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ABSTRACT

Machine autonomy has become a vibrant part of industrial and commercial aspira-

tions. A growing demand exists for dexterous and intelligent machines that can work

in unstructured environments without any human assistance. An autonomously op-

erating machine should sense its surroundings, classify different kinds of observed

objects, and interpret sensory information to perform necessary operations.

This thesis summarizes original methods aimed at enhancingmachine’s autonomous

operation capability. These methods and the corresponding results are grouped into

two main categories. The first category consists of research works that focus on

improving visual servoing systems for robotic manipulators to accurately position

workpieces. We start our investigation with the hand-eye calibration problem that

focuses on calibrating visual sensors with a robotic manipulator. We thoroughly in-

vestigate the problem from various perspectives and provide alternative formulations

of the problem and error objectives. The experimental results demonstrate that the

proposed methods are robust and yield accurate solutions when tested on real and

simulated data. The work package is bundled as a toolkit and available online for

public use. In an extension, we proposed a constrained multiview pose estimation

approach for robotic manipulators. The approach exploits the available geometric

constraints on the robotic system and infuses them directly into the pose estimation

method. The empirical results demonstrate higher accuracy and significantly higher

precision compared to other studies.

In the second part of this research, we tackle problems pertaining to the field of

autonomous vehicles and its related applications. First, we introduce a pose estima-

tion and mapping scheme to extend the application of visual Simultaneous Local-

ization and Mapping to unstructured dynamic environments. We identify, extract,

and discard dynamic entities from the pose estimation step. Moreover, we track the

dynamic entities and actively update the map based on changes in the environment.

Upon observing the limitations of the existing datasets during our earlier work, we
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introduce FinnForest, a novel dataset for testing and validating the performance of

visual odometry and Simultaneous Localization and Mapping methods in an un-

structured environment. We explored an environment with a forest landscape and

recorded data with multiple stereo cameras, an IMU, and a GNSS receiver. The

dataset offers unique challenges owing to the nature of the environment, variety of

trajectories, and changes in season, weather, and daylight conditions. Building upon

the future works proposed in FinnForest Dataset, we introduce a novel scheme that

can localize an observer with extreme perspective changes. More specifically, we tai-

lor the problem for autonomous vehicles such that they can recognize a previously

visited place irrespective of the direction it previously traveled the route. To the

best of our knowledge, this is the first study that accomplishes bi-directional loop

closure on monocular images with a nominal field of view. To solve the localisation

problem, we segregate the place identification from the pose regression by using deep

learning in two steps. We demonstrate that bi-directional loop closure on monocular

images is indeed possible when the problem is posed correctly, and the training data

is adequately leveraged.

All methodological contributions of this thesis are accompanied by extensive em-

pirical analysis and discussions demonstrating the need, novelty, and improvement

in performance over existing methods for pose estimation, odometry, mapping, and

place recognition.
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1 INTRODUCTION

This chapter provides a brief overview of the topic and themotivation for researching

the topic. Thereafter, the research questions are provided that drove and directed the

research findings for this dissertation. Finally, the chapter explains the structure of

the thesis and visually relates the preliminaries to various topics in this dissertation.

1.1 Motivation

The use of a robotic systems, which was once a speculation, has become a key con-

tributor to our work and individual personal lives. The story of the transition from

the use of bulky robotic manipulators in manufacturing industries to compact com-

mercialized products has been rapid and ubiquitous due to the inherent capability

of the machine to achieve high accuracy with better efficiency compared to manual

work. The rapid adoption is motivated primarily by the shift from pre-programmed

automation to increased autonomous operation capability. This can be broken down,

into three categories, based on the capacity to perceive and interact with the envi-

ronment. The first category includes operation in a highly structured and static

environment. The second class is built on the perception capability and attempts to

attain semi-autonomy in real-world scenarios (e.g., self-driving/autonomous cars).

The last category yearns towards total autonomy, i.e., attaining a stable performance

by operating continuously, learning, and adapting to the changes in the environment.

The demand for autonomous machines and vehicles can be found in many applica-

tion fields, such as transportation, heavy work machines in forestry, construction,

mining, and even in maritime operations. Irrespective of the nature of the task,

medium of travel, mode of sensing, and level of autonomy, all these vehicles share

a common base from where they branch off to their modular and industry-specific

tasks. The core commonality they share is the ability of the system to localise itself

against some reference system by perceiving the environment, possibly recognizing
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relevant information, and estimating its pose against a reference frame in the world.

In a non-static world, the robotic system effectively has to respond to the changes

in the environment that may be caused by movement of the robot, some moving

object in the scene, physical contact, and interaction with an object, or by any other

dynamic entity. Such dynamic environments strongly motivate the need for robotic

systems and algorithms that can perceive, plan and act accordingly. The scope of this

thesis spans the extent of the second class of autonomy where we may face unstruc-

tured and dynamic environments and attempt to perceive, localise, and respond based

on observations. More specifically, we address the development and deployment of

pose estimation methods for various applications ranging from indoor robotic arm

manipulation to outdoor Simultaneous Localisation and Mapping (SLAM) to as-

sist autonomous vehicles and advanced driver assistance systems (ADAS). The study

aims at providing concrete theoretical contributions along with innovative solutions

for applied industrial problems, assisted and validated by novel high-quality datasets

and benchmarks.

1.2 Research Questions

The questions that motivated the research and subsequent contributions, summa-

rized in this thesis, are as follows:

(I) Can we improve the performance of visual servoing by improving the individ-

ual components such as Hand-Eye calibration? Does formulating the problem

in an alternative manner yields better results, and can we segregate the sources

contributing to the uncertainty?

(II) Can modeling geometric constraints based on manipulator kinematics aid in

improving the pose estimates for visual servoing? Would Multiview pose esti-

mation provide any significant improvement to a single shot approach?

(III) Can we segregate dynamic entities from the map in Visual SLAM and use

it as a prior knowledge to discard outliers when estimating the next pose in

odometry and updating the map?

(IV) What are the limitations of existing datasets for pose estimation and SLAM?

Can new datasets add value to the validation and challenge the performance of

state-of-the-art methods?
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(V) Is loop closure possible from other perspectives, such as in a view from the

opposite direction, for vehicular motion, and can this aid in improving visual

odometry results?

1.3 Structure of Thesis

The thesis is organized in five chapters. Chapter 2 presents the required theoretical

preliminaries and provides the research background that is relevant to the topics.

The author reviews the core concepts of camera modeling, camera pose parametriza-

tion and estimation, scene feature extraction, and correspondence. Furthermore,

the chapter provides state-of-the-art on the topics of Hand-Eye calibration, visual

servoing, visual odometry, place recognition, and SLAM.

The main contributions of this thesis are presented in Chapters 3 and 4. Chapter

3, summarizes contributions towards enhancing the ability of autonomous opera-

tion of robotic manipulators. The chapter formulates the calibration problem and

summarizes the contribution toward the calibration phase from Publication I. Subse-

quently, it discusses the pose estimation and manipulation of the robotic arm from a

constrained Multi-view perspective, as proposed in Publication II. Chapter 4 is dedi-

cated to the contributions made in Visual SLAM. The chapter follows and discusses

the constituent blocks of the SLAM pipeline. The contributions toward odometry

and mapping in a dynamic environment are summarized from Publication III. This

is followed by an introduction, empirical analysis, and discussion on the challenges

provided by the FinnForest dataset proposed in Publication IV. Chapter 4 concludes

with a novel approach proposed in Publication V toward place recognition and pose

estimation for the case of Bi-directional loop closure.

Finally, Chapter 5 summarizes the work and offers concluding remarks. Figure

1.1 categorizes and illustrates the relationships among the topics discussed in this

thesis and the research contribution from Publications I – V.

23



(Relative, Absolute Pose)

Localisation

3D reconstruction

Relocalisation  (

Visual 3D Map

Figure 1.1 Overview of the topics in this thesis.
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2 BACKGROUND

This chapter presents the general theoretical framework which forms the basis for

developing the novel contributions presented later in the thesis. It briefly overviews

the core concepts of camera geometry such as camera modeling, pose parameteriza-

tion, and estimation and progresses toward broader topics; namely visual servoing

and SLAM. Furthermore, it overviews the most recent research studies on the topics

of Hand-Eye calibration, visual servoing, visual odometry (VO), loop closure, and

visual SLAM.

2.1 Preliminaries

2.1.1 Camera Model and Projection

In general, most imaging and computer vision applications relay information to con-

sumers in two-dimensional (2D) form either as direct images or with information

overlaid over the images to form augmented reality. The process of two-dimensional

image formation from a three-dimensional world itself follows specific geometric

relations that are compiled to form a camera model.

The reduction in the dimension of 3D information to 2D is the result of a process

known as projection in which a point in space is drawn from a 3D world point

through a fixed point in space, the center of projection. A plane is assumed/placed

in space in the path of the ray. The intersection of the ray with the plane represents

the image point for the 3D world point on the image plane. However, if the 3D

structure itself lies on a plane i.e., it is a 2D object then there can be no drop in

dimension for the object. This basic relation forms the basis of modern cameras that

deploy lenses as an intermediate medium to focus multiple rays and direct them to

a film or digital sensor, producing an image of the point. Ignoring such effects as

focus and lens thickness, a reasonable approximation is that all the rays pass through
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a single point, the center of the lens to form a Pinhole Camera model. However, in

practice, it is essential to incorporate these effects, especially radial distortions (due

to lenses) to accurately model the image formulation. The corrections are estimated

in a calibration step and can be applied later on the images.

Let’s model the world as a 3D projective space, equal to IR3 along with points at

infinity and the image is the 2D projective plane IP2. Then by definition projection is

the mapping of the world points from IR3 to IP2. The world points can be represented

as homogenous coordinates of the form W = (X, Y, Z, 1)T . If we have the center of

projection at the origin (0, 0, 0, 1)T then the transformation is given as

������

w u

w v

w

������
= M3×4

���������

X

Y

Z

1

���������
.

Here,M is the transformation matrix, known as the CameraMatrix, that linearly

maps the world points to image points u and v with a scale factor w. Moreover, if all

the world points lie on a plane (effectively Z = 0), then the linear mapping reduces

in dimension andM3×4 is replaced by the Homography Matrix H3×3.

In this thesis, we use the widely adopted Pinhole camera model for which the

Camera matrixM is constructed with the aid of Figure 2.1.

As before, the center of projection is considered to be the origin of a Euclidean

coordinate system. The image plane is defined at f and termed as the focal plane.

For the pinhole camera model, a point in camera coordinate space with coordinates

Wc = (Xc , Yc , Zc)
T is mapped to the point on the image plane where a line joining

the pointWC to the center of projection C meets the image plane.

The center of projection is also termed the camera center or the optical center.

The line from the optical center perpendicular to the image plane is called the prin-

cipal axis or principal ray. The point where the principal axis meets the image plane

is called the principal point p. The plane through the camera center parallel to the

image plane is called the principal plane of the camera. In the above relation, the

camera center is placed at the coordinate origin. [1]

In practice, for most cameras, pixels are arranged in a grid with the indices starting

at the top left corner (0, 0) and not from the center of the image. The offset can be
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Figure 2.1 Pinhole camera geometry relating a world point and the image point on image plane.

accommodated by translating the projected points to the assumed center of the digital

camera. The accommodated mapping relationship can be written as
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The terms fx and fy are the focal lengths of the camera in terms of pixel dimensions

in the x-axis and the y-axis, respectively, and (px, py) are the coordinates of the princi-

pal point. The matrix containing these terms is generally known as camera intrinsic

matrix K . A more general form includes a skew parameter s, however, it is zero for

most of the modern cameras. We use a subscript c with the 3D points to emphasize

that the points are in the camera coordinate frame. This essentially means that the

camera is assumed to be located at the origin of a Euclidean coordinate system with

the principal axis of the camera pointing straight down the Z-axis.

2.1.2 Pose Parameterization and Coordinate Transformation

A common task in computer vision and robotics is to identify specific objects in an

image and determine each object’s position and orientation within a specified coordi-

nate system. The combination of position and orientation is called a pose. Similarly,
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Figure 2.2 The transformation between the world coordinate frame and camera coordinate frames.

camera pose refers to the position and orientation of the camera in relation to a refer-

ence/world coordinate system. Any single point in space has to be transformed into

the camera coordinate frame and projected using the camera model: from 3D space

coordinates to 2D image coordinates. The homogeneous transformation consists of

a rotation and translation part as shown in Figure 2.2 and is expressed as

Wc = [R t]W, (2.1)

where R is a 3 × 3 rotation matrix and t is a 3 × 1 translation vector. This trans-

formation, generally, expresses the pose of the camera against some reference and is

termed as camera extrinsic. Hence, for a camera located anywhere in the world with

known camera extrinsic, the camera perspective projection/view can be obtained by
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2.1.3 Features and Their Correspondence

Feature identification and its correspondence is the problem of identifying key points/re-

gions, in two or more different images, which correspond to the same world point.

Feature detection, its correspondence, and tracking are the building block for many
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vision-based applications such as place recognition, structure from motion, etc. Ex-

tensive research has been conducted on this topic and many variants and approaches

have been proposed over the years. The selection of a suitable approach greatly

depends on the system’s requirements, type of sensor, and challenges posed by the

working environment.

Fiducial Markers Typically, applications such as photogrammetry, which re-

quires accurate pose estimation, make use of carefully manufactured Fiducial Mark-

ers. Such markers make use of the projective invariant features such as corner points,

lines, and planes. The most common pattern used, especially for camera calibra-

tion, is checkerboard. Checkerboard can provide multiple accurate corner points in

images whose scale for world points is already known. However, a checkerboard

pattern is only useful if it is viewed in its entirety. It is next to impossible to auto-

matically identify which calibration point is which unless the full pattern is visible.

Moreover, it certainly fails in the case of partial visibility due to clipping against the

image boundary, and due to partial occlusion. To overcome this limitation alterna-

tive approaches, make use of quadrilateral blocks that encode a binary pattern for

identification and error correction. The approach has many successful variants and

is widely used for Augmented Reality applications. The most common among these

are ArUco [2], AR Toolkit [3], and ChArUco [4]. Cal-tag [5] follows the princi-

ples of the AR toolkit; however, the implementation claims lower corner detection

inaccuracies and a more flexible licensing. Additionally, some applications such as

photogrammetry prefer circular marker-based tag designs. This is due to the fact that

the position of the ellipse’s centroid can be more accurately retrieved in comparison

to the position of the center of a square. For a square, we estimate the center using

its four corner points, whereas more pixels along the perimeter are used for fitting

an ellipse and estimating its center. This makes the center of an ellipse statistically

more stable and thus more accurate. Among the ellipse based markers, V-STAR

[6], Rune-Tag [7], and PI-Tag [8] are the most prominent studies due to their stable

implementation and occlusion resilience.

Feature Points In some applications such as mobile Augmented Reality and vi-

sual SLAM , it is desirable to extract features from the structures and textures in

the images. These are considered key points. They have to be well localised in im-

age space and should be detectable with high repeatability. These feature points can

be defined in different ways such as using brightness of regions in images (analyzed
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through image derivative) or boundary extraction (through edge detection or curva-

ture analysis). These feature points are then further encoded using feature descriptors

for effective and efficient matching. Lowe [9] proposed the famous scale invariant

detector and descriptor named Scale Invariant Feature Transform (SIFT) based on

the Laplacian of Gaussians (LoG) transform . The algorithm is quite powerful, how-

ever, computationally expensive. In 2006, Bay et al. [10] presented the Speeded Up

Robust Feature (SURF) detector and descriptor using Haar wavelet transform and

integral image. Other well-known feature detectors and descriptors include Local Bi-

nary Pattern (LBP) [11], Binary Robust Invariant Scalable Key points (BRISK) [12],

Binary Robust Independent Elementary Features (BRIEF) [13], Oriented FAST, and

rotated BRIEF (ORB) [14].

Deep Features Recent studies exhibit a strong trend in the use of learning-based

approaches for feature detection and description. Learning-based approaches can be

used to extract local features similar to SIFT, SURF, etc., or global descriptions of

the entire image. The results obtained are shown to exhibit better accuracy and ef-

ficiency compared to conventional approaches for image retrieval [15] and object

recognition tasks [16]. McManus et al. [17] proposed learning features from im-

age patches and called them scene signatures which were used to match and retrieve

scenes when the appearance of the scene changes. While this method was accurate,

it required an extensive training phase with data from the test environment under

all possible environmental conditions. There are studies that directly use the inter-

mediate representations that are learned by a model during training [15], [18]. The

underlying concept is that features from higher layers of a Convolutional Neural

Network (CNN) encode semantic information about a place while features from the

lower layer encode more descriptive information about the geometry of the scene.

A careful combination of these descriptions from various intermediate layers can

provide a powerful description of the image.

A visual illustration is provided in Figure 2.3 where we extract different types of

local information from an image. Similar approaches are employed in this thesis. We

adopt Fiducial Marker-based approaches for our Hand-Eye calibration and Camera

Pose Estimation work in Publications I and II. For the studies published in Pub-

lications III and IV, we use various local feature extractors for keypoint tracking,

camera pose estimation, and sparse reconstruction tasks. Finally, a deep learning-

based approach is utilized in Publication V for learning global image description for
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(a) (b) (c)

Figure 2.3 Extraction of feature information from a sample images using (a) ArUco Marker detected in
the scene (b) ORB features detected in the image (c) Activation map of the deep features,
extracted using VGG-16 network, overlaid over the sample image.

place recognition.

