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Direct Numerical Simulation of Transverse Ripples:
2. Self-Similarity, Bedform Coarsening, and Effect
of Neighboring Structures
N. Zgheib1,2 , J. J. Fedele3, D. C. J. D. Hoyal3, M. M. Perillo3 , and S. Balachandar1

1Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA, 2School of Engineering,
Lebanese American University, Byblos, Lebanon, 3ExxonMobil Upstream Research Company, Houston, TX, USA

Abstract Coupled bed-flow direct numerical simulations investigating the early stages of pattern
formation and bedform (ripple) interactions were examined in a previous paper (Part 1), making use of the
resolved flow field. In this paper (Part 2), we compare our results to published experimental data and provide
an extensive quantitative analysis of the bed using spectral analysis and two-point correlations. The effect of
the mobile rippled bed on the flow structure and turbulence is investigated locally (at specific streamwise
locations) and over the entire computational domain. We show that developing ripples attain a self-similar
profile in both the shape and the corresponding bed shear stress. We demonstrate the importance of
neighboring structures, especially upstream neighbors, on bedform dynamics in terms of the growth, decay,
and speed of ripples. Finally, we examine the defect-free interactions in the later stages of bed evolution,
which primarily lead to wave coarsening.

1. Introduction

In the companion paper (Zgheib et al., 2018), hereafter referred to as Paper 1, we examined the early
stages of bed evolution and the reproducibility of the various stages of bed development, starting from
a flattened bed. Using the near-bed flow field, we provided evidence on the role of locally intense vortical
structures in initiating quasi-streamwise sediment streaks that evolve into incipient crestlines. Additionally,
we investigated in detail the fluid mechanical origins of a number of defect-related bedform interactions
and showed that for flow-aligned interactions, the underlyingmechanism is very similar and that interactions
are labeled differently depending on the geometry of interacting structures and the outcome of
the interaction.

Substantial research over the past two decades has yielded a wealth of information on the spatial structure of
mature ripples as well as their time evolution and interaction (Ashley, 1990; Best, 1992; Best & Kostaschuk,
2002; Charru & Mouilleron-Arnould, 2002; Charru et al., 2013; Coco & Murray, 2007; Gyr & Schmid, 1997;
Howard, 2007; Kocurek et al., 2010; Ouriemi et al., 2009a, 2009b; Ribberink & Al-Salem, 1994; Swanson
et al., 2016; Werner, 1995, 1999, 2003). In this paper, we focus on the later stages of bed evolution in which
ripples are found to attain a nearly self-similar, asymmetrical, triangular-like shape with a gentle slope on
the stoss side and a steeper slope on the lee side corresponding to the angle of repose. At any instance
during bed evolution, the size, and thus the speed, of bedforms may be different, which result in bedform
interactions as smaller/faster ripples catch up to downstream larger/slower neighbors. Consequently,
during the later stages of bed evolution, when the ripples span the entire width of the domain, these inter-
actions primarily lead to wave coarsening. The coarsening process is fascinating and perhaps counterintui-
tively driven by the smaller upstream ripples starving their larger downstream neighbors (Coleman &
Melville, 1994). Additionally, we find that the coarsening process could be responsible in part for the rela-
tively large scatter observed in experimental as well as numerical data pertaining to ripple speed and
growth rate.

Similarly, there is a great body of literature on the mean flow and turbulence statistics over ripples and dunes.
Significant emphasis in the past has been on investigating the simplified case of turbulent flow over fixed
bedforms (Balachandar et al., 2003; Bennett & Best, 1995; Coleman et al., 2006; Grigoriadis et al., 2009;
Kadota & Nezu, 1999; Maddux et al., 2003; McLean et al., 1994; Nelson & Smith, 1989; Omidyeganeh &
Piomelli, 2013; Venditti & Bennett, 2000; Yue et al., 2005; Zedler & Street, 2001). The resulting turbulence is
statistically stationary, and this assumption is justified on the basis that the evolution of the bed is on a
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time scale much longer than that of the turbulent flow. Furthermore, these investigations typically consider a
fully developed ripple structure that has reached an equilibrium state. These studies focus on the main flow
features such as the space- and time-averaged flow field, flow separation on the lee side, and size of recircu-
lation region, as well as turbulent fluctuations at various streamwise positions. On the other hand, experimen-
tal or numerical studies showing the turbulence structure under mobile bed conditions (Coleman & Nikora,
2011; Hanmaiahgari & Balachandar, 2016; Schindler & Robert, 2005) have been limited but have yielded
valuable information.

One of the methods for quantifying the structure and topology of bedforms is through the spectra of bed
height variation (Hino, 1968; Jain & Kennedy, 1974; Nikora et al., 1997). In experiments, because of the diffi-
culty in measuring bed elevation over the entire planform at the same time during a run, it is often the spec-
tra of the equilibrium bedforms in the final stage of bedform evolution that is reported (Perillo et al., 2014).
Alternatively, the instantaneous two-point correlation of bed height variation in numerical simulations may
be used to assess certain features including the stage of development of bedforms and the temporal rate
of wave coarsening (Kidanemariam & Uhlmann, 2014, 2017). Similarly, spatiotemporal correlations of
bedforms are used to relate the speed to the size of the bedforms.

An interesting aspect of fully formed ripple and other bedform patterns is their self-similar nature (e.g.,
Andrle, 1996; Coleman et al., 2006; Franklin & Charru, 2009; Pelletier, 2013). In the context of barchan dunes,
Franklin and Charru (2009) found a self-similar shape for isolated dunes in both eolian and subaqueous
environments suggesting that their shape is independent of the transport mechanism. On the other hand,
by conducting experiments on fixed two-dimensional dunes, Coleman et al. (2006) found that the flow in
the near-bed region, specifically in the boundary layer, exhibits a self-similar profile. They argued that this
near-bed, self-similar flow is central to the understanding of the feedback loop between the flow and
underlying bed.

The purpose of this paper is to examine the self-similar state of fully developed ripples and establish their
statistical properties. Cross-sectional shape of the ripple, ripple height to wavelength ratio, and ripple
speed as a function ripple height will be examined and compared with available experimental data. The
self-similarity of the resulting flow field in terms of shear stress and recirculation region downstream of
the ripple will also be examined. Direct numerical simulation (DNS) results enable us to characterize the
near-wall turbulence statistics as modified by the mobile bedforms and compare results against those
established for fixed bedforms. The remainder of this paper is organized as follows. An examination of
ripple properties from bedform spectra, Fourier expansions, two-point correlations, and turbulence and
mean flow statistics is presented in section 2 followed by a quantitative analysis of ripple self-similarity in
section 3. The process of wave coarsening and the inevitable scatter it introduces to wave speed and
growth rate is discussed in section 4. Discussion and conclusions are presented in sections 5 and
6, respectively.

2. Spectra, Wave Properties, and Two-Point Correlation
2.1. Bedform Spectra

Before we begin our discussion on bedform spectra, we would like to note that Tables 1 and 2 from Paper 1,
which define many of the variables and provide details about the simulations, are included in this part of the
manuscript for completeness. The simulations considered in this section are for cases S1 through S6 of
Table 2, those evolving from an initially flat surface. The sediment bed height variation initially grows at an
exponential rate (e.g., Fourrière et al., 2010; Jerolmack & Mohrig, 2005; Kidanemariam & Uhlmann, 2017)
before approaching a plateau beyond the equilibrium stage of development. In Figure 1 we show the
temporal evolution of the maximum (hmax) and rms (hrms) values of the sediment bed height variation.
Here hmax and hrms are defined as follows:

hmax tð Þ ¼max
x;y h x; y; tð Þ½ � ; hrms tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LxLy
∫
Ly

0
∫
Lx

0
h2dxdy;

s
(1)

where h(x, y, t) is the bed height with reference to the initial flat bed, which remains as themean bed height at
all later time. The streamwise, spanwise, and vertical directions are denoted by x, y, and z, respectively. We
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remind the reader that all quantities have been nondimensionalized. The velocity scale corresponds to the

friction velocity U�
τ defined in terms of the mean streamwise pressure gradient as ρ�f U

�2
τ =H�

f ¼ �∇�p� ,
where the length scale H�

f represents the mean flow depth. Here and in the remainder of the paper, the
asterisk denotes a dimensional quantity (similar to Paper 1). While hmax may locally attain values of about
8 to 15% of the mean flow depth, hrms remains bounded to less than 5%. hrms is a simple and common

Table 1
Symbols, Notation, and Nomenclature Definition

Variable/notation Symbol Mathematical expression/definition

Scaling variables
Mean flow depth (length scale) H�

f —

Mean shear velocity (velocity scale) U�
τ —

Time scale T* H�
f =U

�
τ

Flow-related variables
3-D velocity field u
Perturbation pressure p
Numerical domain size (streamwise × spanwise × vertical) Lx × Ly × Lz —
Numerical resolution Nx × Ny × Nz —

Bulk velocity Ub 1
LyHf

∫Ly0 ∫
Hf
0 udzdy

Fluid density ρ�f —

Gravitational acceleration g* —
Fluid kinematic viscosity ν* —
Fluid dynamic viscosity μ* —

Particle Reynolds number Rep 1
ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�p�ρ�f
ρ�f

g�d�3p
q

Shear Reynolds number Reτ U�
τH

�
f =ν

�

Bed-related variables
Bed shear stress τ* μ�U�

τ
H�
f

� �
∂u
∂n

Shields number Θ τ�= ρ�p � ρ�f
� �

g�d�p
h i

Critical Shields number Θcr
1
2 0:22 Re�0:6

p þ 0:06 exp �17:77 Re�0:6
p

� �h i
Volumetric flux of sediment per unit widtha q Rep= Reτ

� �
c1 Θ� Θcrð Þc2

Bed volume fraction φ 1 � porosity
Diffusion coefficient ϵ —
Bed elevation (with respect to mean) h —
Mean bed height h̿ —
Sediment diameter

d�p
—

Sediment density
ρ�p

—

Notation
Unit vector e
x, y, z, bed-tangent, bed-normal components of quantity ◼ {◼x, ◼y, ◼z, ◼t, ◼n}

