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Abstract

Automated screening systems in conjunction with machine learning-based methods are

becoming an essential part of the healthcare systems for assisting in disease diagnosis.

Moreover, manually annotating data and hand-crafting features for training purposes are

impractical and time-consuming. We propose a segmentation and classification-based

approach for assembling an automated screening system for the analysis of calcium imag-

ing. The method was developed and verified using the effects of disease IgGs (from Amyo-

trophic Lateral Sclerosis patients) on calcium (Ca2+) homeostasis. From 33 imaging videos

we analyzed, 21 belonged to the disease and 12 to the control experimental groups. The

method consists of three main steps: projection, segmentation, and classification. The entire

Ca2+ time-lapse image recordings (videos) were projected into a single image using different

projection methods. Segmentation was performed by using a multi-level thresholding (MLT)

step and the Regions of Interest (ROIs) that encompassed cell somas were detected. A

mean value of the pixels within these boundaries was collected at each time point to obtain

the Ca2+ traces (time-series). Finally, a new matrix called feature image was generated from

those traces and used for assessing the classification accuracy of various classifiers (control

vs. disease). The mean value of the segmentation F-score for all the data was above 0.80

throughout the tested threshold levels for all projection methods, namely maximum intensity,

standard deviation, and standard deviation with linear scaling projection. Although the clas-

sification accuracy reached up to 90.14%, interestingly, we observed that achieving better

scores in segmentation results did not necessarily correspond to an increase in classifica-

tion performance. Our method takes the advantage of the multi-level thresholding and of a

classification procedure based on the feature images, thus it does not have to rely on hand-
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crafted training parameters of each event. It thus provides a semi-autonomous tool for

assessing segmentation parameters which allows for the best classification accuracy.

1 Introduction

Recently, automatic screening has become an essential part of the healthcare systems for assist-

ing in disease diagnosing. In conjunction with machine learning-based methods, they became

a popular topic in interdisciplinary studies. The categorization of medical imaging systems is

based on two distinct steps: image reconstruction and image processing [1]. In the image

reconstruction step, images are formed in two and/or three dimensions by using the projection

data of an object. On the other hand, the image processing step involves enhancing image fea-

tures (e.g., noise removal) and setting the features of images (e.g., segmentation) and their clas-

sification to perform object detection. Segmentation and classification are among the most

popular techniques used in computer vision problems for object detection and interpretation

for the majority of datasets [2, 3]. In particular, cell segmentation is the most popular topic for

biomedical image analysis with the plethora of literature on segmenting different cell types [4–

7]. Some of the most used methods in cell segmentation literature are thresholding, the active

contour model, the watershed algorithm, and the deep learning approach [8–11]. The second

most important topic for automatic screening systems is the classification for aiding in the

organizing of biomedical image databases into categories [12]. A recent survey indicated that

machine learning and deep learning algorithms, such as the Support Vector Machines (SVM)

and the Convolutional Neural Networks (CNN), are the popular biomedical image classifica-

tion methods [12].

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset neurodegenerative disease that

affects upper and lower motor neurons in the brain and spinal cord giving rise to both motor

and extra-motor symptoms [13, 14]. The neuropathological hallmark of the disease is degener-

ation of motor neurons, infiltration of peripheral immune cells, and reactive gliosis surround-

ing degenerated neurons [15, 16]. In addition, as a sign of the activation of the systemic

immune response, accumulation of immunoglobulin G (IgG) was observed in the spinal cord

and cortical motor neurons of ALS patients [17]. Moreover, IgGs of ALS patients passively

transferred to mice intraperitoneally, were taken up by the motor neurons causing an increase

in the frequency of miniature endplate potential and the release of acetylcholine from the

nerve terminal [18]. In the central nervous system, astrocytes enable neuronal survival by regu-

lating neurotransmitter and ion homeostasis, energy metabolism, growth factor release, and

blood-brain barrier formation [19]. However, astrocytes may also contribute by way of non-

cell autonomous mechanisms to motor neuron damage in ALS [20–22]. Undoubtedly, intra-

cellular calcium (Ca2+) signaling plays several distinct roles in many physiological and patho-

physiological processes in the nervous system in which astrocytes take part. Loss of the normal

function of astrocytes elicits the disturbance of glutamate uptake by these cells and the motor

neuron excitotoxicity by causing an accumulation of Ca2+ in the synaptic cleft. Moreover, pre-

viously, we have shown that ALS IgGs caused an increase in the transient intracellular Ca2+

levels thus observing an acute response in the cultured rat cortical astrocytes [23].

