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ABSTRACT
We present results from direct numerical simulations on laminar and turbulent non-canonical thermals with an initial rectangular density
distribution at a Reynolds number of Re = 500 and Re = 5000, respectively. We find the non-canonical shape to induce strong azimuthal vari-
ations in the thermal for both the laminar and turbulent cases. These include noticeable differences in downward and horizontal propagation
speeds as well as differences in the strength of the vortex tube. These differences persist over a significant period of time and help generate a
cross-flow component that is otherwise not present in canonical cases. The cross-flow component is in the opposite direction to that observed
in gravity currents with the same initial density distribution. This is counterintuitive seeing that both flows are solely driven by buoyancy. By
extracting the three-dimensional streamlines, we find the descending vortex tube to force the dense fluid to follow a helical path.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5138981., s

I. INTRODUCTION

Thermals are a class of buoyancy driven flows (Turner, 1963;
1964; Richards, 1961; Zhao et al., 2013; Lecoanet and Jeevanjee,
2018; Gao and Yu, 2016; and Hasnain and Alba, 2017). A typical
example is a hot packet of air rising through its surroundings. The
hot air packet is less dense than the surrounding cooler air and is,
thus, driven upward by buoyancy. Alternatively, a cooler packet of
air descending in a warmer environment is also termed a thermal,
usually with the specification that the thermal is negatively buoy-
ant to indicate downward or sinking motion. In these two examples,
the thermal is composed of the same material as its surroundings,
and the density difference, and consequently the driving mechanism
behind the flow, is a result of a temperature variation. While the
name “thermal” is indicative of a temperature related phenomenon,
the density difference may arise from other factors such as salin-
ity, concentration, or different fluids altogether. The flow does not
require large density variations; in fact, a relative density difference
of less than a percent is sufficient to generate a thermal. Thermals
encompass a variety of environmental and industrial flows and are
thus of interest to the scientific and engineering communities. A
typical example includes the flow resulting from a dredging pro-
cess in which relatively dense solution is suddenly released into the

relatively less dense sea water. It should be noted here that the ther-
mal propagation should be predominantly along the vertical direc-
tion, that is, it should be mostly aligned with the gravitational field.
In the limit where a strong component of the flow is horizontal, the
flow is usually termed a gravity current (e.g., Huppert and Simpson,
1980 and Ottolenghi et al., 2016).

Thermals have been predominantly studied in one of two
canonical cases. The term canonical here is solely in reference to
the initial shape of the buoyant fluid. When the initial shape is axi-
ally symmetric such as in the case of a circular cylinder (e.g., Bond
and Johari, 2005) or when the initial shape is a rectangular paral-
lelepiped with one side having the same extent as that of the ambient
fluid (e.g., Turner, 1969), the thermal is termed a canonical ther-
mal. While the initial buoyancy source can be of any shape, studies
pertaining to non-canonical thermals, i.e., thermals where the ini-
tial buoyant source does not conform to the above two cases have
remained limited.

For instance, Bond and Johari (2005) examined axially sym-
metric thermals with various initial height-to-diameter aspect ratios.
They found that the flow may be divided into two main phases: an
initial acceleration phase, where the thermal accelerated from rest to
reach its maximum velocity, and a subsequent phase, where the flow
decelerates and displays thermal-like characteristics. They observed
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the flow characteristics in the first phase to be dependent on the ini-
tial geometry, while those in the second phase to be independent of
initial geometry, albeit for axially symmetric thermals.

A possible reason for the scarcity of studies of non-canonical
thermals is the underlying assumption that they would largely
resemble the canonical axially symmetric case. Recent experiments
of particle-laden thermals (Wei Er et al., 2016) have shown, how-
ever, that initially rectangular buoyant sources can exhibit qualita-
tive differences compared to their axially symmetric counterparts.
Such differences include azimuthal variations in descent speeds as
well as longitudinal and transverse spreading rates that may persist
well after the initial release. A thorough examination of the physics
responsible for such differences is still missing.

The purpose of this study is to use direct numerical sim-
ulations to study canonical and non-canonical rectangular ther-
mals in the laminar and turbulent regimes. The main objective is
to understand and highlight the differences associated with non-
canonical thermals and use the resolved flow and concentration
fields to extract the underlying mechanisms behind the observed
differences.

This paper is structured as follows. In Sec. II, we provide a
description of the mathematical model and discuss the influence of
boundary conditions. In Sec. III, we showcase the simulation results
and highlight the peculiarities in flow structure pertaining to non-
canonical thermals. In Sec. IV, we discuss possible explanations for
the aforementioned peculiarities. Finally, concluding remarks are
given in Sec. V.

II. MATHEMATICAL SETUP AND INITIAL CONDITION
In this section, we will briefly go over the numerical setup and

governing equations in Sec. II A and discuss the effects of the upper
boundary on the short- and long-term evolution of the thermal in
Sec. II B.

A. Governing equations
The simulations are carried out inside a rectangular box and

consist of instantaneously releasing a finite volume of negatively
buoyant (denser) fluid into a still environment, as shown in Fig. 1.
The fluids are miscible, and aside from the density difference, they
are chosen to have the same properties. The non-dimensional gov-
erning equations consist of conservation of mass (1) and momen-
tum (2), and a transport equation (3) for the density field,

∇ ⋅ u = 0, (1)

Du
Dt
= ρe g −∇p +

1
Re
∇2u, (2)

∂ρ
∂t

+∇ ⋅ (ρu) = 1
ScRe
∇2ρ. (3)

In Eqs. (1)–(3), u, ρ, and p denote the three-dimensional veloc-
ity vector, density, and pressure fields, respectively. Density is nor-
malized to values between 0 and 1. The lower limit (ρ = 0) corre-
sponds to ambient fluid, and the upper limit (ρ = 1) corresponds to
the density of the heavier fluid, i.e., the thermal, at the time of release
(t = 0). Any in-between value of the density (0 < ρ < 1) at later times

FIG. 1. Schematic of the rectangular numerical domain with an enlarged view of
the initial non-canonical dense fluid distribution. The numerical domain, highlighted
in blue, has dimensions Lx × Ly × Lz and is initially filled with light ambient fluid
(ρ∗a ). A small portion of the domain, highlighted in red, of dimensions lx × ly
× lz represents the dense fluid (ρ∗c0) distribution at time of release t = 0. The
Cartesian coordinate system is anchored at the center of the top boundary. O1 is
the geometric center of the dense fluid.

