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Abstract 

Using machine learning algorithms for the rapid diagnosis and detection of the COVID-19 
pandemic and isolating the patients from crowded environments are very important to controlling 

the epidemic. This study aims to develop a point-of-care testing (POCT) system that can detect 
COVID-19 by detecting volatile organic compounds (VOCs) in a patient's exhaled breath using 

the Gradient Boosted Trees Learner Algorithm. 294 breath samples were collected from 142 

patients at Istanbul Medipol Mega Hospital between December 2020 and March 2021. 84 cases 
out of 142 resulted in negatives, and 58 cases resulted in positives. All these breath samples have 

been converted into numeric values through five air sensors. 10% of the data have been used for 

the validation of the model, while 75% of the test data have been used for training an AI model to 
predict the coronavirus presence. 25% have been used for testing. The SMOTE oversampling 

method was used to increase the training set size and reduce the imbalance of negative and positive 

classes in training and test data. Different machine learning algorithms have also been tried to 
develop the e-nose model. The test results have suggested that the Gradient Boosting algorithm 

created the best model. The Gradient Boosting model provides 95% recall when predicting 

COVID-19 positive patients and 96% accuracy when predicting COVID-19 negative patients. 
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1- Introduction 

The coronavirus (SARS-CoV-2, 2019-nCoV), which caused the COVID-19 epidemic, spread significantly around 

the world and caused many casualties [1]. The disease initially spread rapidly in Southeast Asia and Europe, and as a 

result, it was declared a global pandemic by the World Health Organization (WHO) on March 11, 2020 (WHO briefing). 

The SARS-CoV-2 virus is highly contagious, so tests that can quickly and accurately identify patients with SARS-

CoV-2 infection have been needed throughout the pandemic. Many patients with SARS-CoV-2 infection didn’t show 

any symptoms, and they had come into contact with other people before they were diagnosed [1-3]. Therefore, there has 

been a need for a rapid, inexpensive, and highly accurate point-of-care testing (POCT) method for the timely isolation 

of infected cases and effective monitoring of potential new cases. [4]. With high accuracy, POCTs can have a greater 

impact than RT-PCR, which requires technical expertise and laboratory capacity for disease detection, occasionally 

results in false-negative results [5, 6]. Therefore, countries employ different measures to protect public safety, such as 

requiring vaccination cards, rapid tests, etc., none of which can provide an accurate representation of the COVID-19 

infection. 
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The goal of this study is to develop a POCT system that can detect COVID-19 by accurately decomposing volatile 

organic compounds (VOCs) in a patient's breath. There are studies in the literature that show that deep learning can be 

effectively used in the detection and diagnosis of COVID-19, particularly through radiology modalities [5–7]. For this 

purpose, a hand-held electronic nose (e-nose) device is designed and built. The device contains a tube that patients blow 

into, and it can accurately detect the existence of a SARS-CoV-2 infection in just a few seconds. Operating the device 

doesn’t require any special training, and it is designed to be used in public areas such as stadiums, airports, restaurants, 

and shopping malls. 

2- Material and Method 

2-1- E-Nose Structure 

The e-noses that have been built for this study employ five different gas sensors: MQ2, MQ3, MQ7, MQ8, and 

MQ135. Each sensor is sensitive to a different gas compound in human breath and detects the presence of the gas within 

a range of 0-1000 ppm (parts per million) [8]. 

The sensors used in the e-noses can be summarized as below: 

 MQ2 is a combustible gas sensor. It has high sensitivity to LPG, Propane, Methane, and other combustible gases. 

 MQ3 is a cork gas sensor suitable for alcohol, gasoline, CH4, Hexane, LPG and carbon monoxide detection. 

 MQ7 is a sensor that is very sensitive to carbon monoxide. 

 MQ8 sensor is used for detecting high concentrations of the Hydrogen gas. 

 The MQ135 air quality sensor can detect the presence of many gases, especially NH3, benzene, alcohol and carbon 

dioxide [9]. 

2-2- Application 

For this study, a handheld e-nose device is built for data collection and breath analysis, as shown in Figure 1. E-noses 

were used for coronavirus detection in 142 patient cases at Medipol Mega Hospital between December 2020 and March 

2021. For each patient, two or all the following methods have been used for coronavirus testing: 

 Breath analysis with e-noses in specialized cabins; 

 Nasal and throat swabs; 

 PCR tests. 