Time average of quantity ◼ h◼i 1
T ∫

t1þψ
t1 ◼dt

Spanwise average of quantity ◼ ◼¯ 1
Ly
∫Ly0 ◼dy

Stream and span average of quantity ◼ ◼̿ 1
LxLy

∫Ly0 ∫
Lx
0 ◼dxdy

Note. Asterisk denotes dimensional quantity.
aBased on the MPM (1948) modified Wong and Parker (2006) model (c1 = 4.93, c2 = 1.6)
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measure of surface roughness and is sometimes referred to as the interface width (e.g., Barabási & Stanley,
1995; Jerolmack & Mohrig, 2005). We observe from Figure 1 a strong dependence on the flow shear
velocity. Cases S1 through S3, with the higher U�

τ value, evolve faster than the lower U�
τ cases S4 through

S6. This observation applies to both hmax and hrms. We also observe a weak dependence of hmax on the
grain size. Simulations with the smaller grain size (cases S3 and S6) grow marginally faster than the
corresponding larger grain simulations (cases S1 and S4). However, this dependence is only observed for
later times, tb ≳ 600 and is not detected for hrms. Here tb represents nondimensional time in bulk units
(tb = t*Ub/Hf), and Ub ≈ 15.6Uτ is the initial bulk velocity obtained from the span- and depth-averaged flow
field.

The initial exponential growth of hrms can be observed in the log linear plot of Figure 1b, and the curve fits
follow

hrms ¼ 10�3 exp 0:015tbð Þ and hrms ¼ 4�10�4 exp 0:01tbð Þ (2)

for the high and low shear stress cases, respectively. Thus, the rate of increase in bed height variation for
the higher shear stress cases is 50% larger than that for the lower shear stress cases. But the initial
exponential growth only lasts for about tb ≈ 150 and tb ≈ 250 for the high and low shear stress cases,
respectively. This is the period of formation of initial crestlines and their interaction and merger to form
well-defined ripples. We should note that the exponential growth rate of 0.015 for the higher shear stress
cases S1 through S3 is closer to the value of 0.014 observed by Kidanemariam and Uhlmann (2017) in
comparison to the slower growth rate of 0.01 for the lower shear stress cases. Additionally, we find the
duration of the exponential growth of bedforms for cases S1 through S3, which is about 200 bulk units
to be very similar to that observed in Kidanemariam and Uhlmann (2017). The better agreement of the
higher shear stress cases with the DNS results of Kidanemariam and Uhlmann (2017) is due to the fact
that for cases S1 through S3, the ratio Θ/Θcr≈ 4 (see Table 2), is closer to the range of values used in
Kidanemariam and Uhlmann (2017).

Subsequent evolution of the bed is at a much slower rate. During the initial period of this slower evolution the
ripples continue to form and complete their evolution toward their approximate self-similar state. Even after
they are fully formed, the ripples continue to interact through the merging and coarsening process. In terms
of wall units, toward the end of the simulation, the rms bed height variation reaches about hrms+ = 6.5 and 8.0
for the high and low shear rate cases, and the corresponding peak ripple heights are about hmax+ = 14.5 and
27, respectively. Thus, the ripples can be expected to substantially alter the nature of wall turbulence. We
should note here that the ripple height (if interpreted as a roughness length scale) is in the hydraulically
smooth regime (regarding the rms value) and at the lower end of the transitionally rough regime (regarding
the maximum amplitude).

One of the methods for quantifying the structure and topology of bedforms is through the spectra of
bed height variation. In experiments, because of the difficulty in measuring bed elevation over the
entire planform at the same time during a run, it is often the spectra of the equilibrium bedforms in
the final stage of bedform evolution that is reported. Hino (1968), Jain and Kennedy (1974), and
Nikora et al. (1997) have reported a �3 power decay for large wave numbers in the spectra of bed

Figure 1. (a) Temporal evolution of the maximum and rms bed height fluctuation. (b) Same as Figure 1a but with linear log scale to show the exponential growth of
hrms. The exponential growth is observed in approximately the first 200 bulk time units. The dashed and dash-dotted lines correspond to exponential fits of
hrms = 10�3 exp (0.015tb) and hrms = 4 × 10�4 exp (0.01tb), respectively.

Journal of Geophysical Research: Earth Surface 10.1002/2017JF004399
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height variation. On the other hand, Kidanemariam and Uhlmann (2017) have reported a
spectral power decay between �4.3 and �3.5 for their DNS. The shear Reynolds number
for which the �3 power decay was reported was in the range of 5 × 103 < Reτ < 106,
which is more than an order of magnitude larger than 250 < Reτ < 350 considered by
Kidanemariam and Uhlmann (2017). In the present set of simulations for which
Reτ = 180, we observe a decay rate of �3.75 (Figure 2), closer to the range reported by
Kidanemariam and Uhlmann (2017). The spectra at four different times for case S2 are
shown in Figure 2, and similar decay is observed for the other five cases. The larger spectral
decay rate in the present study and in Kidanemariam and Uhlmann (2017) may suggest a
Reynolds number dependence.

It can be observed that the spectra show an exponential decay at the very early time of tb = 5. By
tb = 98, well-formed crestlines appear contributing to the power law decay rate. The peak in the
spectra at k = 8 corresponds to the emergence of about eight crestlines that occupy the stream-
wise extent of the computational domain. As the bed evolves, the spectra move up indicating
temporal increase in the rms value of the bed height variation. Furthermore, the peak in the
spectra moves from k = 8 to lower values indicating the coarsening of ripples. At tb = 500, the
peak is located at k = 4, and tb = 2,381, the peak is located at k = 3 indicating the dominance
of four and three ripples at these times.

2.2. Turbulence Statistics and Flow Separation

The patterns that form from the bed-flow interactions are not sinusoidal but take a more trian-
gular shape as shown in Part 1 of the manuscript. In the following, we investigate the overall
effect of a mobile rippled bed on the flow field. Figure 3 shows the rms velocity fluctuations
for the streamwise, spanwise, and vertical components of velocity as well as the Reynolds stress
versus distance from the bed for case S2. We consider two stages: (i) a completely flat bed (solid
red line) and (ii) a mobile, rippled bed (black dashed and green dash-dotted lines). The first stage
is representative of the start of the present simulations and corresponds to the classical
pressure-driven open-channel turbulent flow over a smooth wall, whereas the second corre-
sponds to a pressure-driven open-channel turbulent flow over a complex, time-evolving rippled
topology. The presence of the ripples contributes to macroscopic (large-scale) roughness
induced form drag (Einstein & Barbarossa, 1952; Engelund, 1977; Fedele & García, 2001). As a
result, when the bed was completely flat (at tb = 0), the streamwise pressure gradient was
entirely balanced by skin friction along the bed. At later times, the pressure gradient is partly
balanced by skin friction and partly by form drag. Thus, in the present simulations where
the driving mean pressure gradient was held fixed (Reτ is a constant), the formation of bed-
forms results in a lowering of the mean shear stress. At the start of the simulation at tb = 0
when the bed is still completely flat, the local streamwise, spanwise, and bed-normal
directions (in the frame of reference of the bed) coincide with the x, y, and z directions,
respectively. However, as the shear stress is allowed to work and modify the bed, the
bed-tangent and bed-normal directions will no longer be necessarily aligned with the hori-
zontal and vertical directions. To that end, we present the data for tb > 1,000 in Figure 3 in
two coordinate frames. We should note here that this analysis is done in postprocessing
with a simple change of coordinate system. The first coordinate frame is aligned with the
computational domain such that the streamwise, spanwise, and vertical components of velo-
city are along the x, y, and z directions, respectively, irrespective of the shape of the bed,
whereas in the second coordinate frame, the alignment of these velocity components is
with respect to the bed. The former coordinate frame is more appropriate away from the
bed, where the direct effect of the ripples on the flow is relatively weak and the streamlines
are predominantly aligned with the x direction. On the other hand, the bed-based coordi-
nate frame is more appropriate in the near-bed region where the streamlines are strongly
dependent on the shape of the bed. These two coordinate frames are denoted by zv and
zn for the former and the latter, respectively. Note that in both coordinate frames, the
fluid/sediment interface corresponds to zv = 0 and zn = 0 (recall that both coordinateTa
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frames extend from the bed outward). The peak Reynolds shear stress
for the flat bottom boundary (red curve in frame d) occurs at around
30 wall units above the bed in the buffer region, well above the
viscous sublayer. The location of the peak is slightly lower (black dash
curve) in the case of the rippled bed, and this is consistent with the
reduction in the mean wall shear stress, as part of the pressure gradient
is balanced by form drag.

We observe the streamwise and spanwise velocity fluctuations (uxrms and
uyrms) to be weakly dependent on the choice of coordinate frame.
Alternatively, uzrms (frame c) and the Reynolds stress (frame d) exhibit a
significant difference between the two coordinate frames showing the
importance of choosing the correct description of bed-normal distance
in the near-bed and far field regions. For example, the Reynolds stress in
Figure 3d, when computed in the computational coordinate frame, initially
attains a negative value near the bed, before changing signs and attaining
positive values at around z ≈ 0.08. However, when the bed-normal coordi-
nate frame is employed, the results are qualitatively and quantitatively dif-
ferent. We do not observe qualitative differences in the profile of the

velocity fluctuations or the Reynolds stress due to the presence of the ripples. We do, however, observe
the velocity fluctuations to increase near the bed. This near-bed rise in the rms velocity values comes at
the expense of the mean flow, which is constrained by the presence of the ripples and consequently reduced
over time as seen in Figure 4. It should be noted that in the bed-normal coordinate system, the plot of uzrms

remains a constant with increasing zn and this is due to the fact that away from the bed, a component of the
streamwise velocity fluctuation appears as the bed-normal component. Thus, the optimal coordinate appears
to be one that is normal to the bed in the near-bed region and turns to the vertical direction sufficiently
far away.