is a result of mixing between the two fluids. The density field is, thus,
defined as

ρ = ρ∗ − ρ∗a
ρ∗c0 − ρ∗a

. (4)

Here, ρ∗, ρ∗a , and ρ∗c0 represent the local, ambient, and initial heavy
fluid densities, respectively. Throughout the manuscript, the asterisk
will refer to dimensional quantities, and all other quantities are to be
understood as non-dimensional. We assume the density difference
between both fluids to be small, which justifies the use of the Boussi-
nesq approximation where density variations are neglected except
for the gravity term, the first term on the right-hand side of (2). In
fact, the present situation in which the dense and ambient fluids dif-
fer only by their densities may be representative of the case where
the ambient fluid corresponds to tap water and the dense fluid corre-
sponds to tap water with a small concentration of salt (e.g., Sànchez
et al., 1989). Another example of relevance to dredging is when the
excess density is due to a dilute distribution of fine sediment. The
excess density due to salt or sediment would typically be around one
tenth of a percent which justifies assuming both fluids to have similar
thermo-physical properties except for their densities. Furthermore,
the pressure is rendered non-dimensional using a dynamic pressure
scale,

p = p∗

ρ∗aU∗2 , (5)

with p∗ being the local dimensional pressure and U∗ denoting
the velocity scale to be defined shortly. The eg term in the right-
hand side of the momentum equation is a unit vector pointing in
the direction of gravity (i.e., downward). The two non-dimensional
parameters that result from the non-dimensionalization of the
above system are the Schmidt and Reynolds numbers defined
as

Sc = ν∗

κ∗
, Re = Λ∗U∗

ν∗
, (6)
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where ν∗ and κ∗ are the kinematic viscosity and molecular diffusivity
of the ambient fluid, respectively. In the expression for Re, length
and velocity scales are defined as

Λ∗ = (V∗0 )1/3, U∗ =
¿
ÁÁÀg∗

ρ∗c0 − ρ∗a
ρ∗a

Λ∗, (7)

where V∗0 is the initial volume of heavy fluid and g∗ is the local
gravitational acceleration. Consequently, the time scale is straight-
forwardly obtained as the ratio of the above two scales,

T∗ = Λ∗

U∗
. (8)

While Re provides a measure of flow strength and turbulence,
the Schmidt number provides a measure of the diffusivity of the
thermal-ambient interface. Turbulent flows with Sc≪ 1 tend to have
a relatively diffuse interface, where the density variation across the
interface is gradual. In contrast, weakly turbulent flows with Sc≫ 1
usually exhibit sharp variations in density between the ambient and
the thermal, often resulting in a sharp density jump at the interface.
On the other hand, the effects of the Schmidt number on the thick-
ness of the interface become marginal for turbulent flows. In such
flows, the mixing is dominated by Kelvin–Helmholtz vortices and
smaller scale instabilities rather than by molecular diffusivity of the
fluids (e.g., Bonometti and Balachandar, 2008).

The governing equations are solved using the parallel, spectral
element code, Nek5000 (Fischer et al., 2008). The numerical domain
is divided into multiple rectangular elements, and each element con-
tains a fixed number of grid points along each of the three directions.
The number of grid points within each element depends on the poly-
nomial order used. For example, an eighth order polynomial along
the x-direction implies that there are nine grid points (the last point
is actually the first point of the next neighboring element) within
each element along the x-direction. In all our simulations, the poly-
nomial order, and thus, the number of grid points, is taken to be the

same along each of the three directions. Therefore, the total number
of grid points, along, say, the x-axis, is nothing but the product of
the number of elements by the polynomial order in the x-direction.
To obtain spectral accuracy, the points within each element are not
distributed uniformly but rather as Gauss–Lobatto–Legendre points.

A total of 11 simulations were conducted, the details of which
are listed in Table I. Each simulation required 4 h of computation
time on 128 cores for the laminar cases and 30 h on 1024 cores
for the turbulent cases. Each case was run with 1 GB of memory
per core. The cores used were Intel Xeon E5-2698v3 (2.3 GHz).
Ten simulations were conducted at a Reynolds number of Re = 500,
which resulted in laminar flow. One simulation was conducted at a
Reynolds number of Re = 5000, for which the flow was turbulent. For
the laminar cases, we considered three different initial dense fluid
distributions where the cross section of the initial shape was var-
ied. These were the planar, circular, and rectangular cross sections,
denoted by the letters P, C, and R in Table I, respectively. The pla-
nar cross section corresponds to a rectangular cross section whose
lateral extent spans the entire width of the numerical domain, i.e., Ly
= ly. As for the turbulent simulation, only the rectangular cross sec-
tion was considered. The aspect ratio for the rectangular shape was
based on a scaled-down design of an actual barge that was used in the
experiments of Wei Er et al. (2016). The dimensions for the circular
(respectively, planar) shape were based on the rectangular shape, in
that the diameter (respectively, width) was equal to the width of the
rectangle lx (see Fig. 1). The domain size was chosen large enough to
accommodate unhindered development of the thermal in all three
directions. The large domain size also ensured that the results are
independent of the release orientation.

Spectral elements are not uniformly distributed within the
domain. They are rather skewed toward the upper center portion of
the domain, as shown in Fig. 2, as this is the region where the largest
velocity and density gradients occur.

Boundary conditions for the velocity and density must be spec-
ified on all six boundaries. For the density field, a zero flux boundary

TABLE I. List of simulations. α is the vertical gap between the uppermost layer of the dense fluid and the upper boundary of the numerical domain (see Fig. 3), and
lx × ly × lz denote the initial dimensions of the dense fluid. FS and NS denote the velocity condition applied at the top boundary as free-slip and no-slip, respectively. n is
the polynomial order. Re and Sc are the Reynolds and Schmidt numbers. The domain size (Lx × Ly × Lz) and the grid resolution (Nx × Ny × Nz) are chosen to ensure a domain-
and grid-independent solution. The letters R, P, and C in the simulation name refer to the cross-sectional shape of the initial dense fluid. They denote the rectangular, planar,
and circular shapes, respectively.

