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Abstract—This paper studies an intelligent reflecting surface
(IRS) assisted wireless communication system with multiple
downlink data and energy harvesting users. We assume that
base station uses non-orthogonal multiple access (NOMA) for
transmission and downlink users employ successive interference
cancellation to decode their information from the received signal.
With this setting, our goal is to maximize the harvested energy
at the energy harvesting users while guaranteeing the minimum
rate requirements of the individual data users. We propose
an alternating optimization based algorithm, where semidefinite
relaxation is used to obtain the optimal beamforming design
at the base station and the IRS. Specifically, an iterative rank
minimization approach is used to obtain the optimal reflection
phase vector at the IRS. The convergence of the proposed
algorithm is also proved. Finally, the efficacy of the proposed
algorithm is demonstrated with the help of simulation results.

Index Terms—Intelligent reflecting surface, non-orthogonal
multiple access, successive interference cancellation, wireless
energy harvesting.

I. INTRODUCTION

Wireless energy harvesting technology can provide a viable
solution to the problem of wirelessly powering the unap-
proachable small size devices/sensors [1]. On one hand, it is
an attractive solution while, on the other hand, the limitations
imposed by strong propagation losses hinder the application
of this technology in practical situations. Due to the ability of
intelligent reflecting surfaces (IRSs) to reconfigure the wireless
environment, the losses owing to propagation environment can
be mitigated to some extent. Essentially, IRS is composed of
a large number of reflecting elements which can change the
direction of coherently reflected signals.

Due to the low-cost solution offered by an IRS, many recent
studies [2]–[9] have focused on assessing the performance ben-
efits realized by using IRSs in modern wireless communication
systems. General challenges specific to the IRS applications
in wireless communication systems are highlighted in [2].
In [3], theoretical performance limits of IRS-based wireless
communication systems are explored. Mu et. al. in [4], [5]
have provided algorithms for maximizing the sum rate while
optimizing the active and passive beamforming as well as loca-
tion of the IRS. Specifically, in [4], the authors use successive
convex approximation techniques to maximize the weighted
sum rate achieved at a single-antenna user by adjusting the
transmit power of a single-antenna base station, IRS phases
and IRS location. This work is extended in [5] by incorporating
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a multi-antenna base station. A signal-to-interference-plus-
noise ratio (SINR) fairness problem is considered in [8], where
IRS is divided into multiple modules of reflecting elements;
then an efficient scheme is devised to achieve fairness among
SINR by triggering/untriggering the individual modules.

Another important consideration in wireless communication
systems is the energy consumption/utilization. In wireless
communication research community, the research problems
related to energy are categorized into two types: energy
minimization to address energy consumption issues and energy
efficiency maximization to address energy utilization issues.

An energy minimization approach is proposed in [7]. Par-
ticularly, a multi-IRS assisted wireless communication system
is considered in [7] and efficient algorithms with provable
convergence are devised to minimize the energy consumption
at the base station while guaranteeing the SINR requirements
of the downlink users. An energy efficiency maximization
algorithm is proposed in [6] by using the deep reinforcement
learning techniques. Particularly, machine learning approaches
are adopted in two steps. The first step predicts users’ tele-
traffic demand with the help of a real dataset and then in the
second step a decaying double deep Q-network based position-
acquisition phase-control algorithm is proposed to solve the
joint problem of deployment and design of the IRS.

The above works considered conventional communication
systems without focus on energy harvesting based wireless
communication systems. An IRS, due to its ability to function
without requiring extra circuitry, provides a low cost solution
to the long-distance propagation loss problem [9]. Therefore,
the work of [1] was extended in [9] by incorporating an IRS
into the system, after which an alternating optimization based
algorithm was proposed to maximize the harvested energy
while guaranteeing the individual rate constraints of downlink
users. Particularly, semidefinite relaxation based active and
passive beamforming was proposed and Gaussian randomiza-
tion technique was used to obtain the reflection phases.

In this paper, we study an IRS-based energy harvesting
wireless communication system, where downlink users can
employ successive interference cancellation to decode non-
orthogonal multiple access transmissions from a base station.
We propose an efficient alternating optimization algorithm to
maximize the harvested energy with convergence guarantee
and demonstrate the performance thereof. Especially, it avoids
Gaussian randomization to obtain the rank-one solution, hence
the feasibility of the obtained solution is also guaranteed.



