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Abstract

This paper estimates the demand for flights in an international air travel market

using a unique dataset with detailed information not only on flight choices but also on

contemporaneous prices and characteristics of all the alternative non-booked flights.

The estimation strategy employs a simple discrete choice random utility model that we

use to analyze how choices and its response to prices depend on the departing airport,

the identity of the carrier, and the departure date and time. The results show that

a 10% increase in prices in a 100-seat aircraft throughout a 100-period selling season

decreases quantity demanded by 7.7 seats. We also find that the quantity demanded is

more responsive to prices for Delta and American, during morning and evening flights

and that the response to prices changes significantly over different departure dates.
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‡Universidad Católica de la Sant́ısima Concepción, Department of Economics, Alonso de Ribera 2850,

Concepción, Chile, and The University of Texas - Pan American, Department of Economics and Finance,

1201 West University Drive, Edinburg, TX 78541, crmelladocid@utpa.edu

1



1 Introduction

The main goal of empirical studies of differentiated product markets is the estimation of

the demand and the modeling of choices. The common practice is to estimate random

utility models of consumer demand using discrete choice models. A typical problem in this

type of estimation is the difficulty in obtaining the data on choices and on all the available

options. This paper proposes using a unique dataset on prices and transactions to estimate

discrete choice models that explain individual choices at the flight level. In our data we

observe not only the flight choices and the corresponding prices but also the prices and

characteristics of all the non-booked alternative flights. We are able to estimate how air

travel demand changes depending on the departure date, the departure time, the identity

of the carrier and the departing airport. The passenger choice model presented here can be

vital to the development and the assessment of new pricing strategies, capacity choices, or

route entry/exit decision. Moreover, it opens the door to a large number of other discrete

choice models that can be estimated using similar datasets. These include, for example,

models to forecast demand, estimation of market power, cross-price elasticities, single agent

dynamic models, or dynamic games.

To the best of our knowledge this is the first study that estimates the itinerary choice

(i.e., flight choice) in a revealed preference setting where information on choices and all the

alternative flights is available. The information on all options is important because this

is part of the information set available to customers when they make their choices. This

allows an easy construction of the representative utility in a random utility model. When

not all the available alternatives are observed the estimation is complicated due to the lack

of information on the arrival rates. For example, some unobserved customers can arrive

and purchase from a seller that is not in the data.1

The airline industry has already demonstrated to be a popular place for the estimation

of discrete choice models using aggregate data from the U.S. Department of Transportation.

However, these data is too aggregate to estimate the individual choices. Estimating discrete

choice models of demand employs aggregate market level data, consumer level data or

1When there is missing data one potential solution is to use the techniques described in Newman et

al.(2012).

2



both. Aggregate level data usually has aggregate quantity, prices, consumer characteristics,

market size and sometimes the distribution of demographics. It has the advantage that

in most cases it is easier to get. Consumer-level data has individual choices, prices and

characteristics of all options. The distribution of demographics is optional. It has the

advantage that it is more detailed than aggregate data, but it is more difficult to obtain. We

use posted prices and inventory changes following a similar collection strategy as Escobari

(2012) and Escobari and Lee (2012).

In this paper we focus on the international market between the three big airports serving

New York City (Newark Liberty, John F. Kennedy and La Guardia) and the main airport

in Toronto (Toronto Pearson International). The data covers all the 317 flights from the

six carriers that served this city pair between December 19 and 24, 2008. We cover the

advance sales during forty days leading to the departure dates. Counting the choices and

the available alternatives we have more than half a million observations in our dataset. The

results from the estimation of our random utility framework show that a 10% increase in

prices throughout a 100-period selling season decreases quantity demanded by 7.7 seats in a

100-seat flight. We also find that demand is greater closer to departure. When allowing the

response of quantity demanded to prices to change with the identity of the carrier we found

that Delta Airlines had the most price responsive demand followed by American Airlines

and Air Canada. Additional results show that less responsive demand is associated with

departure dates that have more congestion and higher prices and that the responsiveness

to prices varies significantly across departure dates. Finally, demand is more responsive to

prices for flights that depart from John F. Kennedy and during morning flights.