Sim name α Upper BC Lx × Ly × Lz lx × ly × lz n Sc Re Nx × Ny × Nz

R1 1.0 FS 36 × 36 × 30 0.5848 × 2.924 × 0.5848 8 1 500 24 × 24 × 32
R2 1.0 FS 36 × 36 × 30 0.5848 × 2.924 × 0.5848 24 1 5000 24 × 24 × 32
C1a 1.0 FS 36 × 36 × 36 0.5848 × 0.5848 × 0.5848 8 1 500 24 × 24 × 32
P1 1.0 FS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32
P2 0.5 FS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32
P3 0.2 FS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32
P4 0.0 FS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32
P1NS 1.0 NS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32
P2NS 0.5 NS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32
P3NS 0.2 NS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32
P4NS 0.0 NS 36 × 10.8 × 30 0.5848 × 10.8 × 0.5848 8 1 500 24 × 24 × 32

alx and ly correspond to the diameter of the circular cross section for C1.
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FIG. 2. Element distribution in the numerical domain. The elements are skewed
toward the upper center portion of the domain for increased efficiency.

condition was specified on all domain boundaries, namely,

∇ρ ⋅ en = 0, (9)

where en is the unit normal at each boundary. As for the velocity
field, the free-slip condition was enforced at the top boundary, while
a zero pressure outflow condition was enforced on the remaining
five boundaries,

∇u ⋅ en = 0,

p = 0.
(10)

Regarding the initial condition, the velocity was set to zero in the
entire domain for both the dense and ambient fluids. As for the den-
sity field, it was generated using error functions to make sure that the
interface is of finite thickness. A finite thickness interface is required
due to the spectral nature of the code, and it accounts for any mix-
ing that occurs between the heavier fluid and the surrounding lighter
fluid before the release. The heavy fluid was not always placed in
direct contact with the upper boundary. There was a vertical gap of
ambient fluid at the top, of height α = 1, separating the heavy fluid
from the upper domain boundary, as shown in Fig. 3.

FIG. 3. Iso-contours of density overlain by the instantaneous velocity vectors in the y = 0 plane. The first row illustrates the initial condition, while the second and third rows
correspond to snapshots at t = 5 and t = 10, respectively. Columns a, b, c, and d correspond to cases P4, P1, P4NS, and P1NS, respectively. The contour color bars are not
representative of the instantaneous density range but are chosen for clarity as the maximum density of the thermal decreases with time.
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B. Influence of top boundary

The purpose of this section is to shed some light on how qual-
itatively and quantitatively the initial placement of the dense fluid
and the enforced top boundary condition may affect the short-term
and long-term evolution of the thermal. For this section, we con-
sider the planar geometry. Starting from the basic settings shown in
Table I, eight cases are tested by changing the vertical gap α = [0.0,
0.2, 0.5, 1.0] and the top boundary condition (free-slip vs no-slip).
Here, the vertical gap α corresponds to the initial gap between the
domain’s upper surface and the uppermost layer of the dense fluid,
as shown in Fig. 3. In the interest of brevity, only the two extreme
cases with α = 0.0 and α = 1.0 are shown in Fig. 3.

Figure 3 shows the instantaneous velocity vector plot in the
y = 0 symmetry plane along with iso-contours of concentration to
discern the shape and location of the thermal. Snapshots are shown
at the time of release (t = 0) and at two later time instances t = 5 and
t = 10. The results indicate that both the vertical gap and the type of
boundary condition (free-slip vs no-slip) on the upper wall affect the
evolution of the current.

When the dense fluid is placed in direct contact (α = 0 in Fig. 3)
with the upper boundary, we observe the formation of a tail of dense
fluid that extends all the way from the thermal to the top bound-
ary. This tail forms shortly after release and persists until around
t = 10, as shown in Fig. 3. The formation of the tail depends on
the proximity of the release from the domain upper boundary. It is
observed to be independent of the type of boundary condition (free-
slip vs no-slip) that is applied. The tail is, however, thicker when
the no-slip boundary condition is enforced. On the contrary, when
the ambient fluid gap is large enough (α = 1 in Fig. 3), the tail is
practically non-existent. When the ambient fluid gap is very small,
the upper centermost part of the dense fluid remains nearly station-
ary and experiences very little mixing. As such, it continues to feed
dense fluid to the symmetry plane, which results in the formation of
the tail. On the contrary, when the vertical gap is large enough, the
entire dense fluid is set in motion, which explains the absence of a
tail.

Additionally, we find the presence of a vertical gap to change
the shape of the thermal. When the dense fluid is initially in contact
with the upper boundary, we find the two vortex tubes that form to
be closer to one another than in the case where an initial ambient
fluid gap is present. Finally, we find the flow field to be visibly dif-
ferent in the cases considered in Fig. 3. When the gap is present, we
observe a wider down flow region of ambient fluid that extends far-
ther upward as compared with the zero vertical gap cases. This flow
pattern is to be expected since the presence of an upper barrier and
the thin layer of overlying ambient fluid will both act to hinder the
downward component of flow as the thermal descends.

In addition to the aforementioned qualitative differences, we
also find the presence of an ambient fluid gap to increase the down-
ward propagation speed of the thermal. In Fig. 4(a), we plot the
distance traveled by the front of the thermal along the z-axis, zF−zF0.
Here, zF and zF0 correspond to the instantaneous and initial posi-
tions of the front. We observe the sensitivity of downward speed
of the thermal on the vertical gap α to become marginal for values
near α = 1. However, for smaller values of α, we observe the ther-
mal to descend at slower speeds. For instance, by t = 18, we find the
thermal with a sufficiently large initial gap α = 0.5 to cover around

FIG. 4. Temporal evolution of (a) the traveled distance along the z-axis zF−zF 0
and (b) temporal evolution of the horizontal spreading distance along the x-axis
xF−xF 0. In both panels, the front is defined by the threshold density value ρth
= 0.001. α denotes the extent of the ambient fluid vertical gap (see Fig. 3).

