown not to be the case. This
unexpected outcome is attributed to a converging flow inside the surge towards the initial minor
axis of the rectangular cross-section. A converging flow behaviour was also observed for finite
release scalar-driven gravity surges on uniform slopes (Zgheib et al. 2016), the intensity of which
increases sharply for steeper slopes. This leads us to conjecture that for suspension-driven gravity
surges released on a uniform slope, the extent of the deposit along the initial minor axis of a
rectangular release might significantly exceed that of a planar release. The discrepancy is expected
to be further highlighted as the slopes become steeper.

This converging flow is brought upon by a non-uniform spatial distribution due to the finite

nature of the release as opposed to planar releases that extend indefinitely along the y-axis. By
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tracking the spatiotemporal evolution of otherwise spatially uniform variables for planar releases,
we provided some estimate for the speed of propagation of the informational wave and the
characteristic time of reflection at the symmetry plane. We do not currently know what parameters
control or affect the speed of the perturbation wave. This is an interesting subject that requires

further investigation.
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Tables and Figures
Table 1: Details of the numerical simulations: The shape variable refers to the horizontal cross-sectional shape of the
cylinder, which can be either planar (P), circular (C), or rectangular (R). y, is the initial cross-sectional aspect ratio
defined as the ratio of the total length (I) to total width (w) of the release. L, X L, X L, and N, X N,, X N, refer to the
domain size and corresponding grid resolution, respectively. vy, Re, and Sc are the non-dimensional settling velocity,

Reynolds number and Schmidt number, respectively.

Sim# Shape Xo l w Ly XLy, XL, Ny X N;, X N, Vg Re
S1 R 12 5.68 0.47 18 x13x1 960 x 694 x 159 0.02 8430
S2 R 8 3.78 0.47 18 x12x1 960 x 640 x 159 0.02 8430
S3 R 12 5.68 0.47 20x16x1 1170 x 936 x 179 0 8950
S4 P 00 o0 0.47 20x15x%x1 1086 x 82 x 159 0.02 8430
S5 C 1 0.47 0.47 7x7%x1 380 x 380 x 159 0.02 8430
S6 P o0 00 0.47 20x15x%x1 1228 x 122 x 179 0 8950
ST* R 3.8 1.78 0.47 15x10x1 800 x 534 x 159 0.02 8430

* Details of the simulation previously reported in Zgheib et al. (2015b)
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Table 2: Characteristic perturbation, sedimentation, and propagation times from S1, S2, S4, and S7.

Characteristic Characteristic Characteristic Characteristic
Sim#  xo perturbation time* perturbation timef  sedimentation time propagation time
tpaysac = [1'/(dy* /)T pra T, = (Hy/v)/T* Ty = [max(t, )/ gg H) /"
s7 38 [2.8 — 3.9] 2 50 5.2
s2 8 [5.9 — 8.2] 3 50 6.5
st 12 (8.9 — 12.3] 6 50 6.9
4 oo ; 50 6.0

* Both values of dy/dt are considered: dy/dt| g and dy/dt|,, =039

£ty is the time when the front position along the x-axis from S1, S2, and S7 exceeds that from S4

Particle-laden Cylinder
mixture

Ambient fluid

Figure 1: Schematic of a planar (left) and an axisymmetric (right) configuration. In the planar setup, the
particle-laden mixture is initially confined behind a gate whereas in the axisymmetric setup, the mixture is

initially confined inside a hollow circular cylinder.
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Periodic sidewalls

Particle-laden T Periodic sidewalls
mixture .

Figure 2: Computational domain and initial shape of the release (here in the case y, = — = 12). We

consider a lock-exchange configuration, that is the initial height of the gravity surge Hy is equal to that of

the ambient fluid L}, i.e. L, = 1.

