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The nonlinear propagation of ultrashort pulses in op-
tical fibers depends sensitively on the input pulse and
fiber parameters. As a result, optimizing propagation for
specific applications generally requires time-consuming
simulations based on the sequential integration of the
generalized nonlinear Schrödinger equation (GNLSE).
Here, we train a feed-forward neural network to learn
the differential propagation dynamics of the GNLSE,
allowing emulation of direct numerical integration of
fiber propagation, and particularly the highly complex
case of supercontinuum generation. Comparison with a
recurrent neural network shows that the feed-forward
approach yields faster training and computation, and
reduced memory requirements. The approach is generic
and can be extended to other physical systems. © 2023

Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Neural networks (NNs) are a subset of machine learning tech-
niques widely used in data analysis, classification and prediction
[1]. NNs possess the ability to link the input and output of a
multidimensional system, of particular benefit for modeling
complex relationships as is typically the case in the presence of
nonlinearity [2–8]. NNs are being increasingly applied in optics
[9], with recent results including mode-locked laser optimization
[10–12] and the analysis of ultrafast instabilities [13–15].

A particular focus of NNs in optics has been the study of
fiber nonlinear propagation and supercontinuum (SC) genera-
tion [13, 14, 16], complex processes involving multiple effects
[17]. The dynamics depend sensitively on the injected pulse and
fiber parameters, and matching an input to achieve a desired
spectral or temporal output is a complex multivariate problem.
The traditional approach for optimization is based on parame-
ter scanning using step-by-step integration of the generalized
nonlinear Schrödinger equation (GNLSE) [18]. Yet whilst the
GNLSE can accurately model fiber nonlinear dynamics, direct
simulations are time-consuming, especially with a large parame-
ter space of potential boundary conditions (input pulse power,
duration and chirp; fiber dispersion, nonlinearity, length).

To overcome this, machine learning techniques have been
applied to optimize fiber dynamics, including the use of genetic
algorithms to tailor broadband spectra [19, 20]. More recently,
recurrent neural networks (RNNs) using only input temporal
(or spectral) intensity profiles have successfully emulated fiber
propagation [14], accurately predicting SC evolution maps in
computation times as short as one second. A limitation, however,
is the initial training phase of several hours due to the multiple
loops associated with the RNN internal memory.

Here, we show how a faster and simpler feed-forward neural
network (FNN) can model the full-field (intensity and phase)
evolution of ultrashort pulses in optical fiber over a wide range
of input pulse properties and fiber parameters. The key concep-
tual novelty is to train the network to learn GNLSE differential
propagation dynamics i.e. to replicate the change in intensity
and phase of the electric field between elementary longitudi-
nal steps. Once trained, the network can model the long-term
evolution from a given input. We also perform a detailed com-
parison with a RNN model, highlighting the benefits of the FNN
approach in terms of speed and memory.

Figure 1 shows the principle. We first generate an ensemble
of data for broadband coherent SC generation (using Matlab on
a 3.4 GHz 4-core Intel Core i7). We include a one photon per
spectral bin noise model [17], but its influence was found to be
negligible. This data is generated by numerically integrating the
GNLSE with the split-step method. A summary of input pulse
and fiber parameter ranges used in all cases below is given in
the Supplementary documentation.

The dynamical maps are characterized by vector
[In(zi, X), Φn(zi, X)], where In and Φn represent intensity
and phase at distance zi, expressible either in temporal (X = T)
or spectral domains (X = ω), and from which the complex
electric field can be reconstructed. Subscript n = 1 . . . N
indicates a particular map for a given set of input pulse and fiber
parameters. The key idea in Fig. 1(a) is to teach the network
the differential change in intensity and phase associated
with an elementary propagation distance ∆z. To achieve a
performance advantage relative to direct integration, the aim
is to use a significantly larger step in the FNN compared to
that used in GNLSE integration. To this end, the intensity and
phase evolution are downsampled at distances zi = (i − 1)∆z
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(i = 1..M), where ∆z = L/M = 0.1 cm is e.g. 50 times larger
than in the GNLSE simulations used to generate the data.
The downsampled vectors are then used as the FNN input.
The network output vectors after an elementary step ∆z are
[In(zi+1, X), Φn(zi+1, X)]. The change in the intensity and phase
modeled by the FNN is then compared to that from the GNLSE
via an error function [13].

Once trained, the neural network acts as a very fast and
memory-efficient GNLSE integrator. It predicts intensity and
phase [I(z + ∆z, X), Φ(z + ∆z, X)] after an elementary propa-
gation distance ∆z given the complex field [I(z, X), Φ(z, X)] at
distance z, from which the dynamical evolution of the complex
electric field can be reconstructed. The trained FNN can then be
used to predict propagation dynamics over an extended distance
using an iterative loop (see Fig. 1(b)) such that intensity and
phase [I(zi+1, X), Φ(zi+1, X)] are fed back to the network as a
new input to predict [I(zi+2, X), Φ(zi+2, X)] at distance z + 2∆z.
This operation is performed over the full propagation distance.