2.1.4 Pose Estimation

Camera pose estimation with respect to a target object/scene has been widely re-

searched in the fields of computer andmachine vision, photogrammetry, and robotics.

Accurate pose estimation is needed in numerous applications such as camera cali-

bration [19], localisation [20], reconstruction [21], robot visual servoing [22], and

augmented reality [23]. Recent advances in these fields have greatly enhanced the ac-

curacy and efficiency towards a wide range of applications. Even with much progress,

there remains a need for improvement in application-specific methods. For exam-

ple, a reconstruction technique that is ideal for achieving a visually pleasing result

might not yield accurate results in localisation. In any case, the use of the appropriate

method is heavily dictated by the type of data and application under consideration.

3D-3D Correspondences: In the case when we have point clouds of a 3D struc-

ture from a scene acquired at different locations in the environment, we can use point

registration algorithms like Iterative Closest Point (ICP). ICP plays a crucial role in

localisation and mapping in modern mobile robotics [24], [25]. The algorithm es-

timates a 3D rigid transformation that aligns a reading point cloud to a reference

point cloud (or more generally a model or a surface). It is widely used for regis-

tering the outputs of 3D scanners, which typically only scan an object/scene from

one direction/position at a time. The standard ICP starts with two sets of points

or point clouds and an initial guess for their relative rigid-body transform. The ini-

tial guess helps to reach convergence quickly and is naturally provided in mobile

robotics by odometry [26], [27] based on wheel speeds, inertial sensors, or vision.
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Figure 2.4 Relationship of Essential matrix and Fundamental matrix with the world point, normalised
camera coordinates and image points.

The algorithm then iteratively refines the transform by repeatedly generating pairs

of corresponding points in the clouds and minimizing a user-chosen error metric. In

general, ICP approach can be extended to be used with Line Segment Sets, Implicit

Curves, Parametric Curves, Triangle Sets, Implicit Surfaces, Parametric Surfaces, etc

[28]. Robust variants of ICP can be used with complex and noisy data to reconstruct

2D or 3D surfaces from different scans and localise robots to achieve optimal path

planning.

2D-2D Correspondences: This set of methods aims at finding the relative pose

of the camera by estimating the plane-to-view mapping. In other words, it employ

a mapping between two planar projections of an image using a 3x3 transformation

matrix in a homogenous coordinate space, which is then decomposed to obtain the

pose. This set of methods is known as Homography Decomposition (HD) methods

[29]–[31]. A more generalized form of Homography is the Essential matrix [32]. In

contrast to a Homography in which the points in the image space are coplanar, an

Essential matrix is able to relate any set of points in one image to those in another

taken by the same camera. Since the Essential matrix is more generic, calculating the

Essential matrix requires more points than calculating a homography. The Funda-

mental matrix is a further generalization of the Essential matrix where the assump-

tion of calibrated cameras is removed [33]. The Essential matrix operates on image

points expressed in normalized coordinates while the Fundamental matrix is directly

related to pixel coordinates. Figure 2.4 illustrates the geometric relationship.

Let W be the world point viewed by a camera at two positions C and C ′ with
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camera intrinsics K and K ′, respectively. The corresponding points x and x′ in the

normalized image planes are related by the relative transformation [R|t] between C

and C ′. Then, in terms of vectors, the equation for the epipolar plane can be written

as

(x′C′ × t) . (R xC ) = 0.

This can be re-written in term of matrices as

x′C′
T
[t]× R xC = 0

Here, [t]× is a skew symmetric matrix of the baseline t. The Essential matrix is

thus defined as [t]× R. Then by Longuet-Higgins [34] equation, we can directly

replace the viewing rays/vectors with their corresponding intercepted points from

the normalized image plane, thus giving us the relation

x′T E x = 0. (2.2)

The Essential matrix E represents the epipolar constraint on the corresponding

normalized points. The epipolar constraint on image points is naturally connected

to the Essential matrix by the calibration matrices K and K ′. From Figure 2.4, we

can extract xC = K−1 i and x′C′ = K ′−1 i′ ⇒ x′C′
T = i′T K ′−T . Replacing the terms

in Equation 2.2 gives us

i′T K ′−T E K−1 i = 0.

This defines the Fundamental matrix F = K ′−T E K−1, giving us the epipolar

constraint relation in the image space as

i′T F i = 0. (2.3)

2D-3D Correspondences: The final category of pose estimation methods em-

ploys 2D-3D correspondences to estimate a rigid transformation. This method is

often referred to as Perspective from n-points (PnP) [35] and is able to estimate the

pose of a calibrated camera from a set of 3D points in the world and their 2D obser-

vations in the image. PnPmethods minimize the cost function of the correspondence

transfer error. This error refers to the difference between predicted and measured
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positions of point correspondences. The PnP problem in its minimal form is called

P3P and can be solved with three-point correspondences. P3P, however, produces

four possible solutions based on three-point correspondences alone. When noise

levels are low, a fourth correspondence is effective in removing ambiguity.

Alternatively, many studies consider data from multiple perspectives, also re-

ferred to as multi-view, for improved accuracy. By observing the feature points or

regions of interest from many different perspectives, a model can be created more

accurately and coherently. Through robust tracking, we can link features across

views and align them through relative geometric transformations. With the ability

to efficiently and accurately match feature points across multiple views, many studies

have opted for Structure-from-Motion (SFM) based approaches, also known as Full

Multi-View. Martinec and Pajdla proposed a SFM based method that computes the

rotation and translation separately for relative views [36]. Subsequently, a bundle

adjustment approach is used to optimize the relative poses and distribute the pose

errors evenly across the poses.

We have used all the aforementioned approaches of pose estimation at different

stages of research that contribute to this thesis. Our calibration of the cameras and

certain studies in the state-of-the-art used for comparison employ 2D-2D correspon-

dences (Publications I-II). Additionally, we employed 2D-3D correspondences in

Publication I for our proposed approach and Publication IV for benchmarking other

studies. Thereafter, we found the 3D-3D correspondence based relative pose estima-

tion approach more suitable for our proposed odometry and mapping methodology

in Publication III.

2.1.5 Visual Servoing

Visual servoing is an approach of controlling and manipulating a robot with the

aid of camera vision as the primary sensing mechanism to enhance the robot’s con-

trol mechanism. In general, visual servoing can be categorized based on configura-

tions of its constituent blocks [37]. The first segregation of the category is based

on the perception mechanism. Visual servoing directly based coordinates of image

features, such as lines or moments of regions, is known as Image based Visual Servo-

ing (IBVS). The approach works on the error between current and desired features

on the image plane and does not involve any estimate of the pose of the target. In

IBVS, large rotations produce difficulties, which are solved through a phenomenon
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called camera retreat [38]. The second approach is a model-based technique known

as Position/Pose-based Visual Servoing (PBVS) [37], where the pose of the object

of interest is estimated with respect to the camera and then a command is issued

to the robot controller for manipulation. The approach involves extraction of the

image features as well, however, they are subsequently used to estimate 3D or 6D

information (pose of the object in Cartesian space). A combination of the above

two approaches can also be used which is termed as the Hybrid approach. The sec-

ond categorization is based on the observation model of the system. A system that

only observes the target object is known as endpoint open-loop (EOL) system or Eye-

in-Hand configuration, since the camera is affixed to the robot in such cases. In

contrast, if the system observes both the target object and the end-effector of the

robot, it is termed as endpoint closed-loop (ECL) system or Eye-on-Hand configu-

ration. Both configurations have their own advantages and limitation which dictate

their adoption. Generally, for mobile robots it is favorable to use EOL/Eye-in-Hand

configuration since ECL requires a constrained work space.[39]

The final set of classification is based on the control architecture. The first sub-

category is a hierarchical control architecture, where the vision system provides set-

point inputs to the robot controllers and the system makes use of joint feedback or

end-effector pose to internally stabilizing the robot. Such an architecture is referred

to as a dynamic look-and-move system [40]. On the other hand, Direct visual ser-

voing [41], entirely replaces the robot controller with a controller that computes

command input directly for the manipulator joints, thus stabilizing the mechanism

solely through vision. Generally, most of the approaches favor dynamic look-and-

move approach over Direct visual servoing due to several factors. First and fore-

most, the relatively low sampling rates from vision sensors make direct control of a

robot end-effector an extremely challenging control problem due to its complex and

nonlinear dynamics. Additionally, many robots already have a method for estimat-

ing Cartesian velocity or incremental position information. As a result, the visual

servo system is easier to develop, and it is also more portable. Moreover, the use of

look-and-move bypasses the need to explicitly handle the kinematic singularities of

the system from the visual controller, which normally has a specialized mechanism,

thus greatly simplifying the operation.

To align the research work targeted for the dissertation with the requirements of

partnering industries, we adopted and investigated systems that employ Eye-in-Hand
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configuration and use PBVS with a dynamic look-and-move control system.

2.1.6 Odometry from Pose

The word odometry finds its roots in Greek literature and refers to measuring routes

[42]. As evident from the name, in odometry, data is gathered from motion sensors

to estimate a change in position over time. The term VO is used when the motion

is estimated using visual sensors, such as RGB camera, time-of-flight, etc., in any

configuration for example monocular, stereo, omnidirectional, etc. Odometry is

not exclusive to visual sensors, other sensors such as wheel odometer, Inertial Nav-

igation System (INS), GNSS, magnetometer, etc. can also be used to estimate the

change in pose [43]. VO is based upon the pose estimation step where the relative

pose estimates are accumulated over time, with respect to a reference coordinate sys-

tem, to localize a robot. Visual sensors are widely adopted for odometry since they

offer a good balance among cost, reliability, and implementation complexity. Un-

even terrain or other unfavorable conditions do not affect VO. Additionally, VO

works robustly in GPS-deficient environments [44]. In comparison to wheel en-

coders and low-precision INS [43], local drift under VO is much lower. Moreover,

cameras offer a rich amount of information that opens unbounded opportunities

for semantic understanding of the environment which is crucial to autonomous op-

eration. Nonetheless, VO has its own set of limitations where the performance

is often strongly affected by extreme weather and light conditions. State-of-the-art

approaches achieve accurate results by integrating VO with GPS and INS to com-

plement each other’s limitations.

2.1.7 Mapping

The robotic mapping problem is that of constructing an accurate spatial model of

the robot’s surroundings. To create a map, local sensor inputs of the robot, or

local maps, could be registered into a common coordinate system if the poses of the

robot are known. The poses can be retrieved through VO. Unfortunately, mere

odometry estimates can suffer from imprecision and drift over a period of time.

A more robust technique is the use of SLAM where the maps are simultaneously

generated along with localisation. In contrast to visual odometry where the relative

poses are estimated from images, SLAM approaches prefer to estimate the pose by
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projecting the active landmarks/key points from the map onto subsequent temporal

images [45]. The key points are feature points in images that are unique, robust, and

consistently seen over a period of time. The features are triangulated and added to

the map along with a track of their feature description. If an image has a significantly

high amount of unique key points, then it is regarded as a keyframe. A keyframe

in turn can be used for place recognition and subsequent re-localisation. Hence, the

localisation and mapping are performed in a continuous cyclic operation. Depending

on the task at hand, the SLAM pipeline can generate a sparse map [46] or a dense map

[47]. A sparse map is generally populated with 3D points pertaining to the landmarks

and stores the minimum representation of the 3D structure of the scene for effective

SLAM. On the other hand, dense maps contain a rich spatial representation and

provide a continuous structural form of the environment. Dense maps are crucial

for understanding and interacting with the objects in the world and have numerous

applications in AR.

2.1.8 SLAM

Early studies in robotics approached localisation and mapping independently. How-

ever, later researchers observed the cyclic interdependency of localisation and map-

ping for mobile robotics. This is true since a map can only be created when the

robot’s pose is known against a reference. Similarly, we need a precise map rep-

resentation to provide that reference to perform localisation. However, both tasks

need to be performed simultaneously, hence, the term Simultaneous Localisation and

Mapping. The interdependency has a deteriorating effect as well. It is particularly

difficult to perform SLAM since inaccuracies in the ego-motion estimate will occur

which will propagate towards the generation of the map. A poor ego-motion esti-

mate will result in a poor map quality, which biases the next ego-motion estimate

and so on. Many studies adopt different sensors such as Camera [46], Radar [48],

LiDAR [49], Sonar [50], Global Navigation Satellite System (GNSS) [51], and In-

ertial Measurement Units (IMU) [52] to perform SLAM. These sensors can be used

independently or in combination to achieve better results. Many companies that

strive for an autonomous vehicle adopted LiDAR as the primary sensor for SLAM

since LiDAR can be used to estimate odometry and build a sparse 3D map of the

environment using relatively noise-free measurement. However, the technology has

its limitations since the hardware itself is relatively expensive and fragile compared
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Figure 2.5 A pipeline of operations that illustrate the processing blocks of autonomous vehicle and
the achieved functionalities. Here, V2V and V2I indicate vehicle–to-vehicle and vehicle-to-
infrastructure communication, respectively.

to other sensors and not suitable for mass production [53]. On another size, the

current advancements in imaging technologies and algorithms have made the use of

cameras for SLAM (Visual SLAM) affordable, effective, flexible and modular. Their

combination with high processing capabilities opens the possibility to develop new

visual SLAM methods with untapped potential. Using merely visual information,

one can estimate the position, orientation and speed of the vehicle, enforce safety

regulations, understand the environment as a human does, and take safety critical

decisive actions. Such a system will be affordable yet robust and effective. A typical

Visual SLAM framework constitutes of the following nodes: 1) estimation of vehicle

position and orientation (odometry), 2) mapping of the environment, 3) refining and

distributing error (Bundle Adjustment), and 4) re-identification of a previously vis-

ited place (loop closure). The solutions of these problems form blocks of an effective

SLAM pipeline (see Figure 2.5).

We tabulate a list of advantages and limitations of various sensors that can be used

for SLAM in Table 2.1. It can be observed that different sensors and their combi-

nations provide different advantages and disadvantages. However, in order to focus

on solving crucial problems that inhibit the capabilities of SLAM, we restrict the

scope of this thesis and contribute to methods pertaining only to visual SLAM. The

research questions III, IV, and V are associated with visual SLAM and are addressed
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in the Publications III, IV, and V respectively.

2.2 State-of-the-Art and Challenges

2.2.1 Hand and Eye Calibration and Pose Estimation for Visual Servoing

In order to relay information observed by the camera to the robotic manipulator

for successful operation, it requires that a geometric relation is known between the

robot hand/end-effector and the optical frame of the camera. The problem can be

posed as Hand-Eye or Robot-World-Hand-Eye (RWHE) calibration. The former es-

timates the homogenous transformation between the end effector and the camera

[54]–[57] while the latter additionally finds the relation between the robot base and

the target [58]–[61]. A renowned study in RWHE calibration was conducted by

Shah [62]. The author proposed a closed form solution involving Kronecker prod-

uct of the rotational matrices and decomposing the result using singular value decom-

position (SVD) to yield rotation and subsequently translation estimates. The Kro-

necker product enables the estimation of the optimal transformation in these cases.

However, the resulting rotational matrices might not follow orthogonality. To com-

pensate for this issue, the best approximations for orthonormal rotational matrices

are obtained using Singular Value Decomposition (SVD). Separate approaches suffer

from a core limitation that the errors in the orientation step propagate towards the

translation estimation step as a result deteriorating the position estimate.

In contrast, Tabb and Khalil [63] tackled the problem of Hand-Eye calibration

from an optimization perspective and estimates the orientation and translation com-

ponents simultaneously. Moreover, the study investigates the effects of using differ-

ent rotation representations, such as Euler, rotation matrix, and quaternions, on the

accuracy of estimates.

Following Hand-Eye calibration, the subsequent step towards robot manipula-

tion is to acquire the target pose. We state three state-of-the-art studies that were

used for comparison, with the method proposed in Publication II. Using Collins

and Bartoli’s [64] method, the problem is analytically solved after the homography

is computed. The method they developed is called IPPE, or infinitesimal plane-based

pose estimation. According to this proposition, even if the estimated homography

is noisy, at some regions of the model plane, it will still approximate the true trans-
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Table 2.1 A comparison of sensors for SLAM

Type Sensor Advantages Limitations

Range LiDAR

- Clean measurements

- Direct 3D information

- Smooth maps

- Sparse representation

- Expensive

- Fragile

- Power consumption

- Lack of semantic information

- limit on LiDAR’s signal strength for safety

Radar - Reliable detection unaffected by weather

- Low range

- Low angular resolution

- High noise

Camera Monocular

- Physically smallest

- Low power consumption

- Cheap

- Minimal Calibration

- Scale unobservable

- Scale drift

- 3D only from multi-view

- No map under pure rotation

- Non-trivial SLAM initialization

Stereo
- 3D from one stereo frame

- Trivial SLAM initialization

- More processing compared to monocular

- Extrinsic calibration

RGB-D

- Directly provides dense depth map

- Trivial SLAM initialization

- Dense maps

- Active Sensor (interference)

- Range limitation

- Only indoors

- Complex calibration with other sensors

- Power consumption

Camera + IMU IMU

- High frequency

- Interframe motion estimation

- Pitch and Roll are observable

- Scale for monocular SLAM

- Varying sensor biases

- Gravity vector compensation

- Observability issues

- Visual-Inertial calibration

- Synchronization

Camera + GNSS GNSS
- Global consistency

- Measurable quality of signal

- Only Outdoors

- Low accuracy in urban area
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formation between the image and the model. Points are taken from those regions to

solve for the pose using first-order partial differential equation (PDE). In contrast,

Collet and Srinivasa [65] proposed a modified version of full multi-view, referred to

as introspective multi-view. First, a single-view method is used to estimate object and

camera poses. Following the initial estimates, the points are grouped, and the outliers

removed from the matches. A final step involves reoptimizing the poses based on

the filtered matches using bundle adjustments. The authors assert that the approach

achieves a good balance between computation speed and accuracy. Geiger et al. [66]

presented a stereo vision-based approach to generate dense 3D maps in real-time

from high-resolution stereo sequences. The authors claim that their method yields

accurate pose estimates and subsequent odometry by constraining the objective func-

tion. The pose is estimated by reprojecting the triangulated world points onto the

previous stereo pair and optimizing them using the Gauss-Newton algorithm.