In the current study, we proposed a segmentation and classification-based approach for

assembling an automated screening of cellular calcium signals. It was developed by using raw

data of Ca2+ fluorescence imaging in cultured primary rat cortical astrocytes upon treatment

with IgGs isolated from patients diagnosed with the sporadic form of ALS (sALS).
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Segmentation protocol was employed for detecting the boundaries of each astrocyte in the Ca2

+ imaging videos (i.e., time-lapse image stacks). Then, the traces were generated using pixels

obtained at each time point within the detected boundaries. Subsequently, a classification step

was applied to these traces (generated from all segmented astrocytes) to classify them as result-

ing from the treatment with either healthy or disease IgGs. Our method takes the advantage of

the multi-level thresholding and of the classification procedure based on the feature images.

These two approaches can be used complementarily to dynamically determine cells’ bound-

aries, commonly called Regions of Interest (ROI), to allow for development of an easy bench

to bedside automated screening.

2 Methods

2.1 Astrocyte primary cell culture and IgG isolation

Primary cortical astrocyte cultures were prepared from the cerebral cortices of neonatal rats

(2-3 days old) and this procedure is described in more detail in Bijelić et al. [24, 25]. In brief,

cells were grown in the culture medium (Dulbecco’s Modified Eagle Medium based) and incu-

bated at 37˚C under a humidified 5% CO2-containing atmosphere. Upon reaching confluence

cells were subcultured and cultivated for up to 14 days prior to seeding onto coverslips for cal-

cium imaging experiments. Cells were used in the experiments on the second and third day

after the seeding. Animal procedures were approved by the Ministry of Agriculture, Forestry

and Water Management Republic of Serbia, Veterinary Directorate, No. 323-07-11270/2020-

05 and carried out in accordance with the strict protocols of the Ethics Committee for the Use

of Laboratory Animals of the Faculty of Biology, University of Belgrade, Serbia (rsr. lic. 323-

07-10457/2019-05), in the compliance with the National ethics committee–SLASA, as well as

the EU Directive (2010/63/EU) on the protection of animals used for scientific purposes.

Blood samples were collected from patients clinically diagnosed with sALS (ALS group)

and age-matched controls (non-ALS control group) at the Institute of Neurology, Clinical

Center of Serbia and IgGs were purified at the Institute of Virology, Vaccines and Sera-Torlak,

Belgrade, Serbia [23]. For the purpose of the AUTOIGG project (EC H2020 MSCA-RISE proj-

ect No 778405) approval for the human subject research was obtained (850/6), as well as par-

ticipant consent form which was implemented in the study.

2.2 Time-lapse fluorescence imaging

As previously described [25], cell-loaded coverslips bathed in extracellular solution (ECS con-

taining in mM: 140 NaCl, 5 KCl, 2 CaCl2, 2 MgCl2, 10 D-glucose, and 10 HEPES; pH 7.4, 300

mOsm) were transferred into the recording chamber on the AxioObserver A1 microscope

with an LD LCI Plan-Apochromat 25×/0.8 NA water immersion objective lens (Carl Zeiss).

Intracellular calcium activity in astrocytes was assessed using Fluo-4 AM (Molecular Probes,

Eugene, OR, USA). Astrocytes were loaded with 5 μM Fluo-4 AM up to an 1 h in ECS at room

temperature. After rinsing, cells were kept in ECS for 15–30 min at room temperature to allow

de-esterification of the dye. Fluo-4 was excited at 480 nm using Xenon Short Arc lamp (Ushio,

Japan) coupled to the VisiChrome Polychromatic Illumination System (Visitron Systems

GmbH, Puchheim, Germany). The emission light passed through the FITC filter set (Chroma

Technology Inc., VT, USA) and it was recorded using an “Evolve” EMCCD 512 Digital Cam-

era System (Photometrics, Tucson, AZ, USA), and VisiView1 high-performance software

