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Abstract— Customized product requirements are driving the
need for variety oriented assemblies even in collaborative
environments between humans and robots. This calls for the
need for robots and humans to be intelligent in order to be
aware of and adapt to different product needs. To address this,
this study presents a novel approach and architecture to realize
a digital thread that allows human and robot agents access to
the product model at system run-time. The approach entails
modelling a knowledge-based engineering (KBE) software as an
agent which actively participates with collaborative agents via
communication mechanisms standardized by the IEEE Com-
puter Society. The architecture is described by four concurrent
views and is discussed for its advantages and design rationale.

I. INTRODUCTION

Today’s manufacturing scenario is driven by customized
product requirements that necessitates a high part variety on
the part of manufacturers [1]. The requirement for variety
puts high demands on the flexibility of the production sys-
tems. As a result, such assembly systems must be designed
and operated to handle such product variant assemblies [2].
Of late, to enable flexible production, collaborative envi-
ronments between robots and humans are becoming more
commonplace as a result of either necessity attributable to
task complexity and diversity [3] or foreseen advantages
of combining human dexterity with strength, endurance,
repeatability and accuracy of robots [4]. A very recent in-
terview conducted with automation engineers and shop-floor
operators highlighted the need for Human-Robot collabora-
tion to be flexible to handle product variety [5]. Specifically,
they expressed the need for intelligent robots that are updated
automatically and aware of the product type it should work
with in the context of human and robot collaboration. They
further opined that assistance in switching smoothly between
these products would assist the assembly work.

While the idea of using collaborative environments for va-
riety oriented assembly seems like an attractive prospect, the
domain of human-robot collaboration itself is still evolving
[3] and plagued with challenges that span a broad spectrum
including (but not limited to) human safety [6], human and
robot knowledge or information models [7] and bi-directional
communication and intent recognition [8] that facilitates
acknowledged role-taking. Therefore, new approaches are
needed and must accommodate this added complexity [1]
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involving product variety [1], intent recognition [9] and
communication mechanisms [10].

One way for humans and robots to be product aware in
a collaborative environment is to create a digital thread that
serves the agent (human and robot) with access to and reason
with product model they are interacting with. The digital
thread notionally is purposed with integrating information
and knowledge from traditionally siloed enterprise systems
(such as product data management systems (PDM)) across
different phases of the product lifecycle. This would allow
the agents to create and share relatable mental representations
of the product and the goals such as collaborative product
assembly. Such relatable mental representations contribute
to comprehensible behaviours and completion of complex
tasks [9]. This would in effect create a digital thread that
would also enable to gather the knowledge attained during
collaborative assembly back upstream to the designers em-
bracing the design for collaborative assembly paradigm [11].
While creating these mental models, the view of humans
and robots as multiple agents passively introduced earlier
is paramount. Such a view is appropriate in that the robot
and the human must be capable of exhibiting dynamic and
autonomous behaviour, which is the central to the notion of
agency [3].

To this end, we embarked on research that preserved the
agent view whilst allowing for establishing a digital thread.
The result is a framework for human-robot collaboration that
integrates the product design environment with a human-
robot workcell to address the aforementioned issues at sys-
tem run-time. This is accomplished with the flexibility that
comes with modern knowledge-based engineering tools. The
novelty of the framework mainly lies in three aspects: (i)
integration of the product design environment with a human-
robot workcell, (ii) modelling a product design software
as an autonomous agent and which actively participates in
interactions between agents that interact with the product
and (iii) the use of an agent-oriented software middleware
(JADE) based on (FIPA) standards [12] to facilitate agent
communication for the afore mentioned purpose. The archi-
tecture of the framework encompasses a novel interaction
model and separately a novel information model, neither of
which is the subject of this study and remains as future work.
However, for the sake of completeness the interaction model
is briefly introduced here. This paper focuses on reporting the
overall architecture and underlying hardware and software
infrastructure and its communication mechanisms using the
4+1 architecture view model [13]. The framework reported
here lays the foundation for the deployment of the said



interaction and information models.
The next section elicits the requirements for the archi-

tecture development along with a few guiding principles.
Section III presents the architecture of the framework using
three concurrent views of the system. The use-case view is
presented in Section IV that briefly describes how the devel-
oped architecture can prove useful. Section V discusses how
we achieved the functional and non-functional requirements
we set out with along with the design rationale of the system.
A conclusion section in the end summarizes the study and
presents future directions for research and implementation.