The presence of numerous approaches makes it difficult to select a suitable ap-

proach for any use case. Keeping this in mind and in accordance with our Research

Question I, we conducted a detailed comparative study in Publication I to draw a

comparison between various Hand-Eye and RWHE approaches. Additionally, we

propose a new cost function for achieving better accuracy and provide a novel dataset

for testing and validation with real and synthetic data. Moreover, we provide open-

source code of the implementation to assist other users. Similarly, while exploring

solutions for Research Question II, we were able to contribute to the pose estimation

block for robot manipulation by proposing a geometrically constrained approach of

camera pose estimation, which is detailed in Publication II.

2.2.2 Visual Odometry and SLAM

The need and demand for state-of-the-art research in this field is growing. According

to KITTI Vision Benchmark Suite [67], among the leading methods for odometry

estimation and sparse map generation are SOFT-SLAM2 [68] and ORB-SLAM2

[46]. The methods use carefully selected sparse features from images to estimate the

pose of the camera from consecutive temporal views. A temporal registration of pre-

vious camera information to the following camera information is prone to drift over

time. The drift is typically reduced using joint filtering. Additionally, the methods

employ loop closure techniques to recognize previously visited places to reduce nav-

igation errors. Until recently, the core assumption for SLAM odometry has been
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that the environment under observation is static. As a result, this assumption leads

to an inconsistent map, erroneous localisation, residual noise, and possible failure in

registration of vehicle poses in dynamic environments. A few studies have attempted

to incorporate the dynamic entities while performing SLAM. Keller et al. [69] and

Whelan et al. [70] proposed a point-based fusion approach that overcomes the pre-

viously mentioned limitations of non-functionality in a dynamic environment. The

approach utilizes ICP algorithm to compute the successive poses for the camera us-

ing weighted features. The approach is effective as it successfully reconstructs a static

map while updating the dynamic entities in the map. The methods in [69], [70]

rely on the dense and compact depth maps provided by an RGB-D camera, typically

Kinect or its updated version. These RGB-D cameras are good solutions for an in-

door environment; however, they perform poorly in an outdoor environment [71].

To overcome these limitations, we build upon the base concepts proposed in the

earlier studies and extend the work to outdoor environment with the use of stereo

vision. This facilitates the deployment of the concept in the field of autonomous

vehicles/machines. The study successfully addresses our Research Question III and

is detailed in the publication III.

2.2.3 Place Recognition for Loop Closure

State-of-the-art methods still face problems when it comes to recognizing a place from

a perspective view that shows a high variation to its earlier corresponding perspec-

tive pairs from a nearby location. The likelihood of place recognition is maximized

when the loop closure occurs in an environment that has been previously viewed

from a similar perspective, for example, a vehicle traveling toward the north passes

by the same location in the same direction. A wide range of strategies can be used

to approach this problem. Some state-of-the-art techniques still find the classical ap-

proaches robust and effective. Such techniques employ feature descriptors such as

SIFT [9], SURF [10], ORB [14], etc. to extract key points from images and fur-

ther encode, compress, and organize them with descriptors and dictionaries such as

bag-of-visual-words [72], vector of locally aggregated descriptors (VLAD) [73], or

Fisher vector [74]. Fisher Vector adopts the Gaussian mixture model (GMM) to

build a visual word dictionary and is assumed to encode more image information

and outperform Bag of Words (BoW) in some computer vision tasks. VLAD, on

the other hand, is a simplification of Fisher Vector and offers a trade-off between
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performance and computational efficiency. In most cases, VLAD performs similarly

to Fisher Vector with better efficiency. Generally, all these methods have experimen-

tally proved to be effective in traditional urban settings and normal test scenarios.

Alternatively, multiple recent studies have shown that the use of CNNs reduces

complexity and improves accuracy. Models trained on very large datasets signifi-

cantly outperform local descriptors such as SIFT in a variety of applications such as

scene [75] and object recognition [76]. McGann et al. [17] suggested learning scene

signatures from image patches, which would be used to match and retrieve scenes

with appearance changes. However, this method required an extensive training pro-

cedure with data inclusive of the test environment under all possible situations. In

some studies, the intermediate representations that are learned at different layers

from an object recognition dataset are directly used for scene identification [15],

[18]. Generally, it is observed that feature information acquired from higher layers

of a CNN encodes semantic information about a place, while feature information

acquired from the lower layers encodes finer descriptive information about the ge-

ometry of the scene. The authors in [15] experiment and tune various combinations

of the encoded feature vectors and subsequently search for nearest neighbors, for a

query image from the database, based on cosine distance. However, as stated earlier,

these studies are designed for uni-directional motion cases and fail in high perspective

variation cases such as bi-directional motion. To the best of our knowledge, the only

study that addressed bi-directional loop closure attempted to solve the problem us-

ing panoramic images [77]. We believe that the use of panoramic images reduced the

complexity of the problem by providing roughly similar views to a unidirectional

case. The panoramic images were captured in an enclosed structural environment

with a circular trajectory. This means that the reverse motion captures a substantial

overlap of the forward motion scenes with some spatial offsets of regions in images

with marginally different perspectives. Additionally, this is evident from the illustra-

tions in their study [77] which only depict spatial changes in the scene. However,

even in panoramic images, traditional methods like FAB-MAP [78] were not able to

find potential matches for loop closure for the bi-directional case. This concern was

raised in the Research Question V and significant contributions were made in Publi-

cation V which are also summarized in this thesis. We extend the place recognition

and loop closure detection capability to bi-directional cases and test our proposed

methods in both indoor and outdoor scenarios.
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2.3 Summary

In this chapter, we have briefly overviewed the fundamentals of image formation

based on the pinhole camera model and related camera pose representations, transfor-

mations, and projections. We have analyzed the strengths and weaknesses of feature

selection approaches that are essential for identifying and tracking robust landmarks

in the scene from its image in order to properly use them in our approaches. We

have completed the overview with the topics of visual servoing and SLAM, which

are in the focus of the thesis. Furthermore, we have critically analyzed the challenges

and limitations of the state of the art in the fields of Hand and Eye Calibration, Pose

Estimation for Visual Servoing, Visual Odometry, Place Recognition, and SLAM,

with the aim to effectively address them in the thesis.
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3 VISION FOR ROBOTICS WITH MARKERS

This chapter presents a thorough investigation into the various formulations ofHand-

Eye, Robot-World-Hand-Eye, and constrained camera pose estimation methods for

robotic arm manipulation. These constituent blocks of visual servoing are thor-

oughly investigated and the performance of the proposed contributions is compared

against state-of-the-art methods. The contributions in this chapter are directed to

address the research questions I and II. In addition, the chapter contributes a novel

dataset for testing and validation of the calibration methods.

3.1 Problem Formulation for Calibration

We illustrate the two configurations that can be used for calibrating a camera with

a robotic manipulator with the aid of Figure 3.1 extracted from Publication I. We

will represent the homogeneous transformations matrix using T and various sub-

indices throughout this article. The sub/super-scripts b, t, c, and w represent the

coordinate frames for the robot base, robot tool, camera, and calibration pattern,

respectively. The sub-indices i and j indicate the state of the system in time. The

problem formulations are discussed in the following subsections.

(a) (b)

Figure 3.1 Formulations relating geometrical transformation for calibration; (a) hand–eye calibration;
(b) robot-world-hand–eye calibration. (P.I)
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3.1.1 Hand-Eye Calibration

One approach of formulating the calibration problem is AX = XB illustrated in Fig-

ure 3.1a, where bT
ti is equivalent to Ai and indicates the homogenous transforma-

tions from robot base to the tool center point (TCP)/end-effector. Similarly, ciT
w is

the equivalent of Bi and indicates the transformation from camera to the world/cali-

bration pattern. This formulation makes use of the relative transformations A (tjT
ti )

and B (cjT
ci ) to estimate the unknown X or tT

c, which is the required hand-to-eye

homogeneous transformation. Then, from Figure 3.1a, we can form the following

relationship

bT
t2

−1

bT
t1

tT
c = tT

c
c2T

w
c1T

w−1
← (t1T

c1 = t2T
c2). (3.1)

Generalizing the relation in 3.1, we get

tjT
ti
tT

c = tT
c
cjT

ci . (3.2)

In order to ensure reliable results and a solution, it is recommended to record

data for at least three positions with non-parallel movements of the rotational axis

[79]. It is possible to estimate the unknown parameters in the relation 3.2 by directly

minimizing the errors of the cost function

{q(t,c) , tt
c} = argmin

q(t,c) ,t tc

n−1∑
i=1,j=i+1

‖n̄(tjT
ti [q(t,c) , tt

c]HT − [q(t,c) , tt
c]HT cjT

ci )‖22. (3.3)

Here, the symbol [ ]HT indicates homogeneous transformation representation.

We minimize the cost function with the rotation parameters of the unknown tT
c

in quaternion representation q(t,c) and translation tt
c. The operation n̄ denotes the

aggregation of the 4×4 error matrix into a scalar value by summation of normalized

values of quaternion angles and normalized translation vector. The solver minimizes

the residual scalar values with L2-norm using the Levenberg–Marquardt algorithm.

In light of recommendation of [63], we can also re-arrange Equation 3.3 in the
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following manner

{q(t,c) , tt
c} = argmin

q(t,c) ,t tc

n−1∑
i=1,j=i+1

‖n̄(tjT
ti − [q(t,c) , tt

c]HT cjT
ci [q̃(t,c) , t t̃

c]HT )‖
2
2. (3.4)

The terms q̃(t,c) and t t̃
c are the quaternion and translation vector obtained from the

inverse of tT
c. In our results, we refer to the cost functions in Equations 3.3 and 3.4

as Xc1 and Xc2, respectively.

Since rotation and translation are solved simultaneously in Equations 3.3 and

3.4, these solutions fall under the category of simultaneous solution of Hand-Eye

calibration. The objective function successfully converges to a solution without any

initial estimates for the q(t,c) and tt
c.

The objective function can also be expressed in terms of projection errors instead

of direct pose optimization. In a wide variety of pose estimation problems, projec-

tion error minimization has been shown to produce promising results [80], [81].

Tabb and Khalil [63] presented a reprojection based cost function for the AX = ZB

formulation. Here, we generalize and expand the approach towards the case of the

AX = XB formulation. Let W be the 3D points in the world frame and Pc be the

corresponding 2D points in the image plane. Then, the cost function for minimizing

the reprojection errors of the 3D points from pose i to pose j is

{q(t,c) , tt
c} = argmin

q(t,c) ,t tc

n−1∑
i=1,j=i+1

‖P̄j − Π(K, [q̃(t,c) , tt
c]HT tjT

ti [q(t,c) , tt
c]HT , P

c
i )‖

2
2. (3.5)

The relationship given in Equation 3.5 is referred to as RX here onwards.

A projection operation, Π, uses the camera intrinsic K and the camera extrinsic

obtained using the homogeneous transformations given in Equation 3.5 to project

3D points from world space to image space. The cost function is minimized as before

with the residual obtained from the difference of the observed 2D points P̄j, in the

jth image, and the corresponding projected points. Note that the reprojection error

minimization approach is not invariant to the initial estimates used by the solver.

The nonlinear optimization of reprojection error is more accurate when a decent

initial estimate is provided.
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3.1.2 Robot-World-Hand-Eye Calibration

The alternative formulation makes use of absolute poses. This formulation is ex-

pressed as AX = ZB in literature and is illustrated in Figure 3.1b (extracted from

Publication I). This formulation uses homogeneous transformations A (tT
b) and B

(cT
w) from their respective coordinate frames. The unknown X (bT

w) and Z (tT
c)

are the homogeneous transformations from robot base to the world frame and the

end effector to the camera frame, respectively. It is important to note that the Hand-

Eye transformation is referred to as Z in this formulation to adhere to representation

in the literature. However, we will make use of conventional transformation nota-

tion with their subscript for the sake of clarity in representations. From Figure 3.1b

we can form a straightforward geometrical relationship as:

tT
b
bT

w = tT
c
cT

w. (3.6)

Similar to the previous cases, we can directly use the relationship in aforemen-

tioned equations to obtain tT
c and bT

w using nonlinear minimization of their respec-

tive costs

{q(t,c) ,t t
c, q(b,w) , bt

w} = argmin
q(t,c) ,t tc ,q(b,w) ,btw

n∑
i=1

‖n̄(tT
b
i [q(b,w) , bt

w]HT − [q(t,c) ,t t
c]HT cT

w
i )‖

2
2.

(3.7)

The parameterization adopted involves optimizing 14 parameters, of which the

two quaternions and translation vectors contribute 8 and 6, respectively. Despite the

higher number of unknowns in the RWHE formulation, it nevertheless yields higher

accuracy due to stricter constraints on the geometry. Modern nonlinear solvers pro-

vide efficient approaches to solve optimization problems with large number of un-

knowns. As before, the objective function in Equation 3.7 can be re-arranged in the

form

{q(t,c) ,t t
c, q(b,w) , bt

w} = argmin
q(t,c) ,t tc ,q(b,w) ,btw

n∑
i=1

‖n̄(tT
b
i − [q(t,c) ,t t

c]HT cT
w
i [q̃(b,w) ,bt̃

w]HT )‖
2
2.

(3.8)

The objective functions in Equations 3.7 and 3.8 are referred to as Zc1 and Zc2,

respectively, in the study by Tabb and Khalil [63].
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The objective function successfully converges to a solution for q(t,c) , tt
c, q(b,w) and

bt
w. However, the formulation requires initialization due to increased number of

unknowns. A rough initial estimate, obtained from a fast closed-form method such

as Tsai [54] or Shah [62], is sufficient since the formulation is not a high-dimensional

optimization problem. As before, the formulation can be expressed as a reprojection

error minimization problem as

{q(t,c) ,t t
c, q(b,w) , bt

w} = argmin
q(t,c) ,t tc ,q(b,w) ,btw

n∑
i=1

‖P̄i−Π(K, [q̃(t,c) ,t t̃
c]HT tT

b
i [q(b,w) ,bt

w]HT ,W )‖22

(3.9)

and is referred to as rp1 in [63]. The equation minimizes the reprojection of the 3D

world points Wonto the image space in camera frame, where P̄i are the observed

2D points in the i-th image.

The formulation in Equation 3.9 has an added advantage that it no longer de-

pends directly on the camera poses, which are required by the reprojection error

based cost function of the formulation AX = XB in Equation 3.5. If the camera

intrinsic parameters are accurate enough, then the extrinsic can be indirectly com-

puted as a transformation through tT
c, tT

b and bT
w through the minimization of

the objective function. Nonetheless, the reprojection error cost function presented

for problem formulation AX = XB proves to be more robust to robot pose errors

given good images.

A marginal improvement in the results can be observed in various cases by using

log(cosh(x)) as the loss function. log(cosh(x)) approximates x2

2 for small value of x and

abs(x) − log(2), for large values. This essentially means that log(cosh(x)) emulates the

behavior of the mean squared error, with better robustness to noise and outliers.

Additionally, the function is twice differentiable everywhere and therefore does not

deteriorate the convexity of the problem. The revised cost function, referred to as

RZ hereafter, is

{q(t,c) ,t t
c, q(b,w) , bt

w} = argmin
q(t,c) ,t tc ,q(b,w) ,btw

n∑
i=1

‖ log(cosh(E(x)))‖22 (3.10)

where E(x) is the error in terms of difference between the observed points and the

reprojected points.
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3.1.3 Dataset for Calibration

We present a dataset in Publication I with multiple sequences to test and assess the

performance of the calibration methods in laboratory and near-field settings. In this

dataset, we acquire the data with multiple combinations of camera, lens, calibration

patterns, and robot poses. Moreover, we provide both real and simulated data with

synthetic images for calibration and testing. Table 3.1 provides an overview of the

dataset. Excerpts from the dataset are provided in Figure 3.2.

Figure 3.2 Example of calibration images from the dataset (a) checkerboard pattern (b) ChArUco
pattern (c) synthetic image with checkerboard pattern.

Table 3.1 Overview of the dataset acquired and generated for testing.