(VisiChrome, Visitron Systems GmbH, Puchheim, Germany). During the experiments, cells

were treated with human IgG fraction of peripheral blood collected from patients with sALS

and non-ALS controls. Time-lapse images were acquired using a 1-Hz sampling rate for up to

15 min. Initially, fluorescence intensities were recorded for 1–3 min to determine the baseline
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fluorescence. Thereafter, cells were treated for 5–10 mins by a bolus addition of IgG into the

recording chamber to reach a final concentration of 100 μg/mL. Subsequently, IgGs were

washed-out and astrocytes were observed after stimulation by ATP (1 mM for 5 sec) for up to

2 min. In this study, 33 videos were analyzed, of which 21 belonged to the disease and 12 to the

control experimental groups.

2.3 The overview of the method

The main steps of the proposed method for assembling an automated screening system are

shown in Fig 1. The method consists of three main steps: projection, segmentation, and classi-

fication. The code was written in MATLAB ver. 2022a (The MathWorks, Inc., Natick, Massa-

chusetts, United States). First, the entire Ca2+ time-lapse imaging recordings (videos) were

projected into a single image using different projection methods. The final projected image

represented the signal intensities of all pixels over time, and it was used for segmenting astro-

cytes. Next, the projected image was used in a multi-level thresholding (MLT) step and the

boundaries of astrocyte ROIs were detected in this way. The ROIs were compared to the

ground truths marked by the experienced researcher with expertise in calcium imaging on

astrocytes cell culture. The performance of this step was evaluated using segmentation metrics.

A mean intensity value of the pixels within these boundaries was collected at each time point

thus producing the Ca2+ traces (time-series). Finally, a new matrix called feature image was

generated from those traces and used for classification. Different machine learning techniques

including k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), Decision Trees, and

Ensembles were used in the classification step. Trained models were provided with the test

data and the classification performances of different classifiers were compared.

2.3.1 Projection. Projection is usually known as mapping from a three-dimensional space

to two dimensions. In our approach, the projection was used for mapping frames from Ca2+

imaging videos onto a single image in two dimensions. Maximum intensity projection and

standard deviation projection were the methods we implemented for the task of video projec-

tion. An example of applying different projection methods is presented in Fig 2. First, intensity

values over the entire time axis for each pixel were determined. The maximum value was

assigned to that pixel in the case of the maximum intensity projection image. In the standard

deviation projection case, the standard deviation of intensity values over time for each pixel

was calculated and it was assigned to that pixel in the projection image. Each frame of the

video was a 16-bit image, thus consisting of 65,536 levels of grayscale with the range of pixel

intensities of [0, 65535]. However, since the resulting range of pixel intensities in the projec-

tion image was rather narrow while an image created by the standard deviation projection

method exhibited a very low contrast, a new image was created by extending the range of pixel

intensities to the full range of [0, 65535] using linear scaling.

In summary, at the end of the projection step, all frames were mapped to the three different

images by using maximum intensity projection, standard deviation projection, and standard

deviation projection with linear scaling. All projection images were transformed to 8-bit

images at the end of this step to decrease the computational cost of the next step.

2.3.2 Segmentation. The segmentation step we will describe here was applied to the

images generated by the projection methods to obtain ROIs that could be assigned to individ-

ual astrocytes. Simultaneously, these areas were used to obtain Ca2+ traces (time-series) for the

subsequent classification step. First, the noise of each image was reduced by using a mean filter

size of 5×5, resulting in more homogeneous regions. Multi-level thresholding (MLT) was

implemented to determine the boundaries of each astrocyte. It is the basic method for image

segmentation, and it is conducted by applying different levels of threshold to the projection
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Fig 1. Procedure steps of the proposed approach. The entire Ca2+ time-lapse imaging recordings (videos) were projected into a

single image using different projection methods. Segmentation was performed by using a multi-level thresholding, and obtained

binary mask was compared to the ground truths (ROIs marked by researcher). Finally, a new matrix called feature image was

generated from extracted traces and used for assessing classification accuracy of various classifiers.

https://doi.org/10.1371/journal.pone.0281236.g001
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image. A threshold level was applied starting from the highest intensity value of 255 and it was

successively decreased by 1 at each further step. In this manner, a binary image was obtained

for every thresholding step and cumulative changes in that binary image were monitored for

the appearance of new regions in the image (by “region” we assume pixels valued as 1) that

were further defined as candidates for a cell. Namely, MLT focuses on determining a starting

point (for each ROI) around which the region would subsequently increase its size. Such area

was further monitored for changes with the application of subsequent thresholds.