II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model consists of a base station (BS) equipped
with N antennas, an intelligent reflecting surface (IRS) with
L reflecting elements, M single-antenna energy harvesting
receivers and K single-antenna downlink data users. The BS
uses non-orthogonal multiple access (NOMA) to transmit data
to the downlink users. Further, we assume that the downlink
data users employ successive interference cancellation (SIC)
to decode their desired information from the received signal.

By denoting the precoding vector and transmitted symbol
for the k-th data user by wk, and xk, respectively, the
overall transmitted signal from the BS can be written as x =∑K

k=1 wkxk, with E(|xk|2) = 1. We denote the direct (resp.
reflected) channel between the BS (resp. IRS) and k-th data
user by hH

d,k (resp. hH
r,k). Similarly, we use sHd,m (resp. sHr,m)

to denote the channel between the BS (resp. IRS) and m-th
energy harvesting receiver. Moreover, the channel between the
BS and the IRS is denoted by H. Denoting by θl the reflecting
phase shift caused by the IRS on the incident wave at the l-th
reflecting element of IRS, the reflection-coefficient matrix at
the IRS can be written as Θ = diag([ejθ1 , ..., ejθL ]), where
diag(v) converts vector v into a diagonal matrix.

We can write the signal received at the k-th data user as

rk = (hH
d,k + hH

r,kΘH)x+ nk = hH
k x+ nk, (1)

where hH
k = hH

d,k +hH
r,kΘH and nk is the additive Gaussian

noise term at the k-th data receiver with variance σ2. Since
we assume SIC at the data users, the SINR may differ for
a particular user if the decoding order in SIC is altered. Let
π(k) denote the decoding order of k-th data user. Hence, k-th
data user first successively decodes the signal of each j-th user
with π(j) < π(k) before decoding its own signal, while the
signals of each i-th data user with π(i) > π(k) are treated as
interference. Then, the SINR at j-th data user to decode the
signal of k-th data user, with π(k) ≤ π(j), is given as

SINRk→j =
|hH

j wk|2∑
π(i)>π(k) |hH

j wi|2 + σ2
. (2)

Correspondingly, the achievable data rate for decoding j-th
data user at k-th data user is given as

Rk→j = log(1 + SINRk→j). (3)

From the same transmission, the energy received at the m-th
energy harvesting receiver is given as

Sm =

K∑
k=1

|(sHd,m + sHr,mΘH)wk|2 =

K∑
k=1

|sHmwk|2, (4)

where sHm = sHd,m + sHr,mΘH.
With the above setting, we formulate an optimization prob-

lem where the objective is to maximize the sum of harvested
energies over all the energy harvesting users while satisfying
the minimum data rate requirements of the data users with a
total power budget P .

Mathematically, the optimization problem P1 can be written
as follows:

P1
maximize
wk, θl

M∑
m=1

Sm

subject to C1 : Rk→j ≥ γk, ∀ π(k) ≤ π(j),

C2 :

K∑
k=1

||wk||2 ≤ P,

C3 : 0 ≤ θl ≤ 2π, ∀ l ∈ {1, · · · , L},

(5)

where γk is the minimum required rate for k-th data user. Due
to the coupling between wk and θl, the optimization problem
P1 is non-convex and difficult to solve. In the next section, we
provide an alternating optimization based approach for P1.

III. PROPOSED SOLUTION FOR P1
In this section, first we provide alternating optimization

based solution methodology for P1. Particularly, first for fixed
values of θl, we solve P1 and then we solve P1 over θl.

A. Optimization for Fixed Value of Θ

Even with a fixed value of Θ, problem P1 is non-convex
due to the data rate constraints. To address this non-convexity,
we introduce several auxiliary variables (Ykj and Zkj). Then,
we introduce a new optimization problem P1.1 as follows:

P1.1
maximize

wk, Ykj , Zkj

M∑
m=1

K∑
k=1

|sHmwk|2

subject to C1 : log

(
1 +

Ykj

Zkj

)
≥ γk,

C2 :

K∑
k=1

||wk||2 ≤ P,

C5 : Ykj ≤ |hH
j wk|2,

C6 : Zkj ≥
∑

π(i)>π(k)

|hH
j wi|2 + σ2.