There is important related literature in airlines that uses discrete choice estimations

aimed at modeling consumer choices. Pels et al.(2001) and Hess and Polak (2005) use data

from an airline passenger survey to estimate various logit models of airport and airline

choice for the San Francisco Bay area. Ashiabor et al.(2007) use the 1995 American Travel

Survey to forecast travel demand, while Proussaloglou and Koppelman (1999) and Wen and

Lai (2012) also use survey data to estimate the choice of carrier. It is important to notice

that survey data basically creates trip scenarios to simulate the booking process. These

surveys record stated preferences and not revealed preferences based on actual choices that

result in transactions. Our data comes from the actual behavior of the interaction between
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sellers and buyers recorded by sales and posted prices. Carrier (2008) estimates itinerary

choice using booking data, but does not have the non-booked travel alternatives as we do.

Using revealed preferences from a single major European airline and stated preferences,

Atasoy and Bierlaire (2012) present an itinerary choice model. Related literature on airlines

that used the most common Airline Origin and Destination Survey (DB1B) from the U.S.

Department of Transportation includes Berry (1992) who estimates a structural discrete-

choice model of entry for the airline industry. Berry and Jia (2010) present a structural

model and estimate the impact of demand and supply changes on profitability during the

turmoil in the industry in the early 2000s, while Ciliberto and Tamer (2009) used a partially

identified entry model to investigate the heterogeneity in carriers profits.2

While we propose using posted prices, inventory changes and discrete choice models to

explain demand side behavior, posted prices data has been very popular for the estimation

of pricing strategies and supply side behavior. Stavins (2001) uses posted prices from the

Official Airline Guide to find that price dispersion attributed to ticket restrictions increases

with competition. More recently McAfee and te Velde (2007) looks at price dynamics, van

Eggermond et al.(2007) at travelers itinerary in European markets, Mantin and Koo (2009)

study dynamic price dispersion, and Alderighi (2010) explains fare dispersion. Bilotkach

et al.(2011) show empirically how yield management is effective in raising a flight’s load

factor, while Bilotkach and Rupp (2012) study the intertemporal profile and the role of low-

cost carriers and differences across online distributors. The intertemporal profile of fares

in also studied in Bergantino and Capozza (2012), who find a J-curve and in Alderighi

et al.(2012) who find a U-shape and that fares increase with occupancy rate. Escobari

(2012) estimates a dynamic demand equation and a dynamic supply equation that jointly

explain the dynamics of fares and sales as the departure date nears, Escobari and Lee (2012)

estimate price reaction functions to capture the interaction between flights, and Escobari

et al.(2013) shows empirically how airlines dynamically price discriminate.3

The organization of the rest of the paper is as follows. Section 2 explains the collection

of the data and presents the summary statistics. The explanation of the discrete choice

2See also Armantier and Richard (2008), and more recently Gedge et al.(2013).
3On the theoretical side, Deneckere and Peck (2012) present a theory to explain price posting in a

multiple period version of the models presented in Dana (1998) and Dana (1999).
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empirical model is presented in Section 3. Section 4 presents the results, while Section 5

discusses possible extensions. Section 6 concludes.

2 Data

The data for this paper was collected from the online travel agency Expedia.com following

a similar strategy as in Escobari (2012) and Escobari and Lee (2012). We not only have

information on all contemporaneous posted prices at different points in time for all available

options (i.e., flights) but also on seat inventory levels. We use the changes in inventories to

identify a sale. Hence our data replicates the information displayed to individuals who buy

tickets online and records their choices. To control for various sources of price dispersion

and demand variation across customers we focus on the lowest available one-way non-stop

economy class nonrefundable posted fare. Looking only at one-way non-stop tickets helps

define a single inventory at each price and helps control for tickets sold as part of round-trips

or longer itineraries.

As in Escobari (2012), even if one-way tickets are a small fraction of the overall tickets

sold, our observed prices are relevant as long as the carriers adjust these prices based on the

current inventory levels. Moreover, sales (obtained as inventory changes) can be the result

of tickets sold at prices different than the one-way prices - for example, as a round-trip

ticket where one of the legs is in our sample. Then our demand estimation is also capturing

the demand of round-trip tickets if one-way tickets are always priced half of the round-trip

tickets, which is the standard assumption in the airline pricing empirical literature.4 In

addition, to make the problem tractable we focus on a single city pair, New York City to

Toronto which already generates over half-a-million observations. Because there are three

big airports that serve New York City, we collected the data for all three airports, Newark

Liberty International Airport (EWR), John F. Kennedy International Airport (JFK), and

La Guardia Airport (LGA). The only airport in Toronto that we consider is the Toronto

Pearson International Airport (YYZ), which is the only big airport that serves this city.