The growth of all candidate cell regions along with the change of the threshold level was

monitored, and these regions were allowed to enlarge according to the optimized criteria.

These criteria were devised in accordance with the properties of ground truth ROIs, for exam-

ple, one of them being the mean area of a cell. First and foremost, we aimed to obtain segmen-

tation results that are as close as possible to what the researcher had marked. An example of

implementing the multi-level thresholding method is shown in Fig 3. As a result, there were

two scenarios for enlarging the area of candidate cell regions. In the first one, the candidate

region can remain to be a monolithic area across all threshold levels, and thus it was allowed to

expand until the area of that region has reached a pre-defined stopping criterion (see example

of the progression of two cells in Fig 3B–3E). In the second one, the candidate cell region can

merge with another expanding candidate cell region (Fig 3B–3D, top left part). In this sce-

nario, areas of both regions were calculated, and they were not merged if the total area was

Fig 2. The resulting images after applying different projection methods to intensity values over the entire time axis for each pixel of every frame. 3×3

square matrices demonstrate the intensity values of original frames (left side) and resulting images (right side).

https://doi.org/10.1371/journal.pone.0281236.g002

Fig 3. An example of implementation of multi-level thresholding. a) the maximum intensity projected image, b-d) three binary images obtained from three

different threshold levels, e) the result of the multi-level thresholding method with elimination. The candidate cell region can merge with another expanding

candidate cell region (top right corner of c and d).

https://doi.org/10.1371/journal.pone.0281236.g003
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larger than the selected junction criterion. In the opposite case, these two candidate cell

regions were merged, and the merged region was allowed to expand until its area reached the

pre-defined stopping criterion.

All these processes were applied to the projection image until the threshold level decreased

from 255 to 0. At the end of this phase, our procedure identified some candidate cell regions

that did not expand sufficiently to be considered as real cell regions, or they did not merge

with other regions. In other words, applying multi-level thresholding also results in some

noisy regions at the end of this phase (Fig 3D). To solve this problem, an elimination criterion

was devised. If the area of the candidate cell region was smaller than the elimination criterion,

this candidate region was discarded (Fig 3E). Thus, all regions, observed as a set of pixels, were

detected using multi-level thresholding and the corresponding boundaries of each astrocyte

were therefore detected automatically.

At the end of this stage, to assess the performance metrics of segmentation, precision and

recall were calculated using these boundaries and ground truths. The goal was to evaluate at

what extent the regions detected by MLT, were compatible with real boundaries of the astro-

cytes. Namely, one way to determine the quality of the resulting ROIs was to compare them to

the ROIs previously identified by the researcher. In this regard, the optimization was aimed at

the highest F-score. Precision, recall, and F-score were calculated in the following manner:

Precision ¼
TP

TP þ FP
ð1Þ

Recall ¼
TP

TPþ FN
ð2Þ

F � score ¼ 2�
ðPrecision� RecallÞ
ðPrecisionþ RecallÞ

ð3Þ

IoM ¼
areaðS \ GTÞ

minðareaðSÞ; areaðGTÞÞ
ð4Þ

where TP, FP, FN, S, and GT correspond to the True Positive, False Positive, False Negative,

Segmented region, and Ground Truth, respectively. All metrics were calculated using a differ-

ent threshold applied to the Intersection over Minimum (IoM) calculated between segmented

regions (S) and ground truths (GT). If the calculated IoM value between the S and GT was

larger than a defined threshold level, this region was counted as a true positive (TP).

