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Ippa Seppälä ∗ Tiina Manninen ∗ Marja-Leena Linne ∗

∗ Computational Neuroscience Group, Faculty of Medicine and Health
Technology, Tampere University, Tampere, Finland (e-mail:

tiina.manninen@tuni.fi, marja-leena.linne@tuni.fi)

Abstract: Now that mathematical models are becoming larger and biophysically more detailed,
understanding how each variable, parameter, and equation affects the outcome of the model
becomes paramount. In this study, we performed sensitivity analysis of a biophysically-detailed
tripartite synapse model that includes three cells, the pre- and postsynaptic neurons and the
astrocyte, using the Uncertainpy python toolbox. Because of the computational burden, we were
able to run the sensitivity analysis on sets of three to four parameters at a time. The analysis
revealed eight sensitive parameters, which we then analyzed in more detail. In the end, we found
two parameters to be the most sensitive; one of which arose from the postsynaptic neuron and
the other from the astrocyte. Further analysis with larger parameter cohorts would be needed to
make any conclusions on the robustness of the model, but all in all our findings were promising.
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1. INTRODUCTION

Models in computational neuroscience are growing ever
larger. The emergence of new information about intricate
pathways and molecular functions is accompanied by large
amounts of new data from experiments and simulations,
and these data are used to construct even more detailed
models of the brain. To capture as much details as pos-
sible, large biophysically realistic models are needed, but
they run into problems when the number of parameters
and variables increases. The overparameterization often
results in uncertainty in the parameters themselves as well
as the predictions computed using the model (Eriksson
et al., 2019). Thus, it is becoming more and more per-
tinent to perform sensitivity and uncertainty analysis on
such models. This allows us to perform better informed
predictions by finding the most essential parameters and
understanding their relationship to the outcome.

By sensitivity analysis we mean the quantification of
the uncertainty in the model output that a particular
uncertain parameter is responsible for. Sensitivity analysis
methods can be divided into local and global methods (see,
e.g., Zi, 2011; Borgonovo and Plischke, 2016). With local
methods, the analysis is done in close vicinity of a certain
chosen point in parameter space, whereas with global
methods, the analysis is done by assigning probability
distributions for the parameter space.

Several sensitivity analysis tools exist (see, e.g., Tennøe
et al., 2018; Santos et al., 2021). In this study, we used
Uncertainpy toolbox (Tennøe et al., 2018) which provides
two different global methods for its sensitivity analysis,
the quasi-Monte Carlo method and the polynomial chaos
expansion. In the standard Monte Carlo method, a set
of parameters is pseudo-randomly selected from the joint
multivariate probability density function of all the uncer-

tain parameters under review. The model is evaluated for
each pseudo-random set of parameters, which means that
it will be evaluated thousands of times and the statistical
metrics (mean and variance) will be calculated for the out-
put after each evaluation. The quasi-Monte Carlo method
uses variance reduction methods to allow the parameters
to be sampled more evenly and thus giving better coverage
of the statistics with less samples. As long as the number of
uncertain parameters is sufficiently small, the quasi-Monte
Carlo method outperforms the standard Monte Carlo ver-
sion. Still, if the number of parameters is kept relatively
low (e.g., lower than 20), the polynomial chaos expansion
will be far faster than even the quasi-Monte Carlo (Tennøe
et al., 2018) as it belongs to the class of efficient polynomial
approximation methods. Due to the speed limitations, it
is advised that with larger models such as those common
in computational neuroscience, sensitivity analysis should
be performed on smaller subsets of parameters at a time.
This will of course limit the amount of information of
the sensitivity in the context of the entire system, as
the number of parameters whose value is simultaneously
variable is restricted. In the polynomial chaos expansion,
the model is approximated by a polynomial expansion.
Uncertainpy first looks for the orthogonal polynomials and
then estimates the expansion coefficients. There are two
classes of nonintrusive methods for doing this, both of
which are implemented in Uncertainpy.

