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Abstract—Time-interleaved analog-to-digital converters (TI-
ADC) require channel matching in terms of offset, gain, and
sampling clock skew to achieve best data conversion performance.
Conventionally, correction of skew mismatch is realized with
analog delay lines, making it challenging for high-speed ADC
designs to achieve fine delay resolution over wide tuning range
while maintaining low clock jitter. Digital skew correction allows
greater flexibility than analog solutions, but is hindered by a
significant hardware footprint. This paper demonstrates digital
filter-based timing skew correction approach suitable for on-
chip implementation. In a 10-bit 8-channel TI-ADC the proposed
structure corrects mismatch magnitudes up to 0.12 sample period
across 0.9 Nyquist band while requiring only 65% hardware of
similar architectures of equivalent performance. The presented
digital circuit uses reduced combinational paths and operates at
a clock rate of single ADC channel, making it applicable for
digitally-assisted high-speed TI-ADCs.

I. INTRODUCTION

Time-interleaving (TI) is a widely adopted analog-to-digital
converter (ADC) technique which enables fast sample rates
while maintaining high resolution. With current nanometer-
scale process nodes which favor digital-intensive designs,
recent TI-ADC implementations tend to offload the fine-
tuning of channel calibration into the digital domain. This is
especially popular solution for gain and offset mismatches,
as for both of these errors the estimation and correction can
be mostly confined within individual channel data path and
realized with simple digital arithmetics [1], [2].

Matching of the clock skew is more complex, as it requires
collecting extra information from all TI channels to estimate
the sampling time error. Various techniques have been reported
for carrying out skew estimation on-chip, either by employing
auxiliary analog circuits [3]–[5] or applying statistical methods
in the digital domain to a sampled signal of known prop-
erties [6]–[10]. For correcting the skew mismatch, the most
popular approach by far is to directly tune the phase of the
sampling clocks in the analog domain with delay lines [4], [7],
[11]. Implementation of analog delay elements in clock path
introduces design challenges in terms of component matching,
delay monotonicity, jitter, as well as trade-off between delay
resolution and delay range [12], [13]. The analog issues are
further magnified in high-speed designs, where absolute clock
skew translates into larger time error relative to the sampling

Fig. 1. Effect of timing mismatch in a 2-channel TI-ADC.

period Ts. This is especially a concern in highly parallelized
TI-ADC, where residual mismatch imposes a performance
limit, e.g. to achieve 9-bit resolution with 4-channel converter,
skew deviation must not exceed 8 · 10−4 Ts [14], [15]. By
performing skew correction in the digital domain, the residual
timing error can be arbitrarily minimized, relaxing the analog
constraints for TI clock distribution. If the skew mismatch
is known, it is possible to shift the sampling instants of
digitized time series with linear interpolation. However, with
this technique the compensation range is limited to about 0.06
Ts [5], [16]. On the other hand, digital reconstruction filters
offer better skew tuning range and delay resolution but require
a trade-off between hardware cost and usable bandwidth.
Hence, it is usually implemented off-chip [17], [18].

This work examines a combination of design optimizations
for efficient digital skew mismatch correction, enabling delay
tuning ranges up to 0.12 Ts at 10-bit ADC resolution while
retaining a wide usable bandwidth and operating at a clock
rate of a single TI channel. The proposed digital structure
is suitable for on-chip implementation in highly parallelized
high-speed TI-ADCs, facilitating scalable converter designs
aiming for fully digital mismatch compensation.

This paper is structured as follows, Section II introduces
the timing error model, Section III presents the error cor-
recting algorithm, and Section IV describes relevant hardware
optimizations followed by performance overview. Section V
summarizes and concludes the paper.

II. EFFECT OF SKEW MISMATCH IN TI-ADC

Systematic sampling time error in M-channel TI-ADC
manifests at the interleaved output as a periodic signal with
characteristic spectral footprint [19], as illustrated in Fig. 1.



Fig. 2. Spectrum of Taylor expansion terms g of a sampled 1.4 GHz sinusoid
with 10-bit 4 GS/s 4-channel TI-ADC with clock mismatch of channels 2,3,
and 4 being 17, -6, and -11 ps.

