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Abstract— The paper addresses the potential to use breath 
samples for identifying people. Participants were asked to 
exhale ten times for a length of five seconds to a tube attached 
to a commercial ion-mobility spectrometry device on three 
separate sessions. The data of each participant was divided into 
training (50% of the samples) and test data sets (50% of the 
samples) in random order. Classification decision tree (CDT), 
K nearest neighbor (KNN), naïve Bayes (NB), linear 
discriminant analysis (LDA), and quadratic discriminant 
analysis (QDA) were used to analyze if the data could be 
classified correctly. Within a session, KNN (75.2%), NB 
(78.3%), and LDA (85.8%) were able to identify participants. 
Between sessions, the performance decreased.  
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I. INTRODUCTION (HEADING 1) 
The current paper investigates the use of the scent of 

breath to identify people. Classification of exhale breath 
samples is based on bacteria in the mouth and tongue that 
emit VOCs. While issues like diet or diseases can affect the 
smell of breath, there is also person-specific stability in the 
composition of breath that lasts over time [1, 2]. The exhale 
breath is most often analyzed by performing a chemical 
analysis which enables identification of a person with an 
accuracy of over 90% [3]. However, often chemical scent 
analysis is impractical. Taking samples and storing them, 
conducting the chemical analysis in a laboratory to decide 
the composition of the sample, and only then applying 
analysis is time-consuming and requires expertise in 
chemistry and laboratory measurement techniques [4]. To be 
able to proceed towards applications for human-computer 
interaction, the methodology to collect and analyze samples 
needs to be fast, simple and based on commercial devices.   

      The aim was to present a novel method to classify 
exhale breath samples to investigate the potential to identify 
people. The breath samples from one participant were 
collected on three different days so that it was possible to 
analyze the stability of the identification results over time. 
Exhale breath was chosen as an input method for three 
reasons. First, exhale breath measurement requires less 
preparation from the participant than body scent analysis [5, 
6], where the person needs to shower and avoid odorants 
before measurements. Second, exhale breath can vary in 
volume, humidity, and temperature, making classification 
technically challenging in comparison to industrial cases 
with controlled scent presentation. Third, chemical analysis 
of exhale breath has been used to track down hormonal 
activity [7], lung cancer [8], the amount of acetone related to 
blood sugar level in diabetes [9], and lipid peroxidation [10] 
suggesting that there are several use cases beyond user 
identification and cryptography.   

The procedure was following. A handheld ion-mobility 
spectrometry (IMS) device [11] was used to measure exhale 
breath from four participants in three separate sessions. The 
logging system saved the sensor readings before, during, and 
after an exhale to produce a “breath print”. The breath prints 
were analyzed with five machine learning algorithms to 
compare their success in participant identification. 
Limitations of the study such as the effect of environmental 
factors like room air quality [2, 12] on classifier performance 
will be discussed.  

II. METHODS 

A. Participants 
A total of four fully-informed participants (2 females, 2 

male) took part in three measurement sessions. The 
participants were non-smokers and had no medication or 
dental problems to ensure that the potential differences in 
breath prints were not due to, for example, the scent of 
tobacco. The participants were absent from consuming food 
or beverages other than water for an hour before the study. 

B. Apparatus and Procedure 
An IMS-based ChemPro 100i [11] by Environics Ltd. 

was used for the collection of the breath samples. The device 
uses an airflow of 1.3 l/min to suck in air with the help of a 
rotary vane pump. The molecules in the air are ionized using 
a radioactive source in the ionization chamber. The airflow is 
then pushed through an electric field where the ions come in 
contact with one of 14 electrodes. For each breath sample, 
the currents measured by all 14 electrodes were used as a 
sample (rate 1 Hz). The breath samples were collected in a 
ventilated laboratory. Indoor temperature and humidity were 
not controlled. Participants exhaled 10 times for five seconds 
near a small plastic tube attached to the ChemPro 100i. The 
inter-breath-interval was one minute. The participants were 
invited for three visits on three days to see if there are 
changes in the breath over time that affect the classification 
results. For each participant we had three datasets with each 
10 exhales (a total number of 120 breath samples). Each visit 
took less than 30 minutes. No nose clip, mouthpiece, or VOC 
filter was applied during sample collection. 