It is important to understand how the mean velocity profile is affected by the presence of bedforms. Figure 4
shows the vertical z profile of the stream- and span-averaged x component of the flow at different time
instances for case S2. We take the position of the bed into consideration by using the zv coordinate. Recall
that zv = z � h(x, y, t) represents the vertical distance from the bed. The red solid line corresponds to the

Figure 2. Wave number spectra from S2 at five time instances. For tb > 500,
we observe a decay rate of �3.75 (thin solid purple line).

Figure 3. rms velocity fluctuations over the entire computational domain versus distance from the bed (zv, zn) for the (a) streamwise, (b) spanwise, and (c) and ver-
tical components of velocity for case S2 at the start of the simulation (solid red line) and beyond tb = 1,000 (black dashed and green dash-dotted lines). (d) Same as
other frames but for Reynolds stress � < u

0
xu

0
z >.
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velocity profile at the start of the simulation when the bed is completely
flat. Two other time instances are considered, namely, tb = 500 (purple
dash-dotted line) and tb = 2,381 (black dashed line). The inset of Figure 4

shows a log linear plot of u̿τ in wall units (zþv ¼ z�v u̿
�
τ =ν

�) for the same time
instances (note that the axes are flipped between the main figure and the
inset). The thick solid black line corresponds to u̿τ ¼ zþv and conforms to
the velocity profile in the viscous sublayer. Note that zþv and z+ are identical
at the start of the simulation as the bed is completely flat. The blue trian-
gular and red circular symbols in the inset correspond to results from a
rough wall, open-channel flow, fully resolved DNS (Chan-Braun et al.,
2011). The geometrically rough wall in the simulations of Chan-Braun
et al. (2011) consisted of a layer of spheres in a square arrangement. Two
arrangements were considered. The first case (blue triangles in Figure 4)
had small spheres whose diameter is equivalent to 10.7 wall units, whereas
for the second case (red circles) the spheres were larger with an equivalent
diameter of 49.3 wall units. The Reynolds number of the flow, based on
bulk velocity, was around Reb ≈ 2900, which is comparable to the bulk
Reynolds number of our simulations (Reb ≈ 2,800). As expected, we find

that as the bedforms grow in amplitude, their effect on the flow is similar to the effect of an actual rough wall,
with increasing roughness. At tb = 500, the bedforms are still relatively small and we observe the velocity
profile (dash-dotted line) to be closer to the profile of the flow over an actual rough wall (blue triangles).
On the other hand, we find that when the bedforms are nearly fully developed (dashed line), the velocity
profile shifts further away from the profile over a smooth wall.

At the start of the simulation, we find the logarithmic-law profile as shown in (3) to properly describe the velo-
city profile in the outer region when B takes on the standard value of 5.1 (Jimenez, 2004; Nikora et al., 2001).
The logarithmic-law profile is given by

ux ¼ 1
κ
ln zþv
� �þ B; (3)

where κ ≈ 0.41 is the universal von Kàrmàn constant and B is a constant that depends on the roughness of the
bottom surface. As the bed evolves and the large-scale/macroscopic roughness of the sediment bed
increases, B takes on smaller values of 4.1 (solid orange line) and 1.2 (solid cyan line) at tb = 500 and 2,381,
respectively (see Figure 5a). We should note here that the thickness of the layer pertaining to the
logarithmic-law profile at those two instances is significantly reduced (overlap region between computed
velocity profile and logarithmic-law profile), and thus, the flow has become weakly turbulent (e.g., Spalart,
1988). In fact, by inspecting the velocity profiles for the entire duration of all six simulations in Table 2, we find
the coefficient B to follow a similar trend for open-channel flows with small-scale roughness (Nikuradse, 1933)

as seen in Figure 5b where B is plotted as a function of the rms bed height variation in wall units, hþ0rms (h
þ
0rms

¼ h�rmsU
�
τ =ν

�). B shows a monotonically decreasing trend with hþ0rms starting from hþ0rms ¼ 0 (initial flat bed).
This decreasing trend is due to the reduced flow rate over the rippled bed (as compared with the flow rate

Figure 5. (a) Stream- and span-averaged x component of velocity versus vertical distance from the bed for the same instances shown in Figure 4. (b) Second coeffi-
cient in the logarithmic law of the wall versus rms bed height in wall units.

Figure 4. Stream- and span-averaged x component of velocity versus verti-
cal distance from the bed zv at different instances for case S2. (Inset) same
as main figure but for wall units zþv on a log linear plot. The symbols corre-
spond to velocity profile from an actual rough wall simulation (Chan-Braun
et al., 2011). Note that the axes in the main figure and inset are inverted.
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over the initially flat bed) as a result of the emergence of bedforms coupled with the constant mean pressure
gradient that is applied along the flow direction.

As the cross-sectional area of the flow varies substantially along the streamwise direction due to the presence
of the rippled bed, the resistance to the flow increases, and the volumetric flow rate Q of the overlying fluid
decreases over time as seen in Figure 6a. In fact, the flow rate decreases because a constant streamwise pres-
sure gradient is maintained while the increasing bedform amplitude offers increased resistance to the flow.
As mentioned previously, had the flow rate been maintained constant and the top surface allowed to evolve,
then this scenario would have been different. Here the flow rate is normalized by the flow rate Q0 over the
initially flattened bed. The decrease is more rapid in the high shear cases S1–S3, and the flow rate in the pre-
sence of the mature ripples appears to settle to a new equilibrium value of about 65% of the initial value for a
flat bed. As the flow rate decreases, so does the total shear stress on the bed (Figure 6b). Because of the
imposed constant pressure gradient in the streamwise direction, the increase in form drag accounts for
the drop in shear stress. Here again we observe the mean shear stress to reach a stationary state in the higher
shear cases S1–S3. Additionally, we find the mean shear stress in the presence of the ripples to be around
40% of the initial average shear stress over a flat bed.

In the very early stages of bed evolution, when the bedforms are still very small in size, the streamlines are
well aligned with the underlying topology of the sediment bed; however, as the ripples continue to develop
and grow in size, the flow eventually detaches at the crest and a recirculation region forms on the lee side of
the ripples (Nelson et al., 1993). For the case of fully developed flows over immobile/fixed dunes, the size of
the recirculation region is primarily a function of the crest height and extends (beyond the crest) in the
streamwise direction to about 4 to 6 times the crest height, measured as the elevation difference between
the crest and the subsequent trough (Coleman et al., 2006; Grigoriadis et al., 2009; Kadota & Nezu, 1999;
Yue et al., 2005). Here we define the size of the recirculation region (lR) to be the farthest downstream dis-

tance from the crest (not exceeding its downstream neighbor) where
the minimum span-averaged streamwise component of velocity
along the z direction becomes negative. Figure 7 shows the variation

of the ratio lR=
bhwith respect to span-averaged crest height, measured

from crest to subsequent trough for case S2 beyond tb = 1,000 and for
case S5 beyond tb = 2,500, when the bed becomes nearly span invar-
iant. We observe the size of the recirculation region to exhibit signifi-
cant scatter, especially when the crest height is still relatively smallbh < 0:1. The scatter is, however, reduced for larger values of bh when
the bed advances and evolves at slower speeds and bedform-
bedform interactions are reduced, allowing the flow to reach a more

stationary state compared to earlier times with bh < 0:1. This relatively

large scatter for bh < 0:1 may be a result of the evolving topology,
which continuously modifies the overlying flow as opposed to the
fully developed flow over stationary dunes (Coleman et al., 2006,
Grigoriadis et al., 2009, Kadota & Nezu, 1999, Yue et al., 2005). We

Figure 6. (a) Flow rate Q normalized by the initial flow rate Q0 at the start of the simulation. (b) Stream- and span-averaged shear stress τ normalized by the stream-
and span-averaged shear stress τ0 of the initially flattened bed at the start of the simulation.

Figure 7. Streamwise extent (beyond the crest) of the recirculation region versus
span-averaged crest height, measured from crest to subsequent trough. Results
from S2 for tb> 1,000 and S5 for tb> 2,500. No recirculation is detected for values
of bh < 0:05.
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should also note that the size of the recirculation region in our simu-
lations is larger than what is reported in the simulations and experi-
ments over fixed dunes. This may be attributed to the different
bedform geometry between the aforementioned published data
and our simulations, specifically that the distance between the crest
and the subsequent trough in our simulations of time-evolving bed-
forms is larger by about 3 times than that corresponding to the fixed
topology (Yue et al., 2005). Also, the Reynolds number of the present
simulations is much lower (by about an order of magnitude) than
those used in the experiments and simulations with fixed bedforms.
Even though the bedform propagation speeds are more than 2 orders
of magnitude smaller than the bulk flow velocity, we should note that
the comparison with the fixed bed data may be affected by the mobi-
lity of the bed.

In addition to the aforementioned span-averaged data, we have also
compute the recirculation length based on span- and time-averaged
data. That is, the already span-averaged velocity field is additionally
time averaged (in the frame of reference of the bed) over a time span
of 25 bulk units. We observe a difference of no more than a few per-
cent between the span-averaged data and the span-and-time-
averaged data. This implies that the large scatter for relatively small
bedforms in Figure 7 is not a direct result of turbulent fluctuations.
In fact, as we will discuss in sections 3.3 and 4, neighboring structures
could significantly impact bedform and flow dynamics and thus are
likely the reason behind the relatively large scatter in Figure 7.