Fig. 3. FDF chain for skew compensation. Each consecutive stage provides
better error term estimation.

For purposes of error correction, the error signal can be
approximated in the time domain with Taylor expansion of a
continuous input signal x(t) at ideal (non-skewed, uniformly
spaced) sampling points. For each TI channel m, correspond-
ing Taylor series terms gm of order l are expressed as

gm,l[n] = x(l)
(
(nM +m)Ts

) (∆tm)l

l!
, (1)

where ∆tm is the relative skew mismatch of corresponding
TI channel out of M total channels [20]. The sampled signal
x[n] then consists of M interleaved terms gm,0[n], which con-
stitute uniformly sampled original signal y[n] and a uniformly
sampled error signal r[n] containing

∑∞
l=1 gm,l[n] interleaved

error terms. In Fig. 2, the spectrum of y[n] equivalent to g0
is overlaid with the first two error terms g1 and g2 that are
characterized by pronounced spurious tones [19]. In practice
∆tm << Ts, so the higher-order terms (e.g. l > 4) of (1)
are negligible unless ∆tm is exceptionally large and the l-th
derivative of x is significant, which is expected at high fin.

III. ERROR CORRECTION METHOD

To estimate the Taylor series of x(t), an array of filters is
applied with frequency responses Dl(jω) approximating that
of an ideal l-order differentiator (jω)l. This array forms a
time-varying fractional delay filter (FDF), also known as a
Farrow structure [21]. Each sub-filter branch is weighted with
a periodic sequence of time delay factor estimates s[m] =

Fig. 4. Retention of SNDR against increasing skew mismatch using N FDF
stages in 10-bit 8-channel TI-ADC sampling a 770 MHz input signal at a rate
of 2 GHz. The timing skew mismatch is isolated to ADC channel 1 and the
rest of the channels are not skewed.

Fig. 5. Performance of different filter chain configurations in presence of
normally distributed skew mismatch of deviation 0.05 Ts (left) and 0.2 Ts

(right). Each point is an average of 100 trials with ideal 12-bit 8-channel
TI-ADC sampling 770 MHz input signal at a rate of 2 GHz.

ˆ∆tm for each channel m = n (mod M) as shown in Fig. 3.
In this manner, each branch realizes the computation of the
first three error terms el = gl as described by (1), with the
bypass term g0 implemented as z−G in order to equalize for
the group delay G of Dl(z).

A major drawback of the FDF approach is the use of
the non-uniformly sampled signal x[n] in approximating the
derivative of x(t), which limits the accuracy of the calculated
error signals el. To improve the derivative estimation, a
chain of N FDF stages is introduced as shown in Fig. 3,
effectively reducing el inaccuracy in each consequent stage.
Fig. 4 demonstrates how multiple FDF stages can maintain
the SNDR of an interleaved ADC output in controlled skew
mismatch conditions.

Utilization of long FDF chains for on-chip skew correction
requires significant digital resources. One option is to limit
the correction range and utilize only one-stage first-order term
compensation as reported in [1], [2], [18], which is sufficient
for TI-ADCs where the accounted relative skew mismatch is
not significant. Alternatively, the number of error terms in
individual FDF elements within the chain can be reduced.
Fig. 5 shows SNDR simulations of skew compensation by
different FDF chain configurations of up to three stages.
The configurations are enumerated with sequences that denote
number of error terms used for each successive FDF in the
chain. The simulation results in Fig. 5 indicate that reducing



the number of error terms limits the performance of the later
stages, whereas using more error terms than the effective
length N of the chain yields no significant benefit. Notably,
configuration “123”, which uses exactly n terms at n-th stage,
exhibits the same compensation performance as configuration
“333” with maximum amount of terms, which aligns with
analysis provided in [20], [21]. In the following sections, only
the configuration “123” will be considered, as it provides up
to 0.12 Ts skew correction range without loss of SNDR and
requires only 2/3 of the most effective N × N FDF chain
configuration.