2.3.3 Classification. In order to find the most efficient classifier of the Ca2+ traces

obtained from ROIs, we devised a method depicted with a flowchart in Fig 4 –a feature image

was created from a segmented image obtained after applying multi-level thresholding. The

intensities of all pixels within the detected ROI (obtained during the segmentation phase) were

used to calculate the mean value of these pixels. This process was repeated for all frames of the

Fig 4. Flowchart of the classification phase of our method. It is emphasizing data augmentation steps necessary to combine with the segmentation into an

automated screening system.

https://doi.org/10.1371/journal.pone.0281236.g004
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Ca2+ imaging videos and the average pixel intensity obtained at each time point was stored as

an element of an array vector. In other words, a row vector was generated for each detected

ROI and each value of this vector represented the average pixel intensity value within the

detected ROI at a particular time point. In this way, the matrix of a feature image was formed

by storing the row vector for each detected ROI in successive rows. Therefore, a feature image

has as many rows as the number of detected ROIs and as many columns as time points. For

this reason, the size of the feature images differs from video to video according to the number

of detected ROIs and the number of time points.

Shuffling was implemented to increase the number of data that were used for classification

and image resizing was implemented to standardize the size of all feature images. Since during

a single recording (i.e., experiment) astrocytes were treated with only one sample (control vs.

disease), all ROIs in the Ca2+ imaging video were belonging to the same class. In the shuffling

step, the order of rows of the feature image was randomly mixed, thus eliminating the depen-

dence between the ROIs, as if the resulting image was obtained from another experiment

belonging to the same class. The number of times the shuffling procedure was applied was set

to 200. If the feature size is variable as in our study, then it is acceptable to select the mean

length of the feature size as the normalized length. The normalized height of the feature image

was the average number of ROIs per video, which was around 32. Therefore, a shuffled feature

image was downsized to 128×32 (with respect to the average width × height ratio) by using

bicubic interpolation and then flattened to a vector (of size 1×4096), serving as the training

and testing dataset. All the training and testing data were generated by a procedure that

included shuffling, image resizing and flattening. This data augmentation process is important

both to make training invariant to the order of ROIs and to increase the number of images

required to train a supervised classifier.

At the end of the data augmentation process, we had generated 6600 shuffled and resized

feature images. The images were then randomly divided into the training data (66.7%) and the

test data (33.3%). Finally, a label, zero for healthy or one for the disease, was added as the last

element of the shuffled and resized feature image vector. Table 1 shows all classifiers used in

this study. Classifiers were trained using the training data and a trained model was evaluated

against the test data. The accuracy of the testing step was calculated by using the added infor-

mation regarding the class. At the end of the classification step, the calculated accuracies of the

classifiers were compared, and the most efficient classifier was determined as the one with the

highest score. We also checked the effect of the criteria governing the growth of candidate

ROIs on classification accuracy. In other words, in this regard, the optimization criteria were

to maximize the classification accuracy.

3 Results

The procedure steps shown in Fig 1 were implemented for segmenting the boundaries of astro-

cytes in Ca2+ imaging videos and the classification of the obtained traces. Out of 33 videos we

Table 1. List of classification methods.

Support Vector Machines k- Nearest Neighbors Ensemble Decision Trees

Linear SVM Fine k-NN Boasted Trees Fine Tree

Quadratic SVM Medium k-NN Bagged Trees Medium Tree

Cubic SVM Coarse k-NN Subspace Discriminant Coarse Tree

Fine Gaussian SVM Cosine k-NN Subspace k-NN

Medium Gaussian SVM Cubic k-NN RUSBoosted Trees

Coarse Gaussian SVM Weighted k-NN

https://doi.org/10.1371/journal.pone.0281236.t001
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analyzed, 21 belonged to the disease and 12 to the control experimental groups. First, all videos

were transformed into three projection images using the methods of maximum projection,

standard deviation, and standard deviation with linear scaling. Second, multi-level threshold-

ing was applied to each of these three projection images to detect the ROIs that would corre-

spond to the boundaries of astrocytes.

In our study, we applied six different IoM threshold levels (0.1, 0.2, 0.3, 0.4, 0.5, and 0.7)

and the segmentation metrics were calculated for each level separately. As presented in

Table 2, for each IoM threshold level, the best segmentation results were obtained upon reach-

ing the value of 500 for the junction criterion, and its further increase tended to decrease the

segmentation performance. After we had determined the value for the junction criterion, we

introduced the other two above-mentioned criteria, stopping and elimination, which were

determined to be 3000 and 500, respectively.