No. Dataset Data Type
Lens Focal

Length [mm]

Square

Size [mm]
Image Size Robot Poses

1 kuka_1 Real 12 20 1928 × 1208 KR16L6-2 30

2 kuka_2 Real 16 15 1920 × 1200 KR16L6-2 28

3 kuka_3 Real 12 60 1928 × 1208 KR16L6-2 29

4 CS_synthetic_1 Simulated 18 200 1920 × 1080 N/A 15

5 CS_synthetic_2 Simulated 18 200 1920 × 1080 N/A 19

6 CS_synthetic_3 Simulated 18 200 1920 × 1080 N/A 30

The dataset was recorded using a Basler acA1920-50gc camera with 12 mm and 16

mm lenses. The camera was mounted and maneuvered with the aid of the KUKA

KR16L6-2 serial 6-degrees of freedom (DoF) robot arm (see Figure 3.3). We use

both checkerboard and ChArUco board of varying square sizes recorded with differ-

ent camera lenses at varying robot/camera poses with the aim to provide a thorough

dataset which is still convenient to use.

Real data allows us to observe all of the uncertainties associated with a real sys-

tem for Hand-Eye calibration; however, it restricts us from acquiring ground truth

information for comparison. Manually obtaining the ground truth TCP-to-camera
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(a) (b)

Figure 3.3 An example of the setup for acquiring the datasets; (a) robotic arm moving in the
workspace (b) cameras and Lenses for data acquisition.

transformation is not feasible, since the frame of the camera lies within the camera. In

such cases, the absolute pose error is always absent for the quantification of accuracy

and other metrics for relative errors and error distribution are utilized. In contrast,

the use of simulated data provides us with ground truth information to assess the

absolute performance of our calibration method. To the best of our knowledge,

Publication I is the first paper to provide simulated dataset with synthetic images,

for Hand-Eye and RWHE calibration, that are available for public use.

The complexity of the dataset is varied for each subset by acquiring images from

different positions and orientations of the camera. A 3D computer graphics software,

Blender, is used to render the synthetic scenes. To simplify the case, we assume

that the robot’s TCP position is the same as the camera position. In such a case,

the homogenous transformation from hand-to-eye is the result of the orientation

difference between the Blender world frame and Blender camera frame.

3.1.4 Experimental Results

In this section, we report and discuss the main experimental results to provide an

insightful comparison between our study and six others. Figure 3.4 illustrates the

results from simulated data in sequence 5 (Table 3.1) over varying visual noise in the

presence of the pseudo-realistic robotic arm pose noise. The modelling of pseudo-

realistic robotic arm pose noise and visual noise into the system is discussed in detail

in Publication I.

51



(a)

0 1 2 3
Visual Noise (px)

10-2

10-1

100

101

102

R
el

at
iv

e 
R

ot
at

io
n 

Er
r (

lo
g 10

 s
ca

le
)

(b)

0 1 2 3
Visual Noise (px)

10-3

10-2

10-1

100

101
R

el
at

iv
e 

Tr
an

sl
at

io
n 

Er
r (

lo
g 10

 s
ca

le
)

(c)

0 1 2 3
Visual Noise (px)

10-4

10-2

100

102

Ab
so

lu
te

 R
ot

at
io

n 
Er

r (
lo

g 10
 s

ca
le

)

(d)

0 1 2 3
Visual Noise (px)

10-3

10-2

10-1

100

101

Ab
so

lu
te

 T
ra

ns
la

tio
n 

Er
r (

lo
g 10

 s
ca

le
)

(e)

Figure 3.4 Metric error results for sequence 5 with constant robot pose noise; (a) reprojection error
(b) mean rotation error (c) mean translation error (d) absolute rotation error (e) absolute
translation error. (P.I)
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To achieve a stable response, the plots represent the averaged results over 1000

iterations. This figure also shows the 95% confidence intervals from all the itera-

tions for each experimentation point. With the exception of the response from Tsai

[54] over reprojection error metrics, the confidence intervals are quite narrow. The

narrow range of confidence interval indicates that we are 95% sure that our true

mean lies somewhere within that narrow interval. Furthermore, this implies that

the noise introduced during the iterative process is consistent and represents a coher-

ent response from the methods. Based on the results in Figure 3.4 in conjunction

with the results on real data in Publication I, we remark that Tabb rp1 [63] and the

proposed RZ are quite robust to the increments in visual noise compared to other

methods over all error metrics. It is noteworthy that despite the increase in relative

rotation, translation and reprojection error, the absolute rotation and translation er-

rors stay much more the same for Tabb rp1 [63] and RZ. When noise in the data is

present, the Tsai’s algorithm [54] performs poorly and erratically. In the absence of

visual noise Zc1 [63], Xc1, RX and Shah [62] can achieve lower errors compared to

rp1 [63] and RZ for multiple metrics. There is always some degree of visual noise

in real data and different approaches might be affected differently by visual noise.

To summarize our observations, the nonlinear reprojection-based methods achieve

the best results among the methods under consideration even in the presence of vi-

sual and hand pose noise. RX yields good results with high accuracy under realistic

visual noise with respect to reprojection error. In addition, RZ is more robust to

visual noise and yields more consistent results for a greater range of visual noise. For

detailed results, analysis, and discussion, we refer the readers to Publication I.

3.2 Geometrically constrained Multi-View Pose Estimation for
Manipulator

In photogrammetry, robotics, and computer and machine vision, the pose of a cam-

era has been extensively studied with respect to a target object. With the advances

in this area, users have been able to accomplish a wide variety of tasks accurately.

Despite this, application-specific methods can still be improved to achieve better ac-

curacy and robustness. For instance, a reconstruction technique that is suited to

achieving visually pleasing results might not be suited to accurate localization.

This section overviews the contributions from Publication II that are aimed at
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solving the Research Question II. To limit the scope of the work, we explore so-

lutions in a test case of a robotic manipulator (see Figure 3.5). The robotic arm is

equipped with cameras to perceive the environment for visual servoing with the aid

of a marker.

3.2.1 Problem Formulation

To model the physical system more accurately, we propose a modified form of the

monocular multishot/multiview (MMS) approach in which we constrain the free

pose optimization of cameras. We estimate only the transformation cT
w
1 and use the

prior information (robot poses bT
t
i and Hand-Eye transformation tT

c) to constrain

and geometrically relate the camera views from n poses. As opposed to traditional

MMS methods, the proposed approach does not require estimating n − 1 transfor-

mations cT
w
i .

From Figure 3.5, we can form the following relationship among n manipula-

tor poses

bT
t
1 tT

c
cT

w
1 = bT

t
2 tT

c
cT

w
2

= bT
t
3 tT

c
cT

w
3...

= bT
t
n tT

c
cT

w
n .

(3.11)

We optimize only for one homogeneous transformation cT
w in the estimation

step which transforms a point from the camera frame position in the initial/ref-

erence view to the fixed coordinate frame associated with the object/world. The

geometric relationship in equation 3.11 can be generalized as an accumulation of

all the transformations from the world to camera frames, excluding the reference

pose. Ti transforms the 3D world points from the object/world coordinate frame,

through the first reference pose, to the camera frames at each of the remaining n − 1

poses.

Ti = cT
t
tT

b
i bT

t
1 tT

c
cT

w. (3.12)

Since we use quaternion and translation vector representation during optimization,
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Figure 3.5 Illustration of the setup explaining the geometrical relation among various coordinate
frames. (P.II)

we re-write equation 3.12 as

Ti = tT
c−1

tT
b
i tT

b−1

1 tT
c [q(c,w) , ct

w]HT . (3.13)

We can now estimate cT
w by optimizing the following expression

{q(c,w) , ct
w} = argmin

q(c,w) , ctw

n∑
i=1

| |Pi − Π(K, T i,W ) | |22. (3.14)

3.2.2 Experimental Results and Discussion

In our experiments, we compare the performance of our proposed method to the

results of other studies using synthetic images and real data. The motivation for using

simulated data is to check the response of the method against actual ground truth.

Real data, in contrast, can be used to assess the effectiveness of a method in an actual

working environment containing more data perturbations.

A quantitative comparison is provided between the proposed method and four

other state-of-the-art methods. Among the methods used for comparison, IPPE [64]

and Zhang [31] are based on monocular single shot (MSS) approaches. A MMS
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approach is proposed by Collet and Srinivasa [65], while Geiger et al. [66] propose a

single shot of stereo (SSS) cameras. Here we present the experimental results on real

data acquired for pose estimation using the setup shown in Figure 3.6. The KUKA

KR16L6-2 is equipped with an adaptor that houses two cameras and a custom tool.

The tool is an aluminum bar with a Polycarbonate sheet at the end. A crosshair

marker is drawn on this sheet. The tool is used to measure as accurately as possible

the location and orientation of the target object. The intersection of the cross-hair

marker helps to pinpoint the position while the planar surface of the tool sheet aids

in measuring the orientation of the planer target. The tool is used both for initial

ground truth measurements and for the evaluation of estimated poses. To measure

the ground truth, the tool marker is manually aligned on the target object and robot

pose information is recorded. Afterwards, these estimated poses are compared with

the recorded poses.

(a) (b) (c)

Figure 3.6 Illustration of the experimental setup (a) Close up of the adaptor with the tool, stereo cam-
era pair and lights affixed to the manipulator using customized hardware (b) Checkerboard
from camera view (c) ChAruCo board from camera view. (P.II)

It can be observed from the tabulated results in Table 3.2 that the proposed

method yields the least absolute rotation error (µR) and absolute reprojection er-

ror (µre). The least absolute translation error (µt) is obtained by the stereo approach

in [66], however, the proposed approach yields a comparative result with the second-

best translation estimate. The results obtained for µR , µt ,and µre using [31], [64]

and [65] are quite similar for the given set of experiments. Moreover, the proposed

method yields significantly lower deviations over translation (σt) and reprojection

(σre) estimates. The least standard deviation for rotation (σR) is achieved by SSS-

Gieger et al. [66].
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Table 3.2 Comparative results using checker board as target object. (P.II)

Methods Abs. Rotation
Error, µR (deg)

Abs. Trans-
lation Error,
µt (mm)

Abs. Repro-
jection Error,
µre (px)

Rotation std.
dev., σR (deg)

Translation
std. dev.,
σt (mm)

Reprojection
std. dev.,
σre (px)

MSS-Zhang [31] 1.9546 3.4217 1.3194 0.036274 0.19947 0.21217
MSS-IPPE [64] 1.9586 3.6378 1.3345 0.047422 0.2165 0.22098
SSS-Geiger et al. [66] 1.9325 2.931 1.1621 0.027213 0.22121 0.26702
MMS-Collet et al. [65] 1.9498 3.4847 1.3306 0.03223 0.20967 0.2204
MMS-Proposed 1.6796 3.1285 1.0733 0.045619 0.15001 0.12447

Table 3.3 Comparative results using diamond marker as target object. (P.II)

Methods Abs. Rotation
Error, µR (deg)

Abs. Trans-
lation Error,
µt (mm)

Abs. Repro-
jection Error,
µre (px)

Rotation std.
dev., σR (deg)

Translation
std. dev.,
σt (mm)

Reprojection
std. dev.,
σre (px)

MSS-Zhang [31] 2.508 4.0691 2.3638 0.92636 1.0597 0.20078
MSS-IPPE [64] 2.3373 4.1017 2.2399 0.52881 0.47025 0.18418
SSS-Geiger et al. [66] 2.3903 4.2761 2.1124 0.20142 0.30155 0.13553
MMS-Collet et al. [65] 2.3095 4.0959 2.2096 0.25623 0.50482 0.17876
MMS-Proposed 2.1837 4.0628 2.105 0.14443 0.21076 0.15846

Table 3.3 presents the results for the second set of experiments, using the diamond

marker as the target object. As before, the tabulated results exhibit that the proposed

method achieved the best results over all metrics except for σre, where it yields a result

comparable to the stereo approach. SSS-Gieger et al. [66] shows a comparable error

distribution to the proposed method. It appears that the MSS approach by Zhang

[31] has the least consistent performance. The standard deviation of the estimate

errors (σR, σt, and σre) is the highest in this case. MSS-IPPE performs comparatively

well among MSS approaches and shows comparative results to MMS approach by

Collet et al. [64].

We refer the readers to Publication II for more experimental results, including

the tests on simulated dataset with synthetic images, and discussions that corroborate

the conclusion drawn here.

3.3 Summary

In this chapter, we presented elements that were essential for manipulating a robotic

arm with the aid of visual sensors. We started with the calibration of the robotic arm

with a camera to mimic the mammalian Hand-Eye coordination capability. We pre-

sented a collection of novel methods to address the Robot-World-Hand-Eye calibra-

tion problem in its two alternative geometrical interpretations. The methods were
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extensively tested on real and simulated datasets acquired through setups specifically

developed to test and assess the robustness and accuracy of the methods. The later

part of the chapter presented a monocular multi-shot approach to estimate the 6-DoF

pose of the camera against a target object. The proposed approach modeled the ge-

ometric relations among various coordinate systems and explicitly incorporated the

robotic manipulator poses into the formulation as implicit constrains. The proposed

solutions were thoroughly tested and their performances were compared against the

state-of-the-art methods on the novel datasets provided along with the studies. The

empirical results demonstrated that our methods yielded significant improvement in

accuracy and precision over other methods.
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4 VISUAL ODOMETRY AND SLAM

In this chapter, we overview visual SLAM and relate some of its elemental blocks

namely, VO, mapping, and re-localisation for loop closure. Hence, the chapter ad-

dresses Research Questions III-V. A novel approach is provided to map the environ-

ment in the presence of actively dynamic entities in the scene. A unique training,

testing, and validation dataset is contributed to assist visual SLAM algorithms. Fi-

nally, a novel approach is proposed to enhance place recognition capabilities for loop

closure using deep learning-based approaches.

4.1 Discrimination of Active Dynamic Entities

Generally, SLAM approaches have the fundamental assumption that the observed

environment is static and that objects do not exhibit any change in dynamics or

shape. However, this assumption is valid only in a controlled environment and is

invalidated altogether in busy urban areas. In such cases, it is important to identify,

extract, and discard dynamic entities from the pose estimation step and track them

for future reference. In any other case, a SLAMpipeline that is unable to discriminate

outliers can possibly result in inconsistent map, erroneous localisation, or altogether

failure in registration.

Here, we present the results of our investigation (P.III) on the Research Question

III, formulated in this thesis, and demonstrate that dynamic entities can indeed be

segregated from the local map, in the case of a dynamic environment, and used as

prior knowledge to discard outliers pertaining to the moving object when estimating

the next pose in odometry.

In Publication III, we demonstrate the application with a stereo camera for localiz-

ing and mapping an active dynamic environment without any prior knowledge about

the dynamics in the scene. For each image, disparity maps are obtained and checked

for consistency from one camera to another in order to eliminate wrong disparities.
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Each pixel position (x, y)T ∈ IR2 has its computed disparity. Point clouds are formed

from the 3D positions of all valid disparity points. To simplify the computational

and memory related complexities of SLAM, the point clouds are uniformly down-

scaled by a grid filter. Each individual point cloud PtCt has the associated description

of each point i.e. location (Xk, Yk, Zk), Color (Rk, Gk, Bk) and Normal vectors to the

plane (Nxk, Nyk, Nzk) stored along with it.

4.1.1 Data Association and Pose Estimation

An initial registration is performed by finding the correspondences using the nearest

neighbors in the point clouds PtCt and PtC(t−1) . ICP is used to register the point

clouds by iteratively minimizing the error metric

ei =
N∑
i=1

d2s (T
ipk, S

k
j ). (4.1)

Here ds is the signed distance from a set of points pk in the point cloud PtCt to

the tangent plane formed of the set of points qj in PtC(t−1) . T
i is the transformation

computed in the iteration i of the error minimization process. The 6-DoF trans-

formation matrix Tt encapsulates the rotational matrix and translation vector used

to register the two-point clouds. We adopt a hard threshold-based approach in the

correspondence search for the nearest points to remove the outstanding wrong cor-

respondences (outliers). The outliers can be present in the form of 3D point noise

that may originate from erroneous depth estimation, different sampling of an entity,

or motion of the objects. The new point cloud is transformed and merged with the

global map with two new descriptions; a confidence metric Ck and frame presence

Fk. The confidence Ck of a point informs us about the integrity of the point for being

static and valid while the frame presence Fk stores the information about time the

point was initially introduced to the system.

4.1.2 Confidence change for Dynamic Entities

The confidence metric is defined to measure the stability of 3D points in the map.

A high confidence value indicates that the 3D point has remained a static and stable

part of the world. However, removal of unstable points is necessary to limit the

computational and memory load and at the same time discriminate and discard ac-

60



tively dynamic objects. Although a point may find multiple valid matches, however,

only the nearest points are physically merged, and their confidence is accumulated

and raised by some constant. The remaining valid associations (among the inliers)

are not merged physically but temporarily added (with low confidence and original

properties) to the global map since they might represent a different view of the same

object. Additionally, all of the inliers’ frame presences Fk are incremented to indicate

that they have been observed.

A global map must be updated accurately not only with confidence gain but also

with confidence loss. The 3D points should be updated logically when a stationary

object in the scene starts moving. Such a representation of the dynamic entities can

be realized by continuously reducing the confidence of all the points that are in the

camera view by a small factor. The 3D points from the global map are projected

to the image plane using the camera intrinsic K and the inverse of global camera

pose T−1
g t at time t. The points that are projected within the bounds of the plane

are assumed to be in the camera perspective and, therefore, reduced in confidence.

