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ABSTRACT: This study investigates the combined impacts of climate change and agricultural conservation on the
magnitude and uncertainty of nutrient loadings in the Maumee River Watershed, the second-largest watershed of
the Laurentian Great Lakes. Two scenarios — baseline agricultural management and increased agricultural con-
servation — were assessed using an ensemble of five Soil and Water Assessment Tools driven by six climate mod-
els. The increased conservation scenario included raising conservation adoption rates from a baseline of existing
conservation practices to feasible rates in the near future based on farmer surveys. This increased adoption of win-
ter cover crops on 6%–10% to 60% of cultivated cropland; subsurface placement of phosphorus fertilizers on 35%–
60% to 68% of cultivated cropland; and buffer strips intercepting runoff from 29%–34% to 50% of cultivated crop-
land. Increased conservation resulted in statistically significant (p ≤ 0.05) reductions in annual loads of total phos-
phorus (41%), dissolved reactive phosphorus (18%), and total nitrogen (14%) under the highest emission climate
scenario (RCP 8.5). While nutrient loads decreased with increased conservation relative to baseline management
for all watershed models, different conclusions on the true effectiveness of conservation under climate change may
be drawn if only one watershed model was used.
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INTRODUCTION

An increase in intense phytoplankton blooms since
the 1980s has been seen across the globe (Ho et al.

2019), and is expected to worsen with climate change
(Paerl and Paul 2012), posing significant risks to
human health and ecology (Codd 2000; Codd et al.
2005; Liu et al. 2011; Lee et al. 2017; Wituszynski
et al. 2017). A variety of factors contribute to the
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intense and often harmful algal blooms (HABs), with
a primary driver in many regions being nonpoint
source nutrient runoff (Beaver et al. 2014; Stumpf
et al. 2016). Scientists often predict climate change
will increase nutrient runoff to water bodies with
more frequent and more intense precipitation events
(Paerl and Paul 2012), but there is evidence that in
some regions increased precipitation could be offset
by higher evapotranspiration, resulting in decreased
nutrient loading with climate change (Kalcic et al.
2019; Kujawa et al. 2020; Scavia et al. 2021).

Watershed models are often used to predict future
changes in nutrient loading and assess the influence of
conservation practices on water quality (Bosch et al.
2014; Johnson et al. 2015; Verma et al. 2015; Kalcic
et al. 2019; Kujawa et al. 2020). However, predictions
from watershed models can be highly uncertain due to
variability in climate model forecasts (e.g., Kujawa
et al. 2020; Miralha et al. 2021) as well as variability in
how watershed models simulate load response to land-
scape changes (e.g., Scavia et al. 2017; Martin et al.
2021). Considerable work in apportioning prediction
uncertainty to climate vs. hydrologic models has been
done for water quantity in a future climate (Wilby and
Harris 2006; Wilby et al. 2006; Kay et al. 2008; Addor
et al. 2014). These studies show that climate model
uncertainty can greatly outweigh uncertainty from the
hydrologic model, or that the hydrologic and climate
model uncertainties may be comparable, depending on
which factors are considered (e.g., inputs, parameteri-
zations, chosen climate models) (Kay et al. 2008;
Bosshard et al. 2013; Karlsson et al. 2016; Thober
et al. 2018).

There is no comprehensive body of work on pre-
dicting conservation practice effectiveness using an
ensemble of climate models, watershed models, and
land management scenarios. Of the studies men-
tioned above, only Karlsson et al. (2016) investigated
changes in discharge using multiple climate and
watershed models as well as multiple land-use sce-
narios. The study found land-use change across
hydrologic models to significantly affect the extreme
hydrologic response (i.e., low flow and flooding), but
overall land use had a modest contribution on aver-
age discharge variation compared to the climate and
watershed models. Kujawa et al. (2020) investigated
the uncertainty in predictions of climate change in
the Maumee River Watershed using an ensemble of
watershed models and found phosphorus predictions
could be highly uncertain based on decisions made in
the set-up of the watershed model (e.g., subroutines,
parameterizations, land management assumptions).
While Kujawa et al. (2020) concluded that uncer-
tainty from watershed models is significant for pre-
dicting nutrient discharge under a future climate, it
may be even more important when the complexity of

land management scenario analysis is added. Scavia
et al. (2021) investigated the relative uncertainty of
nutrient prediction in a series of climate, watershed,
and HABs models, and found the watershed model
contributed to the overall uncertainty for nutrient
load predictions, albeit less than the HABs and cli-
mate models. Few studies have examined the water-
shed model variations’ impact on water quality under
changing climate and land management.

The goal of this study was to understand the com-
bined impacts of climate change and increased agri-
cultural conservation (IC) on riverine nutrient
loading. The two objectives were (1) to predict if IC
will reduce nutrient loadings in a future climate, and
(2) to assess whether the effectiveness of agricultural
conservation will change between historical and
future climate periods. This study was carried out in
the Maumee River Watershed, the second-largest
watershed of the Great Lakes. We used an ensemble
of five watershed models developed using the Soil and
Water Assessment Tool (SWAT) and climate data from
six downscaled General Circulation Models (GCMs)
under the highest emission scenario (RCP 8.5) as well
as two agricultural land management scenarios (his-
torical management and IC practices including buffer
strips, subsurface placement, and cover crops).