All metric results for 33 Ca2+ imaging videos are graphed in Fig 5. Metric results take values

between 0 and 1, and the performance of segmentation increases as that value gets closer to

one. The average F-score for all the data was about 0.86 throughout the first 5 threshold levels.

For the last threshold level (IoM = 0.7), the average F-score dropped to 0.80 for all videos for

all projection methods. Junction, stopping, and elimination criteria were set to 500, 3000 and

500, respectively. The F-scores are also presented in Table 3 to compare the performances of

different projection methods when only junction criterion was applied. Considering these

results, the F-score using the maximum intensity projection was the closest to 1. Moreover,

applying linear scaling to the standard deviation projection method increased the resulting F-

score values.

After applying the segmentation step for detecting ROIs that correspond to the boundaries

of astrocytes, feature images were created using extracted traces from these ROIs. Further-

more, shuffling and resizing were applied to feature images, and data for the classification step

were generated. In this step, a total of 21 feature images belonged to the disease group, of

which 15 were used for training. Similarly, 7 of the 12 feature images that belonged to the con-

trol group were used for the training. Classifiers listed in Table 1 were trained using the train-

ing data and the trained model was evaluated against the test data. Accuracies of selected

classifiers were calculated and compared to find the most efficient classifier for the proposed

method. For this purpose, 5-fold cross-validation was used for the evaluation of the perfor-

mance of trained classifier models. Train and test accuracies for all classifiers are presented in

Table 4.

Coarse Gaussian SVM, applied to training data generated by using the standard deviation

projection method, was the most efficient classifier based on the test accuracy evaluation.

Although the classification accuracy reached up to 90.14% for this projection method

(Table 4), interestingly, the other two methods achieved better segmentation performances

Table 2. Comparison of average F-score results for MLT for the range of junction criterion values given different IoM threshold levels (no other criteria applied).

F-scores were averaged over all three projection methods (maxint, std, stdscale).

IoM threshold Average F-Score for Multi-Level Thresholding

Junction Criteria Threshold

100 300 500 750 1000 1250 1500

0.1 0.7366 0.8567 0.8583 0.8218 0.7669 0.6979 0.6416

0.2 0.6363 0.7854 0.8159 0.7984 0.7480 0.6807 0.6206

0.3 0.5142 0.6635 0.7150 0.7086 0.6664 0.6035 0.5472

0.4 0.3956 0.5196 0.5576 0.5567 0.5169 0.4600 0.4126

0.5 0.2706 0.3572 0.3838 0.3860 0.3587 0.3152 0.2795

https://doi.org/10.1371/journal.pone.0281236.t002

PLOS ONE Combined segmentation and classification-based approach to automated analysis of biomedical signals

PLOS ONE | https://doi.org/10.1371/journal.pone.0281236 February 6, 2023 9 / 15

https://doi.org/10.1371/journal.pone.0281236.t002
https://doi.org/10.1371/journal.pone.0281236


(Table 3). At the same time, the most successful classification accuracy with training data cre-

ated with the standard deviation with linear scaling projection method, was also obtained with

SVMs. On the other hand, the Decision Tree served a successful classifier for the use of the

maximum intensity projection method with an accuracy reaching up to 86.0%.

4 Discussion and conclusion

In this paper, a combined segmentation and classification-based approach is proposed for

establishing an automatic screening system for Ca2+ dynamics in an astrocyte cell culture. To

that end, several excellent review papers have already covered the comparison of various meth-

ods for the analysis of astrocyte intracellular Ca2+ fluctuations that can occur either under

experimental stimulation or spontaneously [26–30]. However, our approach markedly differs

in a way that, as a starting point, a segmentation method was coupled with the classification

Fig 5. Box plots of the statistical values corresponding to segmentation performance metrics: Precision, recall,

and F-score. Since all metric results take values between 0 and 1, relatively high and stable values of Recall and

Precision for IoM values up to 0.5 justify the further usage of that level. Junction, stopping, and elimination criteria

were set to 500, 3000 and 500, respectively.

https://doi.org/10.1371/journal.pone.0281236.g005

Table 3. Comparison of F-score results for different projection methods depending on the IoM threshold level (only junction criterion was applied).