II. REQUIREMENTS AND PRINCIPLES

The architecture to be developed is to address the func-
tional and non-functional requirements elicited below.

A. Functional Requirements

1) The robot and the operator should have dynamic run-
time access to relevant information from the design
environment with respect to the state of the assembly
process.

2) Interactions:
a) The operator should be able to communicate

his/her intent with respect to the tasks to the
robot.

b) The interaction between the human and the robot
must be non-invasive with minimal effort re-
quired from both sides and by doing so, com-
municate and collaborate effectively.

3) Both the robot and the operator should have cognizance
of necessary information relevant to the assembly
task in hand. For example, the sequence of the sub-
assembly parts or dependencies between sub-assembly
parts (for example, part B must be in place to assemble
part C on top of part A).

4) Both the robot and the operator should have cognizance
of each other’s statuses with regards to the assembly
task. For example, the robot is currently assembling
part D (status: busy) as acknowledged by the operator
or the operator has finished assembling part C (status:
idle) as acknowledged by the robot.

5) A user interface should exist to manage all necessary
information such as inputting IP addresses of the
robot(s), logging information, calibration parameters of
cameras, projector, etc.

B. Non-functional (Quality) Requirements

1) Scalability: The developed system must be a multi-
agent system, i.e. scalable to include more than one of
different kinds of agents.

2) Modularity: The architecture must enforce a modular
design as opposed to a monolithic one. Components
should be easily replaceable, wherever possible.

3) Usability: The system must be easy to use and intuitive
and should not introduce unnecessary cognitive load on
the operator.

C. Principles

1) The system’s dependency on proprietary solutions is
to be minimized.

2) The use of open-source software is encouraged
3) Use of standards where possible is encouraged

III. ARCHITECTURE

Using the 4+1 architecture view model [13], this section
presents three of the five different concurrent views of the
architecture to describe the system. The development view
was seen as the least important from a research standpoint
and has been omitted due to paucity of space while the sce-
narios are described in the next section. For readability, the
names of elements (nodes, artefacts, etc.) of the framework
are italicized while names of object-oriented programming
constructs are in a different font.

A. Physical View

The physical view maps the software (artifact) to the hard-
ware [13] and also depicts the physical connection between
the hardware. It is useful in seeing the overall architecture
of the system and is depicted in an UML deployment
diagram in Fig. 1. It consists of seven main nodes: (i) the
Design Software Platform node where the KBE application
is installed, (ii) the Robot node, (iii) the Ring Mouse node,
(iv) the Projector node, (v) the Kinect (sensor) node, (vi)
the Main Platform node that hosts the JADE Main Container
and to which the Ring Mouse, Projector and Kinect nodes
connect to and (vii) the Router node that physically connects
the Design Software, Robot and Main Platform nodes.

The Design Software Platform houses a knowledge-based
engineering (KBE) software application, Siemens NX, which
is also the Java Remote Method Invocation (RMI) server
that exports the NXSession object that the NXAgent (RMI
client), modelled as a JADE agent, uses as a proxy. JAVA
RMI is a feature of JAVA that permits an object residing
in one system (on the JAVA Virtual Machine - JVM) to
access or invoke an object on another. Here the object is the
NXSession object from the NXOpen API that exposes all
the functionalities of NX to the JADE agent NXAgent. Next,
the physical robot is connected to a robot controller that
connects to the router via ethernet. The Ring Mouse, a part
of the Interaction Model, is worn by the human operator and
connects to the Main Platform via a wireless protocol such as
Wi-Fi or Bluetooth depending on what the mouse supports.
It is used to simulate mouse clicks on the Interaction UI
artefact, which in principle is a purpose-built web-browser
based user interface and part of the interaction model.

The Projector node connects to the Main Platform via
a standard HDMI or DisplayPort connection. The Kinect
sensor node has an inbuilt RGB camera, an IR emitter and
detectors that map the depth through time-of-flight (ToF)
algorithms. Both the Kinect and the projector are mounted
atop the worktable that the human operator works on. While
the projector is used to project the user-interface of the
interaction model onto the worktable, the Kinect sensor is
used as an input to the interaction model to track user
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Fig. 1. Deployment Diagram representing the physical view of the system

behaviour and also for environment perception for the robot
agent. The Kinect connects to the Main Platform via a USB
that is mandatorily atleast version 3.0 owing the data transfer
requirements of the Kinect RGB and depth sensors which can
be upto 4Gbit/s.