Hence there is a continuous struggle by the 3D points to maintain their confidence

by merging with nearest neighbors in the presence of the confidence leak. This tug-

of-war of confidence enables us to smoothly transition between a static and dynamic

representation every time an object moves in and out of the scene.

We provide some results from Publication III in Figures 4.1 and 4.2 for stationary

andmoving cameras, respectively. The results exhibit successful discrimination, iden-

tification, and subsequent extraction of the clusters of points pertaining to dynamic

entities in the map and their corresponding segmented regions in the 2D images.

Moreover, the results exhibit an effective transition and merger of the moving per-

son into the static map and the converse transition and removal from the map once

the person starts moving. More details about these experiments can be found in Pub-

lication III. The observations from the study validate the hypothesis we formulated

to address the Research Question III and provide a solid ground for expansion of the

work towards a scalable solution for real-time accurate mapping applications.

4.2 Visual SLAM in Forest Landscape and Benchmarking

Research into autonomous vehicles has been greatly influenced by the fierce competi-

tion to develop a safe, marketable self-driving car. With many companies already ex-
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Figure 4.1 Test sequence with stationary camera. (P.III)

perimenting with self-driving vehicles, other companies are now looking into other

forms of autonomous vehicles for automation of various industrial processes like

mining, shipping, and agriculture. Getting fromAdvanced Driver Assistance System

(ADAS) to autonomous vehicles relies heavily on advancements in many operations,

such as object detection [82], reconstruction quality [83], and semantic understand-

ing of the environment [84]. It is, however, odometry, relocalisation and mapping

[85] that are the base capabilities required by an autonomous vehicle. To do this, all

scenarios that a vehicle would face in real operation need to be tested and validated

in a simulated environment.

In this section, we summarize our extensive investigation into existing datasets

that was conducted in light of the Research Question IV. We discuss the contribu-

tions of the Publication IV, which proposes a novel dataset, towards the Research

Question IV in specific and the thesis in general.

A number of datasets are publicly available for testing SLAM methods under a

wide range of conditions and locations. Several well-known datasets will be men-

tioned in order to illustrate the range of the collection and discover a horizon. Most

of these datasets focus on urban environments, for example [86]–[91], in order to

facilitate testing on public roads in urban areas. When combined, these datasets

provide a fair amount of data to test the methods in short and long trajectories at
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Figure 4.2 Test sequence with moving camera.(P.III)

various speeds [90]. Additionally, they consider weather and seasonal changes [92],

long-term changes in city structure [92] as well as gradual/abrupt variations in illu-

mination [93]. However, all these datasets target indoor or outdoor urban environ-

ment with the exception of some studies that target land and water-based terrains

[94]–[98]. We observed a gap in work towards testing data for non-urban settings

and decided to target terrain environments. For this reason, we recorded data in a

forest landscape that benefits both self-driving cars and heavy work machines that

navigate and/or operate in a dense forest landscape.

4.2.1 Dataset Overview

In Publication IV, we present an original dataset that explores a real forest landscape

located in the outskirts of Tampere, Finland (see Figure 4.3a, extracted from P.IV).

The goal is to provide testing data in order to facilitate the research towards increas-

ing the autonomy of vehicles traversing rural areas and heavy machines working in

the forest. Unlike urban settings, a terrain environment provides fewer discriminate

landmarks and more repetitive textures in the scene. Presumably, such a situation

strengthens VO to some extent, however, affects adversely relocalisation algorithms.

This dataset provides semi-structured forest routes under different conditions (i.e.

lighting, weather, vegetation, and infrastructure) in a highly self-similar natural en-

vironment. Furthermore, the sequences include scenes that best replicate the mo-

tions (i.e. stationary, sharp motion, bumps and potholes, slopes, and back-and-forth

motion) and environments (i.e. log piles, close-up of trees, and off-road routes) in-

volved in actual forestry operations. The dataset includes unique trajectories to test
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both VO and visual SLAM algorithms thoroughly. Moreover, each path is traversed

in two different conditions, namely sunny summer and snowy winter. The dataset

provides images acquired with four cameras (affixed on a sensor rig shown in Fig-

ure 4.3b) that form three stereo pairs. The ground truth poses are acquired using

a tightly coupled solution of GNSS and IMU information. We provide processed

rectified images, calibration data and ground truth at three sampling rates i.e., 40,

13.33 and 8 Hz except for two sequences which are sampled at 20, 10 and 7 Hz. Fur-

thermore, we provide raw images (40 Hz), camera calibration images, development

tools to process the raw data, and evaluation tools to facilitate comparison against

the benchmarked results.

(a) (b)

Figure 4.3 Illustrations from P.IV (a) The GPS trajectory of our recordings in the forest area in the
outskirts of Tampere, Finland. (b) Rendered 3D model of the sensor rig.

4.2.2 Ground Truth and Benchmarking

Ground truth information can be difficult to obtain in enclosed environments. In

order for the ground truth solution to be globally accurate, GNSS links must be

available. An open area has high signal strength and accuracy, whereas enclosed

areas, including narrow city streets and forests, have weak signals. A tightly coupled

pose estimation framework employing GNSS and IMU data is used to acquire a

ground truth solution using NovAtel’s PwrPak7TM module.

Based on the results in Publication IV, we observed that the average standard

deviations in position for the winter sequences in the East and North directions

were less than 2 cm, with occasional larger deviations. When vehicles traverse an
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area densely covered in trees for a prolonged period of time, they produce larger

deviations. Compared to winter recordings, summer sequences exhibit slightly larger

standard deviations. All summer sequences in East and North generally have errors

of less than 20 cm; the highest error is seen in elevation. There is a logical reason for

the degrading GNSS results in the summertime. The increase in foliage can cause a 24

to 35 % attenuation of the GNSS signal at L-band [99]. This attenuation of signals

is due to the combined effect of signal absorption and scattering from the canopy

and trunk of the trees. When the GNSS signal is absent, the ground truth pose

estimation system primarily relies on the IMU. In spite of this, the results obtained

for the summer sequence are impressive and serve as a useful reference for further

experimentation.

Among the state-of-the-art SLAM implementations, we chose ORBSLAM2 [46]

and Stereo-Parallel Tracking andMapping (S-PTAM) [100] for testing. These studies

provide open-source implementation of a stereo based visual SLAM method which

facilitates the testing phase of our study. Using the state-of-the-art method to test the

dataset gives the reader an understanding of the challenges presented by the dataset

and provides a benchmark for other algorithms. We tabulate the experimental results

from ORBSLAM-2 and S-PTAM in Tables 4.1 and 4.2, respectively. It is clear from

the results extracted from Publication IV that despite covering short distances, large

drift and scale errors are observed for VO sequences. These errors result in large

deviations and errors in the estimated trajectory. We discuss more about the unique

challenges posed by the dataset in the forthcoming section. Additionally, to facilitate

testing, a development and evaluation toolkit is included with the dataset, which

can be used to process raw data or to compare the odometry obtained from one’s

algorithm with ground truth poses.

4.2.3 Challenges and Impact

In this section, we discuss the challenges posed by the novel dataset and its contribu-

tion to the thesis and research community. The following remarks are intended to

assist future research and experiments with the data.

Forest environments present unique challenges for tracking features. The self-

similarity and repetition of patterns make it difficult to match and track features ac-

curately. While recording the dataset, we traverse rough terrain as opposed to urban

routes. The combined effect of data sampling, speed, and erratic motion introduce
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Table 4.1 Quantitative results of ORBSLAM2 for the FinnForest dataset at different sampling rates.
(P.IV)

Data Sampling 40/20 Hz 13/10 Hz 8/7 Hz

Seq.No ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m)

W01 3.35 2.1785 0.00014197 3.6738 2.3016 0.00019584 3.4914 2.4092 0.00021607

W03 12.266 9.1805 0.00012107 12.025 9.2299 0.00013344 12.249 9.1962 0.0001253

W04 17.421 7.7753 9.7778e-05 17.244 7.8332 9.935e-05 20.666 7.6746 0.00011482

W05 55.422 9.2678 0.0001298 56.323 9.4365 0.00013865 75.715 9.7977 0.00022451

W06∗ 21.789 32.14 0.00020608 TL TL TL TL TL TL

W07∗ 37.933 7.2208 0.00011185 34.324 7.2193 0.00013786 48.88 7.2107 0.00016175

S01 4.3677 1.9672 0.00022474 3.8189 1.917 0.00019894 6.2793 2.1462 0.00027508

S02 26.132 4.2061 0.00017796 26.874 4.2181 0.0001728 TL TL TL

S03 12.633 5.873 0.00020877 10.986 5.6022 0.00018197 9.8899 5.5459 0.00018258

S04 30.053 5.5827 0.0001988 26.825 5.4608 0.00018299 TL TL TL

S05 228.88 9.4575 0.00025169 191.52 8.8165 0.00020505 200.81 8.9426 0.00021338

∗ indicates that the data is subsampled at 20/10/7 Hz TL: Tracking lost

Table 4.2 Quantitative results of S-PTAM for the FinnForest dataset at different sampling rates. (P.IV)

Data Sampling 40/20 Hz 13/10 Hz 8/7 Hz

Seq.No ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m)

W01 TL TL TL TL TL TL TL TL TL

W03 19.709 10.166 0.00011828 27.663 12.63 0.0004809 28.369 14.819 0.00063508

W04 25.852 9.4934 0.00014839 45.091 14.9 0.00071498 48.944 14.914 0.00073208

W05 TL TL TL 79.774 11.312 0.00011181 TL TL TL

W06∗ TL TL TL TL TL TL TL TL TL

W07∗ TL TL TL 102.54 8.319 0.00019895 TL TL TL

S01 7.3247 2.883 0.00018821 9.4022 4.0914 0.00066569 8.652 3.9342 0.00030787

S02 34.391 9.2735 0.0005317 44.68 11.63 0.00061402 34.752 9.2786 0.00020271

S03 21.779 7.0644 0.00025365 31.418 11.105 0.00025333 47.392 14.82 0.00031883

S04 31.891 7.1297 0.00023556 39.749 9.703 0.00019259 TL TL TL

S05 130.41 10.182 0.00022272 171.55 14.517 0.00032586 201.65 17.9 0.00038022

∗ indicates that the data is subsampled at 20/10/7 Hz TL: Tracking lost

challenges for tracking and localisation.

We recorded the data at low driving speeds, around 25-30 km/h, and a short

exposure time for image acquisition to prevent motion blur. Following a recom-

mendation in [101], we included the skyline in the scene which is expected to en-

hance feature matching possibilities. The features that are extracted farther away

from the forest near the skyline contribute significantly to the accurate estimation

of rotations, especially pitch and yaw.

The dataset contains various opportunities to test the robustness of the visual

SLAM methods for estimating the pose and tracking objects moving in a scene with

varying illumination. The sequences W07, S04, and W06 offer notable opportuni-

ties regarding illumination change. In W07, illumination gradually changes as the
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day grows darker. As the sequence was recorded at dusk, the lighting significantly

changes between the start and end of the sequence. The sequence S04, however,

displays a more rapid change in illumination because of direct sunlight. Lastly, W06

sequence provides data collected at night in the presence of directed light sources.

The dataset provides three sequences with loop closure opportunities. Two of

these routes, S01, andW01, repeat the same route three times, twice in one direction,

and once in the opposite direction. Additionally, there are odometry sequences that

do not offer a direct closure of loops. In such cases, scale and pose drift are prominent

especially in the benchmarked results of S03 and W03.

This dataset and subsequent experimental results appear to be affected by seasonal

changes in different ways. As described earlier, the ground truth accuracy is slightly

lower in the summer compared to the winter because of the seasonal foliage effect. In

addition, it was a challenge from the perspective of recording as well since the varying

density of trees at different areas resulted in different level of scene illumination. Due

to the fixed aperture, this posed a challenge to avoid over or underexposure of the

scenes as is evident from the sequence S04.

Altogether, we believe that the dataset proposed in Publication IV along with

the detailed experimental results contributes to answering our Research Question

IV. The study successfully highlights the limitations of state-of-the-art methods and

provides us with the opportunity to develop new techniques to handle the aforemen-

tioned challenges in a unique testing environment.

4.3 Loop Closure Detection and Relocalisation

A key challenge for mobile robotics, navigation, and augmented reality is determin-

ing where you are in your local world. The problem is commonly referred to as the

kidnapped or lost robots with the solution termed as Relocalisation. For any intel-

ligent transportation system, loop closure is crucial to achieving robust navigation

as it helps to reduce the errors accumulated in visual navigation [102]. The process

involves recognizing previously visited places and determining the current pose in

comparison to the previous pose from the visual representation of the scene. We

describe these two problems, in detail, later in this chapter.
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4.3.1 Uni-directional vs Bi-directional

Typically, loop closures are detected by visually recognizing places, from images,

that have already been visited and viewed from somewhat similar perspectives. This

problem has been approached in much the same way as the image retrieval problem.

As a rule of thumb, a query image whose location needs to be determined is com-

pared to a large database of geo-tagged images. In Section 2.2.3, we discussed in detail

the classical and state-of-the-art methods developed to handle place recognition for

loop closure. In the case of mobile robots/vehicles, the motion expected is along a

specific route and roughly linear in direction for longer periods. For simplification,

the problem has always been approached as unidirectional e.g., a vehicle when pass-

ing by the same location is always assumed to be roughly oriented along the same

direction as it was during its earlier visit. This limits the change in visual perspectives

and simplifies the problem. However, such an assumption is highly dependent on

the availability of uni-directional landmarks. The system is entirely insensitive to

odometry sequences where routes are traveled from both directions. We formulated

this problem in our Research Question V and further experimentally validated the

failure of the state-of-the-art methods on our FinnForest dataset for bi-directional

loop closure during benchmarking in Publication V. Bi-directional loop closure is a

relatively new term with initial work conducted in [77] on panorama images. How-

ever, as we discussed earlier, the use of panoramic images reduces the complexity of

the problem by providing roughly similar views as a uni-directional case. In most

cases, monocular cameras are used for visual navigation [46], [100]. In Publication

V, we propose a deep learning-based approach that successfully recognizes places and

estimates relative poses in a bi-directional motion configuration. We validate the

performance of the proposed approach on both indoor and outdoor data.

4.3.2 Data Preparation

Developing a deep learning model that can generalize well for all cases requires a

lot of data. It is often expensive to produce new data every time, which can drive

researchers away from the actual problem. Therefore, researchers in several fields

have introduced many public datasets. There are many datasets available for testing

purposes when it comes to visual SLAM [31]-[35]. Most datasets, however, do not

allow for bi-directional movement since they were designed to deal with the problem
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from a uni-directional perspective. For the bi-directional loop closure work in Pub-

lication V, we found that parts of PennCOSYVIO dataset [103] and our FinnForest

dataset, from Publication IV, can be used for training and testing.

Our localisation and pose regression models are trained by passing both datasets

through a specialized data preparation phase. We generate sub-datasets out of the

original datasets and use them for training. We can use the data generated for locali-

sation in the pose regression block since the two are performed on the same scenes.

We split and consider two cases of the bi-directional localisation problem for the

sake of simplification. Assuming forward motion, an anchor sample is collected at

the query location. Images that share a perspective view are set as positive samples,

and images that are distant are set as negative samples. Together, anchor, positive

and negative image samples form a triplet. A triplet set can be expressed as

S = {(si, si
+, si

−) |(si, si
+ ∈ S+); (si, si

− ∈ S−), i = 1, ...,M}. (4.2)

Here, S+ refers to the set of relevant image pairs, S− refers to negative image pairs,

and M indicates the span of the entire triplet set.

We compute the relative translation and rotation (in quaternions) for these triplet

samples, which are used as ground truth in training and testing. To ascertain the qual-

ity of chosen samples, we leverage structure from motion to autonomously generate

training triplets. This is performed by triangulating image features from a query

image and projecting them using the ground truth poses on nearby positive target

samples from the generated triplets. We use the relation

Epx = | |Ps+i − Π(K, [q(si ,s+i ) , si t
s+i ]HT ,Wsi ) | |

2
2. (4.3)

Samples with reprojection errors Epx higher than a threshold are discarded. This

is important for rejecting data samples that might be affected by camera jitter, motion

blur, sudden overexposure, or sun flare in the camera view.

Similarly, we attempt to find pairs of query images in the backward motion part

of the sequence using the query image samples initially selected and filtered for the

forward case. For a backward motion case, only samples ahead of the query location

can be positive. The potential positive samples should all be oriented in the opposite

direction from the camera orientation at the query point. If a camera pose is slightly
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ahead of the query point, it is likely that it would see more of the same scene, even

from the opposite point of view. It is this similarity in the scene within this small

range that we want our model to recognize and discriminate. Camera poses too far

forward or too far back from the query pose would have little and no overlap with

the query perspective, respectively. For the backward case, the traditional feature

detector cannot detect and track features with such high perspective changes, so the

reprojection-based verification is impossible.

4.3.3 Place Recognition

We adopt a Siamese network [104] to train our models, as shown in Figure 4.4, for

place recognition. The network is built using a VGG-16 as the base CNNmodel that

takes three inputs: query image samples Iq, positive image samples Ip, and negative

image samples In from the database ID. With VGG-16, an input image of 224×224

pixels is propagated through a series of convolution layers and pools, where the layers

are connected through a Rectified Linear Unit (ReLU) as an activation function.