2.3. Temporal Evolution of Fourier Modes

Fourier analysis of the bed height variation is a natural and convenient way to quantify the wavy nature of the
bed throughout the different stages of its development. It provides a quantitative method to track the appar-
ent wavelength and amplitude of the sediment bed over time. It also provides a basis for comparing the rate
of development of the bed as a function of grain diameter and shear velocity. In Figure 8, we show the time
evolution of the amplitude of the first six modes for cases S1–S3. Here we perform the streamwise Fourier
transform of the bed height along each spanwise y location to obtain the amplitude and phase speed of each
streamwise mode and then average in the spanwise direction. In discrete form we obtain

F n; y; tð Þ ¼ 1
Nx

XNx�1

k¼0

h kΔx; y; tð Þ exp �i
2πkn
Nx � 1

� �
; (4)

A n; tð Þ ¼ 1
Ny

XNy�1

l¼0

F n; lΔy; tð Þj j & c n; tð Þ ¼ 1
Ny

XNy�1

l¼0

λn
2π

∂
∂t

arg F n; lΔy; tð Þ½ �f g : (5)

Here F is the Fourier coefficient that encodes both the amplitude and phase of each of the (Nx/2 + 1) modes

(given by n = 0, 1, 2,…, Nx/2), i ¼
ffiffiffiffiffiffiffi�1

p
, and λn = Lx/n corresponds to the wavelength of the nth mode, where

Lx is the size of the computational domain along the streamwise direction. This definition of amplitude and
phase speed where y average is taken after x Fourier transform is appropriate as it accounts for spanwise var-
iation in the ripple geometry. An average in the y direction followed by a Fourier transform in the x direction
will be affected by spanwise incoherence of the ripples.

By tracking the spectral modes of the amplitude of bed height variation, we are able to provide a measure of
the coarsening process and the spacing between bedforms. From Figure 8 we observe the rate of bedform
evolution to be strongly dependent on the friction velocity of the flow. The time it takes for the amplitude
of any of the modes of cases S1–S3 to grow to a value of approximately 0.02 is about 350 bulk time units,
whereas for the lower shear velocity cases S4–S6, the time needed to attain the same value of amplitude is
much larger at about 2,000 bulk time units. Figure 8 also provides a quantitative measure for the coarsening
of the bedforms. Consider, for example, case S2, where during the early stages of bedform development for

Figure 8. Temporal evolution of the amplitude of the first six Fourier modes.
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100 ≲ tb ≲ 200, the higher modes (n = 4–6) dominate, but with time the
bedforms coarsen and progressively lower modes gain amplitude. The
second mode M2 becomes the dominant mode after approximately
tb = 2,500. Additionally, for a fixed value of the shear velocity, the time it
takes for the bedforms to coarsen appears to depend on the grain size,
where for smaller grains, the rate of wave coarsening is higher than that
for larger grains. This is consistent with the fact that for the same shear
velocity, the sediment volumetric flux is larger for smaller grains and
hence the rate of bedform evolution is consequently faster (Coleman &
Melville, 1994).

Many studies suggest that the equilibrium wavelength of ripples scale
with the grain size of the bed (e.g., Claudin & Andreotti, 2006; Flemming,
2000; Yalin, 1977). It is difficult to currently assess whether such a depen-
dence is captured in our simulations as the bedform is still slowly evolving

even after integration over a long period. We can, however, observe some indication regarding the afore-
mentioned scaling. Keeping in mind that cases with larger shear velocities and smaller sediment size will
have a larger volumetric flux of sediment, and therefore will evolve toward the equilibrium state faster than
cases with smaller shear velocities and larger sediment size, now let us focus on cases S1–S3 as these will
evolve faster than S4–S6. For case S3, the dominant mode beyond tb = 1,500 is M3, corresponding to three
waves within the computational domain. On the other hand, the dominant mode for case S2 beyond
tb = 2,500 is M2, corresponding to two waves. Therefore, for these two cases, the scaling is consistent with
the experimental observation of longer ripple wavelengths for larger sediment size. One may argue, how-
ever, that for case S1, the dominant mode at tb = 2,500 is M4 which does not follow the trend of S2 and
S3, as one would expect the dominant mode to be at most M2. We must, however, note here that case S1
is the slowest of the three to develop, and therefore, we expect the higher modes (M3 and M4) to give
way at later times in favor of M2 or even M1. We also need to keep in mind that because of the limited size
of the periodic computational domain, we can only accommodate integer mode numbers. That is, while the
largest possible wavelength is Lx, the next smaller possible wavelength is Lx/2, with no in-between values
permitted. The spectral counts of wavelengths do not necessarily capture the much smaller bedforms, but
they are consistent with the manual counts of dominant bedforms. For example, for case S2, we clearly
observe, beyond tb = 1,500, two dominant bedforms along with two much smaller bedforms.

The phase speed c(n, t) in (5) provides a good measure of the speed of propagation of a specific mode and
indirectly the speed of the bed as a whole. Figure 9 shows the temporal evolution of the phase speed ec for
modes, M3 through M6, for case S2. Here ec is the phase speed normalized by the bulk velocity, ec ¼ c U�

τ /U
�
b.

At early times when the bed is still evolving, we observe ec n; tð Þ to be chaotic. In fact, when the amplitude
of the modes is still very small, say A(n, t)< 7 × 10�3, the modes are very susceptible to fluctuations imposed
by the turbulent bed shear stress. Once A(n, t) grows large enough, we observe the fluctuations in ec to
decrease significantly. Consider mode M3 in Figure 8b whose amplitude only surpasses a value of 7 × 10�3

around tb = 500, which corresponds approximately to the time when
the fluctuations of ec for mode M3 in Figure 10 are significantly
reduced. We observeec to be nearly independent of the mode number
and to be indicative of the velocity of the bed as a whole.

Once the bedforms are fully developed, the time evolution of the bed
as a whole strongly resembles the evolution of a single spectral mode.
In Figure 10, we plot the time evolution of the fourth mode M4 for the
six cases, S1 through S6 beyond tb = 1,000, when the fluctuations
have sufficiently diminished. We observe the phase speed for the
relatively high U�

τ cases S1–S3 to be about 3 times larger than the
lowU�

τ cases S4–S6. On the other hand, we observeec to be marginally
affected by the grain size. The phase speed of the other modes is also
qualitatively similar to that shown in Figure 10. Therefore, it appears
that the phase speed of the different modes substantially varies

Figure 9. Temporal evolution of the phase speed ec for modes M3 through
M6 for case S2.

Figure 10. Temporal evolution of the phase speedec for the fourth mode M4 from
the six cases, S1 through S6.
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over time as a result of the nonlinear interaction between the differ-
ent modes in terms of the bedform interactions.

2.4. Two-Point Correlation

A two-point correlation analysis of the bed provides a single effec-
tive value for bed wavelength and bed velocity as a function of
time. These values may then be contrasted with those for the indi-
vidual modes obtained from the Fourier analysis. In Figure 11, we
present the dominant wavelength λ2p and the bed velocity ec2p ,
which has been normalized by the flow bulk velocity. Here and in
the remainder of the paper, the subscript 2p corresponds to a value
obtained using the two-point correlation. The two-point correlation
function nλ(ξ , t) of the bed elevation is defined as follows:

nλ ξ; tð Þ ¼ ∫Ly0 ∫
Lx
0 h x; y; tð Þh x þ ξ; y; tð Þdxdy
∫Ly0 ∫

Lx
0 h x; y; tð Þh x; y; tð Þdxdy

: (6)

The dominant wavelength λ2p is defined as the value of ξ at which the two-point correlation function attains
its first peak. Here we discount the peak corresponding to ξ = 0. A representative plot of the two-point
correlation function versus separation ξ is shown in Figure 11 as an inset at tb = 1,220 for case S2. The correla-
tion function nλ is normalized and thus has a maximum of unity. Because of periodicity in the streamwise
direction, we only need to consider the separation ξ for half the domain length, that is, 0 < ξ < Lx/2 as nλ
is symmetric about ξ = Lx/2 = 6. The distance between ξ = 0 and the first and only minimum (in this case)
denoted by the vertical solid blue line at ξ ≈ 1.5 corresponds to the dominant crest-to-subsequent-trough
separation. On the other hand, the distance between ξ = 0 and the first and only maximum (for this specific
case) denoted by the vertical dashed black line at ξ ≈ 3.5, which is usually the highest peak of nλ over the
entire domain (excluding ξ = 0), represents the dominant wavelength λ2p, that is, the dominant crest-to-crest
separation. For the time considered in the inset (tb = 1,220), the correlation function only exhibits a single
minimum as well as a single maximum over the range 0< ξ < Lx/2. While this might be the case for relatively
long time (i.e., tb ≳ 1,200), the correlation function nλ displays multiple maxima and minima at earlier times,
whose amplitudes usually decrease with increasing values of separation ξ . These multiple maxima and
minima are indicative of the presence of multiple bedforms whose separation is inferred from the distance
between these maxima and minima. We should note that if all the bedforms are perfectly periodic in the
streamwise direction, then the amplitude of all the maxima (and minima) as well as their crest-to-crest
(and crest-to-trough) separations would be identical.