METHODS

Study Area

The study area was the Maumee River Watershed
(~17,300 km2), located in northwest Ohio, northeast
Indiana, and southeast Michigan (Figure 1). The Mau-
mee River is a major tributary to Lake Erie. Lake Erie
has experienced significant eutrophication issues
since the 1960s and the region has since focused on
managing phosphorus to control eutrophication and
HABs (Schindler 1974; De Pinto et al. 1986; Schindler
et al. 2016). The 2012 Great Lakes Water Quality
Agreements specified phosphorus reduction as the
main strategy to control HABs in the western Lake
Erie basin (GLWQA 2015; USEPA 2018).

Decreased nutrient loading to Lake Erie is neces-
sary to lessen HABs and protect the public health of
the people in the Western Lake Erie Basin. In 2014,
Lake Erie bloom toxicity caused the City of Toledo to
issue a three-day “Do Not Drink” advisory (Jetoo
et al. 2015). While there are few studies directly link-
ing human health and Microcystis blooms, some have
shown the correlation of increases in liver disease
and cancer in areas that have Microcystis blooms
(Lee et al. 2019; Gorham et al. 2020).
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The Maumee River Watershed’s primary land use
is agriculture, specifically row crops such as corn,
soy, and winter wheat (Figure 1). The Maumee River
watershed is also the second-largest contributor of
phosphorus loading to Lake Erie but has the highest
phosphorus concentrations which are essential for
algal bloom growth (Elser 1999; Michalak et al.
2013). Phosphorus from the Maumee River Water-
shed is largely from nonpoint sources, primarily agri-
cultural (Maccoux et al. 2016). Therefore, increased
attention has been placed on this watershed to reduce
phosphorus, particularly from agricultural activities
(Scavia et al. 2017; Kalcic et al. 2019; Martin et al.
2021).

Climate Models

We chose to examine mid-century climate change
(2046–2065) because the projections are more certain
than for the end-of-century, and agricultural and
watershed managers tend to find the early period more
relevant for their planning. The timescales of interest,
annual and March–July, were chosen because they cor-
respond to loading targets in the Great Lakes Water
Quality Agreement as the most relevant predictors of
central basin hypoxia and harmful algal bloom size,
respectively (GLWQA 2015; Stumpf et al. 2016).

Six GCMs were taken from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) ensemble
and previously downscaled to 1/8° latitude-longitude
(~12 × 12 km) resolution using Bias-corrected Con-
structed Analogues (Reclamation 2013). The number of
GCMs was chosen based on similar climate and water-
shed studies (Kay et al. 2008; Velazquez et al. 2013;
Prudhomme et al. 2014; Giuntoli et al. 2015; Vetter
et al. 2017; Thober et al. 2018). We focused on the
highest-emissions scenario, RCP 8.5, and included
GCMs that varied across the expected range in precipi-
tation change. Both of these choices would be expected
to produce the greatest variation in discharge and
nutrient loading at the watershed scale (Michalak
et al. 2013; Gao et al. 2019; Kujawa et al. 2020).

The climate model data for the watershed spanned
1.5 standard deviations of the CMIP5 ensemble mean
for precipitation and remained close to the mean
change (annual mean increase of 2.76°C; March–July
mean increase of 2.74°C) for temperature. The
changes in annual precipitation from historical (H;
1996–2015) to mid-century (MC; 2046–2065) ranged
from a 5% decrease to a 12% increase, and the mean
temperature increased between 2.5°C and 3.0°C. The
changes in March–July precipitation ranged from a
3% decrease to a 19% increase, and the mean tem-
perature increased between 2.5°C and 2.9°C
(Table 1).

FIGURE 1. Map of the Maumee River Watershed. Soil and Water Assessment Tool (SWAT) models were calibrated to discharge and water
quality at the Maumee at Waterville gauge.
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Watershed Models

The watershed model ensemble was built with
SWAT. SWAT is a watershed model commonly used
to assess nonpoint source pollution in watersheds, as
well as climate change impacts on hydrology and
nutrients (e.g., Bosch et al. 2014; Verma et al. 2015;
Culbertson et al. 2016; Scavia et al. 2017; Čerkasova
et al. 2018; Wang et al. 2018). The model uses inputs
of elevation, land use and land cover, climate, and
soils, runs on daily time scales, and is able to simu-
late a wide range of agricultural and land-
management practices (Neitsch et al. 2009; Arnold
et al. 2012). SWAT has been shown to be a suitable
model for the Maumee River Watershed given its
ability to represent a range of agricultural manage-
ment practices and achieve a good calibration (Gebre-
mariam et al. 2014).

Five modeling groups from different institutions
built unique SWAT model configurations of the Mau-
mee River Watershed. Some of the inputs, such as
point sources and percent of agricultural land with
certain management practices, were similar across
these models (Table 2). Each SWAT model has the
same climate stations and inputs (Figure 1). How-
ever, each group independently made most modeling
assumptions, such as most land management opera-
tions, automatic or manual calibration choices, and
specific model routine implementation.