 

Figure 1. E-nose device model 

Out of 292 breath samples collected from 142 patients 84 cases resulted negative, and 58 cases resulted positive. 

Collected data is stored in a database, which is then used for creating an accurate artificial intelligence (AI) model for 

disease detection. Figure 2 presents the workflow of the approach used in this study. 
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Figure 2. Workflow of the study approach 

2-2-1- Data Preparation 

While PCR test result data based on nasal and throat swabs is binary (positive or negative), sensors in the e-nose 

generate non-discrete numeric values. This allows the analysis of results from combinations of multiple sensors. For 

example, while results from the MQ2 sensor can have a strong impact on the coronavirus test results, a combination of 

MQ2 and MQ3 together may provide a stronger association with the coronavirus test results. For this purpose, this study 

also considers the following metrics and their squares: 

 MQ2 - MQ3; 

 MQ2 - MQ7; 

 MQ2 - MQ8; 

 MQ2 - MQ135; 

 MQ3 - MQ7; 

 MQ3 - MQ8; 

 MQ3 - MQ135; 

 MQ7 - MQ8; 

 MQ7 - MQ135; 

 MQ8 - MQ135. 

The resulting dataset used in this study has 27 attributes, and 294 records. 90% of this data (264 records) is used for 

training an AI model to predict the coronavirus presence, and the remaining 10% (30 records) is used for validating the 

results. Out of the 264 records, 75% were used for training the model and 25% were used for testing. Only after successful 

testing results were achieved, the model was used for validating the result with the 10% of the data. Figure 3 shows the 

details of the data preparation step. 

Standard classifiers give biased results in the direction of the larger subset when the dataset is unevenly distributed. 

The dataset used in this study is also unstable with a 4:1 ratio, and standard users may give incorrect results. So, before 

training, a model must address this issue. Figure 4 shows two types of data sampling: over sampling and under sampling. 

In under sampling algorithm, majority class blue points are reduced to the same size as the minority class red data points. 

In over sampling minority class, the red data points increased to the same size of the majority class blue data points [10, 

11]. 
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Figure 3. Data Preparation Process 

 

Figure 4. Rebalancing the dataset 

The next step used in data preparation is to synthetically increase the training set size and reduce the imbalance of 

negative and positive class sizes. Increased training set size offers more accurate results and balancing the data set 

reduces overfitting (i.e., learning majority cases only). For this purpose, the SMOTE (Synthetic Minority Oversampling 

Technique) oversampling method was used. SMOTE is a popular method that generates synthetic data for the minority 

data classes. Because majority of the collected breath data is Covid-negative (i.e., doesn’t contain any trace of the SARS-

CoV-2 virus), SMOTE helped balancing the negative and positive cases in the dataset. We used SMOTE data resampling 

techniques to solve the problem. SMOTE is a sampling algorithm that implements the k-nearest neighbor (KNN) 

algorithm approach. The algorithm selects the K nearest neighbors, combines them, and generates synthetic data as a 

result. (Figure 5). 
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Figure 5. Over Sampling Algorithms based on SMOTE [11] 

After the balancing phase, data was augmented to achieve a better training. After augmentation the data set size 

increased to 1,254 records. Table 1 shows the number of records and class in the dataset which has been used in the 

study. 

Table 1. Information about the data used 

Sr Dataset name 
Total 

Dataset 

Majority class 

(negative cases) 

Minority class 

(positive cases) 

Imbalance 

ratio 

1 Original Data 294 233 61 4:1 

2 Balanced Data (90% of the original) 418 209 209 1:1 

3 Augmented Data for Training 1,254 627 627 1:1 

4 Data for Validation (No augmentation or SMOTE) 30 24 6 4:1 

After the data has been balanced, we have trained a gradient boosting algorithm to check the efficiency of the model. 

The impact of balancing the dataset can be seen in the initial test results that are given in Table 2. For model evaluation, 

we used recall and precision values from the confusion matrix. The original (imbalanced) dataset was initially used to 

train an imbalanced model by using the gradient boosting algorithm. This dataset was imbalanced with ratio 4:1 meaning, 

for every 4 negative patient there are 1 positive cases. This model provides 68% precision, namely, out of 100 COVID-

negative patients, the unbalanced model predicts 68 patients as negative (true negative) and 32 patients as positive (false 

negative). Also, this model results in a 70% recall, which means that out of 100 Covid-19 positive patients, the 

imbalanced model predicts 70 patients as Covid-19 positive (true positive) and 30 patients as negative (false positive). 