(6)

We have the following lemma for problems P1 and P1.1.

Lemma 1. With any fixed value of Θ, the problems P1 and
P1.1 are equivalent.

Proof. It is clear that if constraints C5 and C6 are met with
equality, then both problems are equivalent. Suppose for any
j, k constraint C5 is not strict, then we can increase the value
of Ykj so that the constraint is met with equality. By doing
so the objective value of the feasible solution has not changed
and also constraint C1 is not violated. Now assume that for
j, k, constraint C6 is not strict, then we can reduce the value
of Zkj to meet the constraint with equality. By doing so the
objective value of any feasible solution has not changed and
constraint C1 is not violated.

Due to constraints C1 and C5, the problem P1.1 is still
non-convex. To tackle this issue, we introduce new variables as
Wk = wkw

H
k . Then, problem P1.1 can be written as follows:



L(Ω, αkj , ζ
j
ki,Mk,Wk, Ykj , Zkj) =

M∑
m=1

K∑
k=1

Tr
(
WkH̃

H
mϕϕHH̃m

)
+

K∑
j=1

K∑
k≥j

αkj

(
Tr
(
WkH̃

H
j ϕϕHH̃j

)
− Ykj

)

+Ω

(
P −

K∑
k=1

Tr (Wk)

)
+

K∑
k=1

∑
i<k

ζjki

(
Tr
(
WiH̃

H
j ϕϕHH̃j

)
+ σ2 − Zkj

)
+

K∑
k=1

WkMk + C (8)

P1.2
maximize

Wk, Ykj , Zkj

M∑
m=1

K∑
k=1

Tr
(
WkH̃

H
mϕϕHH̃m

)
subject to C̃1 : Ykj ≥ Zkj γ̂k, ∀ π(k) ≤ π(j),

C2 :

K∑
k=1

Tr (Wk) ≤ P,

C5 : Ykj ≤ Tr
(
WjH̃

H
k ϕϕHH̃k

)
,

C6 : Zkj ≥
∑

π(i)>π(j)

Tr
(
WiH̃

H
k ϕϕHH̃k

)
+ σ2,

C7 : rank (Wk) = 1,

C8 : Wk ⪰ 0,
(7)

where H̃k =

[
diag(hH

r,k)H

hH
d,k

]
, H̃m =

[
diag(sHr,m)H

sHd,m

]
, ϕ =

[ejθ1 , · · · , ejθL , 1]H and γ̂k = 2γk − 1.
It is clear that problems P1.1 and P1.2 are equivalent.

Hence, we will solve problem P1.2 instead. Then after having
obtained the value of W∗

k satisfying rank(W∗
k) = 1, we can

obtain w∗
k through Choleskey decomposition. However, prob-

lem P1.2 is still non-convex due to the rank-one constraint.
If constraint C7 is relaxed, then problem P1.2 is a convex
optimization problem. In this regard, we have the following
lemma for problem P1.2.

Lemma 2. The optimal solution W∗
k of problem P1.2 satisfies

rank (W∗
k) = 1.

Proof. First, we must have rank(Wk) ≥ 1 to satisfy the
minimum rate requirements of the data users. In the following,
we show that rank(Wk) ≤ 1 in order to complete the proof
that rank(Wk) = 1. As problem P1.2 is a convex optimization
problem if rank constraint is removed, we use Karush–Kuhn–
Tucker (KKT) conditions to find its solution.

The Lagrangian for problem P1.2 can be written as shown
at the top of this page, where C is a constant term independent
of Wk’s and Ω, αkj , ζ

j
ki,Mk are the Lagrange multipliers for

constraints C2, C5, C6, C8, respectively. Based on the KKT
conditions, the gradient of L(Ω, αkj , ζ

j
ki,Mk,Wk, Ykj , Zkj)

with respect to W∗
k must be equal to zero for optimality, i.e.,

Ω∗I = M∗
k + S̃HϕϕH S̃, (9)

where S̃ =
∑M

m=1 H̃m +
∑

j≤k α
∗
kjH̃j . Furthermore, at

optimality, we must have W∗
kM

∗
k = 0. After multiplying both

sides of (9) with W∗
k and using W∗

kM
∗
k = 0, we have

Ω∗W∗
k = S̃HϕϕH S̃W∗

k, (10)

which ultimately implies rank(W∗
k) ≤ 1. Combining this with

the fact that rank(W∗
k) ≥ 1 completes the proof.