We have sales and pricing information on all the flights that departed between December

19 and December 24, 2008. Moreover, we keep record of the prices and inventory changes

4See for example Borenstein and Rose (1994, p. 677), and Gerardi and Shapiro (2009, p. 5).
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every three days between 40 days to departure and 1 day to departure for all these flights.

Overall this included 317 flights from American Airlines, Air Canada, Continental, Delta,

Lan Chile, and United, with 10,708 tickets sold during our period of study. The details

of the 317 flights by carrier and by departure date are presented in Table 1, which is

reproduced from Escobari and Lee (2012).5 Each time a ticket was sold, we recorded the

corresponding price and the prices of all competing flights for the same day of departure.

This makes our data replicate the information available to the buyer as well as the same

structure as required for the estimation of discrete choice models. Each consumer at the

time of arriving to buy a ticket observes all posted prices and chooses the flight that gives

him the highest utility. On average we have that for each recorded ticket transaction we

there are 52 competing flights. For example, if a traveler buys a ticket from United to

fly on December 24, we also record the contemporaneous posted prices for the other 49

competing flights as detailed in Table 1.

[Table 1, about here]

In addition to sales and prices that allows estimating airline demand, the data is in-

teresting because allows demand comparisons between departing airports, departure dates,

carriers, and departure times. Table 2 reports the summary statistics for these variables.

The first four columns report the typical statistics, while columns 5 through 8 reports the

mean, standard deviation, minimum and maximum prices for each of the classifications

dictated by the dummy categories. The figures show that the dominant carrier in this city

pair is Air Canada with 30.9% of the flights, followed by United with 25.8% and by Amer-

ican Airlines with 20.8%. Moreover, there is substantial price dispersion in the sample.

The lowest priced ticket at US$ 65 is more than 16 times cheaper than the most expensive

ticket. The busiest airport is La Guardia, while most flights depart in the morning. It

is interesting to notice that while the overall average price is US$ 169.80 (column 1), the

average price at which a transaction occurred is US$ 156.93 (column 5).

5While the data collection process in Escobari and Lee (2012) is the same as in this paper, here the

structure and approach is very different. Escobari and Lee (2012) have 4,398 observations on posted prices.

Here we have 560,244 observations that keep track of the posted prices of all the available flights for every

time we observe a sale.
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[Table 2, about here]

There are important advantages in the structure of the collection of the data and in

focusing on this particular city pair. First, direct flights between New York City and

Toronto take only one hour and a half, hence it is reasonable to think that combination

of flights connecting this city pair with one or more stops are not a desired alternative for

travelers. Moreover, focusing on non-stop flights and one-way fares is useful to control for

fare differences associated to round-trip tickets and open jaws. For example, these tickets

are usually associated with Saturday-night-stay restrictions or minimum-, and maximum-

stay restrictions. This would involve tickets of a significantly different quality. Selecting

the least expensive available non-refundable ticket is important to control for the existence

of more expensive refundable tickets that are also available for purchase at different points

prior to departure. Finally, focusing on economy class tickets controls for some consumer’s

heterogeneity as some higher valuation consumers may want to buy first-class tickets. We

consider refundable and first class tickets to be of a significantly different quality.

3 Empirical Model

Consider the following random utility model framework in which travelers are assumed to

be utility maximizers. We adapt the model of Chapter 2 in Train (2002) for our setting.6

Let traveler n face a choice of traveling in any of J different flights. Notice that these J

flights are all the available flight options shown by the online travel agency. The utility of

individual n obtained from alternative j ∈ J is Unj . This level of utility is known by the

traveler but not by the econometrician. We assume that the traveler already decided to fly

over other transportation alternatives (e.g., driving or renting a car). Hence, he will choose

the flight that gives him the highest level of utility. That is, he will choose flight i if and

only if Uni > Unj for all j 6= i. Even thought the econometrician cannot observe the utility

levels, some of the flights’ attributes including the price can be observed. We label them as

xnj and pn respectively. We will relate these observed factors to the traveler’s utility with

6Talluri and van Ryzin (2004) study a similar buyers’ choice behavior from a revenue management

perspective. For a detailed discussion of discrete choice models of airline demand see Garrow (2010).
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the function Vnj = V (xnj , pnj), which is called the representative utility. Some attributes

in xnj can include, for example, departure time, departure date, departing airport, and

identity of the carrier.

