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ABSTRACT

The Joint Video Experts Team (JVET) have standardized the
Versatile Video Coding (VVC) in 2020 targeting efficient
coding of the emerging video services and formats such
as 8K and immersive video streaming applications. VVC
standard enhances the coding efficiency by 40% at the cost of
an encoder computational complexity increase estimated to
859%(x8) compared to the previous standard High Efficiency
Video Coding (HEVC). This work aims at reducing the
complexity of the VVC encoder under the Random Access
(RA) configuration. The proposed method takes advantage of
the inter prediction in order to predict the split probabilities
through a convolutional neural network. Our solution reaches
31.8% of complexity reduction for a negligible bitrate increase
of 1.11% outperforming state-of-the-art methods.

Index Terms— Versatile Video Coding (VVC), complexity
reduction, Machine Learning (ML), Convolutional Neural
Network (CNN), Decision Tree (DT).

1. INTRODUCTION

The video content visualisation has been revolutionized in
a decade with the emergence of new services like video on
demand, video streaming or video sharing platforms. Indeed,
video represents the majority of data traffic over Internet
as mentioned in the Cisco’s study [1]. The emerging video
formats such as 8K, high-frame rate (HFR), 360◦ video,
multi-view, light field, point clouds increase the quality of
experience through the resolution, the frame rate or the depth
but at the expense of a significant increase in the amount
of data to transmit. The emerging video formats alongside
with the explosion of IP video traffic [1] require new video
compression techniques that are even more efficient than
existing ones. The ISO/IEC, ITU-T Joint Video Experts
Team (JVET) designs a new video compression standard
named Versatile Video Coding (VVC) ITU-T H.266 |MPEG-
I - Part 3 (ISO/IEC 23090-3) [2] in July 2020 as a successor
to High Efficiency Video Coding (HEVC).

This new standard brings impressive coding quality and
subjective metric [3] compared over HEVC but at the cost
of a high encoding complexity increase [4]. The VVC
coding performance is enabled by the new tools introduced
and especially by the Multi-Type Tree (MTT) process [5]
which brings 8.5% coding efficiency gain in Random Access
(RA) configuration compared to HEVC. Indeed, compared to
HEVC, which is based on a Quad-Tree (QT) block partitioning,
VVC integrates a nested MTT partitioning scheme allowing
in addition to QT, horizontal and vertical Binary-Tree (BT)
and Ternary-Tree (TT) splits [6]. This new partitioning
process introduces an important complexity increase and
thus offering 97% of complexity reduction opportunity [7]

In this paper, an efficient complexity reduction method is
proposed relying on Machine Learning (ML) algorithms
under RA configuration. First, a Convolutional Neural
Network (CNN) predicts spatial features of the input 128 ×
128 × 3 luminance pixel values which contain the current
Coding Tree Unit (CTU) and inter prediction information.
The predicted vector of features represents the partition of the
processed CTU. Then, to leverage the informations provided
by the CNN and give more accurate decision, Decision
Trees (DTs) are exploited at each depth level. Several DTs
are trained to predict the probabilities of each split in a
multi-classification task. Finally, the number of split tested
or skipped depends on the targeted complexity reduction-
Bjøntegaard Delta Bit Rate (BD-BR) trade-off. The splits
with the highest probabilities are tested by the VVC Test
Model (VTM) encoder to minimize the BD-BR loss and
maximize the complexity reduction.

In order to compare our results, two best performing state
of the art methods are selected. The first method proposed
by Tang et al. [8] reduces the inter coding complexity
through partitioning pruning. A handcrafted metric based
on a difference of pixel value between the current frame and
its reference frames is defined and compared to a threshold
to early terminate the unlikely splits. The second method,
proposed by Pan et al. [9], reduces the complexity with binary
classification deciding the split or the early termination. This
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Fig. 1. Workflow diagram of the proposed fast block partitioning scheme for VVC under RA configuration. The current
luminance CTU Bcur plus its two CTUs of reference BMV 1 and BMV 2 which are processed by a CNN to predict p̃, a vector
ofNp probabilities describing all edges at each 4×4 block. The vector p̃ is then processed by the MCC to predict probabilities of
the six partitioning options through the vector c̃. The top-N splits of the highest probabilities are tested by the RD optimization
of the encoder to select the optimal split in terms of RD-cost.

binary classification is the output of a multi-information
fusion CNN that takes as input the current block, the residue
and the bi-directional motion field.