At the very early stages of bed development, the bedform is very chaotic due to the dominant influence of
the overlying turbulent flow, which results in large fluctuations in the value of λ2p (Figure 11 for tb ≲ 50).
However, once the chevron features begin to emerge, we are able to obtain meaningful values of λ2p, where
for all six cases considered, we see an increasing trend due to wave coarsening. Here as well, we observe the
effect of the applied shear stress and the grain size on the development of the bed. During early times, for
tb ≲ 600, we observe λ2p for cases S1–S3 to increase faster by about a factor of 2 compared to cases S4–S6.
We should note here that this faster rate does not explicitly depend on the bedload flux model we use. A
smaller flux of sediment restricts the bed to a slower evolution rate and hence the slower rate observed in
Figure 11 for cases S4–S6. Additionally, at these early times, we observe the grain size to only marginally
affect the value of λ2p as well as its rate of increase. At later times, tb ≳ 1,500 for S1–S3 and tb ≳ 2,200 for
S4–S6, we observe the effect of the grain size on λ2p to become important. For case S1, because of the larger
grain size, λ2p increases at a slower rate compared to cases S2 and S3. If the present simulations are to be
representative of field observations and laboratory experiments, then we would expect λ2p from case S1 to
eventually be the larger of the three after the bed is given enough time to evolve. As mentioned earlier in
section 2.3, we observe an indication of this trend with cases S2 and S3 where λ2p for case S2 is larger than
that for case S3. As for the lower shear stress cases, S4–S6, they require much longer integration times to
display the increasing wavelength scaling with grain size for equilibrium ripples. By tb ≈ 2,200, we observe

Figure 11. Dominant bed height wavelength λ2p versus time. Inset: two-point cor-
relation function versus separation ξ showing the dominant crest-to-trough and
crest-to-crest separation at tb = 1,220 for case S2.
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λ2p for case S6 to peel off from the other two slowly evolving cases
and approach λ2p for case S3. In all the cases, the slow increase in
λ2p is clearly indicative of the slow coarsening trend exhibited by
the ripples.

As the bedform coarsens the mean wavelength of the ripples and
the ripple height accordingly increase. This process of growth is lim-
ited by the height of the ripple, either by altering the turbulence
production process or through interaction with the free surface,
or by reaching a critical velocity at the crest (Flemming, 2000).
Here we discuss near-equilibrium states, which remain stable for
very long time, and consider properties of this near-equilibrium
state, such as wavelength of the ripples and their dependence on
grain size and flow depth.

For evaluating the effective phase speed of the bedform, we define
the normalized space-time correlation as follows:

nc χ; ς; tð Þ ¼ ∫Ly0 ∫
Lx
0 h x; y; tð Þh x þ χ; y; t þ ςð Þdxdy
∫Ly0 ∫

Lx
0 h x; y; tð Þh x; y; tð Þdxdy

: (7)

For a fixed value of ς = 3 × 10�2 we compute the space-time correlation and obtain the value of χ that max-
imizes nc. The nondimensional bed velocity is then obtained as c2p = χmax/ς. In Figure 12, we show the time
evolution of ec2p ¼ c2pU

�
τ =U

�
b for the six cases S1 through S6. This value of ς corresponds to a Δtb = 0.47.

Space-time correlation obtained for other values of ς remains qualitatively similar and the conclusions to
be drawn are robust and insensitive to the above choice of ς.

A decreasing trend for the bed velocity over time as in the phase speed plot in Figure 9 is observed. Here
again, we note the marginal effect the grain size has on the celerity of the waves with very little differences
observed among cases S1–S3 and S4–S6, respectively. On the contrary, we observe the bed shear stress,
imposed by the overlying flow, to dictate the speed at which the bed evolves during all stages of bedform
evolution. Additionally, at late times tb ≳ 2,000, the value of the bed velocity from cases S1–S3 is approxi-
mately 3 times that from cases S4–S6.

Finite amplitude ripples advance at a velocity c obtained frommass conservation on the lee side (Charru et al.,
2016; Coleman & Melville, 1994) as

c ¼ qbh ; (8)

where q is the volumetric sediment flux per unit width at the crest and the ripple height bh is measured from
the crest to the subsequent trough. In the inset of Figure 12, we show the velocity ecmax of the largest
span-averaged ripple alongside ec2p for case S2. Here ecmax is defined as follows:

ecmax ¼ U�
τ

U�
b

qmaxbhmax

; (9)

wherebhmax is the maximum height of the span-averaged bed, measured from crest to subsequent trough and
qmax is the span-averaged sediment flux per unit width at the crest of the largest ripple. From the inset of
Figure 12, we find ecmax to follow the same trend and to have a value that is close to but smaller than ec2p .
Recall that ecmax is based on the largest ripple and consequently is expected to be slower than the average
velocity of the bed.

3. Ripple Self-Similarity
3.1. Shape Self-Similarity

Yalin (1977) argues that ripple development may be divided into two phases. During the first relatively short-
lived phase, ripples grow in both size and steepness. A growth in steepness indicates that the rate of growth

Figure 12. Temporal evolution of ec2p , the bed velocity normalized by the bulk
velocity U�

b . Inset: temporal evolution of ec2p and cmax for case S2.
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of the height of the ripple is faster than the rate of growth of the ripple’s
length. On the other hand, during the second phase, ripples mainly grow
in their size, that is, in both height and length, maintaining a geometrically
nearly similar shape. That is the ripple’s height and length grow at compar-
able rates. In the following section, we find the bed evolution to match
Yalin’s (1977) hypothesis for the presence of two phases during ripple
growth. First, recall that mature ripples are characterized by a gentle slope
on the stoss side and a steeper slope on their lee side equivalent to the
angle of repose. Since the sediment bed is initially flat, it follows that the
ripple must initially steepen and as the ripple grows the slope on the lee
side plateaus toward the angle of repose. Additionally, once the slope on
the lee side approaches the angle of repose, we observe the ripples to
grow in size, while maintaining a nearly self-similar profile.

Once the bed becomes nearly span invariant, a vertical slice of the bed
may be used to quantify the shape of the bed in the entire domain.
Figure 13 shows a ripple from the cross section of the bed in the y = Ly/2
center plane for all S* cases in Table 2. Two times are considered, namely,
tb = 1,500 and tb = 2,500. In each case, the ripple is translated along the

streamwise direction by a distance that corresponds to the location of the crest (xcrest). In order to align
the ripple crests in the plot, the ripple height for each case is also scaled both in the streamwise and vertical
directions by the respective crest height (hcrest). Except for cases S4 and S5 at tb = 1,500, the ripples demon-
strate a nearly self-similar triangular-like profile with a gentle slope on the stoss side and a steeper lee side
dictated by the angle of repose (αR = 30°). The thick solid orange line overlaying the stoss side of the ripples
provides an estimate for the slope that corresponds approximately to a 6° angle. Alternatively, the thick
orange line on the lee side has a slope that corresponds to the imposed angle of repose. As can be clearly
seen in Figure 13, cases S4 and S5 at the early time of tb = 1,500 deviate from the self-similar profile. The
slopes on both sides of the crest for these cases are smaller than those observed for the self-similar profile.
Recall that these two cases correspond to the lower bed shear stress value and larger grain diameter (see
Table 2). Therefore, on average, the volumetric flux of sediment is the lowest for these two cases, and conse-
quently, the ripples are slow to develop. Thus, these two profiles have not reached their self-similar state
by tb = 1,500.

On the other hand, for the same 2 cases, S4 and S5 at the later time of tb = 2,500, the ripples demonstrate the
aforementioned triangular self-similar shape. By this time, the vertical drop from the crest to the subsequent
trough of the tallest ripple is 0.08 and 0.09 for S4 and S5, respectively, whereas at tb = 1,500, the vertical drops
were approximately 2 times smaller at 0.05 and 0.04 for S4 and S5, respectively. In fact, for all the ripples in
Figure 13 that exhibit the self-similar profile, the vertical drop from the crest to the subsequent trough was
above 0.08. This suggests that there is a minimum vertical drop above which the cross-sectional shape of
the ripple approaches the self-similar profile. Additionally, the self-similar profile displayed in Figure 13
may only be reached once the slope on the lee side corresponds to the angle of repose. Furthermore, by
inspecting over 250 ripples at various stages of evolution for the six S* cases, we find this minimum or thresh-
old vertical drop to be around 0.07, which is equivalent to about 4, 7, and 20 grains for S1–S3, respectively.

We have considered the cross-sectional shape of the different ripples that are present in a bed at a specific
instant during bed development (e.g., the five ripples seen in Figure 3k in Paper 1) and the cross-sectional
shape of the same ripple as it evolves over time (e.g., the ripples that are tracked in Figure 3 (Paper 1) from
frame k to frame l). We have also considered the variation in the shape of the ripple from one bed to the
other where the flow conditions are kept unchanged, but sediment properties, such as sediment size, are
modified (S1 versus S2 versus S3). Alternatively, for different flow conditions but with identical sediment
properties (S1 versus S4). In all these cases, once the height of the ripple grows large enough such that
the lee side corresponds to the sediment angle of repose, the cross-sectional shape of the ripple is observed
to conform to the triangular self-similar shape. This self-similar shape appears to be independent of grain
size and flow conditions (Simons et al., 1965). The stoss side of the self-similar profile has an inclination of
about 6°, which is consistent with previous studies using DNS (Kidanemariam & Uhlmann, 2017) and

Figure 13. Cross-sectional shape of the largest ripple in the center plane
(y = 2) for all S* cases in Table 2 at tb = 1,500 (symbols) and tb = 2,500
(symbols + lines). The ripple height and length have been scaled by the
respective crest height (hcrest). Additionally, all the ripples have been trans-
lated along the x axis for comparison. The orange segments provide an
estimate of the slope at the stoss and lee sides of the rippels, which
approximately correspond to an angle of 5° and 30°, respectively.
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experiments in the field (Fourrière et al., 2010), whereas the slope at the
lee side is dictated by the angle of repose. In fact, a necessary condition
for self-similarity is the development of an avalanche slip-face (corre-
sponding to the angle of repose) on the bedform’s lee side. We will elabo-
rate on the conditions that cause developing ripples to deviate from
self-similarity in the next section.