From the econometrician’s view point, utility levels Unj contain some random unob-

served component that make Unj 6= Vnj . We then write Unj = Vnj+εnj , with εnj being the

stochastic component of utility. We write f(εn) as the joint density of the random vector

εn = {εn1, εn2, . . . , εnJ}. Then the probability that traveler n chooses alternative i is given

by,

Pni = Prob(Uni > Unj ∀j 6= i), (1)

= Prob(Vni + εni > Vnj + εnj ∀j 6= i),

= Prob(εnj < εni + Vni − Vnj ∀j 6= i).

Assume that εnj is distributed independent and identically distributed extreme value.

Hence, the distribution of each unobserved component of utility is:

f(εnj) = e−εnje−e
−εnj

, (2)

with the cumulative distribution being F (εnj) = e−e
−εnj

. Because the difference between

two extreme value variables is logistic we have

F (εnj − εni) =
eεnj−εni

1 + eεnj−εni
. (3)

From Equation (1) if εni is taken as given, the cumulative probability distribution for

each εnj evaluated at εni + Vni − Vnj based on Equation (3) is e−e
−εni+Vni−Vnj

. Following

the assumption of independence, this cumulative distribution over all j 6= i is the product

of the individual cumulative distributions:

Pni|εni =
∏

j 6=i

e−e
−εni+Vni−Vnj

. (4)

Because εni is not given, we need to take the integral of Pni|εni over all values of εni

weighted by the density of εni:

Pni =

∫

(

∏

j 6=i

e−e
−εni+Vni−Vnj

)

e−εnie−e−εni
dεni (5)
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that has the integral equal to

Pni =
eVni

∑

j e
Vnj

(6)

which is the equation for the logit choice probability. Because we have a panel the utility

that the traveler n obtains from buying a ticket on flight j at time t is given by,

Unjt = βanjt + αjpnjt + µj + εnjt. (7)

In Equation (7) we model the systematic component of utility as a linear function of

the parameters, Vnjt = βanjt + αjpnjt + εj . β and αj are coefficients to be estimated

and the variables anjt and pnjt are the number of days in advance the ticket was bought

and the price. Our main variable of interest is αj which captures the marginal utility of

a price increase. Of course we expect αj to be negative, hence −αj is the disutility of a

price increase. The key element in which flights are differentiated are all time invariant

and captured by µj , the time-invariant fixed effect specific to flight j. This one controls for

observed and unobserved flight specific characteristics such as departure time, departure

date, identity of the carrier, distance between the cities, or the carrier’s managerial capacity.

As a first approach we fix αj = α ∀j but then we allow αj to change with time invariant

flight specific characteristics. Then the systematic component of utility will be modeled as

Vnjt = βanjt + (δ′xnj) · pnjt + µj where we just allow αj in Equation (7) to be αj = δ′xnj .

The vector of variables xnj includes departure time, departure date, the identity of the

carrier and the departing airport. This is alternative specification in helpful to determine

how demand for a flights changes with these characteristics. There are some assumptions

for the validity of the estimation of Equation (7) that discuss in detail along with the results

in the next section.

4 Results

In this section we present the discrete choice logit estimates of the demand. For comparison

purposes we also report the linear pooled OLS as well as the linear fixed effects estimates.

Table 3 present the base model of Equation (7) where anjt is relabeled as Advance,

the number of days prior to departure fares and the sale was recorded. For pnjt we use
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LogPrice, the natural logarithm of Price. For simplicity we omit the subscripts njt

from the names of the variables. The negative and statistically significant coefficients on

Advance in columns 1 and 3 suggest that sales (demand) increases closer to departure.

However, this result is not robust across specifications as the fixed effects estimate finds

a non-significant coefficient. Notice that the reported logit coefficients are the marginal

effects obtained when evaluating the other regressors at their mean levels.

It is important to notice that LogPrice in the estimation is potentially endogenous.

Endogeneity arises if there is correlation between pnjt and the unobserved µj + εnjt. The

most common cause of this correlation is if the carrier sets prices knowing more about the

error term than the econometrician. Escobari (2012) controls for potential endogeneity in a

dynamic setting using internal instruments. Here we control for the potential endogeneity

that arises due to correlation between pnjt and εj using flight fixed effects. For εnjt we

assume that it is uncorrelated with pnjt. This assumption is reasonable given that in Esco-

bari (2012) the point estimates in the within specification that consider fare as exogenous is

virtually the same as the point estimate that treats prices as endogenous.7 An alternative

approach would be to follow the methods developed in Berry et al.(1995). However, this

approach still needs exogenous instruments which in most cases use supply side variables.