All models were calibrated to a single station
(Maumee at Waterville, USGS # 04193500) near the
watershed outlet and achieved good standards of per-
formance for discharge and nutrients (Moriasi
et al. 2007, 2015; Table S1). However, variations in
watershed models that all perform well at the outlet
can have significant differences in process representa-
tion upstream (Apostel et al. 2021). Hence, we then
consider each SWAT model as unique. For more
detail on baseline model set-up guidelines and varia-
tion among model inputs, see supporting information
in Kujawa et al. (2020).

Agricultural Management Scenarios

The two agricultural management scenarios
included baseline management (BM) and IC. Conser-
vation practices used in BM represented historical
(2005–2015) rates of cover crops, buffer strips, and
subsurface placement/incorporation (Table 2). Cover
crops were implemented on 6%–10% of cultivated
cropland and buffers intercepted runoff from 29%–
34% of cultivated cropland. There was significant
variation in subsurface placement, with implementa-
tion on 35%–60% of cultivated cropland depending on
the model. Interpretation was left to each modeling
group on whether to include fertilizer incorporation
with tillage as subsurface placement.

TABLE 1. CMIP5 climate models and changes from historical (1996–2015) to mid-century (2046–2065).

Shortened
climate model
name (in text)

Full
climate model

name Institute Reference

Original
resolution

(°long × °lat)

Annual March–July

Change
in temp.
(°C)

Change
in pre-
cip. (%)

Change
in temp.

(°C)

Change
in pre-
cip. (%)

CanESM CanESM2 Canadian Center
for Climate
Modeling and
Analysis

Arora et al. (2011) 2.81° × 2.81° 2.8 12 2.9 12

CSIRO_r6 CSIRO-MK3-
6-0

CSIRO Marine
and
Atmospheric
Research

Rotstayn
et al. (2010)

1.875° × 1.875° 2.5 5 2.7 19

CSIRO_r4 CSIRO-MK3-
4-0

CSIRO Marine
and
Atmospheric
Research

Rotstayn
et al. (2010)

1.875° × 1.875° 2.5 2 2.5 4

CSIRO_r10 CSIRO-MK3-
10-0

CSIRO Marine
and
Atmospheric
Research

Rotstayn
et al. (2010)

1.875° × 1.875° 3.0 13 2.9 17

MPI-ESM MPI-ESM-LR Max Planck
Institute for
Meteorology

Zanchettin
et al. (2013)

1.875° × 1.875° 2.5 −5 2.5 −3

NorESM NorESM1-M Norwegian
Climate
Centre

Bentsen
et al. (2013)

2.5° × 1.875° 2.9 9 2.7 17
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The IC scenario increased adoption rates above the
BM, from the rates listed in Table 2 to a total rate of
cover crops on 60% of cultivated cropland, subsurface
placement on 68% of cultivated cropland, and buffer
strips intercepting runoff from 50% of cultivated crop-
land. These increases were chosen in collaboration
with a stakeholder advisory group to represent feasi-
ble adoptions based on farmer surveys (Martin
et al. 2021).

The five SWAT models were run with each man-
agement scenario and driven with output from the
six climate models, resulting in 60 simulations. We
applied downscaled precipitation and temperature
outputs to the SWAT models by selecting and
directly inputting the climate grid data having the
closest centroid to the rain gauge stations included
in each SWAT model. All model runs were continu-
ous for 1996–2065 with a 5-year warm-up period
beforehand.

Metrics for Assessing Conservation Effectiveness with
the Ensemble

Two objectives were tested through comparisons of
these 60 simulations across climate and management
scenarios (Figure 2).

Objective 1 assessed changes in nutrient loading
due to conservation and climate change. We com-
pared the effect of future climate under the two agri-
cultural management scenarios for each climate and

SWAT model combination. Changes in hydrology and
nutrients from average historical (e.g., BMH, average
of the BM scenario from 1996–2015) to average mid-
century (e.g., ICMC, average of the IC scenario from
2046–2065) climates were calculated for each climate
and SWAT model combination as the change under
BM in a future climate,

ΔBMMC�H ¼ BMMC�BMH

BMH

� 100,

and the change due to both IC and future climate,

ΔICMC�H ¼ ICMC �BMH

BMH

� 100:

Objective 2 assessed the effectiveness of IC under
climate change. We calculated change due to IC in
each of the time periods, and the compare them to
one another:

ΔICH ¼ ICH �BMH

BMH

� 100,

ΔICMC ¼ ICMC �BMMC

BMMC

� 100:

These objectives were tested at both annual and
March–July timescales.

TABLE 2. Implementation of agricultural practices considered baseline management (BM) based on guidelines from the literature (see sup-
porting information in Kujawa et al. 2020).