IoM Threshold Level

Projection Method 0.1 0.2 0.3 0.4 0.5 0.7

Maximum Intensity (maxint) 0.8745 0.8424 0.7563 0.5957 0.4352 0.1175

Standard Deviation (std) 0.8370 0.7811 0.6491 0.4826 0.2956 0

Standard Deviation with linear scaling (stdscale) 0.8636 0.8244 0.7397 0.5948 0.4206 0.1102

https://doi.org/10.1371/journal.pone.0281236.t003
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for detecting ROIs associated with each astrocyte in the Ca2+ imaging videos. The quality of

segmentation results is usually only compared to the hand-drawn ground truths (ROIs that

encompassed the cell somata). However, we fed the obtained time-series traces to the classifi-

cation procedure, given that another set of ground truths was available regarding the type of

cell treatment–with IgGs from non-ALS (12 videos) or from ALS patients (21 videos) [23].

Our findings point out to the interesting link between the criteria governing the growth of can-

didate ROIs and subsequent classification accuracy, that is most likely related to the features of

Ca2+ signals comprising feature images. Therefore, we expect our method to bridge the gap

between ROI-based and event-based approaches in the analysis of the results from standard

fluorescence video microscopy.

Interestingly, we observed that achieving better scores in segmentation results (in compari-

son to ground truths) did not necessarily correspond to an increase in classification perfor-

mance. It is well known that astrocytes display complex morphology due to the exquisitely

irregular, dynamic, and ultrathin (30–50 nm up to 200 nm) nature of distal compartments,

broadly named processes or filopodia, comprising the majority of the cell volume (up to 80–

85%) [29]. This effect is well described in brain slices and in vivo, respectively [26], however it

might also be observed in cell cultures [27]. By being of nanoscale size and rather thin, the filo-

podia dimensions are below the diffraction limit of light, and thus cannot be resolved by light

microscopy [29, 30]. Yet, a spatial buildup of Ca2+ fluctuations is reflected in the occurrence of

intra- and intercellular Ca2+ waves, and their time-scale spans from hundreds of milliseconds

to tens of seconds [30, 31]. Filopodia structural changes surely influence calcium dynamics

[29], and given that in vitro astrocytes generally have closer contacts with each other in com-

parison to in situ conditions, astrocytes in culture routinely exhibit intra- and intercellular cal-

cium waves [32]. In fact, such waves are very suitable as a means of determining cell

Table 4. Train and test accuracy for selected classifiers for different projection methods.

Classifiers / Projection Methods Maximum Intensity Standard Deviation Standard Deviation with linear

scaling

Training Acc. (%) Test Acc. (%) Training Acc. (%) Test Acc. (%) Training Acc. (%) Test Acc. (%)

Support Vector Machines Linear SVM 100 72.73 100 72.73 100 72.73

Quadratic SVM 100 81.82 100 81.82 100 81.82

Cubic SVM 100 70.64 100 63.64 100 72.73

Fine Gaussian SVM 68.2 54.55 68.2 54.55 68.2 54.55

Medium Gaussian SVM 100 81.82 100 89.59 100 81.82

Coarse Gaussian SVM 95.0 80.77 86.6 90.14 90.9 81.82

k- Nearest Neighbors Fine k-NN 85.5 60.27 86.9 64.27 82.3 65.23

Medium k-NN 79.6 58.91 75.7 63.95 75.5 64.41

Coarse k-NN 72.1 54.91 70.2 67.45 73.0 54.86

Cosine k-NN 88.6 75.68 92.2 72.82 88.2 81.64

Cubic k-NN 83.5 68.68 82.1 59.95 81.8 68.32

Weighted k-NN 82.5 59.68 79.0 64.73 77.5 63.91

Ensemble Boasted Trees 87.2 69.77 86.5 72.09 85.3 69.59

Bagged Trees 82.7 67.45 81.2 71.09 80.9 68.91

Subspace Discriminant 75.9 58.5 78.0 69.05 74.9 62.82

Subspace k-NN 96.7 78.18 95.9 83.95 96.1 81.0

RUSBoosted Trees 93.3 75.68 95.0 78.05 93.3 76.09

Decision Trees Fine Tree 100 86.0 100 81.82 100 72.73

Medium Tree 88.1 52.73 90.4 59.05 87.1 63.82

Coarse Tree 95.8 81.32 94.5 84.23 93.8 80.64

https://doi.org/10.1371/journal.pone.0281236.t004
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boundaries by utilizing the multi-level thresholding method allowing for the progressive

enlargement of the area of candidate cell regions.