3.2. Bed Shear Stress Self-Similarity

Owing to the fact that the Exner equation is used to evolve the sediment
bed, it follows that for the ripple cross section to attain andmaintain a self-
similar shape, the sediment flux and consequently the bed shear stress
must also be self-similar. With that in mind, we have considered in
Figure 14a the cross-sectional shape (denoted by symbols) of three self-
similar ripples from cases S1–S3 along with the associated bed shear stress
profiles (denoted by lines) at tb = 744. Unlike the cross-sectional shape of
ripples, which evolves on a much longer time scale compared to the over-
lying flow field, the bed shear stress is inherently turbulent with substantial
local and instantaneous fluctuations mirroring the passing of near-bed
intense turbulent eddies. Therefore, instead of showing an instantaneous
cross section of a ripple with its turbulent bed shear stress profile, wemake
use of the nearly span-invariant bedforms to average in the spanwise

direction. Additionally, because of the separate time scales over which the bed and the flow evolve, we aver-
age the shear stress within a sufficiently small time window of seven bulk time units, during which the ripple
translates by less than one grid cell. The time over which the averaging is performed needs to be large
enough to filter out the local and instantaneous fluctuations but small enough such that the flow sees a sta-
tionary ripple. Time averaging, which is denoted in the figure by the angular brackets, is only needed for the

shear stress profiles; however, to remain consistent, we also average the bed height variationhover the same
time period. Here again, the bed height variation is normalized by the span- and time-averaged crest height,

hcrest. Similarly, we scale the span- and time-averaged shear stress τ x; tð Þ by the instantaneous bed-averaged
shear stress ̿τ tð Þ. Similar to Figure 13, we observe the averaged ripple cross sections to exhibit the same self-
similar triangular profile. Additionally, the profiles of the shear stress are also found to be nearly self-similar
with an analogous triangular shape displaying a gentle rise on the stoss side of the ripple, followed by a steep
drop in the region approximately one ripple height around the crest of the ripple, which is further followed by
a slow drop in the shear stress for the remainder of the lee side. The time and location of the ripples in the
figure are chosen such that they are sufficiently far from upstream and downstream neighbors so that they
may be considered locally isolated in the sense that the overlying flow field is weakly or negligibly influenced
by the presence of neighboring structures. Neighboring structures, as we will shortly see, can significantly
alter the overlying flow field and consequently the bed shear stress profiles. We should also note the
presence of the positive phase shift between the shear stress and cross-sectional shape of the ripple at the
crest. Themaximum shear stress does not occur at the crest but slightly upstream toward the end of the stoss
side. This phase shift is primarily responsible for the growth of the ripple. While sediment inertia, in the
context of coarse sediments, has been used as a possible explanation for the presence of such a phase shift
in laboratory experiments (Parker, 1975), here we observe the phase shift to come out naturally from the
hydrodynamic nature of the flow.

To further illustrate how bedform-bedform interactions cause a self-similar ripple to deviate from self-
similarity, we show in Figure 14b the same cross-sectional shape of the self-similar ripple from S2 at three
time instances, namely, tb = 744, 2,350, and 2,501. The first time instance (tb = 744) is the same as that shown
in frame a and corresponds to the self-similar profile. The subsequent instances are chosen at a time when a
smaller upstream neighbor (blue symbols) approaches the stoss side of the ripple in question. As can be seen
from the figure, the upstream neighbor is smaller and thus able to catch up to the self-similar ripple. In addi-
tion to the obvious deformation this smaller upstream ripple causes to the cross-sectional shape of the self-
similar ripple, it also significantly modifies the shear stress over the entire stoss side of the ripple. For example,

the shear stress at x � xcrestð Þ=hcrest ¼ �15 is reduced by approximately 3 to 5 times by tb = 2,350 and 2,501,

Figure 14. (a) The symbols correspond to the span-averaged cross-sectional
shape of a span invariant, isolated ripple at tb = 744 from S1 to S3 scaled by
the span-averaged crest height. The lines correspond to the span- and
time-averaged shear stress for each ripple scaled by the instantaneous span-
and stream-averaged shear stress. (b) Same as Figure 14a but for the same
ripple from S2 at different times. The presence of an upstream neighbor
modifies the shear stress on the stoss side and eventually leads the cross-
sectional shape to a deviate from the self-similar profile.
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respectively, compared to the self-similar profile at tb = 744. While the
deviation from self-similarity in terms of the cross-sectional shape needs
time to develop, the shear stress profiles are rapidly modified on the turbu-
lent flow time scale. These new modified shear stress profiles now act to
modify the bedload fluxes on the stoss side eventually leading to a depar-
ture of the ripple from its self-similar shape. These examples highlight the
approach to self-similarity of a ripple and departure from self-similarity
when acted upon by an upstream neighbor.

3.3. Characterization of the Self-Similar State

One of the characteristics of ripples is their asymmetrical triangular shape
in which the slope on the stoss side corresponds to a few degrees, while

the slope on the lee side is much steeper and is usually dictated and corresponds to the angle of repose of
the sediment grains. Here we provide a very simple and crude analysis to estimate the slope of the stoss side
from the self-similar shear stress profiles. In Figure 15, we show a schematic of a two-dimensional self-similar
ripple undergoing pure translational motion. The solid black line corresponds to the profile of the ripple at
time t, while the red dashed line corresponds to the profile at a later time t + Δt where the ripple has trans-
lated along the streamwise direction by a distance c Δt. To simplify matters, we consider the ripple speed c to
be a temporally and spatially independent constant; additionally, the ripple does not grow or decay but
rather keeps the exact same cross-sectional shape and simply translates downstream. Since we are interested
in extracting the bed slope on the stoss side, we compute the height variation as follows:

Δh
Δt

¼ c tanθ; (10)

where θ is the inclination on the stoss side of the ripple. It follows from the Exner equation (as Δt→ 0) that if
we neglect the diffusion term, the inclination of the stoss side may be expressed as follows:

θ ¼ � tan�1 1
cφ

dq
dx

	 

; (11)

where φ corresponds to the volume fraction of the sediment bed and q is the volumetric flux of sediment due
to bedload. By considering the cross section of a self-similar ripple from S3 at tb = 2,009 in Figure 16 along
with the span- and time-averaged (over the same small period of seven bulk time units as in Figure 14) x com-
ponent of the volumetric flux of sediment qx, we extract the spatial variation (dqx=dxÞ on a portion of the
stoss side bounded by the vertical thin dashed lines such that it is sufficiently far from the crest and the base
of the stoss side. By substituting for the values on the right-hand side in (11), we find θ ≈ 5°, which is
consistent with the actual computed inclination of the stoss side of a self-similar ripple of θ ≈ 6° in
Figure 13 as well as previously published data (Kidanemariam & Uhlmann, 2017). Equation (11) also indicates
that for a ripple to retain its self-similarity as it evolves, the ripple speed and the spatial variation of the bed-
load flux must vary proportionally with one another.

Once the ripples attain a self-similar profile, their height and wavelengths become strongly interdependent
in such a way that as the bedforms coarsen, their height, measured from crest to subsequent trough, must
also proportionally increase. For each ripple that has grown to its self-similar shape we define its wavelengthbλ as the streamwise distance between its upstream and downstream troughs. Correspondingly, the ripple

height bh is defined as the vertical distance from the crest to the downstream trough. In Figure 17, we plotbλ versus bh only for self-similar ripples from cases S1 to S6. We observe the wavelength to height ratio of
the ripples in the self-similar phase to be approximately 25, consistent with previously reported data from
DNS of Kidanemariam and Uhlmann (2017) as well as laboratory experiments and field studies (Flemming,
2000). The dashed line in Figure 17 corresponds to an aspect ratio of 20, which has been reported by
Andreotti and Claudin (2013). They argue that when the ripple aspect ratio approximately reaches this
value, the ripple amplitude saturates and the slope on the lee side of the ripple corresponds to the angle
of repose.

The spectral and two-point correlation analyses showed that the speed of the bedform decreased over time,
while the mean wavelength and height of the ripples increased. Here we will directly quantify the correlation

Figure 15. Schematic for a self-similar ripple at time t (solid black line) and
t + Δt (dashed red line) undergoing pure translational motion, with no
growth or decay, at a velocity c.
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between ripple height and ripple velocity and compare the simulation results against previous laboratory
experiments. Coleman and Melville (1994) conducted a series of laboratory experiments with sand
particles with mean grain size of 200 μm and 820 μm. They observed the speed of the rippled bedform to
be inversely proportional to the ripple height and proposed the following empirical fit:

bc bh�=d�p � 3:5
� �1:3

¼ 40; (12)

where they defined the nondimensional ripple speed bc as follows:
bc ¼ c�

u�τ � u�τ;cr
� �

Θ� Θcrð Þ
; (13)

whereu�τ;cr represents the critical shear velocity. Venditti (2003) conducted similar experiments in a flumewith
sand particles of mean grain size 500 μm. In Figure 18, we show a plot ofbc versusbh=dp from the present simu-
lations S1 through S6 as well as from the laboratory experiments of Coleman and Melville (1994) and Venditti
(2003). The data points for our simulations were only obtained for ripples in the self-similar phase. To obtain
the ripple speedbc from the simulations, we span average the bed, after it has become nearly span invariant,
and track the largest ripples that exhibit a self-similar profile. For these ripples, we compute the temporal
evolution of the streamwise speed of the crest, as well as the vertical drop between the crest and the subse-
quent trough. We observe good agreement between the simulation data and the empirical fit of Coleman
and Melville (1994) for values of bh=dp > 20 and reasonable agreement for smaller values of bh=dp , where
the present data lie below the empirical fit. We note, however, that the values that do not fall exactly on
the proposed fit are still within the experimental data scatter reported in Coleman and Melville (1994) and
Venditti (2003). Additionally, we find our data to correspond more closely to the following empirical fit:

bc bh
dp

ln
bh
dp

 !
¼ 45: (14)