The remainder of this paper is organized as follow. The
proposed method is described in with its ML algorithms
in Section 2. The training parameters of the CNN and
DT models are presented in Section 3 alongside with the
dataset. The performance evaluation of our solution in terms
of both complexity reduction and BD-BR loss is proposed in
Section 4. Finally, Section 5 concludes the paper.

2. PROPOSED METHOD

To reduce the complexity of the VTM under inter coding, a
method based on ML technique is proposed to skip unlikely
splits. Our solution is composed of two parts, first a CNN
computes spatial features related to the partitioning and then
MCCs leverage these spatial features to predict the split
probabilities.

2.1. Overall presentation

The proposed method reduces the complexity by skipping
unlikely splits through ML techniques inside the VTM
encoder process. Fig. 1 details the global scheme of the
proposed method to reduce the complexity of the VTM under
the RA configuration. First, a CNN predicts a vector of
spatial features that represent the CTU partitioning. Second,
the MCC determines a probability for each available split
based on the features of the processed block. Finally, relying
on predefined configuration, the VTM performs the top-N
best splits to maximize the trade-off between the complexity
and the BD-BR loss.

2.2. Description of the inputs

These ML techniques are taking advantage of inter prediction
and the pixels of the current block. Let Bcur, the considered
CTU, a block of 128 × 128 pixels. BMV 1 and BMV 1 are

defined to describe the two CTUs of reference that correspond
to the two Motion Vectors (MVs) with the lowest RD-costs.

A pre-process is necessary to obtain the three components
Bcur, BMV 1 and BMV 2 of the CNN input. Before the
partitioning process, the inter prediction method computes
different blocks from encoded frames to find the most related
block and estimates the RD-cost of the current CTU. Indeed,
the two MVs with the lowest RD-costs are used to find
the two most related block of size 128 × 128, BMV 1 and
BMV 2. This is the classical process of the VTM, thus no
complexity overhead is added. The pixels of those two blocks
are selected to bring information of the inter prediction.
Finally, the luminance pixels, which results from blocks
B = {Bcur,BMV 1,BMV 2} of dimension 128 × 128 × 3,
are given to the CNN as input in order to extract features
related to the partition of the current CTU.

2.3. Feature extraction with CNN

To extract the features required to predict the unlikely splits, a
CNN process the 3-component input B = {Bcur,BMV 1,BMV 2}
in order to take advantage of the inter prediction. The CNN
outputs the Np-length vector p̃ =

[
p0, . . . , pi, . . . , pNp−1

]T
where each component pi represents the probability associated
to the 4×4 edge i of the CTU. The vector length Np, is equal
to 1984 for a CTU size of 128× 128. The features extraction
block processes the 3-components input B to predict the
vector of probabilities p̃:

p̃ = fθ(Bcur ⊕BMV 1 ⊕BMV 2). (1)

where fθ is a parametric function of the CNN with training
parameters θ and ⊕ stands for the concatenation operation.

2.4. Split probability determination with MCC

The MCC are fed with the probabilities vector p̃ derived from
the CNN to predict the split decision performed at each depth
based on the following expression

c̃ = gωi
(p̃), ∀i ∈ {1, . . . ,M}, (2)



Table 1. Possible splits according to the CU size

Height
Width

128 64 32 16 8 4

128 QT, BT BT -
64

BT
All BT, TT BT,

TTH
BTH,
TTH32 BT,

TT
All BT, TT

16 BT, TT All
8 - BT, TTV BT BTH
4 BTV, TTV BTV -

where gωi
is a parametric function of a classifier i, ωi is

its training parameters and M is the number of considered
classifiers.

One classifier is available for each block size. Indeed, for
a 128×128 block decision, the MCC takes as input the whole
vector with the 1984 features. However, with a 8 × 4 block,
the MCC takes as input only the edge inside this block which
results in 1 feature. Based on the considered features, the
MCC predicts the split probabilities. These split probabilities
are gathered inside the vector c̃. The splits supported in c̃ are
QT, BTH, BTV, TTH, TTV, and no split.