III. DATA ANALYSIS AND RESULTS 
Figure 1 shows four examples for the 14-dimensional 

“breath prints”. The first two breath prints (blue and red) are 
consecutive samples from the first measured exhale of the 
first participant, measured one second apart. There are 
considerable differences in the currents measured by most 
electrodes. The third and fourth breath prints (yellow and 
purple) are consecutive samples from an exhale of the second 
participant. The measured currents are noisy and react to 



exhales by either increasing or decreasing. Once the 
participant had stopped exhaling, the measured current 
returned to the pre-exhale level. To capture the reaction to 
the exhale and the return to baseline, sequences of 10 
seconds per exhale were used even though exhales took only 
five seconds. Two analyses were carried out to check 
whether a person can be identified. Five widely applied, 
basic machine learning classifiers were used: Classification 
Decision Tree (CDT), K Nearest Neighbors (KNN), Naïve 
Bayes (NB), Linear Discriminant Analysis (LDA), and 
Quadratic Discriminant Analysis. The analyses used 
MATLAB R2018b.  

The classifiers can be characterized as follow: CDT 
(MATLAB function fitctree) generates a binary tree based on 
the predictors (here readings from the 14 electrodes), and 
then follows a path in the tree from the root to a leaf to label 
a breath sample from the participant that has to be identified. 
The label is, e.g., ‘participant 1’. Training time for a CDT 
classifier is proportional to the number of training samples n 
(here the number of breath prints), and prediction time, i.e. 
time to find a label for an unlabeled breath print, is fast. For 
CDT the model containing the optimal sequence of pruned 
subtrees was used. The idea behind KNN classifiers (fitcknn) 
is to find the K labeled breath prints most similar to an 
unlabeled breath print and label that breath print based on the 
label that is most common amongst the obtained K labeled 
breath prints. In this paper Euclidean distance was used for 
measuring the similarity and K=3. The used KNN classifier 
does not require any training and prediction time is 
proportional to n^2. NB (fitcnb) assumes that the data has an 
underlying probability distribution, which can reduce the 
influence of outliers on the classifier. For the analyses kernel 
was used as assumed underlying distribution. A crucial 
feature of NB is that it assumes that the predictors are 
independent within each class. However, in [13] it was 
shown that this assumption does not hold for measurements 
from the ChemPro100i. Discriminant analysis, similar to NB, 
assumes that observations in each prediction class (here 
participant ID) can be modeled with a Gaussian distribution. 
However, the assumption of independence in each predictor 
is dropped. Thus, a multivariate Gaussian distribution is 
fitted to each class. Training time for the classifier and 
prediction time are both proportional to the size of the data 
set. LDA (fitcdiscr with 'DiscrimType' set to 'pseudolinear') 
assumes the covariance of each prediction class to be the 
same, which results in linear boundaries between the classes.  

 
Fig. 1: Examples of 14-dimensional breath prints  
QDA (fitcdiscr with 'DiscrimType' set to 

'pseudoQuadratic') removes the assumption of equal 

covariances, which results in quadratic boundaries between 
classes.  

In the first analysis, only data from the first measurement 
session of each participant was used. All five classifiers were 
trained using five breath samples per participant (i.e. 20 
breath samples in total). The remaining 5 samples per 
participant were used for testing the classifiers. A leave-p-out 
cross-validation approach was used, meaning the procedure 
was repeated C(10,5)=252 times. Thus, each time different 
training and test sets were used. Each classifier returned for 
each exhale in the test set a label, which then was compared 
with the true, known participant identifier. Table 1 shows the 
percentage and average number of correctly classified breath 
samples as well as the corresponding standard deviations 
over the 252 repetitions. LDA was the best method as it 
classified on average 17.16 of the 20 test samples correctly. 
It also had with 1.60 the second-smallest variation in the 
number of accurately classified test samples. KNN and NB 
also performed well, while CDT showed only mediocre 
identification performance. QDA showed to be an 
inappropriate choice for identifying a person based on a short 
breath sample.  

TABLE I.  RESULTS OF THE FIRST DAY 

Classifiers CDT KNN NB LDA QDA 

Accuracy 59.8% 75.2% 78.3% 85.8% 29.7% 

Mean 11.96 15.04 15.65 17.16 5.90 

Stand. dev 2.18 1.85 2.03 1.60 1.44 

Since the results of the first test were encouraging, at 
least for three of the five tested classifiers, a second test was 
done. The aim of this analysis was to examine if persons 
could be identified reliably even if the breath samples used 
for testing were collected on a different day than the samples 
used for training the classifiers. The recorded currents that 
were used for identification depend on the mobility of 
ionized molecules, which is affected by factors such as 
temperature and humidity [14]. Because it could not be 
ensured that the environmental conditions were the same for 
datasets measured on different days, an approach to correct 
for background noise was used. For each dataset, the average 
of IMS values for samples 10 to 40 was computed and 
subtracted from each sample of the exhales. Measurements 
from the first 9 seconds were ignored to ensure that the IMS 
samples used for calculating the baseline had stabilized.   