From Figures 17 and 18, it can be observed that the streamwise size (or wavelength) of a ripple and its speed
are primarily influenced by the ripple height. However, these plots also suggest that additional factors
besides the crest height could also affect the size and the speed of the ripples. The large scatter in

Figure 18 and also the scatter seen in the wavelength versus wave
height plot indicate imperfect correlation between these quantities.
Indeed, the scatter in Coleman and Melville (1994) data can at times
exceed a factor of 4, which seems too large to simply attribute to
experimental uncertainty. Similarly, the scatter in our simulation
results is also not due to numerical noise. We observe the presence
and proximity of neighboring bedforms downstream and upstream
to play a key role in dictating the wavelength and speed of every
bedform. It is clear that for a ripple, the approach of an upstream or
downstream ripple close to it will result in a decrease of its wave-
length, defined as the distance between the upstream and down-
stream troughs. It was demonstrated in Figure 14 that the effect of
an upstream neighbor can be significant in terms of local bedload
transport of sediment on the stoss side. It appears that the

Figure 16. Cross-sectional shape (black solid line) of a span- and time-averaged self-similar ripple from S3 at tb = 2,009 along with the span- and time-averaged
streamwise component of bedload flux (red dashed line). The x axis and the bed height variation are normalized by the crest height.

Figure 17. Wavelength versus wave height for self-similar ripples from cases S1 to
S6.
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proximity of neighboring structures through such interactions also
leads to substantial variation in the ripple speed. In fact, interactions
between neighboring ripples are the main cause of ripple growth
and decay, and in general ripple dynamics. These aspects will be
further addressed in the following section.

4. Bedform Coarsening

Bedform coalescence or wave coarsening occurs when two separate
bedforms interact or come together to produce a single discrete
structure (Raudkivi & Witte, 1990). Because the speed of bedforms is
inversely proportional to their height, bedform coarsening is generally
initiated by an upstream smaller structure approaching a larger down-
stream structure. Consequently, for coarsening to occur, one of the
two interacting structures must grow, while the other must diminish
and gradually disappear (Coleman & Melville, 1994). The first possibi-
lity is for the upstream bedform to ride up the stoss side and merge

with the larger downstream structure, a mechanism that is identical to the merging sequence involving
defects described in Paper 1. However, unlike defects, here merging occurs across the entire span of the inter-
acting bedforms, that is, for the entire nearly span-invariant ripple. The second possibility is for the upstream
structure to grow by starving the downstream neighbor. This mechanism is yet again identical to bedform
repulsion (described in Paper 1) but occurs across the entire span of the interacting bedforms. The first of
the two possibilities, merging, usually occur when the upstream neighbor is too small to starve the larger
downstream structure. This is usually a result of a limited sediment supply caused by a noneroding flow
on the base of the stoss side of the upstream neighbor. The second possibility, which consists of the
upstream structure starving its downstream neighbor, occurred more often in the simulations and was also
found to be a predominant (over the first) coarsening feature in the experiments of Coleman and Melville
(1994). Additionally, when this starving process occurs, the starving/diminishing bedform could be either
absorbed by the upstream growing neighbor, or alternatively, could temporarily escape and merge with a
larger downstream structure. But this second scenario is the same as first possibility where a weak ripple
merges with its downstream neighbor, but in this case this merging process is driven by the upstream neigh-
bor of the weak ripple. In other words, a third ripple that is not involved in the merging process is driving the
interaction, which can be considered as remote interaction.

In the remainder of this section, we consider the ripples from case S2 as we track the coarsening process that
progressively leads to fewer and larger bedforms. Figure 19 shows a spanwise-averaged side view of the bed
with isocontours of the streamwise component of velocity ux at tb = 515. We identify five ripples, in which the
crests and corresponding troughs are marked sequentially by Cn and Tn (with n going from 1 to 5), respec-
tively. The height of the first three ripples are large enough to induce substantial flow separation on their
lee side. At this time, the bedforms span the entire width of the domain and have become nearly spanwise-
invariant/two-dimensional, except for ripple 5, which from a top view of the bed appears to be rather sinuous.
In fact, the degree of two dimensionality may be inferred from the overall shape of the ripple as well as the
slopes on the stoss and lee sides. For example, the slope on the lee side of ripple 5 is almost equivalent to that
on its stoss side, and the ripple’s cross-sectional shape resembles more a symmetric isosceles triangle than the
characteristic asymmetric triangular shape. This indicates that the crest line C5 is not straight but rather sinu-
ous so that the spanwise-averaged slope is nearly identical downstream and upstream of the crest.

The coarsening sequence of case S2 is investigated by tracking the subsequent interactions among the five
bedforms beyond the time shown in Figure 19. In Figure 20, we show a time series of the spanwise-averaged
bed revealing a remote interaction between C4 and C5. The interaction is illustrated through four time
instances. From the cross-sectional view in Figure 20a, we observe C4 to be smaller than C5 and thus
approaches the latter. As discussed earlier, when the separation between the bedforms decreases beyond
a certain threshold, there are two possible outcomes for which either C4 or C5 survives after the interaction.
In this particular situation, C4 is sufficiently far away from C3 such that it is able to grow and starve its down-
stream neighbor C5 as shown in Figure 20b. Recall that the domain is periodic in the streamwise direction

Figure 18. Ripple speed versus ripple height for self-similar ripples for cases S1
through S6. Present data are compared with the empirical fit (black solid line)
and laboratory measurements ({+, x} for {200, 820}μm sand particle, respectively)
of Coleman and Melville (1994) and laboratory measurement (#) of Venditti

(2003). The dash-dotted line bc bh
dp

ln
bh
dp

 !
¼ 45 provides a better fit to the pre-

sent data.
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such that ripple C4 is still upstream of C5 in Figure 20b. The continuously diminishing crest C5 is pushed away
toward C1, and as can be seen by the elongated stoss side of ripple 1 in frame d (relative to frame c), C5
merges with its downstream neighbor C1. In fact, by looking at videos of the simulations for other cases,
we find that the diminishing ripple (C5 in the present case) merges with its downstream neighbor (C1 in
the present case) when the latter is sufficiently close. On the other hand, if the downstream neighbor (C1
in the present case) is not close enough, the diminishing ripple is unable to escape in time and becomes
part of the trough of the upstream neighbor (C4 in the present case). Such a scenario is later observed in
the coalescing remote interaction between C4 and C1 (not shown here), in which C4 starves and gobbles
up the latter.

4.1. Ripple Statistics

We can analyze ripple statistics by identifying each ripple by its crest and its downstream trough, where by
definition, each crest is separated from its upstream and downstream neighbors by a trough. Due to its

self-similar shape, each crest will be characterized by its span-averaged height hc and its span-averaged

streamwise locationxc. Correspondingly, each trough will be denoted by its depth (negative height�ht below

the mean bed elevation) and its streamwise location xt (see Figure 20a). Time histories of xc,hc, xt, andht for all
the crests and troughs of case S2 are shown in Figure 21 frames a, c, d, and f, respectively. Also shown in the
figure are dxc=dt and dxt=dt, which correspond to the span-averaged velocity of the crest and the trough,
respectively. Whenever one of the lines in each frame is discontinued, a coarsening/coalescing interaction
takes place in which a peak disappears, with the corresponding disappearance of either its upstream or
downstream trough, depending on the nature of the interaction. The first crest and trough to disappear
are those corresponding to C5 and T5, respectively. The other interacting bedform in this coarsening process
is ripple 4. Let us examine the speeds and elevation of those two bedforms during the interaction. From
Figure 21b, we observe the speed of C4 to decay while that of C5 to rise, where the rates of decay and rise

Figure 19. Span-averaged bed and streamwise component of velocity for case S2 at tb = 515 when the bed has become nearly span invariant. The bed consists of
five ripples, and troughs are marked as C* and T*, respectively. Note that because of periodicity, T5 is also the trough upstream of C1.

Figure 20. Time series of the spanwise-averaged bed and streamwise component of velocity from case S2 showing wave coarsening through remote interaction.
The diminished ripple C5 in frame c goes on to merge with the downstream ripple C1.
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are roughly similar. Additionally, we observe the crest elevation of C4 in Figure 21c to rise, while that of the
diminishing ripple C5 decreases, again at roughly the same rate. Moreover, we observe the trough T4 to rise,
toward the initial mean elevation, in accordance with ripple 4 acting to starve and absorb its downstream
neighbor C5. Similarly, in a subsequent interaction around tb = 2,700 between C1 and C4, we observe the
same dynamics with regard to ripple speed and elevation of the interacting bedforms. The speed of the
upstream neighbor C4 momentarily decreases, while its crest elevation increases and its trough depth
approaches the initial mean bed height. On the other hand, the speed of the diminishing downstream neigh-
bor C1 increases while its crest height drops. In both these instances, a finite ripple vanishes and conse-
quently the number of bedforms in the domain is reduced.