The Main Platform contains the JADE Main Container
that hosts the robot and the user agents. The Main Container,
is the first container that exists on startup and hosts two
special components; the Agent Management System (AMS)
that is responsible for the functioning of the Agent Platform
(not shown) such as creating and deleting agents and a Direc-
tory Facilitator (DF) that provides yellow pages services to
agents in order to discover services provided by other agents.
A detailed architecture of JADE is out of the scope of this
study but the interested reader is encouraged to refer to the
book by Bellifemine et. al. [14]. The Web Server also runs in
the Main Platform and communicates with the JADE agents
via Websockets. Websocket is a communication protocol
that facilitates a full-duplex connection over a single TCP
connection. This would be useful for bidirectional streaming
data, the joint values of the robot for example. The Kinect
Stream artifact is also implemented in the Main Platform,
reads the RGB and depth frames from the Kinect Sensor
and writes it to memory for interested artifacts to read from.
This form of inter-process communication is (IPC) necessary
as camera feeds can be quite large to transfer to interested
parties real-time.

The System UI is a graphical user interface purposed
to manage all necessary information such as IP addresses
configuration, logging information, checking statuses for
normal operation, displaying errors, calibration of cameras,
projector configurations and operator logins. The database
acts as an integrated persistent storage (Fig. 1).

B. Process View

The process view focuses on dynamic aspects of the
system and describes its entailed processes and their com-
munication at system run-time [13]. This section describes
the process to setup the system before use and builds on
the physical view to develop a deeper understanding of the
inner working of the system. Further details of the dynamic
communication processes between the agents not relevant
to this study will be covered in the paper detailing the
interaction model. A sequence diagram depicting the process
is shown in Fig. 2. The following is the description of the
sequences:
Setting up the Interaction UI:
1-1.6: First, the operator is to log in to the system with
his/her credentials on the System UI which is verified by
the back-end Web Server. A successful authentication leads
to the landing page while an unsuccessful one notifies the
operator and prompts for a re-entry.
2-2.2: In the System UI, the operator has the provision to
open the Interface UI as a new window, which the operator
then moves to the screen projected by the projector onto the
worktable.
Setting up the KBE Software:
3: The user starts the custom developed digital thread ap-
plication that provides the functionalities in the subsequent
steps (2, 3 and 4) by means of menu buttons (Fig. 5.) for
easiness of use.
4: The user starts the RMI registry next. The RMI registry
is the namespace where NX places the NXSession object
in the next step for lookup by the client.
5: Then user executes an NX Journal that binds the
NXSession object to the RMI registry. (An NX Journal
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is a program that can be executed in the NX environment).
6: The user then starts the JADE agent (NXAgent) in a
separate container (KBE-Software-Container) that looks up
the NXSession object in the RMI registry. Thus the agent
has access to the NX common object model via the NXOpen
APIs.
7: The Kinect Sensor is turned on via the Interaction UI,
which then displays a notification if it has successfully
switched on for visual acknowledgement by the user. Behind
the scenes, the operation runs a pre-compiled C++ binary of
the interaction model that enables the human operator to use
the interaction user interface.

C. Logical View

The logical view is the object-oriented decomposition of
the architecture [13]. The class diagram in Fig. 3 represents
the key object classes and their relationships using the princi-
ples of dependency, inheritance, composition and association.

Web WeThe Web Server composed of the System UI and
the Interaction UI extends the WebSocketServer base
class and overrides its key methods as shown. It depends on
the built-in java Robot class to implement the interaction
model. JADE provides an in-process interface (Runtime)
that the Webserver uses to launch the JADE runtime
during its initialization. This runtime is implemented by the
Runtime class which uses a singleton pattern to provide
a single instance of the class via the static instance()
method. Hence, the dependencies between the Webserver
and the Runtime class are as shown. This is used by the
Webserver and Siemens NX to launch the main container
and peripheral containers respectively. The agents are then
initialized in these containers.

As for these agents, the core class is the Agent
class from the JADE middleware which has child

classes; the robot (RobotAgent), the human operator
(UserAgent) and the design software agent (NXAgent).
They exhibit JADE behaviours (Behaviour) that ei-
ther happens once (OneShotBehaviour) or is repeti-
tive (CyclicBehaviour). These behaviours belong to
the class of simple behaviours (SimpleBehaviour) that
a JADE agent may exhibit. Further, agents communicate
with each other with ACL message objects (ACLMessage).
Thus, both the message class and the behaviour class
have associations with the agent class. At the object level
agent class depends on objects of the behaviour and the
ACLMessage class. The NXAgent class has additional
fields and methods in comparison to the other agents. The
NXAgent looks up the RMI Server to find the NXServer
object that the NXRemoteServerImpl class has bound to
the RMI registry. This then allows the NXAgent to execute
the NXOpen API remotely at will.