Table 2 shows that all precision, recall, and accuracy results have improved greatly after balancing the dataset and 

retraining the model. A balanced model predicts 95% recall, 96% precision, and 96% accuracy. 

Table 2. Evaluation of ML Model both for original and balanced datasets 

Sr Dataset name Precision Recall Accuracy 

1 Original Data 68% 70% 68% 

2 Balanced Data 96% 95% 96% 

2-2-2- Gradient Boosted Trees Learner Algorithm 

This study uses the KNIME platform [12] to visualize data and create learning models. The learning algorithm that 

was chosen for this study is Gradient Boosted Trees. In the case of the gradient-assisted decision tree algorithm, the 

weak learners are the decision trees, and they are prone to the problem of overfitting. To reduce this risk, a model 

combining multiple decision trees is used in this study. Random forests use a method called bagging to combine many 

decision trees into a single tree. At each iteration, the random forests randomly pick any number of features, and create 

decision trees accordingly. The results of the decision trees are aggregated based on the voting principle. Random 

selection of features solves that overfitting problem that is present in decision trees [13]. 

The gradient boosted trees learner algorithm can be described as follows: 

On a dataset (x, y) with x features and y targets, the loss function L can be calculated as the Squared Residuals as 

follows: 
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𝐿 =
1

2
(𝑂𝑏𝑠 − 𝑃𝑟𝑒𝑑)2  (1) 

where Obs and Pred show the observed and predicted values respectively. The L function is differentiable: 

𝜕

𝜕𝑃𝑟𝑒𝑑
𝐿 = −1 𝑥 (𝑂𝑏𝑠 − 𝑃𝑟𝑒𝑑)  (2) 

 Initialization: 

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝛾)𝑖   (3) 

The algorithm tries to choose the best prediction by minimizing the L function (squared residuals). Deriving the 

optimal value for the class would provide predictions that will weigh the average of the samples. 

𝜕

𝜕𝛾
∑ 𝐿(𝑦𝑖 , 𝛾) =  −(𝑦1 − 𝛾) − (𝑦2 − 𝛾) − (𝑦3 − 𝛾) … =  0𝑖   (4) 

∑ 𝑦𝑖 − 𝑛 ∗ 𝛾 = 0𝑖   (5) 

𝛾 =  
∑ 𝑦𝑖𝑖

𝑛
= �̅�  (6) 

 For t = 1 to M (maximum number of trees) 

o Calculate the pseudo-residuals at every iteration. This derivative is called the Gradient 

𝑟𝑖𝑡 = − 
𝛿𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝛿𝐹(𝑥𝑖)
= −(−1 × (𝑂𝑏𝑠 − 𝐹𝑡−1(𝑥)) = (𝑂𝑏𝑠 −  𝐹𝑡−1(𝑥)) = (𝑂𝑏𝑠 − 𝑃𝑟𝑒𝑑)  (7) 

o Fit a regression tree to the rim values and create terminal regions Rjt for j = 1, … , Jt (create the leaves of the 

tree). At that point, the output value of each leaf still needs to be computed. 

o For each leaf j = 1… Jm, compute the output value that minimizes the sum of squared residuals (SSR). Outputs 

of all samples stored in a certain leaf will be predicted. 

𝛾𝑗𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝐹𝑡−1 + 𝛾)𝑥𝑖∈𝑅𝑖𝑗
  (8) 

o Make a new prediction for each sample by updating, according to a learning rate lr ∈ (0,1): 

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝑙𝑟  𝑥 ∑ 𝛾𝑗𝑡𝐼(𝑥 ∈ 𝑅𝑗𝑡)𝑗   (9) 

The new value is computed by summing the previous prediction and all the predictions into which the sample 

falls [14]. 

3- Results and Discussion 

In this study, besides the gradient boosting Machine Learning (ML) algorithm, other ML algorithms such as logistic 

regression, gradient boosting, random forest support vector machine, KNN, decision tree, and Naïve Bayes have also 

been used for comparison. Nevertheless, as seen in Table 3, gradient boosting surpasses all others in terms of precision, 

recall, and accuracy values. However, it is well known that, depending on the composition of the dataset, other algorithms 

may also achieve good predictions, but in our case, gradient boosting provided the best results. 