SWAT model
(institution
where built) Cover crops Subsurface placement/incorporation Buffer strips

UT (University
of Toledo)

Cereal rye cover crop planted in 10%
of cultivated cropland, limited to
corn-soybean rotations

Incorporation via tillage immediately following
phosphorus application on 60% of cultivated
cropland

Buffers intercepting
surface runoff from
32% of cultivated
cropland

UM (University
of Michigan)

Cereal rye cover crop planted in 8.4%
of cultivated cropland

Incorporation via tillage three days after phosphorus
application on 57% of cultivated cropland, with
21% of cropland having a mixture of broadcast
and incorporation of fertilizer

Buffers intercepting
surface runoff from
34% of cultivated
cropland

OSU (Ohio
State
University)

Cereal rye cover crop planted in 8.4%
of cultivated cropland and limited
to corn-soybean rotations.

Subsurface application of phosphorus fertilizers on
35% of cultivated cropland.

Buffers intercepting
surface runoff from
29% of cultivated
cropland.

LT (LimnoTech) Cereal rye cover crop planted in 7.5%
of cultivated cropland

Subsurface placement of phosphorus fertilizers on
40% of cultivated cropland

Buffers intercepting
surface runoff from
30% of cultivated
cropland

HU (Heidelberg
University)

Cereal rye cover crop planted in 6% of
cultivated cropland

Subsurface placement of phosphorus fertilizers on
43.6% of cultivated cropland

Buffers intercepting
surface runoff from
30% of cultivated
cropland
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Results for the change in hydrology under
ΔBMMC�H were discussed extensively in Kujawa
et al. (2020), therefore, this study focuses on the IC
scenario. Increased conservation (ΔICMC�H) was con-
sidered effective in a future climate if nutrient loads
decreased compared to ΔBMMC�H, even if future
nutrient loads increased in both ΔICMC�H and
ΔBMMC�H scenarios. We also assessed if conservation
effectiveness changed in a future climate by compar-
ing nutrient loadings for historical climate under BM
to historical climate under IC (ΔICH) and for mid-
century climate under BM to mid-century climate
under IC (ΔICMC) (Figure 2).

The nonparametric Wilcoxon Rank-Sum test was
used to test for statistically significant differences
between scenarios (p ≤ 0.05; Wilcoxon 1945). We also
used the signal-to-noise ratio, the ensemble mean
divided by the interquartile range, to determine
whether there was an agreement in direction and
magnitude of change within a given scenario.
Signal-to-noise greater than one indicates good agree-
ment among models (Giuntoli et al. 2015; Thober
et al. 2018).

RESULTS

Changes in Hydrology and Nutrient Loads in a Mid-
Century Climate (Objective 1)

Annual Changes in Hydrology and Nutrient
Loads. The combination of IC and climate change
(ΔICMC�H) produced no significant differences in
annual discharge, subsurface discharge, surface
runoff, and evapotranspiration (ET) when compared
with the impact of climate change under
ΔBMMC�H (p > 0.05; Figure 3). The mean differences

for the entire ensemble (SWAT and GCMs) in
ΔICMC�H were increased discharge (+3%), subsurface
discharge (+17%), and ET (+8%), and decreased sur-
face runoff (−15%). The signal-to-noise ratios were
similar under both management scenarios (i.e., none
changed from below to above one, or vice versa)
demonstrating that changes in hydrology were not
largely affected by agricultural management choices.

In contrast, differences between the changes in
nutrient loads for ΔICMC�H and ΔBMMC�H were statis-
tically significant (p ≤ 0.05). The percent changes in
annual loads were less for the ΔICMC�H scenario com-
pared to ΔBMMC�H. In ΔICMC�H, total phosphorus (TP)
decreased by 41%, dissolved reactive phosphorus
(DRP) by 18%, and total nitrogen (TN) by 14%. While
DRP and TN signal-to-noise ratios remained below 1,
they were greater for ΔICMC�H compared to ΔBMMC�H,
indicating a tendency toward agreement among
ensemble members. The strongest agreement (signal-
to-noise >1) was a reduction in TP with climate change
under ΔICMC�H (Figure 3).

Some SWAT models predicted increases in annual
nutrient loading under ΔICMC�H at mid-century.
However, in all cases, there was a lesser increase
under ΔICMC�H compared to ΔBMMC�H scenario, indi-
cating that IC was always helpful in reducing nutri-
ent loads (Figure 4). While the overall ensemble
predicted statistically significant nutrient load reduc-
tions between ΔBMMC�H and ΔICMC�H (Figure 3),
this difference was not always significant for individ-
ual SWAT models (Figure 4).

Changes in March–July Hydrology and Nutri-
ent Loads. Changes in hydrologic characteristics
between ΔBMMC�H and ΔICMC�H scenarios for
March–July, the period that governs the extent of
HABs in Lake Erie’s western basin (GLWQA 2015),
were similar to those found at the annual timescale
(Figure 5). Climate change alone (ΔBMMC-H) did not
result in large changes in discharge (+3%), but had
greater changes in surface runoff (−10%), subsurface
discharge (+9%), and ET (+12%). The addition of con-
servation (ΔICMC�H) resulted in similar and insignifi-
cant deviations from ΔBMMC�H in discharge (+2%),
surface runoff (−11%), subsurface discharge (+7%),
and ET (+13%). The only hydrologic change with
signal-to-noise above 1 was for ET in both ΔBMMC�H

and ΔICMC�H (Figure 5).
On the contrary, differences between management

scenarios (ΔBMMC�H and ΔICMC�H) were statistically
significant (p ≤ 0.05) for TP, DRP, and TN loadings
(Figure 5). DRP increased due to climate change
(ΔBMMC�H +11%) but decreased with the addition of
conservation (ΔICMC�H −11%; Table 3). TP was virtu-
ally unchanged due to climate (ΔBMMC�H, −2%) and
greatly reduced with IC (ΔICMC�H, −34%). Only TP