With the Uncertainpy toolbox, we performed sensitiv-
ity analysis of a biophysically-detailed tripartite synapse
model (Manninen et al., 2020). Quantifying the sensitivity
(and uncertainty) of the model parameters allowed us to
assess the robustness of the model as well as its well-
suitedness to predict spike-timing-dependent long-term
depression (t-LTD). We were able to run the sensitivity
analysis on sets of three to four parameters at a time.
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Ippa Seppälä ∗ Tiina Manninen ∗ Marja-Leena Linne ∗

∗ Computational Neuroscience Group, Faculty of Medicine and Health
Technology, Tampere University, Tampere, Finland (e-mail:

tiina.manninen@tuni.fi, marja-leena.linne@tuni.fi)

Abstract: Now that mathematical models are becoming larger and biophysically more detailed,
understanding how each variable, parameter, and equation affects the outcome of the model
becomes paramount. In this study, we performed sensitivity analysis of a biophysically-detailed
tripartite synapse model that includes three cells, the pre- and postsynaptic neurons and the
astrocyte, using the Uncertainpy python toolbox. Because of the computational burden, we were
able to run the sensitivity analysis on sets of three to four parameters at a time. The analysis
revealed eight sensitive parameters, which we then analyzed in more detail. In the end, we found
two parameters to be the most sensitive; one of which arose from the postsynaptic neuron and
the other from the astrocyte. Further analysis with larger parameter cohorts would be needed to
make any conclusions on the robustness of the model, but all in all our findings were promising.

Keywords: Computational model, sensitivity analysis, simulation, synapse, Uncertainpy

1. INTRODUCTION

Models in computational neuroscience are growing ever
larger. The emergence of new information about intricate
pathways and molecular functions is accompanied by large
amounts of new data from experiments and simulations,
and these data are used to construct even more detailed
models of the brain. To capture as much details as pos-
sible, large biophysically realistic models are needed, but
they run into problems when the number of parameters
and variables increases. The overparameterization often
results in uncertainty in the parameters themselves as well
as the predictions computed using the model (Eriksson
et al., 2019). Thus, it is becoming more and more per-
tinent to perform sensitivity and uncertainty analysis on
such models. This allows us to perform better informed
predictions by finding the most essential parameters and
understanding their relationship to the outcome.

By sensitivity analysis we mean the quantification of
the uncertainty in the model output that a particular
uncertain parameter is responsible for. Sensitivity analysis
methods can be divided into local and global methods (see,
e.g., Zi, 2011; Borgonovo and Plischke, 2016). With local
methods, the analysis is done in close vicinity of a certain
chosen point in parameter space, whereas with global
methods, the analysis is done by assigning probability
distributions for the parameter space.

Several sensitivity analysis tools exist (see, e.g., Tennøe
et al., 2018; Santos et al., 2021). In this study, we used
Uncertainpy toolbox (Tennøe et al., 2018) which provides
two different global methods for its sensitivity analysis,
the quasi-Monte Carlo method and the polynomial chaos
expansion. In the standard Monte Carlo method, a set
of parameters is pseudo-randomly selected from the joint
multivariate probability density function of all the uncer-

tain parameters under review. The model is evaluated for
each pseudo-random set of parameters, which means that
it will be evaluated thousands of times and the statistical
metrics (mean and variance) will be calculated for the out-
put after each evaluation. The quasi-Monte Carlo method
uses variance reduction methods to allow the parameters
to be sampled more evenly and thus giving better coverage
of the statistics with less samples. As long as the number of
uncertain parameters is sufficiently small, the quasi-Monte
Carlo method outperforms the standard Monte Carlo ver-
sion. Still, if the number of parameters is kept relatively
low (e.g., lower than 20), the polynomial chaos expansion
will be far faster than even the quasi-Monte Carlo (Tennøe
et al., 2018) as it belongs to the class of efficient polynomial
approximation methods. Due to the speed limitations, it
is advised that with larger models such as those common
in computational neuroscience, sensitivity analysis should
be performed on smaller subsets of parameters at a time.
This will of course limit the amount of information of
the sensitivity in the context of the entire system, as
the number of parameters whose value is simultaneously
variable is restricted. In the polynomial chaos expansion,
the model is approximated by a polynomial expansion.
Uncertainpy first looks for the orthogonal polynomials and
then estimates the expansion coefficients. There are two
classes of nonintrusive methods for doing this, both of
which are implemented in Uncertainpy.