To assess the effect of the coarsening interaction on the dynamics of ripples, specifically on the relation
between height and speed, we evaluated the speed of the ripples involved in a coarsening interaction based
on the empirical relation in (14). We found a relatively large discrepancy between the computed values from
(14) and the observed values in the simulations. For example, at tb = 787, which corresponds to the side view
of Figure 20b where ripples 4 and 5 are in the process of coalescing into a single ripple, we find the crest
speeds of C4 and C5 as predicted by (14) to be about 3 and 5 times larger than the actual speeds in
Figure 21b, respectively. On the other hand, for a ripple not currently involved in any coalescing interaction
such as C2, we find the speed of the crest predicted by (14) to be within 10% of the actual speed in Figure 21b.
This large discrepancy between the predicted and actual velocities for interacting bedforms is likely to
contribute to the relatively large scatter observed in Figure 18. Therefore, while the crest height remains
the principal factor that dictates the ripple speed, neighboring structures may temporarily and significantly
influence the rate of propagation of ripples as they come into close proximity with the bedform in question.
In addition to altering the ripple speeds, neighboring structures also strongly influence the growth/decay
rates of adjacent bedforms.

Finally, we note that the time needed to complete the coalescing interaction is much longer (up to 10 times)
than that needed to complete the defect-related interactions during the early times of bed evolution
(discussed in Paper 1) (Perillo et al., 2014). This is consistent with the fact that during the later stages of bed
evolution, the bedforms are larger in size (i.e., move relatively slow) and are more spaced out (i.e., must cover
larger distances to interact with a downstream or upstream neighbor). This is contrary to the bed at early
times, which is characterized by relatively small, closely spaced structures. It is important to note that in

Figure 21. Temporal evolution of spanwise-averaged quantities from case S2 of (a) crest position, (b) crest velocity, (c) above mean crest elevation, (d) trough posi-
tion, (e) trough velocity, and (f) below mean trough depth.
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field observations (Ewing & Kocurek, 2010), certain interactions involving very large-scale bedforms can take
up to decades to complete, while other interactions involving small ripples can occur in seconds or minutes.

5. Discussion

An important observation of the present work is that the cross-sectional outline of an isolated mature ripple
takes on a nearly self-similar shape. However, the shape of a ripple can deviate from the self-similar profile
when it interacts or becomes substantially influenced by a neighboring ripple or bedform. At times, as the
crest height of a ripple decays in amplitude due to bedform-bedform interaction, for example, we find its
cross-sectional profile to progressively deviate from self-similarity. This supports the observation that ripples
maintain a self-similar shape provided that their height is larger than the aforementioned threshold height of
0.07 nondimensional units. In other words, ripples as they grow in size take on a self-similar shape when their
size exceeds a threshold, and ripples as they decay in size, lose their self-similar shape when their size falls
below a threshold value. If flow conditions and sediment availability are maintained, then bedforms will only
decay when acted upon by upstream neighbors. That is a mature ripple that is sufficiently far from an
upstream neighbor will remain self-similar until it is “preyed” upon by an upstream neighbor or experiences
a change in flow conditions or sediment availability.

Bedform self-similarity (or lack-of) is also closely related to bedform dynamics, specifically the bedform
propagation velocity as well as its rates of growth and decay. As bedforms interact, and thus deviate from
self-similarity, we observe sharp variations in their speeds and growth/decay rates. Therefore, whenmeasure-
ments of celerity versus size of bedforms are recorded, it is important to note whether the bedform in
question is sufficiently isolated so that the measurements are not influenced by nearby structures. Such
practice could reduce the amount of scatter, and thus reduce the uncertainty, in these measurements.

There is a clear distinct behavior between the two sets of simulations in Table 2, namely, S1–S3 and S4–S6. A
natural question that arises is whether this is a physical result or some consequence of the modeling
employed in the present study, specifically the modified Meyer-Peter and Müller (1948) bedload relation of
Wong and Parker (2006). The only difference between the two sets of simulations is that in the latter
(S4–S6) the friction velocity has been decreased, while the flow depth has been accordingly increased so
as to maintain the same shear Reynolds number Reτ. The two series, however, exhibit different bedform
propagation velocities, different wavelengths, etc.

It is observed that the nondimensional bedform propagation velocity (scaled with the shear velocity)
decreases with decreasing shear velocity between sets S1–S3 and S4–S6. Let us consider a limiting case for
which the flow depth is very large and the bed shear velocity is very small so as to maintain a constant
Reτ. The critical shear velocity necessary for incipient motion is now much larger than the bed shear velocity,
and consequently, there should be no sediment motion, or in other words, the bedform propagation velocity
should be 0. Starting from this limiting case, let us gradually increase the bed shear velocity (while simulta-
neously decreasing the flow depth). There will come a point where the bed shear velocity would exceed
the critical shear velocity necessary for incipient motion, and the sediments would be set in motion.

The nondimensional parameter that is responsible for this distinct behavior is the Shields number Θ or,
more specifically, the ratio of the Shields number to the critical Shields number necessary for incipient
motion (Θ/Θcr). This dependence on Θ/Θcr is captured in the MPM (and consequently in the Wong and
Parker modified MPM) formulation and is responsible for the distinct behavior between the two sets of
data. This can also be explained in terms of the three length scales: the channel height, wall unit (ν/u*)
and the particle diameter. In both sets, the ratio of channel height to wall unit remains the same, since
Reτ is a constant. Thus, as the channel got taller the near-wall eddies also correspondingly became bigger.
However, if the particle size is kept the same, with decreasing U�

τ the ability of the turbulent flow to move
the particles changes.

6. Conclusions

Coupled bed-flow DNS presented in Part 1 describe the early stages of pattern formation by ripples in an
open-channel flow analyzed using a highly resolved flow field. In the present paper (Part 2), we compare
the simulations to published experimental data and quantitatively analyze the bed using spectral analysis
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and two-point correlations. The effect of the mobile rippled bed on the flow structure as well as turbulence
was investigated locally (at specific streamwise locations) and over the entire computational domain. We
showed that developing ripples attain a self-similar profile in both the shape and the corresponding bed
shear stress profile. We further demonstrated the importance of neighboring structures, especially upstream
neighbors, on bedform dynamics in terms of the growth, decay, and speed of ripples. Finally, we examined
the defect-free interactions in the later stages of bed evolution, which primarily lead to wave coarsening.

Analysis of turbulence statistics indicates no qualitative difference in velocity fluctuations or the Reynolds
stress profiles from a rippled and completely flat bed. However, velocity fluctuations increased near the
bed at the expense of the mean flow as the ripples grew. Applying a logarithmic-law velocity profile for
the span-averaged streamwise component of velocity in the far field yields an intercept that follows a trend
similar to open-channel flows with small-scale roughness. Accurate calculation of the velocity fluctuations
and Reynolds stresses requires the application of a coordinate frame that it is normal to the bed in the
near-bed region and turns to the vertical direction sufficiently far away.

A quantitative analysis of the emerging bedforms revealed a �3.75 power decay for large wave numbers in
the spectra for developing ripples. Similar values were obtained in previous DNS of Kidanemariam and
Uhlmann (2017). The decay is, however, faster than the �3 decay reported in the earlier experiments of
Hino (1968), Jain and Kennedy (1974), and Nikora et al. (1997). The shear Reynolds number in the present
study and from the numerical simulations of Kidanemariam and Uhlmann (2017) were more than an order
of magnitude smaller than those calculated from the aforementioned experiments suggesting a possible
Reynolds number dependence for bedform spectra.

Analyses from Fourier decomposition and two-point correlations of ripple properties such as crest height,
wavelengths, and celerity indicated that the ripples increase in height and coarsen with time, with the speed
of the ripple being inversely proportional to its crest height. Additionally, as the ripple height, measured as
the elevation difference between the crest and the subsequent trough, increases beyond a threshold value,
we observe the ripples to approach a nearly self-similar triangular-like shape characterized by a gentle stoss
side of about 6° and a steeper lee side dictated by the angle of repose. Within this self-similar phase, we find
the relationship between the ripple speed and height to agree with the empirical relation proposed by
Coleman and Melville (1996). The self-similarity in the ripple shape is accompanied by an analogous self-
similar triangular-like bed shear stress profile. There is, however, a positive phase shift between the stream-
wise location of the crest and the location of the maximum of the shear stress profile, for which the latter
occurs slightly upstream of the crest. Through a simple and very crude analysis of the self-similar shear stress
profile on the stoss side of the ripple, we are able to recover the computed gentle slope on the stoss side
suggesting that the shape and bed shear stress profiles are strongly coupled.

The experimental data of Coleman and Melville (1996) exhibit considerable scatter around their aforemen-
tioned empirical fit. This scatter appears too large to be simply attributed to experimental uncertainty but
is likely a result of bedform-bedform interactions. Based on the present simulations, we find the relationship
between the speed and the size of isolated mature ripples to follow the empirical fit of Coleman and Melville
(1996); however, when neighboring ripples get within close proximity of the ripple in question (for which a
relationship between the ripple speed and size is sought), we find the actual speed to significantly deviate
from the speed predicted by the proposed fit by up to five times.

Of the six simulations considered, those with higher bed shear velocities (cases S1–S3) evolved faster than
those with larger flow depths but smaller bed shear velocities (casesS4 – S6) owing to their larger volumetric
flux of sediment. While bed shear velocity is the principal factor dictating the velocity of the bed for the entire
duration of the simulations, we find that grain size has only a marginal effect.

Cases with higher bed shear velocities coarsen at a faster rate compared to cases with lower bed shear velo-
cities. On the other hand, at later times toward the end of the simulations, there is an indication that ripple
wavelength scales with the grain diameter, with smaller sediment exhibiting smaller wavelengths. The
current work could be improved by considering the following two factors. First, ripples did not reach an equi-
librium state by the end of the simulations even after long time integration of 3,000 bulk time units because
the purpose of these runs was to examine ripple initiation and early time evolution (Paper 1) as well as ripple
dynamics in the developing stage before reaching equilibrium. Second, these simulations lack essential
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physics, such as the saltation mechanism, for capping crest growth and may therefore be inappropriate for
studying the equilibrium stage of ripple evolution but are suitable for investigating developing ripples during
the period in when bedload constitutes the dominant mode of sediment transport.
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