8% more distance than a thermal initially in contact with the upper
boundary (α = 0). Similar conclusions can be drawn according to
the horizontal spreading distance, as shown in Fig. 4(b). Here, sim-
ilarly, xF and xF0 correspond to the instantaneous and initial values
of the outermost extent of the thermal along the x-axis, respectively.
A comparison between panels (a) and (b) indicates that horizontal
spreading is less sensitive to the vertical gap than vertical spreading.
Figure 4(b) also shows that for α = 0, there is a slightly larger dif-
ference in the horizontal spreading distance between the no-slip and
free-slip cases when compared to the difference in vertical spreading
in Fig. 4(a), where the free-slip case extends slightly farther in the
horizontal direction. One possible explanation is that the horizontal
outward spreading is partly due to the presence of the vortex tube. As
the thermal descends, the rotation of the vortex tube generates a lift
force that propels the thermal horizontally outward. A slight reduc-
tion in the rotational speed of the vortex due to the no-slip condition
could result in a slight reduction in the horizontal lift force. This will
in turn lead to the observed behavior in Fig. 4(b).

By using a very simple analysis, we can provide a crude estimate
of the initial vertical gap that is needed between the upper surface of
the numerical domain and the top layer of the thermal to minimize
or eliminate the effect of the upper boundary condition. Note that
the effects of the upper boundary are not to be avoided necessarily;
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here, we only aim to show that a vertical gap does modify the flow
and its influence should be accounted for in similar studies.

In formulating an estimate of the gap, we consider the same
canonical planar case. The initial shape of the dense fluid mimics
that in the simulations with height H̃ and width W̃, placed at a dis-
tance α from the top wall. At the time of release, the dense fluid will
advance downward with a characteristic velocity Ũ. This character-
istic velocity will act to displace ambient fluid immediately below the
thermal, with a flow rate per unit width of approximately

Q̃ = ŨW̃. (11)

In fact, because of continuity, the same fluid that is being displaced
below the thermal must be “replenished” above the thermal. If the
thermal is sufficiently removed from the top wall, the ambient fluid
will reach the top surface of the thermal by intruding horizontally
through the gap of height α. If we restrict the average velocity of the
intruding fluid to Ũ, then α may be straightforwardly obtained from
continuity as

α = W̃/2. (12)

We find the above value of α to be of the same order as that
obtained with the DNS. From Fig. 4, we find the upper boundary
effects to become negligible beyond α ≅ 0.5, which correspond to
W̃/1.2 instead of W̃/2. As noted in Table I, W̃ = 0.5848, and thus,
W̃/1.2 ≈ 0.5. In the present study, the initial placement of the dense
fluid is sufficiently removed from the upper boundary (α = 1) such
that the latter does not play a role in modifying the dynamics of the
thermal.

III. RESULTS
This section will primarily focus on the results from the laminar

simulations, specifically the non-canonical rectangular case R1. As
will be shown later on, the gross characteristics of the turbulent case
R2 are largely similar to the laminar case.

First, we start by validating our simulations against the experi-
ments of Sànchez et al. (1989). Their experiments consisted of releas-
ing a spherical cup of brine solution 10 ml in volume into tap water.
They performed several experiments at Reynolds numbers ranging
between 520 and 1000. Our corresponding simulation, thus, con-
sisted of releasing a sphere of relatively denser solution into a rela-
tively less dense ambient. Consistent with the aforementioned scal-
ing, the non-dimensional diameter of the spherical solution was D0
= 1.24. To better mimic the experimental conditions, the sphere was
put in contact with the upper boundary at which the free-slip con-
dition was enforced. The simulation was conducted at Re = 1000.
Remaining parameters were identical to those in simulation C1 in
Table I.

We plot the largest diametral extent of the thermal against the
distance traveled in Fig. 5. The data are normalized by the initial
diameter of the release. Here, D represents the instantaneous largest
diametral extent of the thermal, and zD0−zD corresponds to the trav-
eled distance measured at the location of the largest diametral extent.
Note that z is positive upward and, thus, zD is a negative quantity as
the thermal descends upon release. The symbols in the figure cor-
respond to the experimental results of Sànchez et al. (1989), where
each color indicates a specific value of the Reynolds number in the

FIG. 5. Largest diametral extent vs distance traveled. The solid line corresponds
to the present simulation, and symbols correspond to the experiments of Sànchez
et al. (1989), with each color representing a specific value of the Reynolds number
ranging between 520 and 1000.

aforementioned range of 520–1000. We find our simulation to cor-
rectly reproduce the same trend observed in the experiments. We
should note here, however, that the reason we do not display the
magnitudes for the Reynolds number for the various experiments in
Fig. 5 is because Sànchez et al. (1989) made a point of not specify-
ing the Reynolds number. In fact, this is done not just in this figure
but in all figures of Sànchez et al. (1989). This would imply that
the spread in the data is not primarily due to the Reynolds num-
ber but rather due to the variations from one realization to another.
In this regard, we do not compare with an individual realization;
rather, we look at the ensemble of all realizations. Here, we observe
that the simulation falls well within the spread of the experimental
data.

A. Flow structure
In this section, we elaborate on the three-dimensional flow

structure of the thermal and explain some interesting characteristics
pertaining to the rectangular cross section and other non-canonical
thermals in general. In Fig. 6, panels (a), we show semi-transparent
iso-surfaces of density at six equally spaced time instances between t
= 0 and t = 25, whereas in panels (c) and (d), we show iso-contours of
density within the y-z and x-z symmetry planes, respectively. Addi-
tionally, in panels (a), (c), and (d), the thermal is visualized within a
fixed portion of the domain to track its growth and position over
time with respect to the initial release. In panel (b), a blown-up
view is considered. Here, three semi-transparent iso-surfaces pro-
vide information on the density distribution within the thermal. The
three iso-surface values are ρ = 0.1, 0.01, and 0.001. The colors asso-
ciated with each are red, green, and blue, respectively. While in the
axially symmetric case, the current forms a circular vortex ring (e.g.,
Turner, 1969), here the rectangular initial shape leads shortly after
release to the formation of an elliptical-like vortex tube (see t = 5
and t = 10). Only at later times does the vortex ring take on a cir-
cular shape, however, with azimuthally varying strength. The largest
density within the thermal still resides at the center of the tube, as
indicated by the red iso-surface in the (b) panels.
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FIG. 6. Results from R1 for the (a) iso-surfaces of ρ = 0.001. (b) Enlarged view through three semi-transparent iso-surfaces of density ρ = 0.001 (blue), ρ = 0.01 (green), and
ρ = 0.1 (red). (c) Density iso-contours in the x = 0 and (d) y = 0 symmetry planes.
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While in the laminar circular case, the vortex tube maintains
axial symmetry during descent with no azimuthal variation, this is
not observed for the rectangular case. The vortex tube does preserve
its four-way symmetry but exhibits strong azimuthal variations in
elevation. It is readily visible in the (b) panels, especially at t = 5
and t = 10, that the thermal is elevated along its short edge within
the y = 0 symmetry plane but plunges downward progressively as
it approaches the tips of its long edge within the x = 0 symmetry
plane. At t = 5, we find the vertical location of the points of highest
density in panels (c2) and (d2) to be approximately −2.9 and −2.5,
respectively, which results in about a 14% relative difference in ele-
vation between these two locations. Consequently, by t = 10, the
vertical locations become −4.5 (panel c3) and −3.8 (panel d3), and
the relative difference grows to reach approximately 15%.