A neural network descriptor known as the NetVLAD pooling layer [105] is fed

the normalized outputs of the base model. In its simplest sense, VLAD encodes

information about local descriptors’ statistics aggregated in a given image in terms of

feature distance from a cluster center.

For N D-dimensional local image descriptors −→xi as input, and K cluster centres

(visual words) ck as VLAD parameter, the output VLAD image representation V

is K × D-dimensional. The differentiable L2-Normalized vector form of V with

elements (j, k) is

V (j, k) =
N∑
i=1

ew
T
k
−→xi+bk∑

k′ e
wk

′T−→xi+bk′
( (xi (j) − ck(j)). (4.4)

Here, xi (j) and ck(j) are the j-th dimensions of the i-th descriptor and k-th clus-

ter centre, respectively. wk and bk are sets of trainable parameters for each cluster

k which are learned in an end-to-end manner during training. Conceptually, the

weight that the descriptor −→xi is assigned to the cluster ck is proportional to their

proximity. Moreover, the relative proximity to other cluster centres also plays a

part in the relation.

We employ a triplet loss that takes input from the outputs of each branch of the
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Figure 4.4 Illustration of the system pipeline. A siamese network constituting a VGG-16 base model
topped with NetVLAD pooling layer is used to learn similarity in the scenes using a triplet
loss. The pose regression network (lower) is independently trained to directly regress the
6-DoF relative camera poses between the query and the retrieved match.

triplet siamese. During training and validation, the model learns the representation

of the input image samples that minimize the distance between the Iq and Ip samples,

and maximizes the distance between the Iq and In samples, simultaneously, for each

triplet sample in feature space. For place recognition, the triplet loss is given as

ℓ (si, si
+, si

−) = max(0, m +
��f (si) − f (si

+)
��2
2
−
��f (si) − f (si

−)
��2
2
). (4.5)

Here, margin m is a scalar that defines an offset between positive and negative

pairs, and f (.) is an embedding of an image sample. The global loss over all triplet

samples is given as

L =
∑

(si ,si+,si−) ∈S

ℓ (si, si
+, si

−). (4.6)

Once we learn the optimum feature representation, we can use any branch of

the Siamese Network to encode our query and database images. This enables us to

have the representation in the same embedding space for all our images. A coherent

representation then enables us to use a nearest neighbor approach to retrieve the top

N-ranked database images, d = (dn |dn ∈ D, n = 1...N ) based on a distance metric (the

squared Euclidean in our case) in the embedding space. Depending on the number of
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keyframes generated during earlier exploration of the environment, a query image

may have one, many, or no matches in the database.

The place recognition network is ready at this point to be incorporated into a

SLAM pipeline to find and retrieve potential matches for loop closure. However,

for complex scenes the problem can become significantly more challenging when

the environment contains repetitive textures even for distinct locations such as in

FinnForest dataset. To ascertain that the loop closure is robust in operation, we

perform an additional confidence sharing between candidate query images. Using a

confidence-sharing scheme, the previously localised points’ confidence is propagated

to their neighbors in a causal manner. In order to determine the sanity of a potential

match for a query point, we consider the distance between the neighbors. A new

query point is valid if (1) it matches the image in the database well (in embedding

space), and (2) it is also surrounded by nearby localised neighbors whose distances

agree with the estimates from the odometry. New neighbors found far away from a

nearby localised neighbor are rejected as potentially wrong matches if the odometry

estimates do not agree in general.
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Figure 4.5 Precision-recall curves for bi-directional loop closures in the (a) FinnForest dataset and (b)
PennCOSYVIO dataset.

We present here some experimental results, from Publication V, for the locali-

sation tests on FinnForest and PennCOSYVIO datasets in the form of a Precision-

Recall (PR) curve (shown in Figure 4.5). Observing the results, it can be seen that

the proposed approach VGG16-VLAD and VGG16-FCnorm outperform other

tested approaches/methods. For both datasets, the area under the curve (AUC) for
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VGG16-VLAD and VGG16-FCnorm is nearly the same. Nevertheless, we believe

that the VGG16-VLAD is better suited to the task. The proposition is based on the

observation that VGG16-VLAD performs better on the FinnForest dataset, which

is considerably more challenging than the PennCOSYVIO dataset. The FinnFor-

est dataset is set over a much larger spatial area with more repetitive textures and

fewer discriminating landmarks. Meanwhile, the PennCOSYVIO dataset presents

the same indoor scene in all sequences, while the route and motion speed are slightly

different. As a result, we can anticipate a high correlation between the training and

testing data in the case of PennCOSYVIO. The FinnForest dataset, on the other

hand, represents a variety of routes and scene, resulting in a lower correlation be-

tween training and testing data and a higher data center distribution (in the space

that contains the encoded data clusters). Hence, we can infer that VGG16-VLAD

has better generalization capability compared to the other methods.

4.3.4 Pose Regression

The pose estimation block proposed in Publication V, uses a VGG-based Siamese

architecture that takes two monocular images as input and then predicts a relative

6-DoF transformation between the two camera poses. The Siamese regression block

is shown in Figure 4.4. The Siamese architectures share a common weight between

its branches which we initialized with the weights of a network pre-trained for large-

scale place classification task [106] using the Places 365 dataset. The weights are

finetuned and learned for our regression task during the training phase. The feature

outputs from each branch are vectorized and concatenated to form a single encoded

description. The encoded description is passed to three fully connected (FC) layers

with dropout layers placed in between them for regularization.

Different studies opt for different representations while regressing for a solution.

In study [107], the authors use deeply learned key points to estimate the Funda-

mental matrix between the camera views while in UnDeepVO [108], the authors

estimate directly the relative pose, where the rotations are represented in Euler an-

gles. Despite its shorter representation than the fundamental matrix, Euler angles

are still subject to limitations such as discontinuities in the form of gimbal lock. On

the other hand, representations such as a rotation matrix require that a Euclidean

embedding is determined for its distance estimation. In our approach, we adopt the

use of quaternions, similar to the work in [30], to represent the rotations.
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Quaternions are defined on a unit sphere, however, during training/optimization

the difference between spherical distance and Euclidean distance becomes insignifi-

cant. Exploiting this advantage, we refrain from using constraints based on spherical

geometry to avoid complicating the optimization process. In such cases, the Eu-

clidean L2-norm can be used to determine the distance between any two quaternions��qGT − q
��. A popular study PoseNet [109] and its derivative study [110] use a de-

coupled approach with a weighted parameterization of the angle, by a scale factor β,

to balance the loss function

L = ‖ΔtGT − Δt‖22 + β
��ΔqGT − Δq

��2
2
. (4.7)

Here ΔqGT and ΔtGT are the ground-truth relative orientation and translation,

respectively. From the discussion in the aforementioned studies and our experimen-

tation, we observed that determining a good value of β for every dataset can be quite

cumbersome. Hence, in Publication V we propose an approach aimed at avoiding

the use of such scaling factor during optimization by providing pre-scaled transla-

tion vectors and quaternions. These inputs are independently scaled down to same

ranges during the preprocessing stage of the dataset preparation. In our work, we

used an adaptation of ReLu activation for the FC layer, hence we rescaled both the

quaternions and the translation vectors between [0, 1]. The training phase is then

invariant to the scale factor. The scale factors can be extracted from the range of the

data in the dataset and applied using relation

dscaled =
(scmax − scmin) ∗ (d − dmin)

dmax − dmin
. (4.8)

where d denotes the data array and sc indicates the scaler values of the desired range

for scaling. The model is trained to predict an arbitrarily scaled version of the pose

where the scale is restored in a post-processing step after the prediction. The MSE

is then given as

LMSE =
1

n

n∑
i=1

(Tscaled GT − TEst.)
2. (4.9)

Here, Tscaled GT is the pose constituting scaled [tx, ty, tz] and scaled [qw, qx, qy, qz].

TEst. is a similar vector to TscaledGT which is predicted by the model.

For the FinnForest and PennCOSYVIO datasets, some of the experimental re-
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sults (from Publication V) are presented in Tables 4.3 and 4.4, respectively. To

compare the proposed network’s performance, we replace the base model (VGG16)

with Resnet50. Additionally, the relative impact of weight initialization for classifi-

cation tasks is also examined by using weights from models pre-trained on ImageNet

and Places 1365 (an extension of Places 365). Tests are performed on individual

sequences and the combined case to evaluate the pose regression network’s perfor-

mance. Accuracy is determined by comparing the predicted and the ground truth

values for location and orientation.

It can be observed that the network that has VGG16 as the base model and ini-

tialized with the weights of Places 1365 yields the best results followed by VGG16

initialized with ImageNet. We can infer from this slight improvement that the rel-

evancy of scenes in Places 1365 does convey a more direct impact on the training

phase compared to ImageNet which includes more diverse, however, at times irrel-

evant scenes to the task at hand. Moreover, a comparatively poor performance was

observed from Resnet50 on both datasets. Keeping in mind that the task at hand is

localisation and not odometry, the results obtained for the relative pose are good and

effective for loop closure. Traditional methods fail when we consider bi-directional

cases of localisation. The results obtained for bi-directional pose regression in this

study match the performance of other state-of-the-art approaches that are reported

in studies conducted for uni-directional loop closure [109], [110]. For more experi-

mental results, we refer the readers to Publication V.

Table 4.3 Comparison of pose estimation results from the regressor model trained on FinnForest
dataset. (P.V)

Sequence
Test

Samples

Spatial

Extent (m)

Resnet50

Imagenet
VGG-Imagenet VGG-Places 1365

S1 2044 47 x 193 5.38m, 1.02◦ 2.42m, 0.352◦ 2.26m, 0.3◦

S3 2706 800 x 190 5.26m, 1.00◦ 2.38m, 0.33◦ 2.31m, 0.29◦

S4 3566 812 x 568 5.68m, 1.06◦ 2.54m, 0.39◦ 2.36m, 0.32◦

S5 8866 1826 x 1883 7.35m, 0.84◦ 3.35m, 0.44◦ 3.23m, 0.53◦

Combined 17182 2633 x 2014 5.92m, 0.98◦ 2.67m, 0.38◦ 2.54m, 0.36◦
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Table 4.4 Comparison of pose estimation results from the regressor model trained on PennCOSYVIO
dataset. (P.V)

Sequence
Test

Samples

Spatial

Extent (m)

Resnet50

Imagenet
VGG-Imagenet VGG-Places 1365

C2-af 3361 144 x 36 3.79m, 0.71◦ 1.51m, 0.21◦ 1.35m, 0.22◦

C2-bs 3330 144 x 36 3.85m, 0.72◦ 1.51m, 0.20◦ 1.33m, 0.21◦

C2-bf 3090 144 x 36 3.81m, 0.73◦ 1.49m, 0.19◦ 1.36m, 0.22◦

C2-bs 3375 144 x 36 5.75m, 0.80◦ 2.20m, 0.40◦ 1.81m, 0.26◦

Combined 13156 144 x 36 4.3m, 0.74◦ 1.68m, 0.25◦ 1.46m, 0.22◦

4.4 Summary

In this chapter, we discussed the deployment of pose estimation techniques toward

larger problems namely odometry, mapping, and localization. We proposed an ap-

proach for discriminating dynamic objects in the scene when performing odometry

and mapping with the aid stereo camera. The approach generated an active map

based on the estimated odometry while observing and maintaining states of mov-

ing/dynamic entities using a confidence scheme. Moreover, the study demonstrated

successful segregation of the dynamic entities from the pose estimation. Later, we

presented the FinnForest Dataset that contributes unique sequences recorded in a for-

est environment in various light and weather conditions for VO and SLAM systems.

We briefly discussed the specifics of route planning, data processing, and sampling,

ground truth generation, and the challenges provided by the dataset. In addition, we

discussed the benchmark performance of various state-of-the-art algorithms on the

dataset. Finally, the chapter concluded with contributions to the topic of localisation

where we presented a learning-based method to solve the bi-directional loop closure

problem by separately training two deep models in an end-to-end manner for place

identification and pose regression. The performance of the model was validated with

unseen data and the results demonstrated that the networks generalized well and

learned geometric and spatial relations in images rather than memorizing scenes/lo-

cations. A comparison of the proposed approach was provided against other deep

learning and classical methods using qualitative and quantitative results which exhib-

ited the effectiveness of the proposed approach against other well-established meth-

ods.

76



5 CONCLUSIONS

This thesis has provided a concept-driven and technical journey from camera po-

sitioning to location-aware exploration. It proposes several solutions to enhance a

machine’s autonomy, which can be grouped into two main categories. First, we pro-

pose methods that contribute to the overall improvement of a visual servoing system

for robotic manipulators. We dissect the Hand-Eye calibration problem and ex-

tensively study various configurations of the system, alternate approaches, simulate

models, analyze a real system and compare the results of the proposed methods to

other state-of-the-art studies. Moreover, we introduce a novel dataset with real data

and simulated data with synthetic images to aid systematic testing of the methods. In

addition, we proposed a robotic arm error modeling approach to be used along with

the simulated datasets for generating a realistic response. The methods proposed in

Publication I were posed as an optimization problem and solved with an iterative

algorithm. The empirical results demonstrated that calibration methods that incor-

porate camera geometry and projection directly in the calibration step yield more

consistent and accurate results compared to approaches that rely on distributing er-

ror over pose estimates. Furthermore, parameterization of angles in quaternions and

estimating the rotation and translation simultaneously is less prone to the propaga-

tion of errors from earlier steps.

In the study presented in Publication II, we proposed a constrained multiview

pose estimation approach for robotic manipulators to aid visual servoing. The ap-

proach exploits the available geometric constraints on the robotic system and infuses

them directly into the pose estimation method. As a result, the nonlinear optimizer

that minimizes the reprojection error-based cost functions, yielded estimates with

better accuracy and significantly more precision compared to other methods. The

Hand-Eye calibration and multiview pose estimation schemes proposed are not lim-

ited to industrial robotic arms and can be extended to other form of machines such

as excavators, reach stacker etc. that mimic robotic manipulators and are equipped
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with cameras.

The second category of solutions is based on the contributions in Publication

III-V where we address the corresponding research questions raised in Chapter 1

by identifying the limitations in existing methods for visual odometry and SLAM

techniques. In many cases, robots are required to navigate and interact with the

environment based on a map that is previously generated. Often the map can become

outdated either due to actively moving objects in the scene or gradual changes to

the outlook of the environment. This may render the map outdated and produce

mismatches to the current observations. Moreover, the active dynamic objects can

induce errors in pose estimation for odometry. To address these limitations, we

present an approach in Publication III that actively segregates dynamic entities in

the scene by assigning confidence measures to every point. A scheme is presented

that aids in discarding the dynamic points as outliers to the pose estimation step and

aids in transitioning the state of objects as stationary or dynamic based on current

observations from the scene.

One of the biggest problems encountered in research is the limitations in ex-

amining all test cases thoroughly due to lack of resources. For robust systems, it

is essential that test data properly relates to the problem at hand. Observing the

limitations during our literature review and initial experimentation, we present the

FinnForest dataset in Publication IV. In contrast to existing datasets that target the

urban environment, we explore an unregulated natural environment to exemplify

sub-urban and forest scenes. The dataset offers an actual forest landscape with routes

traveled under different conditions (i.e. lighting, weather, vegetation, and infrastruc-

ture). Furthermore, the sequences include scenes that best replicate the motions (i.e.

stationary, sharp motion, bumps and potholes, slopes, and back-and-forth motion)

and environments (i.e. log piles, close-up of trees, and off-road routes) involved in

the actual forestry operations. The dataset aims at facilitating research towards in-

creasing the autonomy of vehicles traversing rural areas and heavy machines working

in the forest. In addition, we provide highly accurate ground truth poses achieved

using a tightly coupled solution of accurate IMU and GNSS data. Furthermore, we

provide benchmark performance of the state-of-the-art methods on the dataset. The

dataset provides unique and challenging test data and continues to receive consider-

able attention and appreciation in the research community.

Another research question that was identified during the testing phase of the
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FinnForest dataset is how to effectively localize an observer under high perspec-

tive changes particularly to aid the case of bi-directional motion of vehicles over the

same route. To our knowledge, the work presented in Publication V is the first

to achieve bi-directional loop closure on monocular images with a nominal Field of

View. The study proposes a two-step solution to the localisation problem, where a

deep learning approach is employed stepwise for the place recognition and the pose

regression tasks. We show that the networks generalize well and learn geometric and

spatial relationships in images rather than memorizing scenes or locations. This is

demonstrated by the performance of the model on unseen data. The results show

that bi-directional loop closure is indeed possible on monocular images when the

problem is adequately posed and training data is properly leveraged.

Overall, the thesis identified a number of serious gaps in the literature, and the

proposed contributions addressed these gaps effectively, meeting the intent and scope

of the thesis. The thesis also revealed certain limitations that can be addressed in

future research work. The study conducted in Publication III regarding the dis-

crimination of dynamic entities is limited to offline processes at the moment. The

approach can prove to be computationally expensive as the map grows. A prospec-

tive contribution could be sparsification of the problem by using a hybrid approach

that uses features for pose estimation while being aided by the sparse active map in

the removal of potential outliers. Moreover, a tracking mechanism can be developed

to keep track of moving bodies once they exit the camera view. The study already

proposes the approach for relaying the information about the dynamic objects from

3D to 2D images for segmenting the objects; an extension can track objects in the

images once identified.