IV. DIGITAL IMPLEMENTATION

This section highlights the practicalities of realizing the
introduced FDF chain using finite impulse response (FIR)
filters. Since the order of an FIR structure largely defines its
implementation cost in terms of registers, adders, and fixed
multipliers, the filter order K will be considered as the main
cost metric along with the number of unique multipliers A.

A. Filter Design

Two alternatives exist for designing wideband differentia-
tors, one method focuses on coefficient optimization based
on frequency response specification [22], [23], other method
considers generating time-domain sequences directly with co-
efficients given by polynomials [24], [25]. The latter approach
is utilized in this work for its computational simplicity and
sufficient transfer characteristics to realize skew mismatch
correction.

The impulse response of the first-order differentiator

d1(n) =
1

2π

∫ π

−π
jωejωndω =

{
0, n = 0
−1n
n , n 6= 0

(2)

is realizable as a Type-III linear-phase FIR filter [24] of order
K with a uniform group delay of K/2. For purposes of
skew mismatch correction, only even K are considered to
achieve integer group delay. The sequence is then multiplied
by a windowing function in order to reduce the characteristic
ringing in the frequency domain that is typical to finite d1(n).
Sequences dl(n) of higher orders l can be obtained by repeated
convolution of d1(n) with itself to achieve an approximation
of Dl(jω) = (jω)l. Each additional convolution increases the
length of dl(n). To equalize the group delay of the resulting
filter bank, each obtained sequence is truncated to match
a (K + 1)-long window function centered at the midpoint
dl(K/2). Compared to the frequency-domain design approach,
higher order (l ≥ 2) differentiator sequences obtained with this
method exhibit increasingly larger deviation from the ideal
(jω)l, but are still reasonably effective for purposes of skew
correction as is demonstrated in the following sections.

B. Efficient High-Throughput Filtering

In the context of high-speed TI-ADC, filtering the inter-
leaved signal is infeasible, and thus polyphase filters may be
applied directly to the parallel TI channel data [18], [22]. To
achieve wide compensation bandwidths it is imperative to use

Fig. 6. Transposed polyphase structure implementing a 4th order FIR filter
in a 2-channel double rate system.

Fig. 7. Multirate differentiator bank for second FDF stage. H0(z), D0X(z)
and H1(z), D1X(z) correspond to even and odd polyphase components of
respective filters.

high-order D(z), which in turn requires adder trees of width
at least K/2 in direct FIR implementation, which may be
challenging to achieve in high-speed designs. We suggest to
use a polyphase version of the transposed FIR structure, which
allows to restrict adder tree width to number of TI channels
M . Fig. 6 shows an example transposed polyphase FIR filter
of 4th order. With polyphase input xm[n] = x[Mn+m], the
computation of output Y for each output channel p is

Yp(z) =

M−1∑
m=0

Xm(z)Hm−p (mod M)(z)z
−d−p+m

M e, (3)

where Hk(z) is a k-th polyphase component of the FIR im-
pulse response. To align the group delays of each filter branch
to the same delay cycle, order of H(z) must be divisible by
2M . Upon expanding (3), we can see that in order to obtain
all outputs Yp(z), each of the M interleaved input components
Xm(z) must be combined with every polyphase component of
H(z), but not necessarily within one p computation datapath
as in direct-form polyphase FIR implementations. This ob-
servation suggests that linear-phase FIR filters realized in this
fashion can be optimized for symmetrical multipliers, similarly
to their direct-form counterparts [24].

C. Hardware Cost Optimizations

The bandwidth of the FDF depends on the aggregate
bandwidths of filters Dl(z), which are set by filter order K.
This dependency translates to a design trade-off, where adding
hardware (multipliers) increases the usable skew correction
bandwidth with diminishing returns. By accounting for sym-
metry of dl(n) and the fact that for dl=1,3(K/2) = 0, total
multiplier count for “123” FDF chain configuration is

A123 = 6 · (K/2)− 4. (4)



Fig. 8. Accuracy of multirate differentiator realization with FIR filters of
order J = 14 and half-band filer of order B = 92.