Additionally, it is also clear from Fig. 6 that the thermal does
not expand horizontally outward at the same rates along its initial
short and long edges, the x and y axes, respectively. We find the
average rate of expansion along the x-axis from the start of the simu-
lation until t = 10 to be over two folds that along the y-axis. Another
interesting aspect is the non-uniform thickness of the vortex tube,
specifically the variation in thickness along the azimuthal direction.
It is also evident from Fig. 6 that beyond t = 5, the tube is notice-
ably thicker along the initial long edge compared to the short edge.
Finally, we note that beyond t = 10, the vast majority of the dense
fluid resides in the vortex tube.

B. A helical path within the vortex tube
The azimuthal variation in the thermal resulting from the non-

canonical nature of the release produces some interesting dynamics,
which may be visualized from the streamlines at close proximity
to or within the thermal. In Fig. 7, we show the thermal at two
time instances in panels (a) and (b) at t = 1 and t = 5, respectively.
A semi-transparent iso-surface of density ρ = 0.1 shows the three-
dimensional structure of the thermal. The iso-surfaces are colored
using the velocity magnitude, and the color map displayed in panel
(b) applies for panel (a) as well.

At t = 1, the thermal still closely resembles its initial shape
and forms an elongated cylinder oriented along the y-axis. The vor-
tex tube is yet to develop but is clearly in the process of forming
as the velocity magnitude at the core of the thermal is larger than
at the extremities. We show five streamlines predominantly in one
quadrant of the thermal. Due to the laminar nature of the flow,
streamlines at other locations in the thermal may be inferred from
symmetry. In fact, only four streamlines are unique (sl2 through sl5),
while streamline sl1 is a mirror image of sl3.

The streamlines take on the shape of circular loops passing
through both the thermal and the ambient fluid. In the portion
occupied by the ambient fluid, the streamlines reflect the upward
direction of the flow, while within the thermal, the flow direction
is downward. Additionally, the velocity magnitude is not uniform
along the streamline, being larger in the downward direction. This
is evident from the color map and is to be expected as the negatively
buoyant thermal propagates downward.

Streamlines sl2 and sl5 remain confined to the x-z and y-z sym-
metry planes, respectively. This is again an implication of the sym-
metrical and laminar nature of the flow. A fluid parcel in either the
x-z or y-z plane has no tendency to propagate azimuthally or linearly

FIG. 7. (a) Density iso-surface colored by velocity magnitude at t = 1. The current is
visualized with streamlines sl1 through sl5 and semi-transparent iso-surface is1 of
density ρ = 0.1. (b) Same as panel (a) for t = 5. The two red dots mark the starting
points for streamlines sl6 and sl7. The current is visualized with streamlines sl6 and
sl7 and semi-transparent iso-surface is2 of density ρ = 0.1. The iso-surface inter-
sects with the x-z-center slice at centerline cl1. The two velocity contours share
the same color map.

in either direction and, thus, remains confined to the vertical plane
in which it originated. However, as we deviate away from the sym-
metry planes, and because of the non-canonical nature of the release,
we observe an azimuthal component of the flow. This is apparent
from the spring-like shape that the streamline presumes. For exam-
ple, in the case of sl3, we find that the streamline has expanded along
the y-direction, indicating a y-component of the flow. Additionally,
we find streamlines in regions of strong curvature variation (in the
shape of the thermal) to span out more visibly than other regions.
This is apparent in sl4, for which the separation between the loops
of the streamline is the largest for that time instant.

At t = 5, the streamlines have become more complex. Here,
again we use the ρ = 0.1 iso-contour to illustrate the structure
of the thermal. We show only two streamlines, sl6 and sl7. sl6
originates just to the left of the x-z symmetry plane denoted by
cl1 in Fig. 7, while sl7 originates slightly farther away and on the
other side of the x-z plane. The iso-contour is again colored by
velocity magnitude and exhibits faster speeds on the interior of
the vortex tube where the velocity points downward, in the same
direction the thermal travels. What is interesting in the image is
the appearance of a helical motion that initiates close to the x-
z plane and weaves its way within the vortex tube toward the
y-z plane.

By inspecting streamline sl6, we find that it initiates relatively
far from the axis of the vortex tube and makes its way toward the
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FIG. 8. Snapshot of the current at t = 5 for the (a) planar and (b) axially sym-
metric cases from simulations P1 and C1, respectively. The current is visualized
with streamlines and a semi-transparent density iso-surface of ρ = 0.1. The iso-
surface is colored by the local velocity magnitude. Since the current is rotating and
descending, the magnitude of velocity is larger in the descending (inner) portion of
the vortex tube.

latter in a circular motion. The streamlines do not form co-centric
circles with respect to the axis of the vortex tube. We find the stream
paths to be more (respectively, less) closely spaced toward the inte-
rior (respectively, exterior) of the tube. Additionally, every time the
streamline completes a full revolution around the tube, its veloc-
ity increases, as apparent from the color scheme. We also note that
before the streamline becomes completely immersed inside the iso-
contour ρ = 0.1, it remains primarily in the same vertical plane from
which it originated, deviating only slightly in the y-direction. The
helical motion of the streamline begins once the latter is completely
engulfed inside the ρ = 0.1 iso-contour, i.e., in the region of rela-
tively elevated density. The streamline continues its helical motion
and only begins to spiral outward as it approaches the y-z plane, with

the velocity magnitude decreasing every time the streamline wraps
around the vortex tube.