[Table 3, about here]

The negative point estimate for the coefficient on LogPrice is statistically significant

at a 1% and it is consistent with a downward sloping demand. The coefficient in column 3

indicates that when the price of a ticket increases by 10%, quantity demanded decreases by

0.070 seats in a 100-seat aircraft.8 This is a reasonable value for the estimate because this is

what quantity demanded decreases each period prior to departure. If prices are 10% higher

throughout the selling season and there are 100 periods, then this particular flight will sell

7 seats less. The point estimate in column 4 that controls for flight fixed effects suggest a

7See Table IV, columns (2) and (8) in Escobari (2012).
8This calculation follows that (-0.007/100)(%∆Price), which is the marginal effect given that LogPrice

on the right-hand side. A 10% increase in price (%∆Price=10) decreases the dependent variable by 0.0007

that in a 100-seat aircraft is 0.07 seats.
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slightly larger. This coefficient also captures the disutility of a price increase. Notice that

while we have a number of variables reported in Table 2 besides Advance that can be part

of Equation (7) (e.g., carrier identifier, airport identifier, departure time and departure

date), we cannot separately identify the marginal effects of those variables because they

are perfectly collinear with the flight fixed effects αj . However we can estimate interaction

terms between those variables and LogPrice to see how the slope of the demand changes.

[Table 4, about here]

Table 4 estimates a model in which the slope α is allowed to change with the identity of

the carrier. Focusing on the last column of the table we can observe that the carrier with

the most responsive demand is Delta, followed by American Airlines and Air Canada. The

least responsive demand is the one for United. Notice that these differences have a relatively

big economic importance. For example, all else constant, a 10% price increase throughout

a 100-period selling season in a 100-seat aircraft decreases the quantity demanded by 18

seats in Delta flight (the largest response) and by slightly less than one seat in a United

flight (the smallest response).

More inelastic demands are usually associated with higher market power and the ability

to charge higher prices. Interestingly, Delta that is the carrier with the less responsive

demand is also the one with the lowest presence in this city pair. As column 1 in Table

2 shows, only 7.32% of the flights in this city pair belong to Delta. However, Delta also

charges the highest average prices ($234.36) as reported in column 5 of Table 2. Air Canada,

who is the dominant carrier in this city pair with 30.9% of the flights is not the carrier that

charges the highest average fares and does not have the most responsive (or nonresponsive)

demand. It is difficult to infer about any causality from these results because from the view

point of the econometrician, fares and market presence are jointly determined.

[Table 5, about here]

Table 5 shows how the effect of price on quantity demanded changes with the departure

date. Demand is less responsive the Friday (December 19) before Christmas and is it more
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responsive two days before Christmas. With the exception on December 19, there is not

a big economically significant difference in the response across the rest of the departure

dates - all coefficients lie between 0.011 and 0.015. On December 21, a 10% increase

in prices throughout a 100-period selling season in a 100-seat aircraft decreases quantity

demanded by 11.1 seats while on December 23 the effect is only 15.4 seats. Compared

with the other departure dates on Tuesday December 23 the demand is relatively more

responsive. This is interesting because that Tuesday is the day where there is a large

number of scheduled flights, 61 (see Table 1), which corresponds to 21.4% of the flights in

the sample (see column 1 in Table 2). An interesting point in Table 2 is the link between

higher fares and congestion. For example, the day in which the least number of flights were

scheduled is Saturday December 20 with only 37 flights. This is also the departure date with

the highest average fares ($279.85, see column 5, Table 2). Higher fares associated with

more congestion known ex-ante is evidence of systematic peak-load pricing, as previously

documented in Escobari (2009). It would be reasonable to observe that a more responsive

demand is associated with more congestion, but the estimates in Table 5 show that there

is little evidence that this is the case.