Regarding the development of datasets, FinnForest is an excellent contribution

as it offers numerous challenges for users to test and validate their odometry and

localisation methods for accuracy. Future contributions to FinnForest dataset can

be made by adding additional benchmarks such as depth estimation and completion,

object tracking in 2D and 3D, and semantic segmentation of the scene.

Similar extensions are also possible by validating the performance of the proposed

localisation method in Publication V over new datasets. Even though most of the

available datasets are from urban environments, at the moment, they do not provide

suitable motion sequences for testing bi-directional loop closure as they are tailored

specifically for forward loop closure.
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Abstract: In this paper, we propose two novel methods for robot-world-hand–eye calibration
and provide a comparative analysis against six state-of-the-art methods. We examine the
calibration problem from two alternative geometrical interpretations, called ‘hand–eye’ and
‘robot-world-hand–eye’, respectively. The study analyses the effects of specifying the objective
function as pose error or reprojection error minimization problem. We provide three real and three
simulated datasets with rendered images as part of the study. In addition, we propose a robotic
arm error modeling approach to be used along with the simulated datasets for generating a realistic
response. The tests on simulated data are performed in both ideal cases and with pseudo-realistic
robotic arm pose and visual noise. Our methods show significant improvement and robustness on
many metrics in various scenarios compared to state-of-the-art methods.

Keywords: robot-world-hand–eye calibration; hand–eye calibration; optimization

1. Introduction

Hand–eye calibration is an essential component of vision-based robot control also known as
visual servoing. Visual servoing effectively uses visual information from the camera as feedback to
plan and control action and motion for various applications such as robotic grasping [1] and medical
procedures [2]. All such applications require accurate hand–eye calibration primarily to complement
the accurate robotic arm pose with the sensor-based measurement of the observed environment into a
more complete set of information.

Hand–eye calibration requires accurate estimation of the homogenous transformation between the
robot hand/end-effector and the optical frame of the camera affixed to the end effector. The problem
can be formulated as AX = XB, where A and B are the robotic arm and camera poses between
two successive time frames, respectively, and X is the unknown transform between the robot hand
(end effector) and the camera [3,4].

Alternatively, the estimation of a homogeneous transformation from the robot base to the
calibration pattern/world coordinate system can be obtained as a byproduct of the problem solution
widely known as robot-world-hand–eye (RWHE) calibration, formulated as AX = ZB. In this
formulation, we define X as the transformation from robot base to world/pattern coordinate and Z is
the transformation from the tool center point (TCP) to the camera frame. These two notations might be
opposite in some other studies. The transformations A and B no longer represent the relative motion
poses between different time instants. Instead, they now represent the transformation from TCP to the
robot base frame, and the transformation from the camera to the world frame.

Sensors 2019, 19, 2837; doi:10.3390/s19122837 www.mdpi.com/journal/sensors
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A considerable number of studies have been carried out to solve the problem of hand–eye
calibration. While the core problem has been well addressed, the need for improved accuracy and
robustness has increased with time as the hand–eye calibration problem expands to finds its uses in
various fields of science.

The earliest approach presented for hand–eye calibration estimated the rotational and translational
parts individually. Due to the nature of the approach, the solution is known as separable solution.
Shiu and Ahmed [4] presented a closed-form approach to finding the solution for the problem
formulation AX = XB by separately estimating the rotation and translation from robot wrist to the
camera in that order. The drawback of the approach presented was that the linear system doubles
at each new entry of the image frame. Tsai [3] approached the problem from the same perspective,
however, they improved the efficiency of the method by keeping the number of unknowns fixed
irrespective of the number of images and robot poses. Moreover, the derivation is both simpler and
computationally efficient compared to [4]. Zhuang [5] adopted the quaternion representation for
solving the rotation transformation from hand to eye and robot base to the world. The translation
components are then computed using linear least squares. Liang et al. [6] proposed a closed-form
solution by linearly decomposing the relative poses. The implementation is relatively simple; however,
the approach is not robust to noise in the measurements and suffers intensely in terms of accuracy.
Hirsh et al. [7] proposed a separable approach that solves for X and Z alternatingly in an iterative
process. The approach makes an assumption that one of the unknown is pseudo-known for that
time being and estimates the best possible values for the other unknown by distributing the error.
In the first case, it assumes that Z is known by the system and estimates X by averaging over the
equation X = ZBnA−1 for all n poses of B. Similarly, an estimation for Z is obtained by using the
previously obtained X. This process continues until the system reaches the condition to terminate the
iterative estimation. In a recent study, Shah [8] proposed a separable approach that forms its bases
on the methods presented by Li et al. [9]. Shah suggests using the Kronecker product to solve the
hand–eye calibration problem. The method first computes the rotational matrices for the unknown X,
followed by computing the translation vectors. Kronecker product is an effective approach to estimate
the optimal transformation in this problem. However, the resulting rotational matrices might not
follow orthogonality. To compensate for this issue, the best approximations for orthonormal rotational
matrices are obtained using Singular Value Decomposition (SVD). The primary difference between the
work of [8] and [9] is that Li et al. do not update the positions that were only optimal for the rotational
transformation before the orthonormal approximation. This augments to any errors that might already
be present in the solution. In contrast, Shah [8] explicitly re-computes the translations based on the new
orthonormal approximations of the rotations RX and RZ. Earlier studies have shown that separable
approaches have a core limitation, which results in slightly high position errors. Since the orientations
and translation are computed independently and in the mentioned order, the errors from orientations
step propagate to the position estimation step. Typically, separate solution based approaches have
good orientation accuracy; however, the position accuracy is often compromised.

The second class of solutions is based on simultaneous computation of the orientation and
position. Chen [10] argued that rotation and translation are interdependent quantities and, therefore,
should not be estimated separately. He proposed a simultaneous approach to the hand–eye problem
based on screw theory where both the rotation and translation components are computed altogether.
In his work, Chen estimates a rigid transformation to align the camera screw axis to the robot screw axis.
Dornaika and Horaud [11], proposed a nonlinear least square based approach to solve the hand–eye
calibration problem. The optimization approach solved for an abundant number of parameters that
represent rotations in the form of matrices. The cost function constrained the optimization to solve
for orthonormal rotation matrices. It was observed that the nonlinear iterative approach yielded
better results to linear and closed form solution in term of accuracy. Henceforth, many studies have
opted for nonlinear cost minimization approach since they are more tolerant to nonlinearities present
in measurements in the form of noise and errors. Shi et al. [12] proposed to replace the rotation
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matrices with quaternion representation to facilitate the iterative optimization approach towards a
solution. In [13], Wei et al. contributed an approach for an online hand–eye calibration approach that
estimate the transformations through active motion. The method discards degenerative cases where
no or little rotation cases induce high errors into the system. Strobel and Hirzinger [14], proposed
an adaptive technique for hand–eye calibration using nonlinear optimization. The approach adjusts
weights that are assigned to the rotation and translation errors during the cost minimization step.
In [15], Fassi and Legnai construed a geometrical interpretation of the hand–eye calibration problem
for the formulation AX = XB. They argued that the general formulation can lead to an infinite
solution and therefore a constrained multi-equation based system is always suitable to optimize.
Some cases that result in singularity were also discussed. Zhao [16] presents a convex cost function by
employing the Kronecker product in both rotational matrix and quaternion form. The study argues
that a global solution can be obtained using linear optimization without specifying any initial points.
This serves as an advantage over using L2 based optimization. Heller et al. [17] proposed a solution
to the hand–eye calibration problem using the branch-and-bound (BnB) method introduced in [18].
The authors minimize the cost function under the epipolar constraints and claim to yield a globally
optimum solution with respect to L∞−norm. Tabb [19] tackled the problem of hand–eye calibration
from the iterative optimization based approach and compared the performance of various objective
functions. The study focused on AX = ZB formulation and solved for the orientation and translation
both separately and simultaneously using the nonlinear optimizer. Moreover, a variety of rotation
representations was adopted including Euler, rotation matrix and quaternion in order to study their
effect on accuracy. The study explored the possibility of a robust and accurate solution by minimizing
pose and reprojection errors using different costs. The authors used the nonlinear optimizer Ceres [20]
to solve for a solution using the Levenberg-Marquardt algorithm.

In this study, we present a collection of iterative methods for the hand–eye calibration problem
under both AX = XB and AX = ZB formulations. We adopt the iterative cost minimization based
approach similar to Tabb [19]. However, the geometrical formulation is reverted to the generic form for
better coherence. Moreover, we study the problem from AX = XB formulation, which is not present
in [19]. The prospects of a new cost functions for the non-linear regression step are also studied.
Each method is quantified from pose optimization and reprojection error minimization perspective.
The main contributions of this study are as follows:

(1) We provide a comprehensive analysis and comparison of various cost functions for various
problem formulations.

(2) We provide a dataset composed of three simulated sequences and three real data sequence, which
we believe is handful for testing and validation by the research community. To the best of our
knowledge, this is the first simulated data set for hand–eye calibration with synthetic images
that are available for public use. Moreover, the real data sequences include chess and ChArUco
calibration board of varying sizes. The datasets are available from [21].

(3) We provide extensive testing and validation results on a simulated dataset with realistic robot
(position and orientation) and camera noise to allow comparisons between the estimated and
true solutions more accurately.

(4) We provide an open-source code of the implementation of this study along with the surveyed
approaches to support reproducible research. The code is available from [21].

The article is organized as follows: In Section 2, we present in detail the problem formulations
for robot-world-hand–eye calibration. In Section 3, we discuss the development of real and synthetic
dataset for evaluation purpose. Section 4 presents the error metrics used to quantify the performance
of the calibration methods. Section 5 summarizes the experimental results using both synthetic and
real datasets against the aforementioned error metrics. Finally, Section 6 concludes the article.
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2. Methods

For the needs of our study, we introduce notations, as illustrated in Figure 1. Throughout this
article, we will represent homogenous transformations by T supported with various sub-indexes.
The sub-indexes b, t, c and w indicate the coordinate frames associated with robot base, robot tool,
camera and the calibration pattern, respectively. The sub-indexes i and j are associated with time instants
of the state of the system. For the first general formulation AX = XB illustrated in Figure 1a, bTbi is the
equivalent to Ai and denotes the homogenous transformations from robot base to the tool center point
(TCP)/end-effector. ci

Tw is the equivalent of Bi and denotes the homogenous transformation from
camera to the world/calibration pattern. The formulation uses the relative transformation A (tj

Tti). and

B (cj
Tci) from their respective previous pose to another pose. The unknown X or tT

c is the required
homogenous transformation from the end effector to the camera.

 
(a) (b) 

Figure 1. Formulations relating geometrical transformation for calibration; (a) hand–eye calibration;
(b) robot-world-hand–eye Calibration.

The second general formulation, AX = ZB is illustrated in Figure 1b. The formulation uses
absolute transformation A(tT

b) and B(cTw) from their respective coordinate frames. The unknown
X(bTw) and Z(tT

c) are the homogenous transformations from robot base to the world frame and the
end effector to the camera frame, respectively. The hand–eye transformation is referred to as Z in this
formulation for coherence in literature, since many studies opt for such notation.

In this section, we focus on various cost functions for the two general problem formulations with
the aim to analyze their performance under real situations. For both cases, we consider solving the
problem by minimizing pose error and reprojection error. Some studies including [19] propose to
optimize the camera’s intrinsic parameters using the nonlinear solver to yield better results. However,
Koide and Menegatti [22] argue that the approach involving camera intrinsic optimization overfits the
model on the data for the reprojection error; consequently, the results are poor for other error metrics
including reconstruction accuracy. Following the insight from [22], we solve for the transformation by
minimizing the reprojection error.

The main information required for hand–eye calibration are the Tool Centre Point (TCP)/end
effector poses and the camera poses. The TCP pose of the robotic arm is directly provided by the
software of the robotic arm against the base of the arm. The pose is typically quite accurate due
to the high accuracy of the encoders in the robotic arm that provide feedback for the angles of the
joints. In general, for many robotic arms, the precision for the end effector’s position is around
0.1–0.2 mm. On the other hand, the camera pose against the world frame can be obtained through
various methods. The common approach is to use a calibration pattern for simultaneously calculating
the calibration parameters of the camera and the pose of the camera against the pattern or in this case
world frame. Many researchers favor this approach since the calibration pattern is easy to acquire
and its use yields good results. In contrast, some studies [23,24] prefer Structure from Motion (SFM)
to acquire the relative camera transformation when the camera is moved from one point to another.
The approach is independent of the calibration pattern and can acquire the correspondences from the
feature-rich environment. However, SFM based camera calibration and camera pose computation



Sensors 2019, 19, 2837 5 of 16

are prone to errors. The approach inherits additional errors into the hand–eye calibration process
and reduces the overall accuracy of the system. To compensate for these errors, the process must
include additional steps to mitigate the effects. The added efforts deviate the focus from the core target,
which is accurate hand–eye calibration. In this study, we utilize industrial-grade calibration boards in
order to estimate the camera intrinsic parameters and camera extrinsics for the robot-world-hand–eye
calibration problem. The camera calibration approach used in this study is based on the widely adopted
method by Zhang [25].

2.1. Hand–Eye Formulation

This mathematical problem formulation involves estimating one unknown with the help of two
known homogenous transformations in a single equation. Let bTti be the homogenous transformation
from the base of the robot to the robot TCP. The homogenous transformation relating the camera
coordinate frame to the world coordinate frame affixed to the calibration patters is ci

Tw. The unknown
homogenous transformation from the tool to the camera coordinate frame to be estimated is represented
by tT

c. Then from Figure 1a, we can form the following relationship

bTt2−1
bTt1

tT
c = tT

c
c2

Tw
c1

Tw−1 ←
(
t1

Tc1 = t2
Tc2
)

(1)

t2
Tb

bTt1
tT

c = tT
c

c2
Tw

wTc1 . (2)

Generalizing Equation (2) gives us Equation (3).

tj
Tti

tT
c = tT

c
cj

Tci (3)

⎡⎢⎢⎢⎢⎣ tj
Rti

tj
Tti

01×3 1

⎤⎥⎥⎥⎥⎦ [ tR
c

tt
c

01×3 1

]
=

[
tR

c
tt

c

01×3 1

] ⎡⎢⎢⎢⎢⎣ cj
Rci cj

tci

01×3 1

⎤⎥⎥⎥⎥⎦ (4)

Equation (4) represents the direct geometrical relationship between various coordinate frames
involved in the system. In order to attain a solution and achieve dependable results it is required that the
data is recorded for at least 3 positions with non-parallel movements of the rotational axis [14]. We can
directly minimize the relationship in Equation (4) to estimate the unknown parameters presented in
Equation (5). In the experimentation section, we refer to the cost functions in Equations (5) and (6) as
Xc1 and Xc2, respectively.{

q(t,c), tt
c
}
= argmin

q(t,c) , tt
c

∑
n−1
i=1, j=i+1||n

(
t j

Tti
[
q(t,c), tt

c
]
HT
−
[
q(t,c), tt

c
]
HT cj

Tci

)
||22 (5)

In light of recommendation of [19], we can also re-arrange Equation (5) in the following manner.{
q(t,c), tt

c
}
= argmin

q(t,c) , tt
c

∑
n−1
i=1, j=i+1||n

(
tj

Tti −
[
q(t,c), tt

c
]
HT cj

Tci
[̃
q(t,c), t̃t

c
]
HT

)
||22 (6)

Here, the symbol []HT denotes the conversion of the parameters to homogenous transformation
representation. The solver optimizes the parameters in quaternion representation q(t,c) of the rotational
matrix tR

c and translation tt
c. The operation n denotes the aggregation of the 4 × 4-error matrix into

a scalar value by summation of normalized values of quaternion angles and normalized translation
vector. The terms q̃(t,c) and t̃t

c are the quaternion and translation vector obtained from the inverse
of tT

c. The objective functions minimize the L2-norm of the residual scaler values. The solutions in
Equations (5) and (6) belong to the simultaneous solution category of hand–eye calibration because the
rotation and translation are solved at the same time. We use the Levenberg –Marquardt algorithm
to search for a minimum in the search space. The objective function successfully converges to a
solution without any initial estimates for the q(t,c) and tt

c. We have observed that the cost function in
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Equation (6) enjoys a slight improvement in some cases over Equation (5), which will be discussed in
the experimental results and discussion section.

The second approach to seek a solution is based on reprojection-based methods. Reprojection
error minimization has shown promising results for pose estimation in various problem cases [26,27].
Tabb [19] examined the reprojection-based method for the AX = ZB formulation. We generalize this
approach for the case of the AX = XB formulation. Let W be the 3D points in the world frame and
Pc be the same points in the camera frame. In the case of the chessboard pattern, these points are the
corners of the chessboard. The following relationship represents the objective function for minimizing
the reprojection error of the 3D points from pose i to pose j. The cost function in Equation (7) is referred
to as RX here onwards.{

q(t,c), tt
c
}
= argmin

q(t,c) , tt
c

∑
n−1
i=1, j=i+1||Pj −Π

(
K,
[̃
q(t,c), t̃t

c
]
HT tj

Tti
[
q(t,c), tt

c
]
HT

, Pc
i

)
||22 (7)

In the equation, Π represents the operation that projects the 3D points from world space to
image space using the camera intrinsic K and the camera extrinsic obtained using the homogenous
transformations given in Equation (7), while Pj are the observed 2D points in the j-th image.