Table 3. Performances of all ML algorithms 

Sr Algorithm Precision Recall Accuracy 

1 Logistic Regression 0.91 0.84% 0.89 

2 Gradient Boosting 0.96% 0.95% 0.96% 

3 Random Forest 0.93% 0.89 0.92 

4 Support Vector Machine 0.86 0.75 0.72 

5 KNN 0.94 0.85 0.91 

6 Decision Tree 0.69 0.71 0.73 

7 Naïve Bayes 0.77 0.82 0.93 

Finally, performance of Gradient Boosting has been evaluated, as seen in Table 4. Statistics like specificity, positive 

predictive value (PPV), negative predictive value (NPV) and others besides receiver operating characteristics (ROC) 

curve suggest that model can be used for predictions. That means e-nose may be used in place of PCR tests. 
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Table 4. Detailed performance analysis of Gradient Boosting 

Results Testing Validation 

Statistic Value 95% CI Value 95% CI 

Sensitivity 95.62% 91.19% to 98.22% 80.00% 51.91% to 95.67% 

Specificity 96.18% 91.87% to 98.58% 96.43% 87.69% to 99.56% 

Positive Likelihood Ratio 25.02 11.41 to 54.88 22.4 5.61 to 89.42 

Negative Likelihood Ratio 0.05 0.02 to 0.09 0.21 0.08 to 0.57 

Disease prevalence (*) 50.47% 44.83% to 56.11% 21.13% 12.33% to 32.44% 

Positive Predictive Value (*) 96.23% 92.08% to 98.24% 85.71% 60.05% to 95.99% 

Negative Predictive Value (*) 95.57% 91.26% to 97.80% 94.74% 86.73% to 98.02% 

Accuracy (*) 95.90% 93.09% to 97.80% 92.96% 84.33% to 97.67% 

Table 4 shows that the trained model can very accurately detect true negatives (specificity). In other words, if the e-

nose decides that someone doesn’t have the SARS-CoV-2 virus, the probability that this person is infected is less than 4%. 

The same table also shows that both PPV and NPV are higher than 85%, and accuracy is almost 93%. ROC curves for 

both training and validation are given in Figures 6 and 7, respectively. The ROC curves are plotted against the PCR test 

results, and the area under the curve (AUC) shows that the trained models have the same separation level as the PCR tests. 

 

Figure 6. Testing ROC 

 

Figure 7. Validation ROC 
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3-1- E-Nose Device 

For this study, a handheld device for breath analysis is built as seen in Figure 8 (patent pending). The device is 

equipped with the gas sensors that were listed in the Introduction section. It allows the patients to blow through a reusable 

silicone tube and generates a diagnostic output for COVID-19 in a few seconds. The e-nose device also has wireless and 

Bluetooth capabilities for easy data transfer to computers. Also, newly trained models can be easily loaded onto the 

device through its communication port. 

  

Figure 8. The E-Nose Device 

4- Conclusion 

Gradient boosting is one of the popular artificial intelligence / machine learning algorithms used in the literature. In 

this study, we used Gradient Boosting AI model on artificially balanced and augmented breath data taken from 142 

patients through e-noses that were also designed and created for this study. All the patients who participated in the study 

either showed symptoms of COVID-19 in that way or another. 

Data set have been divided in two sets as 10% validation and 90% for AI training. The AI training dataset has been 

divided into two portions: 75% training and 25% testing of the results. The AI training data has been balanced in terms 

of the class variable (i.e., Covid Positive or Negative) and augmented with the KNN algorithm. In fact, the study analyzes 

different AI algorithms’ such as SMOTE, KNN, and Gradient Boosting AI algorithms, for their performance with the 

collected breath data. The class variable is derived from PCR test results; therefore, the study relies on PCR tests. Our 

results show that the e-noses can predict COVID-19 with 96% accuracy with respect to the PCR test results. Contrary to 

the PCR tests that require at least a few hours for the results, the e-noses can decide the COVID-19 outcome in a matter 

of seconds. Therefore, the e-noses can be used in place of the PCR tests as a quick and cheap alternative. 
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