IV. SCENARIOS

The scenarios describe three potential use-cases where the
developed system can be used to extract run-time useful
product information for collaborative product assembly

A. Pose Estimation

It is important to localize the product as the agents need
to interact with them. Having access to the product model
can train models that allow to detect them at run-time from
perception of the environment through vision from a camera
or point clouds from a depth sensor or a combination of
both from an RGB-D sensor such as the Kinect sensor in
the architecture presented in this paper.

B. Intent Recognition

Recognizing the intent of the robot in a collaborative envi-
ronment between a human and a robot is crucial for operator
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safety and cannot be inferred from robot motion alone. In
such cases, product design information (CAD) can be an
important enabler in projecting intentions on the product that
has the operator’s undivided attention during collaborative
assembly. Required information can be computed by the
agents dynamically at run-time. For example, the oriented
bounding boxes of sub-assembly parts parts calculated from
the CAD model of the product as shown in Fig.4 can be
used to project robot intentions on its physical counterpart
in the real world after having estimated its pose as described
earlier.

C. Knowledge Representation and Reasoning

In our earlier work [15], access to the design model of
the product was shown to be useful in reasoning about the
assembly process to enable intelligent robotics. Specifically,
the product model was annotated with semantic descriptions
using the web ontology language (OWL) and the shapes con-
straint language (SHACL) was used to validate the robot’s
beliefs of the assembly process. The annotation was done
automatically without human intervention using the program-
matic flexibility of modern KBE systems. Such mechanisms
can be extended further to validate other relevant run-time
beliefs such as the sequence of assembly as an example

V. DISCUSSION

Now that the architecture of the system developed has been
described using multiple concurrent views, in this section,
a discussion on how it has accomplished the requirements
elicited in Section II is presented.

Addressing the first requirement of integrating product
design information also brings about the novelty of the
research. Usually, such requirements are addressed in lit-
erature by developing ontologies specific to the domain or
the use-case or by providing the agents with direct access
to manually extracted information from the CAD model.
Such approaches are difficult if not impossible to scale.
While ontologies have, beyond doubt, proven to be useful
in knowledge sharing and representation and will be a
part of the information model of this system, there needs
to be means to generate assertional knowledge constructs
from different terminological constructs dynamically at run-
time, even if its for the same resource. This is especially
important in heterogeneous and dynamic environments where
the existence of agents is non-deterministic (agents leave and
join at will) and different vocabularies are used. This calls for
the knowledge (product and product assembly) source to be
online, dynamic and responsive to tailored need of agents. In
our novel approach, we address this by modelling the design
software as an agent that participates in agent interactions.
This in effect translates to an agent that knows ‘everything’
about the product and can answer unseen queries about it.
Thus, agents can communicate with the KBE software using
the same agent communication mechanisms known to them
using tailored interaction protocols and thus be able to handle
different ontology vocabularies at system run-time. Further,
an agent that is familiar with the NXOpen common object
model API (that doesn’t change), may choose to generate
its beliefs of the product design data that it has no prior
knowledge of, based off its CAD file which can be in any



Fig. 4. Bounding boxes computed for an example Universal Joint CAD
model

of the whole host of formats that is recognized by the
NX software. The idea that agents can associate real world
behaviour with CAD models is powerful and in theory would
enable in training agents with product models and use such
pre-trained models on unknown product models.

As for the functional requirements two to four, the ar-
chitecture entails a mixed-reality interface via an interaction
model that integrates with the JADE ecosystem to instantiate
knowledge constructs with explicit semantics via an under-
lying information model to facilitate interactions between
the human and robot agents. With the interaction model, in
one direction, the operator is allowed to explicitly express
his/her intentions with respect to the assembly process and
on the other, the robot expresses desires that transform
into intentions once acknowledged and agreed upon by the
human operator exhibiting a master-slave relationship. This
is expected to better intent recognition and minimize turn-
taking behaviour. The information model on the other hand
underpins the interaction model and uses the web-ontology
language (OWL) to represent the product, process and re-
source along with other agent beliefs that aids the collabo-
rative interaction. Further details not relevant to this study
remains the subject of two papers that focuses separately on
the interaction model and the information model currently in
the works. Nevertheless, the presented architecture addresses
these requirements.