FIGURE 2. Comparisons of average changes in hydrology and
nutrient loads for different land management (BM, IC) and climate
(historical [H], mid-century [MC]) scenarios for Objectives 1 and 2.
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and TN in the ΔICMC�H scenario had signal-to-noise
ratios greater than one, signifying ensemble agreement
(Figure 5). Taken together, this indicates a greater
agreement in a more pronounced effect from IC and cli-
mate change than from climate change alone.

Individual SWAT models exhibited March–July
load patterns similar to annual loads. All SWAT mod-
els had less increase in nutrient loading in the
ΔICMC�H scenario compared to the ΔBMMC�H sce-
nario under future climate, demonstrating consis-
tency for ΔICMC�H in reducing nutrients. Statistically
significant differences were detected between
ΔBMMC�H and ΔICMC�H for TP in Heidelberg Univer-
sity (HU), LimnoTech (LT), and Ohio State (OSU)
SWAT models, for DRP in University of Michigan
(UM) and LT SWAT models, and for TN in HU, LT,
and OSU SWAT models (Figure 6). Yet, the predicted
reductions by the ΔICMC�H scenario for individual
SWAT models were not as clear as for the ensemble.
Some of the models showed clear improvements
under ΔICMC�H relative to ΔBMMC�H (e.g., UM),
while this change was not as apparent in other mod-
els (e.g., UT; Figure 6).

Changing Effectiveness of Conservation under
Climate Change (Objective 2)

The SWAT ensemble showed a slight decrease in
the effectiveness of IC for TP and DRP in the mid-
century climate (Table 4). However, the differences
between mid-century (ΔICMC) and historical (ΔICH)
conservation effectiveness were not statistically sig-
nificant when tested with a two-sided Wilcoxon Rank
Sum test (p > 0.05; Table S6). On average, IC

reduced annual TP by 40% in historical climate
(ΔICH), and only 36% by the mid-century (ΔICMC;
Table 4). Similarly, a 24% reduction of DRP in a his-
torical climate dropped to 21% in the mid-century.
March–July patterns were similar (Table 4). There
was considerable variation among SWAT models in
both direction and magnitude of change in conserva-
tion effectiveness for phosphorus loading (TP and
DRP) by mid-century: HU and LT predicted little to
no change (�1–2 percentage points) in conservation
effectiveness in both historical (ΔICH) and mid-
century (ΔICMC). OSU and UM showed decreased
effectiveness of IC for phosphorus and UT showed
increased effectiveness (Table 4). All SWAT models
demonstrated greater conservation effectiveness for
TN in the mid-century. On average, annual TN was
reduced 10% in this historical period (ΔICH) and 14%
at mid-century (ΔICMC). Slightly larger TN reduc-
tions were produced for March–July, with an 11%
reduction in the historical period (ΔICH) and 17% in
the mid-century (ΔICMC; Table 4).

DISCUSSION

Effects of Climate Change and Increased
Conservation on Nutrient Loading

Our goal was to assess the combined impacts of cli-
mate change and IC on riverine nutrient loading. The
first objective was to use an ensemble of watershed
and climate models to assess if IC will reduce nutri-
ent loadings in a future climate (ΔICMC�H). We

FIGURE 3. Annual changes for ΔBMMC�H and ΔICMC�H. Each boxplot includes the 30 GCM-SWAT combinations. Signal-to-noise is directly
above each boxplot. Rank Sum test for statistically significant changes (***p ≤ 0.001, ****p ≤ 0.0001, ns = not significant) between

ΔBMMC�H and ΔICMC�H denoted above boxplots. DRP, dissolved reactive phosphorus; ET, evapotranspiration, TN, total nitrogen; TP, total
phosphorus.
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showed that ΔICMC�H would be effective in a future
climate, with statistically significant (p ≤ 0.05)
decreases in nutrient loadings relative to ΔBMMC�H

for both annual and March–July loads of TP (−41%
annually; −34%, March–July), DRP (−18% annually;
−11% March–July), and TN (−14% annually; −24%

FIGURE 4. Annual results for the individual SWAT models for ΔBMMC�H and ΔICMC�H. Rank Sum test for statistically significant changes
(*p ≤ 0.05, **p ≤ 0.01, ns = not significant) between ΔBMMC�H and ΔICMC�H denoted above boxplots. Signal to noise values for individual

SWAT models can be found in Supporting Information (Table S3).