Figure 3: (Colour online) Flow visualization of S1 using semi-transparent iso-surfaces of concentration
(p) at three time instances, t = 3 (blue), 9 (green), and 20 (red). We observe strong azimuthal
dependence for which the current is noticeably the weakest along the initial longer axis. A length scale of

4 non-dimensional units is shown above the iso-surfaces.
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Figure 4: Final extent of the deposit for the depositional cases in Table 1. For a meaningful comparison
with S5, the centre of the cylindrical release was shifted by —» units in the y-direction to coincide with the
geometric centre of the rounded portion of the rectangle (circular dot in frames a, b, and ¢). The empirical
lower bound in (8) for R4 is needed because condition (7) is not met. (d) Maximum extent of the deposit
I (see frame b) along the x and y axes as a function of x,. For a meaningful comparison, T has been shifted
by -7 units along the y-axis. For comparison, the maximum extent predicted by (4) for the planar y, = o
case is 6.0, while those predicted by (6) and (8) for the axisymmetric y, = 1 case are 2.6 and 1.7,

respectively.
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Figure 5: Temporal evolution of (a) the front position and (b) the front velocity for all suspension-driven
gravity surges in Table 1 (the legend in (b) applies to (a)). For rectangular releases, ry and u, are shown at
both the initial minor (y = 0) and major (x = 0) axes of the rectangular cross-section. The solid ellipse on
the time axis in frame (a) corresponds to the time t = 6 where the front evolution of the y, = 12 and y, =

oo currents begin to diverge from one another.
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Figure 6: x-z integrated concentration field h, vs y at t = 0 (0), 2 (¢),4 (+),6 (m),8 (0), and 10 (©) for (a)
suspension-driven [S1 (solid lines) & S4 (dashed lines)] and (b) scalar-driven [S3 (solid lines) & S6 (dashed lines)]

gravity surges. The symbols mark the spanwise locations y where h, of the y, = 12 current is equal to that of the

Xo = oo planar current.
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Figure 7: Contours from S1 in the x-y plane of the depth-integrated (within the current) y component of the
instantaneous velocity field v, (see text for definition). Regions in red corresponds to v, = 5 X 1072 and indicate a
converging flow toward the y = 0 plane whereas regions in blue corresponds to v, < —5 x 1073 and indicate a
diverging flow away from the y = 0 plane. The outer black solid line in each frame corresponds to the location of the

front and represents the iso-contour h = 5 x 10™2 where h is the vertically integrated density field defined as h =

fOLZp dz.
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Figure 8: Contours in the y-t plane from S1 of (a) the absolute value of the normal-to-the-front angle 9 =
tan~1(dxy/dy) and (b) the normal to the front velocity uy (y,t). (c) Temporal evolution of the front in the upper
symmetry plane (x = 0) at equal increments in time of (At = 0.1). The thick blue and red lines correspond to the iso-

contours of |9| = 0.1 and uy = 0.39, respectively. Inset shows schematic of ¥ on the curved portion of the front.
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Figure 9: Retention rate of particles in suspension as a function of time. For the same initial volume of a suspension-
driven gravity surge, larger cross-sectional aspect ratio releases are able to retain particles in suspension for longer

periods of time.
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Figure 10: (Colour online) a) Extent of the final deposit vs the polar coordinate 8 from S2 (thick black line). The pink
shaded region is the prediction from (22) using both bounds of the axisymmetric release from (6) and (8). For
comparison, the prediction from (4) of the final extent for a planar gravity surge (green horizontal dash-dot line) and
those from (6) and (8) for an axisymmetric gravity surge (blue horizontal long dashed lines) are also plotted. (b)-(d):
Extent of the final deposit in the x-y plane from S7 (x, = 3.8), S2 (¥, = 8), and S1 (¥, = 12) respectively. The

dashed red lines correspond to the prediction from (22) using the upper and lower bounds from (6) and (8).
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Figure 11: Final deposit aspect ratio x., VS x, for all the suspension-driven simulations (black square symbols) in
Table 1. The blue circle corresponds to experiment 1 in Zgheib et al. (2015b). The experiment is equivalent to S7 in

Table 1. The shaded region corresponds to (24) using the upper and lower bounds in (6) and (8).

44



	Suspension-Driven gravity surges on horizontal surfaces: Effect of the initial shape
	Recommended Citation

	tmp.1676649411.pdf.12v1q