[Table 6, about here]

The regression estimates in Table 6 are presented to address the role of the departing

airport on the relationship between prices and quantity demanded. Column 4 shows that

the point estimates for Newark of for La Guardia are nearly the same, while the response

in flights that depart from John F. Kennedy is much smaller. The null that the coefficients

between Newark and La Guardia are the same is rejected at the any reasonable significance

levels. Notice that the last three rows in the table report the p-values of all the null

hypotheses that test for pair-wise differences in the coefficients across airports. The last

two rows show that there response in the John F. Kennedy airport is significantly different

that in the other two airports. A 10% increase in prices throughout a 100-period selling

season in a 100-seat aircraft decreases quantity demanded by 17.8 seats in a flight departing

from the John F. Kennedy airport, while for the La Guardia and for Newark this figure is

57.9 seats and 66.5 seats respectively.
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[Table 7, about here]

The final set of estimates is presented in Table 7. Here the goal is to assess the role

of the departure time on the effect that prices have on quantity demanded. We divide

flight departure times in three, morning if the flight departs before noon, afternoon if the

flight departs between noon and 5:00 p.m., and evening if the flight departs after 5:00 p.m.

The logit estimates in the last column that control for flight specific characteristics show

that quantity demanded is less responsive for flights departing in the afternoon and about

equally responsive for flights departing either in the morning or in the evening. The last

three rows reports the p-values for various null hypotheses that the coefficients are pair-wise

equal.

The logit estimator used in this paper has some limitations. As explained in Train

(2002), this logit estimator can represent systematic taste variation but not random taste

variation. Logit can approximate average tastes fairly well even when tastes are random,

but a probit or a mixed logit model may be better at including random taste variation. A

second potential limitation is that the logit model has the independence of from irrelevant

alternatives (IIA) property, which means that the ratio of the probabilities of two alterna-

tives does not depend on any other alternative. Finally, the logit cannot handle unobserved

factors that are correlated over time. The main goal in this paper is to illustrate the use

of our unique data to estimate flight choice models, but other logit estimators can also be

used as extensions to this research that overcome some of the limitations outlined above.

In the next section we provide some examples for further research using similar datasets.

5 Potential Extensions

In this paper we estimated a simple random utility model, but our data and the discrete

choice modeling approach used in this paper can be extended to a number of settings. The

most obvious is to use these model estimates to forecast flight-level demand. This is or

particular importance for carriers because they use forecasted demand to schedule flights.

Additional potential extensions include measuring market power at the route level and

merger evaluation using the methods proposed in Nevo (2001) or welfare from new flights

13



following techniques for the introduction of the minivan in Petrin (2002). Discrete choice

models can also be used to estimate pricing strategies in monopoly routes using single agent

dynamics as in Rust (1987), Hotz and Miller (1993), or Aguirregabiria and Mira (2002).

In these models agents are forward looking and maximize intertemporal payoffs. When

more than one carrier serves a route, the approach can as well follow Bajari et al.(2006) or

Aguirregabiria and Mira (2007) to estimate dynamic discrete games to model and estimate

the interaction between flights. The well-known challenges in these dynamic estimations

are the large number of agents, choices and states, and the existence of multiple equilibria,

which means an important computational burden. Igami (2013) overcomes these challenges

by modeling a small number of state spaces and choice sets to estimates a dynamic model

via maximum likelihood using the nested fixed-point algorithm of Rust (1987). Some of

these topics have already been addresses using posted prices but without discrete choice

models. Escobari (2012) estimates dynamic demand and dynamic pricing equations in a

setting where agents are forward looking. Moreover, Escobari and Lee (2012) estimate

price reaction functions to model the interaction between agents.

6 Conclusion

The choice of transportation mode is the most widely used example to illustrate random

utility models. This follows from the seminal work of Daniel McFadden (1974) that esti-

mates the trip mode choice in a study of travel demand. On this line modeling the choice

of flights has also been a popular research topic; however, obtaining the appropriated data

proved to be a difficult task. Previous studies either worked with stated preferences based

on survey data or with revealed preference based on data from a single seller. In this paper

we work with revealed preferences based on data on all flights from the international air

travel market between New York City and Toronto. Our study combines two key pieces

of information. First, we have posted prices at each time period and for all the available

booked and non-booked flights. This records the menu of options available to the buyers.