Fig. 9. Simulation of direct (N = 3, K = 64) and multirate implementations
(N = 3, B = 88, J = 14) of FDF chain used for skew correction in a 2
GHz 10-bit 8-channel TI-ADC. Timing skew mismatch applied to channels
2–8 is -50, -40, 55, 45, 60, 40, and -35 ps.

To improve hardware cost efficiency, we employ band-
limiting, up-sampling, and polyphase decomposition as de-
scribed in [23], [26]. Combination of these multi-rate tech-
niques is further referred to as (↑ 2) in notation. Fig. 7 gives
an example of an optimized FDF implementation, where an
additional halfband filter H(z) is utilized to reduce the order
J of consequent filters Dl(z). The combined bandwidth of
the multirate filter bank then depends on the order B of the
half-band filter [23]. Fig. 8 shows the multirate differentiator
bandwidth achievable with only J = 14 by using half-band of
order K = 92, which is approximately equivalent to a direct
implementation of individual differentiators with K = 65.
Regardless of significant mismatch with ideal differentiator
response, multirate filter banks perform as well as its direct
implementation, as shown in Fig. 9. In both cases, SNDR of
the corrected signal rapidly degrades past frequency at which
the differentiator approximations diverge from the ideal (jω)l

shape. In the FDF chain, the multirate optimization is appli-
cable to stages 2 and 3 only, where multiple differentiators
may benefit from simultaneous length reduction. Considering
symmetrical D(z) and H(z), the total multiplier count of the
optimized structure is

A123(↑2) = K/2− 1︸ ︷︷ ︸
D(z) of N=1

+ 2 · (B/2)︸ ︷︷ ︸
H(z) of N=2,3

+ 5 · (J/2)− 3︸ ︷︷ ︸
D(z) of N=2,3

. (5)

Fig. 10. Comparison of N = 3 FDF chain implementation cost for direct
and multirate filter bank implementations to achieve a set compensation BW.

TABLE I
COMPARISON OF IMPLEMENTATION COST AND PERFORMANCE

Implementation Multipliers for BWa (fNyq) ∆tmax
b

0.8 0.9 0.95 (Ts)

N=1 Direct [1], [2], [18] 8 20 46 0.01
N=3 Direct [17], [20], [21] 50 122 278 0.12
N=3 Multirate 52 79 136 0.12
a Per single channel. Example filters used for profiling are designed in the

time domain as described in section IV-A
b With test mismatch isolated to one channel (see Fig. 4)

In the new cost breakdown, in addition to parameter K, the
bandwidth-sensitive portion is also defined by H(z) order B,
while D(z) component becomes a static overhead. Fig. 10
demonstrates the bandwidth-to-cost improvement between (4)
and (5) past 0.825 of Nyquist frequency fNyq. Note that
using a multirate filter bank with elements D(z) of order 22
uniformly increases the hardware cost overhead when com-
pared to D(z) of order 14, confirming that H(z) dictates the
usable bandwidth of the multirate structure. Table I enumerates
the multiplier cost requirements of different skew correction
schemes for different bandwidth specifications. The presented
digital structure employs both the multi-stage compensation
scheme [20], [21] and the multirate FDF optimizations [23],
[26] to achieve state-of-the-art skew correction performance
while providing significant hardware savings at compensation
bandwidths of 0.9 fNyq and beyond.

V. CONCLUSION

This work demonstrates how FDF-based timing correction
approach scales in terms of usable bandwidth as well as in
terms of tolerable timing skew range. We suggest several struc-
tural optimizations for wide-bandwidth, wide-range, and high
speed algorithm implementation. Test case of 10-bit 8-channel
TI-ADC shows that the optimized reconstruction structure
tolerates mismatch magnitudes up to 0.12 Ts, and requires
only 79 fixed multipliers per channel to cover 0.9 of Nyquist
bandwidth. The presented algorithm makes efficient use of
digital hardware and is suitable for on-chip implementation
along with the TI-ADC. By allowing extensive skew correction
in the digital domain, the proposed architecture adds flexibility
and enables wider trade-offs in terms of analog design.
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