In contrast to the streamlines from the non-canonical rectan-
gular case (R1), we observe, as expected, no azimuthal component
of velocity in either the canonical planar (P1) or axially symmetric
(C1) cases in Fig. 8, panels (a) and (b), respectively. Here, we show
the current at only one time instance t = 5. We use the same semi-
transparent iso-surface ρ = 0.1 to locate the thermal. Similar to Fig. 7,
the iso-surface is colored by velocity magnitude.

While the direction of the flow in the helical streamline inside
the vortex tube is directed from the x-z plane toward the y-z plane,
the outside portion of the streamline is directed in the opposite
direction. This is to be expected as there should be no mean cross-
flow component. Nonetheless, there could be a non-zero mean flow
for the dense fluid, provided of course there is an equivalent return
flow of ambient fluid in the opposite direction. This non-zero mean
flow of dense fluid is the subject of Sec. III C.

C. A non-zero mean cross-flow component
The helical streamline motion discussed in Sec. III B showed a

migration of dense fluid from the initial short edge of the rectangle
(x-z plane) to the initial long edge (y-z plane). This helical migra-
tion is a consequence of the non-canonical nature of the release. To
demonstrate that such a migration is not only present at a specific
time instance but rather occurs over a finite time span, we plot in
Fig. 9 the vector field with components m̂x and m̂y corresponding to
the density-weighted, vertically integrated horizontal components of
velocity u and v,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m̂x(x, y, t) = ∫ Lz
0 ρ(x, y, z, t)u(x, y, z, t)dz,

m̂y(x, y, t) = ∫ Lz
0 ρ(x, y, z, t)v(x, y, z, t)dz.

(13)

The integrated density and vector fields from Eqs. (13) and (14)
are shown in Fig. 9 at three time instances, namely, t = 1, 5, and
10. Shortly after release at t = 1, the vector field components m̂x
and m̂y are nearly zero within the interior of the thermal. At this
early time, the flow in the interior of the thermal is pointing mainly
vertically downward. Since m̂x and m̂y do not account for this verti-
cal component of velocity, they will attain near zero values. On the
other hand, near the outer edge of the thermal, the vector field is
predominantly aligned normally outward. We observe, however, a
slight tilting inward in the vector field toward the y = 0 symmetry

FIG. 9. Iso-contours of the vertically inte-
grated density field overlain by vectors
corresponding to the density-weighted,
vertically integrated horizontal compo-
nents of velocity. Panels (a), (b), and (c)
correspond to t = 1,5, and 10, respec-
tively. The red ellipse in panel (a) points
to the converging flow toward the y = 0
symmetry plane.
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plane. This tilting is non-existent near the short edge of the thermal
but is evident farther away, which is in accord with the direction of
flow observed from the streamlines in Fig. 7 at the same time instant
t = 1. This converging flow is very similar to that observed in non-
canonical finite-release gravity currents on horizontal (Zgheib et al.,
2017) and inclined (Zgheib et al., 2016 and Zhu et al., 2017) surfaces
shortly after release.

To help orient the integrated vector field with respect to the
thermal, the latter is represented by iso-contours of the vertically
integrated density field, ρ̂z ,

ρ̂z(x, y, t) = ∫
Lz

0
ρ(x, y, z, t)dz. (14)

By t = 5, we observe flow reversal where the m̂y component
clearly points away from the y = 0 symmetry plane. This diverg-
ing flow has never been observed before, at least in the context of
thermals. In fact, for non-canonical, initially rectangular, gravity
currents, a converging cross-flow component has previously been
reported by Zgheib et al. (2017), that is, the cross-flow occurred in
the opposite direction to that presently observed. Even though both
thermals and gravity currents are solely driven by buoyancy, it is
peculiar that they display a cross-flow velocity component in oppo-
site direction to one another. We note the increased outward normal
component of the flow along the y = 0 plane in comparison with that
along the x = 0 plane. The persistence over time of this difference
in velocity leads to the change in the cross section of the thermal
from being initially rectangular at time of release to nearly circular
by t = 10.

Finally at t = 10, we continue to observe the higher accumula-
tion of dense fluid around the vortex core and its strong migration
toward the initial major axis of the thermal. Due to this contin-
ued dense fluid migration, there is now a strong disparity in dense
fluid accumulation between the initial major and minor axes of the
thermal.

D. Swirling strength
Another aspect of the flow which will be useful in providing

possible explanations for the aforementioned effects of the non-
canonical nature of the thermal is the swirling strength λci. The
swirling strength provides a good metric for identifying regions of
intense vortical structures (Zhou et al., 1999 and Chakraborty et al.,
2005). It is mathematically defined as the absolute value of the imag-
inary portion of the complex eigenvalue of the velocity gradient ten-
sor. In this section, we will focus on the swirling strength within the
symmetry x-z and y-z planes. In Fig. 10, we show iso-contours of
λci in the aforementioned planes at t = 5. The purpose of this fig-
ure is to illustrate the difference in swirling strength between the
two symmetry planes. The vortex in the x-z plane is visibly stronger.
This difference is a direct result of the rectangular shape of the initial
release.

At the start of the simulation, there is no discernible azimuthal
variation in the thermal; however, once the rectangular vortex tube
develops, we begin to observe the effects of the non-canonical shape
discussed in Secs. III A and III C. In fact, as the vortex tube rotates
about its axis, it does not only move the dense fluid around, but
it must as well carry and displace with it a portion of the ambient

FIG. 10. Iso-contours of the swirling strength λci in the x-z and y-z symmetry
planes at t = 5.

fluid in contact with the vortex tube. In the straight portion of the
thermal (which originally corresponds to the long edge of the rect-
angle), the length of the vortex tube remains unchanged as it sinks
downward and propagates horizontally outward. Therefore, the vol-
ume of ambient fluid that is being displaced by the vortex tube does
not change significantly with time, assuming that this volume is lin-
early proportional to the length of the tube. On the other hand, the
curved portion of the vortex tube’s length increases with time as the
latter spreads horizontally outward. It follows that the amount of
ambient fluid that is being displaced and rotated by the vortex tube
increases with time as well.