We herewith relied on the bulk-loading of astrocytes with the Ca2+-sensitive membrane-

permeable dyes, such as Fluo-4, that lead to the investigation of their Ca2+ transients obtained

from video traces. Fluo-4 reveals even the small fluctuations in intracellular Ca2+ with changes

in fluorescence intensity throughout the entire cell [33], however, it is now known that most of

the fluctuations occur within the fine processes [26–28]. In addition, due to the above-men-

tioned diffraction limit of light microscopy, newer photonics tools such as super-resolution

microscopy, as well as the computational modeling, remain the only methodologies to target

specific cellular compartments. This means not only resolving particular compartment geome-

try but also the molecular distribution and diffusion, which are deemed essential in such small

volumes [29–31]. Nevertheless, for the bench to bedside application of an automatic screening

system, it is imperative to use simpler technical solutions that are easily portable and do not

require special training.

The measurement of Ca2+ fluctuations from astrocytic soma is relatively simple, owing to

the easy identification of the broad somatic area [28]. In addition, by carefully selecting ROIs,

one could also acquire information on Ca2+ signaling by imaging the fluorescence from the

periphery of a cell [28]. However, constraining calcium signals in fixed spatial boundaries may

result in signal detection inaccuracy or partial detection as it may become larger than or get

out of the ROI possibly overlapping with ROIs of adjacent cells [28, 30]. To solve this issue,

event-based algorithms have been developed by adopting the logic that an event presents an

increase in fluorescent intensity that can be captured based on its dynamic changes in space

and time such as related to spatial size, shape, propagation direction, duration, frequency, and

amplitude [28, 29]. Thus, our method effectively bridges the gap between the ROI-based and

event-based approaches, since after applying the segmentation stage for detecting boundaries

of astrocytes and extracting traces, the feature images were created using the ROIs and the cor-

responding traces.

Several software solutions exist [27–30] that aim to improve the analysis of astrocyte micro-

domain calcium. Notably, CaSCaDe (Ca2+ Signal Classification and Decoding) [34] uses

machine-learning to identify calcium events. It is named so because each analysis step is

dependent on the outcome of the previous step [34]. Briefly, similar to the method we pro-

posed here, time-series images were first processed to remove background noise on the sum-

intensity projected image. In the next step, such images were binarized using a threshold level

of two standard deviations from noise. After smoothing with a Gaussian filter, regional max-

ima were determined as sites of putative microdomains, and such a binarized mask was further

refined based on the additional criteria of the intensity level over time, duration, and size. Fur-

ther on, the SVM algorithm was used to detect active microdomains after conducting a train-

ing on 75 parameters of each event extracted from one raw and two smoothed intensity

profiles with different degrees of smoothness, while a set of 2500 fluorescence signals were

manually categorized as positive or negative [34]. Although our method has a few parameter

constraints that are optimizable, it takes the advantage of combining segmentation and classifi-

cation-based approach for automated analysis of biomedical signals. For the multi-level

thresholding phase it does not have to rely on manually selected ROIs and for the classification

phase it does not have to rely on hand-crafted training parameters of each event. It demon-

strates that those two approaches can be used complementarily in order to dynamically deter-

mine the best ROI size.

In conclusion, we have herewith demonstrated that our method can be used on the entire

fluorescence imaging videos, depicting: 1) different experimental groups in terms of treatment,

and 2) sequence-to-sequence differences in terms of experimental phases (baseline, acute
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treatment, washout, and viability check). It thus provides a semi-autonomous tool for assessing

segmentation parameters which allow for the best classification accuracy.
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Data curation: Gizem Dursun, Dunja Bijelić.

Formal analysis: Gizem Dursun.

Funding acquisition: Pavle R. Andjus.

Investigation: Gizem Dursun, Dunja Bijelić, Neşe Ayşit, Burcu Kurt Vatandaşlar.

Methodology: Gizem Dursun.

Project administration: Lidija Radenović, Pavle R. Andjus.

Resources: Ufuk Özkaya.
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