2.5. Split decision

Finally, the VTM encoder selects the top-N best splits
predicted in the vector c̃. However, the encoder has constraints
on the available splits which depend of the Coding Unit (CU)
size and the previously computed split. Tab. 1 details the splits
available depending on the CU size under RA configuration.
Based on these constraints, a selection of the top-N splits are
then proposed, depending on the selected configuration. For
instance, if the top-2 configuration is selected, the two highest
probabilities from c̃ which are available relying on the VTM
constraints are tested by the encoder. As the unlikely splits
are not performed, the complexity is reduced with the aim to
limit the BD-BR loss.

3. TRAINING PROCESS AND EXPERIMENTAL
SETUP

This section presents the dataset alongside the CNN and
MCC training process with their respective frameworks and
parameters. The experimental setup performed to obtain the
complexity reduction and BD-BR on the VTM10.2 are also
described.

3.1. Dataset

In RA configuration, the temporal relationship between
frames has a major impact in the encoding performance.
As previously presented, our method exploits the temporal
coding by taking advantage of the MV computed for the
CTU. Two video datasets were selected with UVG [10] and
Xiph [11] to generate the dataset for the learning process.

Table 2. The configurations performed in the VTM
depending on the number of split performed.

Configuration Block size
128 64 32 16 8 4

C1 top-4 top-4 top-4 top-4 top-4 top-4
C2 top-4 top-4 top-3 top-3 top-3 top-3
C3 top-3 top-3 top-3 top-3 top-3 top-3

All those sequences brought a wide variety of contents and
resolutions. To create the dataset and generate the ground
truth to train the CNN and DT models, the sequences are
encoded with the VTM10.2 under RA configuration at
Quantization Parameter (QP) 22, 27, 32 and 37.

For the learning process of our ML models, the dataset has
an important impact on the performance. The disparity of the
dataset is one of the key aspect to maximize the performance
especially its generalisation capability on unseen data. An
optimization on the disparity is conducted on the dataset
which leads a dataset equally distributed over both QPs and
depth partitioning.

3.2. CNN model

The CNN used in our method is based on the MobileNetV2
architecture [12] which is designed for mobiles with limited
computing resources. Indeed, this model decreases the
number of operations and the memory resources which is
a key aspect for our problem. A modification of the original
architecture is proposed in our method to predict the 1984
features related to the partitioning. Moreover, the QP which
has an important impact on the partitioning is given as an
external input to the fully connected layer.

The framework used to train the CNN is Keras [13]
running on top of Tensorflow module [14]. The MobileNetV2
CNN weights are pre-trained on ImageNet. The pre-trained
weights are then updated at each batch iteration with the
ADAM stochastic gradient descent optimizer [15]. The batch
size is set to 256 instances of one CTU and the learning rate
is equal to 10−3. The loss function optimizes the weights by
minimizing the mean squared error. A random shuffle of the
dataset is applied at each epoch.

3.3. MCC training parameters

The MCC is based on the LightGBM (LBGM) framework [16]
version 2.3.1. The LBGM MCC model is the gradient
boosting decision tree method described in [16] which has
a fast computation which is essential as the inference is
performed for each CU. Indeed at each CU, the MCC
determines the top split through the vector of probabilities.
The training of the MCC is optimized through the minimization
of the cross-entropy loss function. Different parameters are
defined with the number of boosting iterations and the early
stopping process set at 100000 and 1500, respectively.



Table 3. ∆ET and BD-BR performance of the proposed solution in comparison with state-of-the-art techniques.

Class Tang et al. [8] Pan et al. [9] Ours C1 Ours C2 Ours C3
BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET

Class A1 - - 2.69% 35.7% 1.12% 41.9% 1.81% 51.1% 3.20% 63.8%
Class A2 - - 3.88% 27% 1% 34.7% 1.86% 44.6% 2.91% 55.9%
Class B 1.80% 34.9% 3.07% 27.9% 1.14% 35.4% 2.21% 46.5% 3.09% 58.2%
Class C 1.72% 32.8% 2% 21% 1.35% 27.5% 3.20% 43.1% 3.79% 53.8%
Class D 0.4% 25.2% 1.73% 17% 1.04% 21.4% 3.02% 36.8% 3.26% 45.2%
Class E 1.47% 25.4% 1.85% 25.5% 0.91% 32.3% 1.45% 38.7% 2.20% 49.6%
Average 1.30% 29.5% 2.52% 25.3% 1.11% 31.8% 2.33% 43.4% 3.12% 54.3%
Class F 1.02% 32.7% - - 1.65% 31.3% 2.96% 40.2% 3.79% 51%