The neural network itself consists of 3 hidden layers of 2000
nodes with ReLU activation ( f (x) = max(0, x)) and a sigmoid
output layer with 2048 nodes. The codes were written in Python
using Keras with Tensorflow backend [21]. The FNN is trained
on a single GPU (NVIDIA Quadro K620) for 80 epochs with
RMSprop optimizer and adaptive learning rate. The network
can be trained in the temporal or spectral domain, and with
data input on either linear or logarithmic (dB) scales. In the
results below we used ensembles of spectral evolution maps in
logarithmic scale. Examples of time domain evolution using
linear input are in the Supplementary documentation (Fig. S1).
The network accuracy is tested with a separate set of propagation
maps not used in the training phase. We quantify performance
using the average (normalized) root mean squared (RMS) error
computed over the test evolution map at all propagation steps:

R =

√
∑d,i(xn,d,i − x̂n,d,i)2

∑d,i(xn,d,i)2 , (1)

where xn and x̂n denote GNLSE simulation and FNN prediction
for a particular realization n. Variables d and i indicate summa-
tion over intensity (spectral or temporal) and propagation steps,
respectively. When evaluating performance over an ensemble,
the error is calculated over N evolution maps.

We first show how the FNN can predict SC evolution from
transform-limited (TL) input pulses. We used an ensemble of
1400 simulations for training, and 100 for testing. The ensem-
ble of SC maps correspond to hyperbolic-secant input pulses at
λ0 = 830 nm, with peak power and duration (FWHM) in the
range P0 = 0.77–1.43 kW and TFMHM =70–130 fs (±30% varia-
tion). The dispersion parameters are β2 = −5.90 × 10−27 s2m−1,
β3 = 4.21 × 10−41 s3m−1, β4 = −1.25 × 10−55 s4m−1, and
β5 = −2.45 × 10−70 s5m−1 (zero-dispersion wavelength (ZDW)
at 767 nm), and the nonlinear coefficient is: γ = 0.1 W−1m−1.
The fiber length is L = 20 cm. FNN predicted spectral evolution
for input peak power and pulse duration of 1.32 kW and 120 fs
is shown in Fig. 2a. For comparison, we also plot the map from
direct GNLSE integration. The RMS error is R = 0.098, while the
average error computed over the 100 test maps is R = 0.094. The
FNN accurately predicts the SC development, with dispersive
wave and soliton dynamics reproduced over ∼ 40 dB dynamic
range.

We next tested modeling of SC development from chirped
pulses. We performed 3000 simulations with parameters as
above, except with peak power variation of ±20% and input
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Fig. 1. Principle of the FNN integrator. a Training Differential
Dynamics. Training uses multiple input/output pairs gener-
ated by direct integration of the GNLSE and corresponding
to the temporal (X = T) or spectral (X = ω) intensity I and
phase Φ of the propagating field at distances separated by ∆z
(see text). The network variables are adjusted via gradient
descent backpropagation. b Iterating Propagation Prediction.
Once trained, the network predicts iteratively the intensity
and phase evolution via a feedback loop. The prediction is ini-
tialized from the intensity and phase at the fiber input.

spectral bandwidth varying from TL to twice the TL with ran-
dom sign of chirp. The predicted spectral evolution for pulses
with 942 W peak power, 84 fs duration, and positive chirp of
1.53 times the TL bandwidth are shown in Fig. 2b. Again we see
how the main features (including spectral interference) are well-
reproduced by the FNN (R = 0.190) although we note a small
discrepancy in the distance of maximum compression at -20 dB
bandwidth. The RMS error R = 0.383 (0.242 median) computed
over the 100 test ensemble shows that the network accurately
models chirped pulse dynamics.

The results above correspond to typical anomalous disper-
sion dynamics, but the network can be trained over a much
wider range of parameters using the normalized form of the
GNLSE to generate the training ensemble (see Supplementary
documentation). Here we map a specific set of dimensional
parameters to normalized values to predict the corresponding
evolution. Figure 3 plots predicted SC evolution (over 100 longi-
tudinal steps) for a pump wavelength in the normal dispersion
region (see caption for parameters). Specifically, Fig. 3a corre-
sponds to a TL limited pulse injected near the ZDW while Fig. 3b
is for a pump wavelength further detuned into the normal dis-
persion regime. We see very good accuracy with R = 0.141 for
Fig. 3a and R = 0.043 for Fig. 3b. The RMS error over an ensem-
ble of 200 realizations is R = 0.060. Time domain predictions are
given in the Supplementary documentation (Fig. S2).