IV. DISCUSSION
The non-canonical nature of the release leads to interesting

dynamics that are not present in the canonical axially symmetric
or planar cases. These dynamics are a result of the initial azimuthal
variation due to the initially non-axisymmetric shape of the dense
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fluid. These variations were observed in multiple aspects including
the thickness of the vortex tube, the disparity in the vertical and hori-
zontal velocity components, as well as the dense fluid migration (i.e.,
the cross-flow component). A possible explanation for each of these
dynamics will be given below.

A. Disparity in the horizontal velocity component
As the negatively buoyant vortex tube plunges downward, its

rotation about the tube axis generates a lift force in the normal direc-
tion to its downward path. The stronger the vortex, the stronger the
lift force and the faster the horizontal component of the velocity.
Because the strength of the vortex is not uniform along the azimuthal
direction, the lift force and, consequently, the horizontal component
of velocity will vary around the vortex tube. As seen in Fig. 10 and
discussed in Sec. III D, the vortex is strongest along the x-z symme-
try plane and weakest along the y-z symmetry plane with smooth
azimuthal variation between these two locations (not shown in the
figure). It, therefore, follows that the horizontal outward normal
component of velocity will be largest along the x-z plane and pro-
gressively decreases to its minimum value as it approaches the y-z
plane. Additionally, because the disparity in vortex strength persists
for a prolonged period of time, the initially rectangular thermal will
tend toward a more circular-like shape over time.

Figure 11 shows the horizontal distance traveled by the thermal
as well as the corresponding velocity along the x (red solid line) and
y (red dashed line) axes from R1. These curves are contrasted by the
corresponding values from P1 (blue) and C1 (green). For the rectan-
gular case R1, the thermal clearly travels faster along the x-axis than
it does along the y-axis. However, what is more interesting is that
the horizontal speed along the x-axis is even larger than that of the
canonical planar case P1. A possible explanation for this occurrence
is that contrary to the planar case, the elliptical (or rectangular) vor-
tex tube is constantly being stretched as the thermal descends. The
stretching of a vortex tube is known to increase its intensity (Lacaze
et al., 2010 and Albagnac et al., 2011). It follows that a stronger
vortex tube will lead to a stronger lift force and, consequently, to
even faster speeds along the x-axis. Needless to say, in the case of a
spanwise-invariant planar case, there is no vortex stretching.

It should be noted here that the aforementioned non-uniform
horizontal spreading is not unique to non-canonical thermals. It has
been observed in gravity currents (e.g., Zgheib et al., 2015a; 2015b)
and jets (e.g., Quinn, 1989 and Gutmark and Grinstein, 1999). How-
ever, the mechanism for each of the three cases is different. In the
case of gravity currents, the non-uniform spreading is a result of the
initial partitioning of the dense fluid in the very early stages of the
release (Zgheib et al., 2015a; 2015b). In the case of jets, and elliptic
jets in particular, the non-uniform horizontal/cross-flow spreading
is a result of differing shear layer growth rates. The shear layer along
the flattest side of the jet grows relatively faster, which leads to larger
entrainment rates and, consequently, a faster horizontal/cross-flow
spreading rate (Quinn, 1989 and Gutmark and Grinstein, 1999).

B. Disparity in the vertical velocity component
Even though the rectangular release was perfectly horizontal at

the start of the simulation, the vortex tube, shortly after its develop-
ment, becomes concave downward along the y-z plane (see Fig. 6).

FIG. 11. Horizontal distance traveled along the x and y axes from R1 (red), P1
(blue), and C1 (green).

That is the vortex tube is at a higher elevation in the x-z plane than
in the y-z plane. This indicates that in addition to the aforemen-
tioned azimuthal variation in horizontal speed of the thermal, there
is clearly an azimuthal variation in the downward speed as well. One
possible explanation for this behavior is as follows. Since the vor-
tex tube admits a horizontal component of velocity, its path is not
strictly vertical but rather inclined at some angle θ with respect to
the vertical z-axis. This angle is not uniform along the azimuthal
direction. It is largest in the x-z plane and smallest in the y-z plane,
where the horizontal speed is largest and smallest, respectively. Since
the lift force generated from the rotation of the vortex tube is nor-
mal to the path of the tube, it follows that this lift force will not be
purely horizontal but will rather have an upward z-component. The
magnitude of this component is proportional to the sine of the incli-
nation angle θ. Since θ is largest (respectively, smallest) in the x-z
(respectively, y-z) plane, then the z-component of the lift force will
be largest (respectively, smallest) along that plane as well. To add
to the previous effect, not only is the vertical component of the lift
force largest in the x-z plane, but also the strength of the vortex tube
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is largest in the x-z plane as well. Both of these effects lead to the
vertical disparity in the vertical velocity component.

There is also another aspect likely responsible for the disparity
in the thermal vertical speed. By comparing the temporal evolution
of the front position from the canonical cases P1 and C1 in Fig. 12,
it is clear that the thermal from the circular case advances the fastest
downward. This faster downward propagation is likely due to the
induced flow generated from the rotation of the vortex tube. Indeed,
as the vortex tube rotates, it not only puts the dense fluid in rota-
tion but also induces a rotation of the surrounding ambient fluid.
The induced rotation of ambient fluid has its downward compo-
nent above the dense fluid and will, thus, act to speed the descent
of the thermal. Because of its axisymmetric nature, the induced flow
is stronger in the circular than in the planar case. To put the above
discussion in the context of the non-canonical rectangular release, it
follows that the circular portion in the rectangular release will be
subject to a stronger induced flow than the initially straight por-
tion of the release. This is in agreement with the aforementioned
disparity in vertical speed along the x-z and y-z planes.

FIG. 12. (a) Temporal evolution of the vertical front position from R1 (red), P1
(blue), and C1 (green). (b) Absolute value of the z-component of velocity for the
front of the thermal.

C. Dense fluid helical migration
A cross-stream dense fluid migration has been previously

reported in the context of non-canonical gravity currents (Zgheib
et al., 2016; 2017). While both thermals and gravity currents are
driven solely by buoyancy, they do not share the same mechanism
behind the cross-flow component. In the context of gravity currents,
the cross-flow migration of the dense fluid occurred in the oppo-
site direction (away from the initial short edge of the rectangle) to
that observed presently and was primarily attributed to a difference
in dynamic pressure within the head of the gravity current (Zgheib
et al., 2016).