3.4. Experimental setup

Our solution is assessed across the Common Test Conditions
(CTC) sequences in terms of both BD-BR [17] and computational
complexity which is defined as follow

∆ET =
1

4

∑
QPi∈{22,27,32,37}

TR(QPi)− TC(QPi)

TR(QPi)
, (3)

with the reference encoding time TR and the encoding time
with the proposed complexity reduction method TC .

The proposed method is integrated in the VTM10.2
encoder describing the VVC encoding process under RA
configuration. All encodings were carried out sequentially
on an Intel Xeon E5-2603 v4 processor running at 1.70 GHz
under Ubuntu 16.04.5 operating system (OS).

4. EXPERIMENTAL RESULTS

Based on the experimental setup, this section details the
results obtained by our proposed method and the state-of-
the-art techniques [8], [9] implemented in the VTM 10.2
under RA configuration. Tab. 2 details three configurations
used in our solution to reduce the VTM complexity. These
configurations allow different complexity reduction-BD-BR
trade-offs. Such as presented earlier, the top-N means that the
N top split probabilities predicted by the MCC are likely and
that those splits will be tested by the encoder.

Tab. 3 depicts our results for configurations C1 to C3
compared with two state-of-the-art methods [8], [9]. In
average, among our configurations, C1 reaches the lowest
complexity reduction with 31.8% for 1.11% BD-BR loss. C2
configuration brings 43.4% complexity reduction for 2.33%
BD-BR loss. Finally, the highest complexity reduction is
54.3% for a BD-BR loss of 3.12% is achieved by the C3
configuration.

Compared to the two state-of-the-art methods [8], [9],
our lowest complexity reduction performance with the C1
configuration has higher complexity reduction for lower BD-
BR loss. Indeed, theC1 configuration enables gains of 0.19%
and 1.41% BD-BR compared to [8] and [9], respectively. In

terms of complexity reduction, C1 enables gains of 2.3%
and 6.5% compared to [8] and [9], respectively. With
approximately the same BD-BR loss our C2 configuration
increases the complexity reduction by 20% compared to [9].

The results comparing the classes shows that the best
trade-off between complexity reduction and BD-BR loss is
reached on class A1 with 51.1% complexity reduction for
1.81% BD-BR loss, which compared to [9] has 15.4% more
complexity reduction with 0.88% less BD-BR loss. As shown
in the table, the high resolution classes has better results than
the lowest one. For instance, the class D which is the lowest
resolution has 21.4% complexity reduction for 1.04% BD-BR
loss. This is due to the dataset which is not equally distributed
in terms of resolutions. Class F has specific contents such as
screen content which does not appear in our dataset, which
contains mainly natural scene sequences.

5. CONCLUSION

In this paper, a two-stage ML method is proposed to reduce
the complexity of the VTM encoder under RA configuration
while limiting the BD-BR loss. This solution takes advantage
of the MV computed before the partitioning process. First, the
CNN takes as input the current CTU Bcur plus two reference
CTUs BMV 1 and BMV 2 obtained by the two MVs with the
lowest RD-cost. Then, for each CU, a MCC predicts the
split probabilities based on the features defined by the CNN.
Finally, a top-N predicted splits are tested by the encoder to
reach different trade-off between complexity reduction and
BD-BR loss.

Our C1 solution brings 31.8% complexity reduction for
1.11% BD-BR loss on the CTC. This result outperforms in
both complexity reduction and BD-BR loss the two state-
of-the-art techniques. The results on the CTC classes and
on the Full HD and 4K sequences reach different trade-offs
of complexity reduction and BD-BR loss. Indeed, higher
complexity reduction for a lower BD-BR loss is enabled
for high resolution sequences. To limit this gap between the
resolutions, the dataset heterogeneity is an important factor as
the lowest resolution contains a negligible number of CTUs.
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