With the Uncertainpy toolbox, we performed sensitiv-
ity analysis of a biophysically-detailed tripartite synapse
model (Manninen et al., 2020). Quantifying the sensitivity
(and uncertainty) of the model parameters allowed us to
assess the robustness of the model as well as its well-
suitedness to predict spike-timing-dependent long-term
depression (t-LTD). We were able to run the sensitivity
analysis on sets of three to four parameters at a time.

Sensitivity analysis of biophysically-detailed
tripartite synapse model
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2. METHODS

One can think of a computational model as a system
M that relies on space x, time t, uncertain parameters
Q = [q1, q2, . . . , qm] and results in an output Y such that

Y = M(x, t,Q). (1)

Each uncertain parameter has a probability distribution
Pq that the parameter will be drawn from. The uncertainty
of a parameter can be caused by experimental measure-
ments, uncertain theoretical values, or other variations.
These variations give rise to a probability distribution for
each uncertain parameter.

The Uncertainpy toolbox can use two different methods
for its sensitivity analysis, the quasi-Monte Carlo method
and the polynomial chaos expansion. The Uncertainpy
toolbox relies upon the commonly used Sobol sensitivity
indices method (Sobol, 2001) calculating both first-order
and total-order Sobol indices.

2.1 Quasi-Monte Carlo methods

The statistical metrics (mean and variance) will be cal-
culated for the output after each evaluation. The quasi-
Monte Carlo method uses a low-discrepancy sequence to
select the samples of uncertain parameters with which the
model will be evaluated. Compared to the pseudo-random
selection used by the standard Monte Carlo method, this
allows for the samples to be picked out more evenly, giving
better coverage of the statistics of the probability distri-
bution using less samples (Tennøe et al., 2018). The quasi-
Monte Carlo method outperforms the standard Monte
Carlo approach if the number of uncertain parameters is
sufficiently small.

2.2 Polynomial chaos expansion

Using the polynomial chaos expansion method, the model
is approximated by a polynomial expansion in which the
polynomials are orthogonal to the probability density
function. This approximation is given by

M ≈ M̂(x, t,Q) =

Np−1∑
n=0

cn(x, t)φn(Q), (2)

where M is again the model system, x the set of vari-
ables, and Q the set of uncertain parameters. Uncertainpy
first looks for the orthogonal polynomials φn and then
estimates the expansion coefficients cn. The number of
expansion factors Np is given by

Np =

(
d+ p

p

)
, (3)

where p represents the polynomial order and d the number
of uncertain parameters. There are two classes of nonin-
trusive methods for doing this, both of which are imple-
mented in Uncertainpy: point collocation method, which
is the default method, and the pseudo-spectral projection
methods.

The point collocation method is based on demanding the
polynomial approximation to be equal to the model output
at a set of collocation nodes drawn from the probability
density function. To put it simply, a set of samples are

chosen and at those points the approximation is forced
to be equal to the original model output. This results
in a set of linear equations for the polynomial coefficient
cn. These equations can then be solved using regression
methods, the one used by Uncertainpy being the Tikhonov
regularization (Tikhonov, 1943).

Pseudo-spectral projection methods are based on least
squares minimization in orthogonal polynomial space. This
method finds the expansion coefficients cn by numerical
integration using a quadrature scheme. Uncertainpy uses
Leja quadrature to find appropriate weights and the nodes
at which the model will be evaluated. Smolyak sparse grids
are used to reduce the number of these nodes to speed up
the calculation. The pseudo-spectral projection method is
used only when requested by the user and not by default.

2.3 Tripartite synapse model

We performed sensitivity analysis of the tripartite synapse
model by Manninen et al. (2020) which was constructed for
t-LTD in the developing somatosensory cortex. The model
includes major biophysical and biochemical mechanisms
for the three cells, the one-compartmental presynaptic
spiny stellate cell, two-compartmental postsynaptic pyra-
midal cell, and one-compartmental fine astrocyte process.
The model has altogether about 80 differential equations
and 170 parameters.