FIGURE 5. March–July changes for ΔBMMC�H and ΔICMC�H. Signal-to-noise ratio is directly above each boxplot. Rank Sum test for statisti-
cally significant changes (***p ≤ 0.001, ****p ≤ 0.0001, ns = not significant) between ΔBMMC�H and ΔICMC�H denoted above boxplots.
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March–July; Table 3; Figures 3 and 5). The reduc-
tions in annual dissolved and TP loads were larger
because there were considerable decreases from
December to February (Figure S1). TN, however,
exhibited greater percentage decreases during the
March–July period because the largest reductions
were in March and April (Figure S1).

The potential mid-century reductions in phospho-
rus and nitrogen due to IC (ΔICMC�H compared to
ΔBMMC�H) demonstrate the effectiveness of conserva-
tion despite uncertainty associated with climate
change. DRP was predicted to have an average, albeit
small, increase due to climate change alone

(ΔBMMC�H); however, introducing IC (ΔICMC�H)
yielded a significant reduction in DRP (Figure 5).
Thus, IC should help reduce future HABs because
DRP is primarily bioavailable fuel for algal growth
(Scavia et al. 2014).

The TP reductions between historical and mid-
century were small and highly uncertain under
ΔBMMC�H, but clear and consistent in ΔICMC�H Fig-
ures 3 and 5). Phosphorus is often prioritized in devel-
oping freshwater mitigation strategies because there
remains more evidence of phosphorus as the limiting
factor in freshwater bloom initiation (Schindler 1974;
Schindler et al. 2008, 2016; Stumpf et al. 2016;

TABLE 3. Average changes for ΔBMMC�H and ΔICMC�H between historical (1996–2015) and MC (2046–2065) climate as a percent
change � standard deviation (SD).

TP DRP TN

Annual March–July Annual March–July Annual March–July

ΔBMMC�H −7 � 13 −2 � 21 +1 � 20 +11 � 26 −1 � 12 −9 � 15
ΔICMC�H −41 � 15 −34 � 21 −18 � 14 −11 � 22 −14 � 15 −24 � 19

FIGURE 6. March–July results for the individual SWAT models for ΔBMMC�H andΔICMC�H. Rank sum test for statistically significant
changes (*p ≤ 0.05, **p ≤ 0.01, ns = not significant) between ΔBMMC�H and ΔICMC�H denoted above boxplots. Signal to noise values for

individual SWAT models can be found in Supporting Information (Table S3).
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USEPA 2018). The predicted reductions of both TP
and DRP indicate the conservation practices can
decrease nutrient runoff and reduce the extent of Lake
Erie HABs now and in the mid-century.

The ensemble predicted a reduction in TN in a
mid-century climate under ΔBMMC�H, and predicted
a further reduction due to ΔICMC�H. Some evidence
suggests nitrogen reductions could be critical in limit-
ing freshwater algal bloom size, duration, and toxicity
(Chaffin et al. 2014; Gobler et al. 2016; Paerl
et al. 2016; Newell et al. 2019). While nitrogen is not
at this time considered the top priority nutrient for
this watershed (USEPA 2018), it is still important for
Microcystis bloom duration (Chaffin et al. 2014) and
toxicity (Gobler et al. 2016). It is then promising that
TN is predicted to be further reduced with IC.

Our second objective was to assess whether the
effectiveness of IC will change in a future climate. We
found that on average IC was slightly less effective
in reducing phosphorus in the mid-century
(ΔICMC <ΔICH), but the difference between these two
scenarios was not statistically significant (Table 4;
Table S2). Nitrogen was more clearly reduced with
conservation in the mid-century (ΔICMC) because the
effects of climate alone reduced TN without additional
conservation (Kujawa et al. 2020). Therefore, the com-
bined effects of climate change and IC decreased TN
loadings further in the mid-century (Table 4).

Across the two objectives, we found that the com-
bined effects of climate change and IC will likely lead
to reductions in nitrogen and phosphorus loading to
Lake Erie. Other studies on the climate change in the
Maumee River Watershed found reductions in

sediment and nutrients with increased conservation
practices. Cousino et al. (2015) simulated 100% no-till
on agricultural areas and found this lowered sediment
yields by 16% compared to corresponding climate sce-
narios under historical management with conventional
tillage (nutrient data not included in findings). Bosch
et al. (2014) evaluated modest adoption rates of agri-
cultural conservation practices: 25% of cropland with
cover crops and no-till and 20% with filter strips. They
found this scenario of agricultural conservation prac-
tices with modest changes in climate showed annual
loading reductions of 6% TP, 4% DRP, and 4% TN.
Similar to this study, Bosch et al. (2014) also found
conservation practices (no-till, cover crops, filter strips)
to be less effective in a future climate.

Bosch et al. (2014) and Cousino et al. (2015) chose
to focus on variability caused by the different climate
scenarios and only include one watershed model. How-
ever, our results agree with Bosch et al. (2014) that
average nutrient loading in the Maumee can be
reduced in a future climate with additional conserva-
tion despite increased precipitation, and that a slight
decrease in conservation effectiveness may occur with
climate change. Furthermore, novel results from this
work demonstrated that greater but feasible adoption
rates of agricultural conservation practices show
greater potential for nutrient reduction. It is important
to note while this study demonstrated a need for agri-
cultural conservation to reduce nutrient loadings,
some climate change studies in the Maumee found
reductions in nutrients under historical management
due to climate alone (Kalcic et al. 2019; Scavia
et al. 2021).