Second, we observe changes in inventory levels which allow us to identify choices. The

panel structure of the data with multiple transactions per flight at various points prior to

departure allows us to control for unobserved flight specific characteristics.
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Our demand estimates show that in a 100-seat flight a 10% increase in prices throughout

a 100-period selling season reduces quantity demanded by 7.7 seats. We further inquire

how this figure changes based on key sources of product differentiation in airline markets

- the departing airport, the identity of the carrier and the departure date and time. We

find that quantity demanded is more responsive to prices for Delta flights, followed by

flights from American and Air Canada. Moreover, there are significant differences in this

responsiveness across departure dates and departing airport. Demand is less responsive

for departures at John F. Kennedy than for departures at La Guardia or Newark. Finally,

quantity demanded is more responsive to prices for departures in the morning and in the

evening when compared to departures in the afternoon. We discuss the validity of our

assumptions and highlight potential areas for future research.
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Table 1: Flights by carrier and date

Fri Sat Sun Mon Tue Wed

Dec 19 Dec 20 Dec 21 Dec 22 Dec 23 Dec 24 Total

American 12 8 11 12 13 11 67

Air Canada 19 9 13 20 20 16 97

Continental 8 5 7 8 8 6 42

Delta 4 4 4 4 4 3 23

Lan Chile 1 1 0 1 0 1 4

United 17 10 10 18 16 13 84

Total 61 37 45 63 61 50 317
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Table 2: Summary statistics

Main Variable Price

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES Mean SD Min Max Mean SD Min Max

Price 169.8 133.3 65 1,075

Advance 19.00 12.43 1 40

Bought 0.0191 0.137 0 1 156.93 111.87 65 1075

Carriers:

American 0.208 0.406 0 1 192.38 194.72 76 1075

Air Canada 0.309 0.462 0 1 144.57 69.15 81 736

Continental 0.138 0.345 0 1 155.21 114.51 77 1001

Delta 0.0732 0.261 0 1 234.36 203.77 105 953

Lan Chile 0.0129 0.113 0 1 130.45 25.84 123 220

United 0.258 0.438 0 1 173.42 105.25 65 1008

Departure Dates:

December 19 0.247 0.431 0 1 142.21 95.33 76 944

December 20 0.061 0.239 0 1 279.85 241.12 65 1075

December 21 0.108 0.311 0 1 180.72 98.35 81 738

December 22 0.231 0.422 0 1 128.38 38.72 76 472

December 23 0.214 0.41 0 1 193.73 159.52 81 1075

December 24 0.138 0.345 0 1 194.51 160.96 81 1075

Airports:

Newark Liberty 0.356 0.479 0 1 150.73 101.27 65 1001

La Guardia 0.515 0.500 0 1 171.87 133.96 76 1075

John F. Kennedy 0.129 0.336 0 1 214.46 186.27 87 1075

Departure Times:

Morning 0.447 0.497 0 1 142.06 95.94 65 1075

Afternoon 0.378 0.485 0 1 192.68 162.87 77 1075

Evening 0.175 0.380 0 1 191.55 130.96 81 953

Notes: The sample size is 560,244.
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Table 3: Demand Estimates, base model

(1) (2) (3) (4)

VARIABLES Pooled FE Logit Logit

LogPrice -0.00642*** -0.0113*** -0.00704*** -0.00771***

(0.000416) (0.000465) (0.000459) (0.000501)

Advance -0.000154*** 0.000832 -0.000151*** -0.000166***

(1.53e-05) (0.00106) (1.50e-05) (1.44e-05)

Flight FE No Yes No Yes

Observations 560,244 560,244 560,244 560,244

Log-likelihood -52,836 -52,188

Notes: Numbers in parentheses are standard errors. * significant at 10%; **

significant at 5%; *** significant at 1%.
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Table 4: Demand Estimates, the role of the carrier identity

(1) (2) (3) (4)

VARIABLES Pooled FE Logit Logit

LogPrice

American -0.00630*** -0.0116*** -0.00724*** -0.0151***

(0.000429) (0.000481) (0.000480) (0.00111)

Air Canada -0.00573*** -0.0110*** -0.00662*** -0.00866***

(0.000440) (0.000491) (0.000485) (0.00115)

Continental -0.00590*** -0.0113*** -0.00681*** -0.00301***

(0.000446) (0.000498) (0.000495) (0.00112)

Delta -0.00699*** -0.0122*** -0.00828*** -0.0180***

(0.000426) (0.000476) (0.000484) (0.00189)

Lan Chile -0.00489*** -0.0104*** -0.00593*** -0.00558***

(0.000553) (0.000598) (0.000565) (5.81e-05)

United -0.00522*** -0.0103*** -0.00612*** -0.000838

(0.000427) (0.000477) (0.000472) (0.000832)

Advance -0.000153*** 0.000845 -0.000150*** -0.000158***

(1.53e-05) (0.00106) (1.49e-05) (1.42e-05)