2.4 Chosen uncertain parameters

Out of the about 170 model parameters, 26 parameters of
interest were studied with the sensitivity analysis. These
parameters were specifically chosen for one of two reasons;
either their sensitivity was made evident during the con-
struction of the original model or there was no biologically
relevant value available for them in the literature at the
time. During the sensitivity analysis, we used a uniform
distribution for all uncertain parameters with the mini-
mum value being 90 % and the maximum value 110 % of
the original values given in Tables 1–3.

2.5 Model stimulus

Due to the complexity of the studied model, adjustments
to the simulations needed to be made. The model, as de-
scribed in Section 2.3, was originally simulated with a post-
pre pairing protocol for 500 s with a 5 s gap between each
pairing stimulus of the post- and presynaptic neurons (Min
and Nevian, 2012; Banerjee et al., 2014). Furthermore,
before the pairing protocol was started there was originally
a 20 s period where no stimulus was given to either of
the neurons. In the pairing protocol, the stimuli were
given to the pre- and postsynaptic neurons with a small
temporal difference in between. This temporal difference
ranged from −10 to −200 ms, as the postsynaptic stimulus
was given first before the presynaptic stimulus (Banerjee
et al., 2014), in 10 ms increments; so, 20 different temporal
differences in total.

Here we simulated the model for five post-pre pairings
without the 20 s idle period before the initial stimulus, thus
the simulation time was 25 s. Most of the analyses were
performed using a temporal difference of −10 ms between
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2. METHODS

One can think of a computational model as a system
M that relies on space x, time t, uncertain parameters
Q = [q1, q2, . . . , qm] and results in an output Y such that

Y = M(x, t,Q). (1)

Each uncertain parameter has a probability distribution
Pq that the parameter will be drawn from. The uncertainty
of a parameter can be caused by experimental measure-
ments, uncertain theoretical values, or other variations.
These variations give rise to a probability distribution for
each uncertain parameter.

The Uncertainpy toolbox can use two different methods
for its sensitivity analysis, the quasi-Monte Carlo method
and the polynomial chaos expansion. The Uncertainpy
toolbox relies upon the commonly used Sobol sensitivity
indices method (Sobol, 2001) calculating both first-order
and total-order Sobol indices.

2.1 Quasi-Monte Carlo methods

The statistical metrics (mean and variance) will be cal-
culated for the output after each evaluation. The quasi-
Monte Carlo method uses a low-discrepancy sequence to
select the samples of uncertain parameters with which the
model will be evaluated. Compared to the pseudo-random
selection used by the standard Monte Carlo method, this
allows for the samples to be picked out more evenly, giving
better coverage of the statistics of the probability distri-
bution using less samples (Tennøe et al., 2018). The quasi-
Monte Carlo method outperforms the standard Monte
Carlo approach if the number of uncertain parameters is
sufficiently small.

2.2 Polynomial chaos expansion

Using the polynomial chaos expansion method, the model
is approximated by a polynomial expansion in which the
polynomials are orthogonal to the probability density
function. This approximation is given by

M ≈ M̂(x, t,Q) =

Np−1∑
n=0

cn(x, t)φn(Q), (2)

where M is again the model system, x the set of vari-
ables, and Q the set of uncertain parameters. Uncertainpy
first looks for the orthogonal polynomials φn and then
estimates the expansion coefficients cn. The number of
expansion factors Np is given by

Np =

(
d+ p

p

)
, (3)

where p represents the polynomial order and d the number
of uncertain parameters. There are two classes of nonin-
trusive methods for doing this, both of which are imple-
mented in Uncertainpy: point collocation method, which
is the default method, and the pseudo-spectral projection
methods.

The point collocation method is based on demanding the
polynomial approximation to be equal to the model output
at a set of collocation nodes drawn from the probability
density function. To put it simply, a set of samples are

chosen and at those points the approximation is forced
to be equal to the original model output. This results
in a set of linear equations for the polynomial coefficient
cn. These equations can then be solved using regression
methods, the one used by Uncertainpy being the Tikhonov
regularization (Tikhonov, 1943).