Thus, we can solve problem P1.2 by relaxing the rank
constraint through standard convex solvers, e.g., CVX.

B. Optimization over Reflection Phases

By introducing a new variable V = ϕϕH , the problem P1
for given values of wk = w∗

k, Ykj = Y ∗
kj , Zkj = Z∗

kj can be
written as follows:

P1.3
maximize

V, ϕ

M∑
m=1

K∑
k=1

Tr
(
H̃mWkH̃

H
mV

)
subject to Ĉ5 : Ykj ≤ Tr

(
H̃kWjH̃

H
k V

)
,

Ĉ6 : Zkj ≥
∑

π(i)>π(j)

Tr
(
H̃kWiH̃

H
k V

)
+ σ2,

C9 : Tr(1lV) ≥ 1,

C10 : Tr(1lV) ≤ 1,

C11 : V = ϕϕH ,
(11)

where 1l is a square matrix of size L with the only non-zero
entry being the (l, l)-th entry which is equal to one. Thus,
constraints C9, C10 ensure that (l, l)-th entry of V is 1. If
we remove the rank constraint, C11, the above problem is
a quadratic constrained quadratic program (QCQP). However,
the solution obtained by relaxing the rank constraint may not
be optimal and/or feasible. Therefore, in the following, we
describe an iterative rank minimization (IRM) approach that
guarantees the rank-one solution and convergence to the local
optimal solution. The convergence to the local optimal solution
is important since otherwise it is not possible to prove the
overall convergence of the alternating optimization approach.

To proceed further, we introduce the following relations:

Q0 = −
M∑

m=1

K∑
k=1

H̃mWkH̃
H
m, Q̂kj = −H̃kWjH̃

H
k , (12)

Q̃kj =
∑

π(i)>π(j)

H̃kWiH̃
H
k ,Ql = 1l, Q̄l = −Ql, (13)

Z̃kj = Zkj − σ2, Ỹkj = −Ykj . (14)

Using the relations in (12)–(14), we can rewrite P1.3 as
P1.4 minimize

V, ϕ
Tr (Q0V)

subject to C̃5 : Tr
(
Q̂kjV

)
≤ Ỹkj ,

C̃6 : Tr
(
Q̃kjV

)
≤ Z̃kj ,

C̃9 : Tr(Q̃lV) ≤ −1,

˜C10 : Tr(QlV) ≤ 1,

C11 : V = ϕϕH .

(15)



As a first step in solving problem P1.4 efficiently, we convert
the rank-one constraint, V = ϕϕH , into multiple quadratic
equality constraints. Let Vµt be a principle submatrix of V
with entries taken from the rows and columns indexed by µt,
and ϕµt

consists of entries taken from vector ϕ indexed by
µt. Here, µt is defined as the complete decomposition of the
set {1, 2, . . . , L}. Then, problem P1.4 can be written [10] to

P1.5 minimize
V, ϕ

Tr (Q0V)

subject to C̃5, C̃6, C̃9, ˜C10,

˜C11 : Vµt
= ϕµt

ϕH
µt
.

(16)

However, after all rank-one solutions for Vµt
are obtained, it is

not guaranteed that all the common elements among different
Vµt are same [10]. To address this issue, the following rank-
one constraints for extended submatrices are also considered:

C12 : rank
([

Vµt
ϕµt

ϕH
µt

1

])
= 1. (17)

Here, the idea is to minimize a linear function while satisfying
linear constraints and the rank constraints. To address problem
P1.5, we resort to an iterative approach which satisfies all the
rank-one constraints. In this direction, we make use of the
following result:

Lemma 3. For a non-zero positive semidefinite matrix Ṽµt
=[

Vµt
ϕµt

ϕH
µt

1

]
, we have rank

(
Ṽµt

)
= 1 if and only if

Ṽµt ⪰ 0 ∧PH
µt
ṼµtPµt ⪯ 0, (18)

where Pµt
is a matrix comprising of the µt smallest eigen-

values of matrix Ṽµt
.