Once the need for communication via concrete interfaces
was established, a standards-based solution was sought.
Consequently, an agent framework (JADE) that was an
implementation of standards developed by IEEE Computer
Society (originally by Foundation for Intelligent Physical
Agents) was integrated to the interaction model. The FIPA
standards were developed by over 60 members from more
than 20 countries that involved both the academic and
the industrial community [12]. The benefit is that these

Fig. 5. Custom Application in NX to support launching of JADE NXAgent
(top) and NXAgent as viewed from the JADE RMA GUI (bottom)

standards enforce the use of ‘best practices’ and using such
an implementation means that they come ready ‘out of the
box’ that is easy to develop and use or for reuse to integrate
with new components (based on the same standard ofcourse).
This is of special importance when such systems are scaled
to operate in heterogeneous and distributed environments,
typical of HRC use-cases. Further, JADE enforces a peer-
to-peer architecture rather than, for example, the popular
ROS middleware that enforces publish/subscribe semantics
that works against the core agent to agent communication
model. In JADE, each agent is identified by a global unique
identifier and is allowed to join and leave at will and discover
agents through yellow/white page services.

The choice of JADE also addressed the scalability quality
requirement as JADE runs on the Java Virtual Machine which
is platform-independent at both source and binary levels, and
can work with any number of agents. This is infact how
it is implemented, the Main Platform is a Linux platform
while the design software agent (NXAgent) is hosted on a
Windows Platform due to NX Requirements. This means that
the system developed can be reused with a Linux installation
that is free (and open-source) and if needed, along with any
KBE Software of choice.

Further, ease of use is another quality requirement ad-
dressed here. The JADE framework is tightly coupled with
the NX software in a purpose-built custom NXOpen Digital
Thread Application. All the user needs to do is to key in
the IP address of the main computer and start the NXAgent
with the click of a button in NX. Fig. 5 shows the custom
application in NX (in Windows) (top) and the NXAgent as
viewed from the remote monitoring agent (RMA) from the
JADE framework (bottom).

With the use of JADE middleware, communication be-



Fig. 6. Physical setup with integrated product design environment

tween agents was established. However, there was the need
to integrate sensors for guidance for human agents and
environment perception for the machine counterparts. Such
an integration had to be real-time with latencies as minimum
as possible and shared among as many agents that require
it. A run-of-the-mill architecture would use a middleware
like ROS to publish on a message topic that other agents
subscribe to. Since this architecture adopted an agent-based
approach, integrating ROS only for this purpose would not
only be difficult (owing to the JADE concurrency model) but
also mean that the agent-based mechanism of communication
would be redundant and work against the peer-to-peer agent
topology. To address this issue, the architecture adopts inter-
process communication mechanisms, specifically shared-
memory. We use a POSIX specification compliant approach
(UNIX, LINUX, Mac OSx) to facilitate portability of the
developed architecture. This meant that data from the Kinect
Stream could be shared between any number of agents. A
test with one agent recorded that image frames could be read
from shared memory at over 1000 frames per second for the
RGB stream (1920x1080px x 3 channels x 4 bytes/ch/px).
This is currently an overkill as the Kinect Stream outputs at
only 30fps. However, such mechanisms that support minimal
latencies are important should we use streams from a faster
sensor in safety applications, a use-case in the pipeline. This
should in principle be faster that a ROS implementation but
a performance comparison is out of scope of this study.

VI. CONCLUSION

This study presents a novel reusable agent-oriented frame-
work architecture for dynamic product-aware human and
robot collaboration. A physical setup using the framework
is shown in Fig. 6. The framework is scalable, portable and
based on standards. The framework makes use of free and

open-source software everywhere except the KBE Software
(JADE, Web Server, Ubuntu and libraries implementing the
interaction model ). The framework is intended to be used
as an abstract foundation to be specialized to instantiate
information models in JADE agents for human and robot
collaboration analogous to how JADE is an abstract frame-
work to implement agent-oriented solutions.

Future direction of this study include developing one such
information model where agents use product design knowl-
edge in one direction to allow for a collaborative workflow
between the human and the robot and in the other, record
the experience for the designer, thus facilitating a closed-
loop digital thread. Two non-critical elements (functional
requirement five) are also the subject of the next iteration
as well; the System UI and its integration with the Persistent
Storage.
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[3] Z. Kemény, J. Váncza, L. Wang, and X. V. Wang, “Human–robot
collaboration in manufacturing: a multi-agent view,” in Advanced
Human-Robot Collaboration in Manufacturing. Springer, 2021, pp.
3–41.
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