Pseudo-spectral projection methods are based on least
squares minimization in orthogonal polynomial space. This
method finds the expansion coefficients cn by numerical
integration using a quadrature scheme. Uncertainpy uses
Leja quadrature to find appropriate weights and the nodes
at which the model will be evaluated. Smolyak sparse grids
are used to reduce the number of these nodes to speed up
the calculation. The pseudo-spectral projection method is
used only when requested by the user and not by default.

2.3 Tripartite synapse model

We performed sensitivity analysis of the tripartite synapse
model by Manninen et al. (2020) which was constructed for
t-LTD in the developing somatosensory cortex. The model
includes major biophysical and biochemical mechanisms
for the three cells, the one-compartmental presynaptic
spiny stellate cell, two-compartmental postsynaptic pyra-
midal cell, and one-compartmental fine astrocyte process.
The model has altogether about 80 differential equations
and 170 parameters.

2.4 Chosen uncertain parameters

Out of the about 170 model parameters, 26 parameters of
interest were studied with the sensitivity analysis. These
parameters were specifically chosen for one of two reasons;
either their sensitivity was made evident during the con-
struction of the original model or there was no biologically
relevant value available for them in the literature at the
time. During the sensitivity analysis, we used a uniform
distribution for all uncertain parameters with the mini-
mum value being 90 % and the maximum value 110 % of
the original values given in Tables 1–3.

2.5 Model stimulus

Due to the complexity of the studied model, adjustments
to the simulations needed to be made. The model, as de-
scribed in Section 2.3, was originally simulated with a post-
pre pairing protocol for 500 s with a 5 s gap between each
pairing stimulus of the post- and presynaptic neurons (Min
and Nevian, 2012; Banerjee et al., 2014). Furthermore,
before the pairing protocol was started there was originally
a 20 s period where no stimulus was given to either of
the neurons. In the pairing protocol, the stimuli were
given to the pre- and postsynaptic neurons with a small
temporal difference in between. This temporal difference
ranged from −10 to −200 ms, as the postsynaptic stimulus
was given first before the presynaptic stimulus (Banerjee
et al., 2014), in 10 ms increments; so, 20 different temporal
differences in total.

Here we simulated the model for five post-pre pairings
without the 20 s idle period before the initial stimulus, thus
the simulation time was 25 s. Most of the analyses were
performed using a temporal difference of −10 ms between

Table 1. Analyzed parameters of the presynaptic neuron

Parameter Explanation Value Unit

X total pre Total concentration of presynaptic protein affecting vesicular release 0.1 µM

p1 pre Rate constant for presynaptic protein activation affecting vesicular release 0.00003 1
ms

N pre Number of readily releasable presynaptic vesicles 2

kd2 f pre Rate constant into desensitized state of presynaptic N-methyl-D-aspartate receptors (NMDARs) 0.0112 1
ms

kd1 f pre Rate constant into desensitized state of presynaptic NMDARs 0.055 1
ms

gNMDAR pre Maximum conductance of presynaptic NMDARs per unit area 0.1 mS
cm2

K rel pre Presynaptic calcium (Ca2+) concentration producing half occupation used in calculation of
glutamate release

5 µM

KA pre Presynaptic calcineurin concentration producing half occupation 2 µM

k f pre Presynaptic facilitation rate constant 0.0075 1
ms

k2 pre Rate constant for inactivation of presynaptic calcineurin 0.002 1
ms

k1 pre Rate constant for Ca2+ activation of presynaptic calcineurin 0.001 1
µM3ms

C thr pre Ca2+ threshold concentration of glutamate release in presynaptic neuron 3 µM

f glu pre Factor representing spillover of glutamate from synaptic cleft to extrasynaptic space 0.1

Table 2. Analyzed parameters of the postsynaptic neuron

Parameter Explanation Value Unit

v SERCA post Maximum rate of Ca2+ uptake by postsynaptic sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA)

0.003 µM
ms

k Glu f post Reaction rate for glutamate uptake by postsynaptic metabotropic glutamate receptors 0.2 1
ms

k Ca PLC1 f post Metabotropic glutamate receptor and endocannabinoid 2-arachidonoylglycerol (2-AG)
related parameter