TABLE 4. Changes in nutrient loading (% � SD) due to the IC scenario in both historical (ΔICH) and mid-century (ΔICMC) time periods
averaged within each SWAT model. For the full list of climate and SWAT models (see Table S3).

Variable SWAT

Annual March–July

ΔICH (1996–2015) ΔICMC (2046–2065) ΔICH (1996–2015) ΔICMC (2046–2065)

TP HU −42 � 1 −39 � 2 −37 � 2 −36 � 1
LT −57 � 2 −56 � 2 −52 � 2 −53 � 2
OSU −35 � 2 −25 � 3 −29 � 2 −21 � 3
UM −45 � 1 −36 � 1 −45 � 2 −35 � 1
UT −21 � 0 −26 � 2 −18 � 2 −24 � 4
Average � SD −40 � 13 −36 � 13 −36 � 13 −34 � 12

DRP HU −19 � 1 −18 � 1 −17 � 1 −16 � 1
LT −25 � 1 −26 � 1 −24 � 1 −26 � 1
OSU −24 � 2 −17 � 1 −16 � 1 −11 � 1
UM −38 � 0 −30 � 1 −39 � 0 −30 � 1
UT −13 � 1 −16 � 3 −10 � 1 −14 � 2
Average � SD −24 � 9 −21 � 6 −21 � 11 −19 � 8

TN HU −13 � 1 −17 � 2 −11 � 1 −13 � 2
LT −17 � 1 −26 � 2 −19 � 2 −30 � 4
OSU −12 � 0 −16 � 1 −17 � 1 −26 � 4
UM −7 � 1 −7 � 1 −6 � 1 −8 � 1
UT −2 � 5 −2 � 4 −3 � 6 −7 � 5
Average � SD −10 � 6 −14 � 9 −11 � 7 −17 � 11
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While most climate scenarios show overall
increases in precipitation, it may be important to
study the effects of seasonal drought in the Maumee
on the impacts of changes in water management.
Byun et al. (2019) found decreasing soil moisture in
the Great Lakes and Midwest and suggest the combi-
nation of drought and temperature stresses may lead
to greater irrigation. While the research is lacking,
Paul et al. (2020) simulated introducing irrigation to
a rain-fed watershed increased surface runoff and
suggests it may subsequently increase nutrient loss.

Uncertainty and Variability within the Ensemble of
Climate and Watershed Models

Understanding the extent of uncertainty and vari-
ability in watershed modeling and scenario analysis
helps to effectively communicate climate change uncer-
tainty to stakeholder groups and inform the scientific
development of models (Korfmacher 1998; Gregory
and Dieckmann 2013). In this study, there was greater
uncertainty in the direction of change in hydrology
and water quality when considering climate change
alone (underΔBMMC�H) than in the combination of cli-
mate change and IC. Depending on the watershed and
climate model used, BM results showed increasing or
decreasing phosphorus loads in a future climate
(Kujawa et al. 2020). However, including increased
conservation practices practices (ΔICMC�H) consis-
tently reduced phosphorus loading as compared to BM
(ΔBMMC�H). Much of the variability stemmed from dif-
ferences in setting up and calibrating the models
under BM (e.g., management assumptions, spatial dis-
cretization of models, and parameters; Evenson
et al. 2021; Kujawa et al. 2020) and differences in
implementation of the IC scenario (Table 2). Allowing
modeling groups to independently develop separate
baseline SWAT models allowed for a more holistic
accounting of differences in watershed models than if
one team was to develop several SWAT models with
varying inputs and parameterizations.

While the ensemble demonstrated promising
results for greater adoption of conservation practices
to reduce nutrients in the future, the confidence in
nutrient reduction becomes less apparent if an indi-
vidual watershed model is chosen. The effectiveness
of the ΔICMC�H scenario for historical and mid-
century climates varied across models, and different
conclusions may be reached regarding the impacts of
climate change and nutrient reduction potential. For
example, the UM model predicts increased phospho-
rus loadings under ΔBMMC�H and decreased loadings
under ΔICMC�H. This creates a clear message that IC
is essential to counteract a negative consequence of
climate change. However, the UT model showed DRP

reductions under both ΔBMMC�H and ΔICMC�H (Fig-
ure 4), suggesting that DRP loadings will decrease
with or without additional conservation. While these
models send conflicting messages about the value of
conservation in future nutrient loading, the ensemble
avoids drawing conclusions based on a single water-
shed model and still captures this variability in
watershed model response. We attribute much of the
variation of changes in phosphorus loading to the set-
up and parametrization of the SWAT models (Kujawa
et al. 2020). Parameterizations and submodels used
in SWAT can affect the dominant transport pathway
of phosphorus and the subsequent effects of climate
change and agricultural conservation on phosphorus
loss.