For the test, two sets per participant were used for 
training and the remaining set was used for testing the 
classifiers. This means that the training data consisted of 80 
breath samples (20 per participant) and 40 breath samples 
were then classified. This test was repeated three times. Each 
time different datasets were used for training and testing. For 
example, in the first test datasets 1 and 2 of all participants 
were used for training the classifiers and datasets 3 were 
used for testing them. Table 2 shows the percentage of 
correctly classified samples in each repetition as well as 
average accuracies over all three repetitions. The results 
showed that the number of correctly classified breath 
samples depended significantly on the training sets. 
Furthermore, none of the tested classifiers provided a 
satisfying identification accuracy. Therefore, more 
sophisticated approaches were tested, namely Dynamic Time 
Warping (DTW) and Recurrent Neural Networks (RNNs). 



The RNNs used Sobel gradient magnitude or gradient 
direction matrices as input. However, neither DTW nor the 
RNNs yielded higher accuracies than the algorithms 
presented in Table 2. This suggests that the limiting factor 
was the data. Thus, further research is needed to find 
methods that ensure that breath samples collected under 
different environmental conditions are comparable.  

TABLE II.  SECOND ANALYSIS 

Train 
Data  
Sets 

Test 
Data 
Sets 

Performance of the classifiers when data from all 
three sessions are used 

CDT KNN NB LDA QDA 

1,2 
3 40% 57.5% 42.5% 40% 42.5% 

1,3 2 57.5% 55% 45.0% 50% 25% 

2,3 1 20.0% 32.5% 50.0% 30% 30% 
Average 
accuracy 39.2% 48.3% 48.5% 41.7% 32.5% 

IV. DISCUSSION 
The results show that out of five tested classifiers, three 

(LDA, KNN, and NB) can be used to classify breath samples 
between four participants even though none of the classifiers 
reached 100% classification accuracy. These results are in 
line with the previous studies considering human breath 
samples and other odors [e.g., 4, 12], which indicate that 
100% accuracies are rarely achieved. CDT and QDA were 
less successful. One reason for the poor performance of CDT 
is that it splits the data first on the first measured current, 
then on the second measured current, and so on. Thus, this 
approach heavily depends on the order of currents in the 
breath prints, making it unsuitable for the studied task. With 
respect to functionality of the QDA, the low identification 
rate may indicate that the covariances of all prediction 
classes are more or less the same.   

    Unlike previous studies [3, 4], chemical analysis or 
any special sampling procedures to collect the data was not 
used. Therefore, the data collected was more sensitive to 
external distractions. LDA, KNN and NB functioned best if 
training and test data were collected in identical 
environmental conditions (within the same session). 
However, if the environmental conditions vary significantly 
(within different sessions) then the classification accuracy 
decreases considerably. Overall, no classification accuracy 
higher than 57.5% was achieved. This means that most of the 
time the classifiers performed better than chance alone 
(25%), but not well enough to reliably be used to identify all 
the participants based on the breath sample. More 
sophisticated approaches (DTW and RNNs) did not improve 
the accuracies, suggesting that the focus should be on 
normalizing samples such that the impact of environmental 
conditions on the breath samples could be mitigated during 
analysis. However, it should be noted that to use breath 
samples in real-life applications the classifier only needs to 
be able to determine if the person giving the sample is, for 
example, the owner of the computer or suggest a visit to a 
dentist based on breath sample. The response of the 
algorithm can be simple yes / no instead of identifying 
samples as A, B, C, D, etc.  

   We presented a preliminary study investigating the 
potential to use scent as an input. The amount of data, 
somewhat standard environment (i.e., laboratory) and the use 
of only five classifiers with standard baseline correction are 

clear limitations of the current study. To continue developing 
scent-based input, more data and testing of different 
analytical methods are needed so that it will be possible to 
identify conditions where the proposed idea can work and 
where it cannot (e.g., if breath sample can increase the 
identification accuracy together with facial recognition). 
Further, it can be feasible to collect the data so that the 
environmental factors are manipulated on purpose. The 
additional information measured by the eNose (e.g., 
humidity) and preprocessing techniques to remove 
background noise from the breath samples, and/or improving 
the algorithm, would likely obtain better results (see, for 
example, [2] for time-related variations in chemical 
compounds in breath).  
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