Proof. The result can be easily proved by noting that the only
non-zero eigenvalue of Ṽµt

is its largest eigenvalue and the
rest of the eigenvalues are zero.

Hence, problem P1.5 is equivalently reformulated to
P1.6 minimize

V, ϕ
Tr (Q0V)

subject to C̃5, C̃6, C̃9, ˜C10,

C13 : Ṽµt
⪰ 0,

C14 : PH
µt
Ṽµt

Pµt
⪯ 0.

(19)

Since it is not possible to know Pµt before solving for Ṽµt ,
we use an iterative approach to solve problem P1.6. During
the z-th iteration we solve the following problem:

P1.7
minimize
Vz, ϕz, νz

Tr (Q0V
z) + ξz|νz|1

subject to C̃5, C̃6, C̃9, ˜C10, C13,

˜C14 : νzµt
I ⪰

(
Pz−1

µt

)H
Ṽz

µt
Pz−1

µt
,

(20)

where νz = [νz1 , · · · , νzT ] and ξz is the increasing weight of
the norm for the z-th iteration. In each iteration, the aim is to
minimize the objective function while simultaneously reducing
|νz|1. As a result, when νzµt

= 0 for all µt, the rank one
constraint will be met.

The overall proposed alternating optimization based algo-
rithm for P1 is summarized below.

Algorithm 1 Alternating optimization based algorithm for
solving optimization problem P1

1: set p = 0, ϵ1, ϵ2, pmax, zmax, ξ0
2: While p ≤ pmax∧|f(Θp,wp

k)−f(Θp−1,wp−1
k )| ≥ ϵ1:

2.1: solve problem P1.2
2.2: set z = 0 and solve P1.4 through SDR to find Ṽz

µt

and then find Pz
µt

2.3: z = 1
2.4: While z ≤ zmax ∧ |νz|1 ≥ ϵ2:
2.4.1: solve problem P1.7
2.4.2: update the values of Pz

µt

2.4.3: z = z + 1
2.4.4: set ξz ≥ ξz−1

2.4.5: end while
2.5: p = p+ 1
2.6: end while

C. Convergence of the Alternating Optimization Algorithm

Since we have used alternating optimization algorithm it
is important to show that the proposed algorithm has non-
decreasing objective value after every iteration of the alter-
nating optimization algorithm. Although this is not always
true for all the alternating optimization based algorithm, the
following lemma shows that our proposed algorithm results in
non-decreasing values of objective value — thus proving the
convergence of the overall optimization algorithm.

Lemma 4. Each iteration of the proposed algorithm results
in non-decreasing values of objective function of problem P1.

Proof. Without loss of generality, let us consider the l-th itera-
tion. Further assume that the optimal solution of the algorithm
during the (l − 1)-th iteration is given by Θl−1,wl−1

k . Then
we need to show that

f(Θl−1,wl−1
k ) ≤ f(Θl,wl

k). (21)

where f(·, ·) denotes the objective value of the problem P1.
First, we note that

f(Θl−1,wl−1
k ) ≤ f(Θl−1,wl

k) (22)

is valid since wl
k are the optimal solution of problem P1.1 for

a fixed value of Θ. Next we show that

f(Θl−1,wl
k) ≤ f(Θl,wl

k). (23)

It can be proved that the KKT conditions of problem P1.7
and problem P1.5 are the same when liml→∞ |νl|1 = 0 [10].
Hence, (23) is true. By combining (23) with (22), we conclude
that (21) is valid for the proposed alternating optimization
algorithm. This completes the proof.

Combining the above lemma with the fact that the objective
value of problem P1 is bounded proves the convergence of the
proposed alternating optimization algorithm.
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Fig. 1. Harvested power with respect to SINR threshold when R = 20 m.