Communicating model uncertainty and variability
to stakeholders is challenging. This study includes
many facets of uncertainty in models, such as impacts
of parameterization, scenario analysis, and spatial dis-
cretization on nutrient predictions in climate analysis.
Future research could explicitly investigate each facet
of uncertainty and their interactions, as well as other
factors, such as emissions scenario, downscaling tech-
niques, watershed model calibration methods (e.g.,
multi-site calibration), and multiple regions of interest
(e.g., Wilby et al. 2006; Kay et al. 2008; Velazquez
et al. 2013). Information on the dominant causes of
uncertainty in nutrient load prediction can inform sub-
sequent studies on creating a watershed model ensem-
ble that provides a holistic accounting of uncertainty
and variability in climate change analysis, as well as
inform opportunities for focused watershed model
development. Phosphorus management is becoming a
critical issue to address concerning eutrophication
worldwide (Jeppesen et al. 2009; Bol et al. 2018; Ho
et al. 2019), and this study has demonstrated the value
of using multiple watershed models to capture uncer-
tainty and variability in scenario results. While the
analysis presented herein is limited to one watershed
and two land management scenarios, it contributes to
a growing body of information on the subject of nutri-
ent modeling and climate analysis, given there will
always be some inherent uncertainty regardless of how
advanced models become (Beven 2016). One goal is to
continuously improve and better integrate climate
models, watershed nutrient models, harmful algal
boom models, and stakeholder interests to address
nutrient runoff and HABs so results can better inform
environmental management and adaptation (e.g., Sca-
via et al. 2021).

Scientists may need guidance to determine what
knowledge on model uncertainty is required to fur-
ther agricultural sustainability in the face of climate
change before heading down the “refine-experiment-
refine” pathway (Miller et al. 2011). Research has
been conducted over the past several decades (e.g.,
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Arnell 1999; Moges et al. 2021) in the area of cascad-
ing uncertainty in hydrologic variables (e.g., dis-
charge, seven-day low flow, flooding). These studies
have contributed valuable information on relative
sources of uncertainty (e.g., climate model, hydrologic
model, downscaling method) which can guide
improved climate impact studies. However, there
remains little definitive guidance for watershed man-
agement regarding how to deal with the uncertainty
of the impacts of climate change on riverine dis-
charge. Therefore, there is still a need to reflect on
the practical limits of continuing down the research
path of modeling climate uncertainty and agricultural
sustainability (Crow 2007). Engaging with diverse
stakeholders first to define research questions sur-
rounding climate change uncertainty and watershed
modeling could be one way to produce socially robust
knowledge that can be used more directly to benefit
sustainability in society (Miller et al. 2011).

Water Quality Targets and the Future of Lake Erie

In this study, we found that increasing conservation
adoption will likely yield considerable movement
toward the load reduction target set for Lake Erie in a
mid-century climate, despite uncertainty in climate
change and a potential reduction in conservation effec-
tiveness. However, it is critical to note that the phos-
phorus targets were designed with current climate and
lake conditions. Warmer temperatures combined with
greater lake stratification could create more ideal situ-
ations for HABs to form (Paerl and Paul 2012). For
example, Del Giudice et al. (2021) suggested that a 2°C
increase in Lake Erie water temperature could lead to
blooms that start about 10 days earlier and grow 23%
more intense for the same nutrient load. Therefore,
the current phosphorus targets may not be sufficient
to reduce HABs in a future climate.

The uncertainty in predicting future climate, water-
shed conditions, and agricultural management, as well
as in-lake conditions, complicates management
decisions aimed to reduce nutrient loading and HABs.
However uncertain these predictions may be, inaction
may lead to similar or increased future HABs with
negative impacts on Lake Erie’s ecology, drinking
water, fisheries, and public health (Jetoo et al. 2015;
Brooks et al. 2016; Wituszynski et al. 2017).

CONCLUSIONS

This study used an ensemble of climate and water-
shed models to predict whether realistic rates of IC

in the Maumee River Watershed, the second largest
tributary to Lake Erie, will be effective in reducing
nutrients in the mid-century (2046–2065) under the
highest emission scenario (RCP 8.5). The IC scenario
showed significant reductions in nutrients compared
to BM for this period. The combined effects of IC and
climate change, on average, predicted annual
(March–July) decreases of 41% (34%) for TP, 18%
(11%) for DRP, and 14% (24%) for TN. The IC
scenario was slightly more effective in reducing
phosphorus in the historical period than in the
mid-century. In addition, watershed models varied
considerably in their assessment of to what degree
IC, combined with climate change, will produce phos-
phorus load reductions. The ensemble consistently
predicted nitrogen load reductions due to IC and cli-
mate change, in part because climate alone reduced
nitrogen loads in the mid-century.

We suggest predictions of hydrology and water
quality in a future climate should more frequently
employ an ensemble of watershed models. Further
study on the effects of individual sources of water-
shed model uncertainty on predictions of water qual-
ity can be used to improve watershed model
development and inform future climate impact stud-
ies. Interdisciplinary stakeholder engagement should
accompany defining further research on model uncer-
tainty and nutrient prediction. In this way, scientists
can create a body of literature on model uncertainty
more suited to realistically address agricultural sus-
tainability in the face of climate change.
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