Flight FE No Yes No Yes

Observations 560,244 560,244 560,244 560,244

Log-likelihood -52,720 -52,106

Notes: Numbers in parentheses are standard errors. * significant at 10%; **

significant at 5%; *** significant at 1%.
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Table 5: Demand estimates, the role of the departure date

(1) (2) (3) (4)

VARIABLES Pooled FE Logit Logit

LogPrice

December 19 -0.0113*** -0.00324*** -0.0117*** -0.0149***

(0.000472) (0.00108) (0.000492) (0.000542)

December 20 -0.00761*** -0.0163*** -0.00862*** -0.0111***

(0.000439) (0.00123) (0.000459) (0.000504)

December 21 -0.00964*** -0.0117*** -0.0102*** -0.0128***

(0.000458) (0.00135) (0.000478) (0.000525)

December 22 -0.0117*** -0.0140*** -0.0121*** -0.0154***

(0.000476) (0.00166) (0.000494) (0.000546)

December 23 -0.0108*** -0.00915*** -0.0113*** -0.0143***

(0.000447) (0.000832) (0.000472) (0.000522)

December 24 -0.0102*** -0.0189*** -0.0107*** -0.0135***

(0.000452) (0.00115) (0.000474) (0.000525)

Advance -0.000190*** 0.000740 -0.000180*** -0.000214***

(1.55e-05) (0.00106) (1.47e-05) (1.39e-05)

Flight FE No Yes No Yes

Observations 560,244 560,244 560,244 560,244

Log-likelihood -52,476 -51,653

Notes: Numbers in parentheses are standard errors. * significant at 10%; **

significant at 5%; *** significant at 1%.
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Table 6: Demand estimates, the role of the departing airport

(1) (2) (3) (4)

VARIABLES Pooled FE Logit Logit

LogPrice

Newark Liberty -0.00593*** -0.0112*** -0.00661*** -0.00665***

(0.000436) (0.000487) (0.000477) (0.000633)

La Guardia -0.00573*** -0.0107*** -0.00639*** -0.00579***

(0.000424) (0.000474) (0.000465) (0.000563)

John F. Kennedy -0.00679*** -0.0119*** -0.00766*** -0.0178***

(0.000420) (0.000471) (0.000466) (0.00148)

Advance -0.000152*** 0.000836 -0.000150*** -0.000160***

(1.53e-05) (0.00106) (1.49e-05) (1.43e-05)

Flight FE No Yes No Yes

Observations 560,244 560,244 560,244 560,244

Log-likelihood -52,781 -52,157

H0 : δEWR = δLGA (p-value) 0.0120 1.05e-07 0.00592 0.107

H0 : δLGA = δJFK (p-value) 0 0 0 0

H0 : δEWR = δJFK (p-value) 0 6.14e-11 0 0

Notes: Numbers in parentheses are standard errors. * significant at 10%; ** significant at

5%; *** significant at 1%. For k, m = EWR, LGA, JFK, and k 6= m the last three rows

present the p-values of the null H0 : δk = δm.
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Table 7: Demand estimates, the role of the departure time

(1) (2) (3) (4)

VARIABLES Pooled FE Logit Logit

LogPrice

Morning -0.00777*** -0.0140*** -0.00856*** -0.00943***

(0.000450) (0.000510) (0.000495) (0.000679)

Afternoon -0.00736*** -0.0132*** -0.00814*** -0.00656***

(0.000429) (0.000485) (0.000476) (0.000533)

Evening -0.00682*** -0.0126*** -0.00759*** -0.00864***

(0.000431) (0.000486) (0.000474) (0.000698)

Advance -0.000168*** 0.000714 -0.000165*** -0.000169***

(1.54e-05) (0.00106) (1.50e-05) (1.44e-05)

Flight FE No Yes No Yes

Observations 560,244 560,244 560,244 560,244

Log-likelihood -52,791 -52,173

H0 : δMor = δAft (p-value) 7.02e-07 0 5.11e-07 6.33e-07

H0 : δAft = δEve (p-value) 1.65e-07 1.67e-10 4.00e-08 0.000688

H0 : δMor = δEve (p-value) 0 0 0 0.334

Notes: Numbers in parentheses are standard errors. * significant at 10%; ** significant at

5%; *** significant at 1%. For k, m = Morning (Mor), Afternoon (Aft), Evening (Eve), and

k 6= m the last three rows present the p-values of the null H0 : δk = δm.
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