IV. SIMULATION RESULTS

For simulations, we assume N = 8,M = 4,K = 8, L =
100, σ2 = −90 dBm and γk = [0 − 10] dB ∀k. Also, we
assume that the data receivers are distributed randomly in a
semi-circle of 20 m radius around the IRS while the energy
harvesting receivers are located in a semi-circle of (2, 5) m
radius around the IRS. For SIC, we assume farthest-to-nearest
user decoding, where the farthest user is decoded first and then
second farthest and so on. The distance between the IRS and
the BS is set to 50 m. For convenience, we use r to denote
the radius of the semi-circle between the IRS and the energy
harvesting receivers and R to denote the radius of the semi-
circle between the IRS and the data users.

First, we present the harvested energy results in Fig. 1. We
compare the proposed algorithm with the Gaussian random-
ization scheme, where the optimal values of the reflecting
elements are obtained by first solving the SDR problem
related to the reflection phase optimization and then Gaussian
randomization [9] is used to obtain the rank one solution. It
is clear that the proposed algorithm performs better than the
Gaussian randomization scheme. It is also noted that, as SINR
threshold of the data receivers increases, the harvested energy
at the energy harvesting receivers decreases. This is due to
the fact that the increased performance requirement of the
data receivers results in strong beamforming toward the data
receivers. This causes reduced transmit power intensity in the
direction of energy harvesting receivers. Hence, a reduction in
the harvested energy performance is observed with the higher
communication performance requirements.

Next, in Fig. 2, we present the outage probability result
for the Gaussian randomization scheme to illustrate the effect
of ignoring the rate constraint while performing the Gaussian
randomization to obtain the rank-one solution. Since the rate
constraints are considered in the proposed scheme, the outage
probability of the proposed scheme is miniscule and arises
only due to occurrence of extremely weak channel conditions
which render the problem infeasible. On the other hand, it can
be observed that due to the neglecting of the rate constraints
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Fig. 2. Outage probability with respect to the SINR threshold.

while performing Gaussian randomization the outage proba-
bility rises quite steeply with increase in SINR threshold.

V. CONCLUSION

We presented an alternating optimization based algorithm
for maximizing the harvested power in an IRS-assisted wire-
less communication system. Iterative rank minimization is
used for finding the optimal reflection phases at IRS elements.
The convergence proof of the proposed alternating optimiza-
tion algorithm is provided. It is shown that the proposed algo-
rithm outperforms a Gaussian randomization based algorithm
in terms of harvested power and outage probability.

REFERENCES

[1] J. Xu, L. Liu, and R. Zhang, “Multiuser MISO beamforming for
simultaneous wireless information and power transfer,” IEEE Trans. Sig.
Proc., vol. 62, no. 18, pp. 4798–4810, 2014.

[2] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Comm.
Mag., vol. 58, no. 1, pp. 106–112, 2020.

[3] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.

[4] X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Joint deployment
and multiple access design for intelligent reflecting surface assisted
networks,” IEEE Trans. Wirel. Commun., vol. 20, no. 10, pp. 6648–
6664, 2021.

[5] X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Exploiting intelligent
reflecting surfaces in NOMA networks: Joint beamforming optimiza-
tion,” IEEE Trans. Wirel. Comm., vol. 19, no. 10, pp. 6884–6898, 2020.

[6] X. Liu, Y. Liu, Y. Chen, and H. V. Poor, “RIS enhanced massive non-
orthogonal multiple access networks: Deployment and passive beam-
forming design,” IEEE Journal Sel. Areas Commun., vol. 39, no. 4, pp.
1057–1071, 2021.

[7] X. Yu, D. Xu, D. W. K. Ng, and R. Schober, “IRS-assisted green
communication systems: Provable convergence and robust optimization,”
IEEE Trans. Comm., vol. 69, no. 9, pp. 6313–6329, 2021.

[8] Y. Gao, C. Yong, Z. Xiong, J. Zhao, Y. Xiao, and D. Niyato, “Reflection
resource management for intelligent reflecting surface aided wireless
networks,” IEEE Trans. Comm., vol. 69, no. 10, pp. 6971–6986, 2021.

[9] Q. Wu and R. Zhang, “Weighted sum power maximization for intelligent
reflecting surface aided SWIPT,” IEEE Wirel. Commun. Lett., vol. 9,
no. 5, pp. 586–590, 2020.

[10] C. Sun and R. Dai, “A decomposition method for nonconvex quadrat-
ically constrained quadratic programs,” in Proc. American Control
Conference, 2017, pp. 4631–4636.