0.002 1
µM ms

gCaLHVA dend post Maximum conductance of postsynaptic L-type high-voltage-activated Ca2+ current in
the dendrite per unit area

0.23 mS
cm2

gCaLLVA dend post Maximum conductance of postsynaptic L-type low-voltage-activated Ca2+ current in
the dendrite per unit area

0.23 mS
cm2

gNMDAR post Maximum conductance of postsynaptic NMDARs per unit area 0.001 mS
cm2

B post Postsynaptic fast buffering factor 0.5

v IP3R post Maximum rate of Ca2+ release via postsynaptic inositol 1,4,5-trisphosphate (IP3)
receptors

0.01 1
ms

v PMCA post Maximum rate of Ca2+ uptake by postsynaptic plasma membrane Ca2+-ATPase
(PMCA) per unit area

8× 10−11 µMol
ms cm2

Table 3. Analyzed parameters of the astrocyte

Parameter Explanation Value Unit

C thr astro Ca2+ threshold concentration of glutamate exocytosis in astrocytes 0.3 µM

N astro Number of readily releasable astrocytic vesicles 4

r IP3 astro Rate constant of astrocytic IP3 production 0.0008 1
ms

v SERCA astro Maximum rate of Ca2+ uptake by astrocytic SERCA pump 0.0007 µM
ms

the post-pre pairing, but we were able to run the analysis
with values up to −200 ms.

3. RESULTS

Due to limitations in the computing resources, we chose
the most important parameters from each of the three
cell types in the model (Tables 1–3) and compared them
against three state variables as outputs; the concentra-
tion of glutamate in the synaptic cleft ([Glu]syncleft),
the concentration of postsynaptic endocannabinoid 2-
arachidonoylglycerol ([2-AG]post), and the concentration
of glutamate in the extrasynaptic space ([Glu]extsyn).

We analyzed the sensitivity of the uncertain parameters
with the polynomial chaos expansion method as it per-

forms much faster than the quasi-Monte Carlo method
when the number of parameters is relatively low. Due to
the complexity of the model, we were not able to analyze
all the parameters of interest at the same time but grouped
them into groups of three or four. The memory required
for running the model whilst simultaneously varying more
than four parameters exceeded the memory limit of the
computing cluster. This only shows how large the model
truly is even when the simulation time had already been
shortened considerably. In this study, we focused on the
first-order Sobol sensitivity index which indicates how
much each uncertain parameter affects the variance of the
model output. The averages of the indices can be seen in
Figs. 1–6 where groupings of the parameters analyzed at
the same time are indicated by different colors.
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Fig. 2. The average of the first-order Sobol sensitivity indices of the postsynaptic parameters. Parameters k Glu f post,
gCALHVA dend post, v IP3R post, and v PMCA post were the most sensitive.
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ity indices of the astrocytic parameters. Parameter
v SERCA astro was the most sensitive.
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Fig. 5. The average of the first-order Sobol sensitivity indices for the most sensitive eight parameters. Parameters
k Glu f post and v SERCA astro were the most sensitive.
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Fig. 6. The average of the first-order Sobol sensitivity indices when the time difference was −200 ms. Parameters
k Glu f post and v SERCA astro were the most sensitive.

A low value of the first-order Sobol sensitivity index
(close to 0) means that changes in the parameter value
do not have a big effect on the model output; whereas
a high value (close to 1) means that changes in the
parameter value affect greatly the model output. Thus,
Fig. 1 shows clearly that the parameters N pre, K rel pre,
and C thr pre were the most sensitive of the presy-
naptic parameters tested. Fig. 2 shows that the post-
synaptic parameters k Glu f post, gCALHVA dend post,
v IP3R post, and v PMCA post were more sensitive than
the others. Fig. 3 shows that v SERCA astro was the
most sensitive of the astrocytic parameters. To study the
sensitivity of the glutamate release parameters, we next
analyzed four related parameters simultaneously, namely
k1 pre, C thr pre, f glu pre, and C thr astro. The param-
eter C thr pre is clearly the most sensitive parameter of
these four (Fig. 4).