From Fig. 9, we find that the dense fluid, shortly after release (t
= 1), in fact admits a small but finite cross-flow component toward
the x-z plane. It is only after the vortex tube forms at t = 2 that
we begin to observe a net dense fluid migration away from the x-z
plane. A possible reason for this migration is the vertical height dis-
parity in the vortex tube between the x-z and y-z planes, the latter
being lower than the former. As the thermal sinks faster along the y-
z plane, it sucks in nearby dense fluid. This is consistent with the fact
that as the vertical disparity between these two locations increases
with time, so does the magnitude of the diverging cross-flow
component.

As for the helical nature of the flow, it arises from two fac-
tors. The first is the rotating flow in a vertical plane normal to the
vortex tube, and the second is the aforementioned cross-flow com-
ponent. The superposition of both these flow components results in
the helical motion observed in Fig. 7.

D. Effects of higher Re
All results shown thus far correspond to the laminar simula-

tions in Table I. However, we will show in this section that the
disparity of horizontal and vertical speeds as well as the cross-flow
migration of dense fluid may be equally applicable, if not amplified,
in turbulent flows. We consider simulation R2, the non-canonical
thermal with an initially rectangular cross section. Details of which
are listed in Table I.

In Fig. 13, we use semi-transparent iso-surfaces of density to
show a close-up view of the thermal from the turbulent simulation
R2 at t = 10. We observe, as stated earlier, the same dynamics as for
the laminar simulation R1. We should note here that we have addi-
tionally considered two values of the Reynolds number, namely, Re
= 300 in the laminar regime and Re = 3000 in the turbulent regime,
and we did not observe any qualitative differences with respect to
the results shown above. From the nearly circular shape at the time
instant considered in Fig. 13, it is clear that the thermal advances
faster along the x-z symmetry plane than it does along the y-z sym-
metry plane. Furthermore, it is obvious that the vortex tube shown
in red is not at the same horizontal level but takes on a shape sim-
ilar to the laminar counterpart. The tube is elevated along the x-z
symmetry plane but dips downward along the y-z symmetry plane.
Furthermore, it is clear from the figure that there is accumulation
of dense fluid along the tips of the initial major axis similar to what
was observed in the laminar case (Fig. 6). In fact, we find the accu-
mulation of heavy fluid to be visibly larger in the turbulent case than
it is in the laminar case. The accumulation of heavy fluid along the
tips of the initial major axis of release is again due to a dense fluid
migration similar to that observed in Fig. 9. It should be noted here,
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FIG. 13. Semi-transparent iso-surfaces of density from R2 at t = 10. The red,
green, and blue colors correspond to density iso-values of 10−1, 10−2, and 10−3,
respectively.

however, that the turbulent results are preliminary and require more
extensive investigation.

Additionally, we compare the temporal evolution of the ther-
mal front location from the turbulent R2 case to the experiments
of Wei Er et al. (2016). In their experiment, Wei Er et al. (2016)
released a dense solution with an identical shape to that used in
the present simulation. The released volume in the experiments was,
however, larger than that in the present simulation which resulted
in a larger Reynolds number of around 25 000. The results of the
comparison are shown in Fig. 14. Here, zF is the instantaneous
location of the thermal front and zF0 is the initial location of the
thermal front. The difference zF−zF0, thus, represents the traveled
distance of the thermal. We find that the simulation consistently

FIG. 14. Vertically traveled distance vs time. The solid line corresponds to the
present simulation. The experiment pertains to Wei Er et al. (2016).

underestimates the front position but exactly replicates the trend
of the experimental data. In fact, such behavior where turbulent
simulations correctly capture the behavior of corresponding exper-
iments at higher Reynolds numbers has been previously reported
in other types of buoyancy driven flows such as gravity currents
(e.g., Blanchette et al., 2005 and Cantero et al., 2007). This indicates
Reynolds number independence once a turbulent state is reached,
at least for the quantities that are being investigated. The underesti-
mation of the front position, however, may be due primarily to the
difference in the release mechanism between the simulation and the
experiment. The release of the dense fluid in the simulation is ideal
in the sense that there is no perturbation to the surrounding fluid at
the time of release. On the other hand, the release of the dense fluid
in the experiments significantly perturbs both the dense and ambient
fluids. The release is achieved by opening a pair of symmetric rectan-
gular half shells, which are connected by a horizontal hinge on their
top edge. The container shell rotation inevitably induces local fluid
vortices, which may affect the evolution of the thermal.

V. CONCLUSIONS
We presented results from direct numerical simulations on the

evolution of negatively buoyant thermals under laminar and tur-
bulent flow conditions. Three different initial density profiles were
studied. These included the canonical planar and axially symmetric
cases as well as the non-canonical rectangular case. We first showed
that the release location of the dense fluid with respect to the upper
surface does influence the downward speed and structure of the ther-
mal. More specifically, when the dense fluid is initially at close prox-
imity from the upper surface, a tail of dense fluid forms and persists
for a significant period of time. No tail, however, forms when the
release is sufficiently removed from the upper surface. Additionally,
the dense fluid released at close proximity to the upper boundary
advances more slowly than the same dense fluid released sufficiently
far from the upper boundary.

By plotting the three-dimensional streamlines for the non-
canonical rectangular case, we demonstrate the presence of a cross-
flow component that is otherwise not present in the canonical cases.
This cross-flow component is shown to follow a helical path and
to result in a net dense fluid migration away from the initial short
edge of the rectangular release. The direction of cross-flow was in
the opposite sense to that reported in gravity currents with the same
initial density distribution. While both thermals and gravity cur-
rents are solely driven by buoyancy, the mechanisms leading to the
cross-flow are different in each flow.

In the case of rectangular thermals, the cross-flow was shown to
be a result of azimuthal variations in induced flow and vortex tube
strengths. The induced flow was stronger near the far edges in the
rectangular case, while the vortex tube was stronger near the short
edge. Both aspects were shown to result in faster downward prop-
agation near the far edge of the thermal, which in turn leads to a
cross-flow of dense fluid away from the initial short edge.

Finally, while the majority of the analysis was conducted for
laminar flows, we showed that the dynamics corresponding to the
non-canonical nature of the release are also present and may be even
amplified at higher Reynolds numbers. It should be noted, however,
that the turbulent results are preliminary and require more extensive
investigation.
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