To reduce computational memory and increase the speed in
the training phase, one can train the network from convolved
spectral intensity and phase evolution maps. At first sight,
a disadvantage of convolved data is that the resulting wave-
length/frequency grid is no longer on a Fourier grid, requiring
separate training to predict spectral and temporal evolution.
However, this is in fact a major benefit, because it allows the ap-
propriate selection of resolution in spectral or temporal domains
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Fig. 2. Comparing supercontinuum spectral evolution from GNLSE integration (left panel) and FNN prediction (middle panel).
The right panel shows the spectral intensity and phase at distances indicated by the arrows. a shows results for transform limited
(TL) input pulses of peak power and pulse duration P0 = 1.32 kW and TFWHM = 120 fs. b shows results for a chirped input pulse
of peak power and pulse duration P0 = 942 W and TFWHM = 84 fs, and positive chirp of 1.53 times the TL bandwidth. The GNLSE
simulations and FNN predictions were performed using 10000 and 200 longitudinal steps, respectively.

to optimally capture the relevant physical structure.

Results of predicted spectral evolution using convolved train-
ing data (using an 8 nm FWHM super-Gaussian spectral filter)
are shown in Fig. 4a,b. These results use the same input pulse
and fiber parameters as in Fig. 2a,b. We see how the FNN pre-
dictions remain accurate with a mean convolved (logarithmic)
spectral intensity RMS errors of 0.06 and 0.16 for TL and chirped
cases respectively (calculated over 100 distinct test evolution
maps). Predictions using other spectral resolutions are in the
Supplementary documentation Fig. S3.

We then compared the computation resources and perfor-
mance of the FNN model and a RNN similar to that used in Ref.
[14]. The comparison was performed over an ensemble of 12000
(11800 for training and 200 for testing) convolved SC evolution
maps for anomalous dispersion dynamics with variations in
peak power, pulse duration and dispersion (see Supplementary
documentation) and using 50 longitudinal prediction steps. Ta-
ble 1 summarizes the results, with examples of predicted maps
shown in the Supplementary documentation (Fig. S4). We also
list the resources used by the GNLSE simulations. Both FNN
and RNN used the same number of free parameters/network
variables, but the RNN is trained from spectral intensity maps
which reduces by half the number of grid points compared to the
FNN that includes both intensity and phase. The computational
advantage of the FNN is clear with training and prediction times
reduced by a factor of four and five respectively, while memory
usage during training is decreased by a factor of two. As might
be expected, the FNN does show increased error compared to

the RNN, but this does not lead to significant visual differences
in the evolution maps obtained.

In general, comparing direct GNLSE integration and the FNN
(RNN) approach is a complex problem involving multiple vari-
ables such as the number of grid points and integration steps
(GNLSE), and the propagation sampling interval and training
ensemble (FNN/RNN). The comparison also depends on the
particular simulation regime being considered and it is not possi-
ble to provide a ”one size fits all” estimation, although a compar-
ison over a range of parameters is given in the Supplementary
documentation. Key advantages of the FNN are that training
data can be discarded and only hyper-parameters need to be
stored, and that a trained FNN can perform predictions with ex-
tremely short run-times. However, attempting FNN prediction
too far outside the parameter range used in training can lead
to errors, and re-training may be necessary for new simulation
regimes.

These results have shown model-free prediction of the full-
field dynamics of ultrashort pulse propagation in optical fiber
based on a feed-forward neural network trained to recognize
differential propagation dynamics within a GNLSE model. As
compared to the recently introduced RNN approach, this FNN
method is simpler and possesses significant advantages in speed
and memory. We expect our results to be of significance for
real-time optimization and control of nonlinear dynamics and
we anticipate this approach could become a standard tool in non-
linear physics. As a field of further study, it could be interesting
to study transfer learning in other NLSE -like systems.
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Fig. 3. Spectral evolution from GNLSE simulations (left pan-
els) and FNN predictions (right panels) for: a normal near-
ZDW pumping (γ = 0.01 W−1m−1, β2 = 1.3 × 10−27 s2m−1,
β3 = 2 × 10−41s3m−1, P0 = 2.0 kW, λ0 = 835 nm, TFWHM =
100 fs); and b far-normal pumping (γ = 0.01 W−1m−1,
β2 = 7.2 × 10−27 s2m−1, β3 = 2 × 10−41 s3m−1, P0 = 13.6 kW,
λ0 = 835 nm, TFWHM = 100 fs). The top panels show spectral
intensity and phase at the fiber output.

GNLSE RNN FNN

RMS error N/A R = 0.09 R = 0.19

Training time* N/A 7.7 h 1.9 h

Simulation time** 38 min 1.6 s 0.35 s

Memory* 79 GB 7.7 GB 3.2 GB

Network var. N/A 600k 600k

Number of points 8,192 132 264

Table 1. Comparison between normalized GNLSE numerical
simulations, RNN model [14], and FNN model for convolved
spectral data. *11800 simulations **200 simulations.
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