After having run the parameters from each cell in the small
groups and for the glutamate release, altogether eight of
them exceeded the value of 0.5 compared against one or

more of the three state variables (Figs. 1–4). These eight
parameters were then run in two sets of four and their
sensitivity indices can be found in Fig. 5. It is clear that
not all the parameters that were revealed to be sensitive
(exceeding the value of 0.5 for the average of first-order
Sobol sensitivity indices) in their initial cohorts (Figs. 1–
4) were as sensitive when grouped together with the other
sensitive parameters. This indicates the importance of
studying the sensitivity of parameters together rather than
in smaller subsets. It would be useful to run all eight or
even all the 170 parameters together, but it is not feasible
with this model at this time due to computational burden.

In Figs. 1–5, the temporal difference between the post-
and presynaptic stimuli was set to −10 ms, when in the
original model it ranged between −10 ms and −200 ms.
Because we could not know what effect this has on the
sensitivity of the parameters, we decided to also test the
time difference −200 ms. We did this with the eight most
sensitive parameters found in the case of −10 ms. We then
compared the averages of the first-order Sobol sensitivity
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indices of those parameters when the simulations were run
using the two temporal differences (−10 ms and −200
ms). Only slight changes in some of the parameters were
visible in the Sobol sensitivity indices. For example, the
sensitivity of the parameters K rel pre, C thr pre, and
gCaLHVA dend post had marginally higher values in the
case of −10 ms than in the case of −200 ms when
compared against the concentration of glutamate in the
extrasynaptic space (Figs. 5 and 6).

4. DISCUSSION AND CONCLUSIONS

The sensitivity analysis we performed with the Un-
certainpy toolbox revealed eight sensitive parameters.
These included the parameters N pre, K rel pre, and
C thr pre from the presynaptic neuron, the parameters
gCaLHVA dend post, v IP3R post, v PMCA post, and
k Glu f post from the postsynaptic neuron, and the pa-
rameter v SERCA astro from the astrocyte. All the stud-
ied parameters and their explanations can be found in
Tables 1–3. The sensitivity indices for all the parameters
tested can be found in Figs. 1–4. These parameters were
mostly studied in separate simulation runs because we
were only able to test three to four parameters simulta-
neously. After identifying the eight sensitive parameters,
we analyzed them again four parameters at a time in
order to see how their sensitivity was related to each
other (Figs. 5 and 6). These final simulations revealed that
the parameters k Glu f post and v SERCA astro were the
most sensitive of all the parameters studied here.

This was rather surprising, as during the construc-
tion of the model the parameters k Glu f post and
v SERCA astro were not considered to be among the
most influential parameters of the model. One of these
parameters arose from the most biophysically-detailed cell
of the whole tripartite synapse model, the postsynaptic
neuron, and the other from the simplest cell, the astrocyte.
More in-depth analysis with larger sets of parameters
run simultaneously would be needed to better assess the
robustness and well-suitedness of the model for the study
of t-LTD. Still these preliminary results are promising and
could indicate that the model does indeed conform to the
biophysical behavior of the actual cellular system.

Of the Uncertainpy package itself (Tennøe et al., 2018), it
can be concluded that it was fairly easy to implement even
for such a large model. Due to the black box approach,
Uncertainpy is versatile and flexible, and can thus be
utilized for various types of models. The computational
burden is considerable, but this could be remedied by
vetting the parameters under study with care, and by using
computing platforms with enough capacity.

In summary, we conclude that we used one of the most
complex neuroscience models for a synapse constructed
to explain t-LTD phenomena (Manninen et al., 2020) and
performed sensitivity analysis on 26 of its parameter values
against the three outputs of the model. We found out
that current sensitivity (uncertainty) analysis tools are
not yet fully suitable for such complex models, at least
to perform the full sensitivity analysis of all parameters
simultaneously. Sensitivity analysis will become even more
important in the future as the use of biophysically-detailed
models is becoming commonplace in the study of human

health and diseases as well as the development of targeted
therapies.
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