It is important to note that the reprojection error minimization based approach is not invariant to
the choice of initial estimates for the solver. However, if a good initial estimate is provided, the nonlinear
optimization of reprojection error can provide a more accurate solution with a fine resolution.

2.2. Robot-World-Hand–Eye Formulation

This mathematical formulation involves the estimation of an additional homogenous
transformation that is between the robot base frame and world frame. Therefore, we have two
known and two unknown homogenous transformations. Let tT

b. be the homogenous transformation
from robot TCP to the base of the robot. The homogenous transformation relating the camera coordinate
frame to the world coordinate is cTw.The additional unknown homogenous transformation from the
robot base frame to the world frame is bTw. Then from Figure 1b, we can form a straightforward
geometrical relationship as:

tT
b

bTw = tT
c

cTw (8)[
tR

b
tt

b

01×3 1

] [
bRw

btw

01×3 1

]
=

[
tR

c
tt

c

01×3 1

] [
cRw

ctw

01×3 1

]
(9)

Similar to the previous cases, we can directly use the relationship in aforementioned equations to
obtain tT

c and bTw using nonlinear minimization of their respective costs{
q(t,c), tt

c, q(b,w), btw
}
= argmin

q(t,c) , tt
c, q(b,w) ,btw

∑
n
i=1||n

(
tT

b
i

[
q(b,w), btw

]
HT
−
[
q(t,c), tt

c
]
HT cTw

i

)
||22 (10)

We can observe from Equation (10), that we are attempting to solve for two unknown homogenous
transformations. The adopted parametrization involves optimizing over 14 parameters, where the
two quaternions and translation vectors contribute to 8 and 6 parameters, respectively. While the
robot-world-hand–eye calibration involves more unknowns for estimation, nonetheless, it constrains
the geometry with more anchor points and helps to converge closer to the global minimum. With the
advent of modern nonlinear solvers, the problem of optimizing for a large number of unknowns has
become simpler and more efficient. As before, the objective function in Equation (10) can be re-arranged
in the form of Equation (11). The cost functions in Equations (10) and (11) are referred to as Zc1 and
Zc2, respectively, in Tabb [19]{

q(t,c), tt
c, q(b,w), btw

}
= argmin

q(t,c) , tt
c, q(b,w) ,btw

∑
n
i=1||n

(
tT

b
i −

[
q(t,c), tt

c
]
HT cTw

i

[̃
q(b,w), b̃tw

]
HT

)
||22 (11)
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The objective function successfully converges to a solution for q(t,c), tt
c, q(b,w) and btw. However,

the primary difference here is that the solver depends on initialization. In case of bad initial estimates,
the optimization algorithm might not converge to a stable solution. However, the formulation presented
is not a high dimensional optimization problem and therefore, a rough initial estimate is sufficient.
The initial estimates can be acquired from any fast closed-form method such as Tsai [3] or Shah [8].

This formulation can also be viewed as reprojection error minimization problem. The following
equation presents a cost function that minimizes the reprojection of the 3D world points W onto the
image space in camera frame, where Pi are the observed 2D points in the i-th image. The cost functions
in Equation (12) is referred to as rp1 in [19].{

q(t,c), tt
c, q(b,w), btw

}
= argmin

q(t,c) , tt
c, q(b,w) ,btw

∑ n
i=1||Pi −Π

(
K,
[̃
q(t,c), t̃t

c
]
HT tT

b
i

[
q(b,w), btw

]
HT

, W
)
||22 (12)

In contrast to the reprojection error cost function for problem formulation = XB, this formulation
from [19] has the added advantage that it is not explicitly affected by the errors in pose estimation
caused by blurred images or low camera resolution. If the camera intrinsic parameters are accurate
enough, then the extrinsic can be indirectly computed as a transformation through tT

c, tT
b and bTw

through the minimization of the objective function. On the contrary, the reprojection error cost function
presented for problem formulation AX = XB is more robust to robot pose errors given good images.

A marginal improvement in the results can be observed in various cases by using log(cosh(x))
as the loss function. The relative improvement is discussed in detail in Section 5. log(cosh(x))
approximates x2

2 for small value of x and abs(x) − log(2), for large values. This essentially means
that log(cosh(x)) imitates the behavior of the mean squared error but is more robust to noise and
outliers. Moreover, the function is twice differentiable everywhere and therefore does not deteriorate
the convexity of the problem. The modified version is given as followed, where E(x) is the error
in terms of difference between the observed points and the reprojected points. The cost function in
Equation (13) is referred to as RZ hereafter.{

q(t,c), tt
c, q(b,w), btw

}
= argmin

q(t,c) , tt
c, q(b,w) ,btw

∑
n
i=1|| log(cosh( E(x)))||22 (13)

3. Performance Evaluation Using Datasets

In order to assess the performance of the robot-world-hand–eye calibration methods, we present
multiple datasets to test the methods in laboratory and near field settings. These datasets contain data
acquired using various combinations of camera, lens, calibration patterns and robot poses. A detailed
description of datasets is provided in Table 1. The table also lists the length of each side of square
of the calibration patterns, focal length of the lenses, and number of robot poses used to acquire
images. The datasets include real data and simulated data with synthetic images. To the best of our
knowledge, this study is the first to provide simulated robot-world-hand–eye calibration dataset with
synthetic/rendered images as open source for public use. A more detailed explanation of the datasets
is presented in the following subsections.

Table 1. Description of the dataset acquired and generated for testing.

No. Dataset Data Type Lens Focal
Length [mm]

Square
Size [mm] Image Size Robot Poses

1 kuka_1 Real 12 20 1928 × 1208 KR16L6-2 30
2 kuka_2 Real 16 15 1920 × 1200 KR16L6-2 28
3 kuka_3 Real 12 60 1928 × 1208 KR16L6-2 29
4 CS_synthetic_1 Simulated 18 200 1920 × 1080 N/A 15
5 CS_synthetic_2 Simulated 18 200 1920 × 1080 N/A 19
6 CS_synthetic_3 Simulated 18 200 1920 × 1080 N/A 30
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3.1. Real Datasets

To acquire real data for this experiment, a KUKA KR16L6-2 serial 6-DOF robot arm was used
with Basler acA1920-50gc camera using 12 mm and 16 mm lenses as shown in Figure 2. The primary
aim in recording these datasets was to collect real data for various robot-world-hand–eye calibration
tests. With this aim, the collection provides three real datasets with varying robot poses and calibration
patterns as shown in Figure 3. In this study, we primarily use the chessboard pattern for accurate
camera calibration and robot-world-hand–eye calibration. A minor yet significant difference between
the datasets [28], used in [19], is that the robot hand/camera orientation changes are quite gentle.
This is done to facilitate the OpenCV camera calibration implementation used in [19], therefore the
aforementioned implementation is not invariant to significant orientation changes and as a result, it flips
the origin of the calibration pattern. For our experiments, we utilized MATLAB’s implementation
of [25], which can correctly detect the orientation of the pattern in any given pose. However, this neat
trick requires that the calibration pattern is asymmetric in the number of rows and columns and that
one of the sides has an even number of squares while the other side has odd. This requirement makes
the datasets in [28], which have chessboard patterns with even number of rows and columns, unusable
in our tests.

  
(a) (b) 

Figure 2. An example of the setup for acquiring the datasets; (a) robotic arm moving in the workspace;
(b) cameras and Lenses for data acquisition.

   
(a) (b) (c) 

Figure 3. Example of captured images from the dataset 1 through 3; (a) checkerboard from dataset 1;
(b) checkerboard from dataset 2; (c) ChArUco from dataset 3.

In addition, the calibration board used in the third dataset is a ChArUco pattern with square size
of 60 mm, shown in Figure 3c. ChArUco tries to combine the benefit of both chessboard and ArUco
markers and tends to facilitate the calibration process by fast, robust and accurate corner detection
even in occluded or partial views [29]. The ChArUco dataset is only provided as open source material
for future testing and has not been utilized in this study.

3.2. Simulated Dataset with Synthetic Images

The real data has the advantage of encapsulating all the uncertainties of a real system; however,
in such cases we do not have any ground truth information. It is not possible to acquire the ground truth
TCP-to-camera transformation, since the camera frame lies inside the camera. While various metric
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for relative errors and error distribution can be used, nonetheless, the absolute pose error is always
missing to quantify accuracy. The main purpose of using simulated data is to quantify the accuracy of
the estimated poses against ground truth pose for various robot-world-hand–eye calibration methods.
We provide three simulated datasets as part of the dataset package excerpts of which are shown in
Figure 4. Each dataset provides different number of poses and complexity through the orientation
of the camera. The simulated data comprises of synthetic images generated in Blender [30], a 3D
computer graphics software, of the specifications mentioned in Table 1. For simplification, we assume
that the camera position is the same, as the robot TCP position. Then the homogenous transformation
from hand-to-eye constitutes of rotation resulting from the orientation difference between the Blender
world frame and Blender camera frame.

   
(a) (b) (c) 

Figure 4. Example of rendered images for simulated datasets from the datasets 4 through 6; (a) excerpt
from dataset 4; (b) excerpt from dataset 5; (c) excerpt from dataset 6.

3.3. Pseudo-Real Noise Modeling

While simulated data carries the advantage of providing the ground truth information for various
robot-world-hand–eye calibration, the limitation is that it lacks the uncertainties of the real world
situations. These uncertainties could originate from either robot TCP pose errors or camera pose errors.
Many studies [19,22,31] suggest testing the robustness of the methods by inducing one type of noise at
a time into the system and evaluating its performance based on the response. Unfortunately, these
uncertainties are mostly co-existent and co-dependent in real-world cases. In this study, we propose
to model the uncertainties in terms of pose and pixel errors and induce a realistic amount of noise
simultaneously into the simulated dataset for testing. The motivation behind inducing such type
of noise is to carry the advantage of testing simulated data for accuracy and adjoining it with the
robustness of testing on real data.

We aim at introducing a realistic amount of noise. The robot position repeatability is generally
provided in the datasheets, which ranges from 0.1–0.3 mm for various robots. However, the orientation
repeatability is absent since it cannot be measured for real robots at such a fine resolution. Here,
we propose a reverse engineering approach to acquire a statistically valid amount of orientation noise.
The position and orientation error of the TCP arises from the accumulated errors of the individual
joints of the robotic arm due to robot flexibility and backlash. Using inverse kinematic we can find the
joint angles for any position of TCP within its workspace.

Once the joint angles are available, we can introduce noise into the individual joints through trial
and error until it produces the end-effector position error comparable to the realistic error. Through
forward kinematics, we can then estimate the position and orientation of the end-effector under
various arm configurations. Figure 5 shows the operation flow for computing the error range of the
new orientations.

For our test, we used the position error of the KUKA KR16L6-2 computed through highly accurate
laser sensor. The mean of the errors in X, Y and Z axes were 0.06 mm, –0.05 mm and –0.04 mm, while
the standard deviation of the errors were 0.22 mm, 0.18 mm and 0.17 mm. A normally distributed
error for each axis is generated based on these values and introduced to the system to estimate the
corresponding effects in the orientation of the TCP. The range of realistic valid error for the TCP position
is shown in Figure 6a, while the output of the orientation error using the aforementioned framework is
shown in Figure 6b.
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Figure 5. Flowchart of the orientation noise modelling approach.

 
(a) (b) 

Figure 6. Probability distributions functions; (a) the measured position error from the robotic arm; (b)
the modeled orientation error for the robotic arm.

4. Error Metrics

In order to compare the results of all the methods with other existing studies, we suggest to
use mean rotation error (deg), mean translation error (mm), reprojection error (px), absolute rotation
error (deg), and absolute translation error (mm). Each error metric has its own merits and demerits.
We have avoided the use of reconstruction error since it involves further estimation of valid 3D points
from the reprojected 2D points. This can be achieved by searching the space for such 3D points using
nonlinear minimization, as before. However, it is not possible to segregate the error that arises from
the pose estimation step and the reconstruction step, while using the error metric.

The first error is the mean rotation error derived from Equations (4) and (9) for AX = XB and
AX = ZB formulation, respectively. Equation (16) gives the mean rotation error, which takes its input
from Equations (14) and (15) for their respective formulation. Here, the angle represents the conversion
from a rotation matrix to axis-angle for simpler user interpretation.

ΔR = (tR
c

cRw )−1
tR

b
bRw (14)

ΔR =
(
tR

c
cj

Rci
)−1

tj
Rti

tR
c (15)

erR =
1
n

n∑
i=1

||angle(ΔR)||22 (16)

The second error metric focuses on computing the translation errors. As above, the translation errors
emerge from the same Equations (4) and (9).

ert =
1
n

n−1∑
i=1, j=i+1

||(tj
Rti

tt
c) + tj

tti − (tR
c

cj
tci) + tt

c||22 (17)

ert =
1
n

n∑
i=1

||(tR
b

btw) + tt
b − (tR

c
ctw) + tt

c||22 (18)
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The third metric to measure the quality of the results is the reprojection root mean squared error
(rrmse). The rrmse is measured in pixels and is a good metric to measure the quality of the results in
the absence of ground truth information. The rrmse provides an added advantage that it back-projects
the 3D points from the calibration board onto the images by first transforming them through the
robotic arm. In case, if the hand eye calibration is not correct, the reprojection errors will be large.
The rrmse for both the formulations are given in Equations (19) and (20).

errmse =

√√√√
1

n− 1

n−1∑
i=1, j=i+1

||Pj −Π
(

K,
[̃
q(t,c), t̃t

c
]
HT tj

Tti
[
q(t,c), tt

c
]
HT

, Pc
i

)
||22 (19)

errmse =

√√
1
n

n∑
i=1

||Pi −Π
(

K,
[̃
q(t,c), t̃t

c
]
HT tT

b
i

[
q(b,W), btw

]
HT

, W
)
||22 (20)

For the case of simulated data, we have accurate ground truth pose from the robot TCP to the
camera. We can effectively utilize that information to acquire the absolute rotation error and absolute
translation errors. The absolute rotation error can be obtained using Equation (21), while the absolute
translation error is given using Equation (22). Here, tR

c
gt and tt

c
gt are the ground truth values.

eaR = ||angle
(
tR

c −1
tR

c
gt

)
||22 (21)

eat = ||ttc
gt − tt

c)||22 (22)

5. Experimental Results and Discussion

In this section, we report the experimental results for various cases and discuss the obtained
results. We tabulate the results obtained for these cases using our own and six other studies to provide
a clear comparison. Tables 1–4 summarize the results using the error metrics described in Section 4,
over the datasets presented in Section 3. To elaborate on the naming, Xc1, Xc2, RX, and RZ refer to the
optimization of the cost function based on Equations (5)–(7) and (13), respectively. In addition, Figure 7
illustrates the results from simulated data in dataset 5 over varying visual noise in the presence of the
pseudo-realistic robotic arm pose noise. Tables 2 and 3 shows the evaluation of the aforementioned
methods on datasets 1 and 2, respectively. Both datasets vary in the use of camera lenses and robot arm
poses. It can be observed that the method by Shah [8] provides a better distribution of the rotational
error and hence has the lowest relative rotation error (erR) values, while the method by Li et al. [9]
yields a comparable result. The lowest relative translation error (ert) varies for both datasets and is
yielded by the proposed method Xc2 and Park and Martin [32]. However, for dataset 2, it seems that
Xc2 has not converged properly and has obtained a local minimum. On the other hand, the method by
Park and Martin [32], still yields a relatively low ert. Moreover, for both datasets 1 and 2, the method
by Horaud and Dornaika [11] provides comparable results to Park and Martin [32].

For the reprojection root mean squared error errmse, the best results are obtained using the proposed
RX approach for both tests. This is aided by the fact that the recorded datasets do not have large visual
errors and as a result, RX performs comparably better. Moreover, since the cost function has only one
unknown transformation to minimize for, the optimizer distributes the errors more evenly for the
reprojection based cost function. Other reprojection based approaches namely Tabb’s rp1 [19] and RZ
achieve quite close results to RX. It is noteworthy, that in spite of being a closed-form approach, Shah [8]
obtains quite good errmse that are at a competitive level to the reprojection errors based approaches.
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Table 2. Comparison of methods using the described error metrics for dataset 1.

Method Evaluation Form Relative Rotation
(erR)

Relative
Translation (ert)

Reprojection
Error errmse

Tsai [3] AXXB 0.051508 1.1855 2.5386
Horaud and Dornaika [11] AXXB 0.051082 1.0673 2.5102

Park and Martin [32] AXXB 0.051046 1.0669 2.5091
Li et al. [9] AXZB 0.043268 1.6106 2.5135

Shah [8] AXZB 0.042594 1.5907 2.4828
Xc1 AXXB 0.11619 7.0582 17.806
Xc2 AXXB 0.075211 0.71369 3.3834

Tabb Zc1 [19] AXXB 0.051092 1.1315 2.5796
Tabb Zc2 [19] AXZB 0.10205 3.6313 5.2324

RX AXXB 0.076491 1.7654 2.3673
Tabb rp1 [19] AXZB 0.066738 1.9455 2.4004

RZ AXZB 0.079488 2.0806 2.4114

Table 3. Comparison of methods using the described error metrics for dataset 2.

Method Evaluation Form Relative
Rotation (erR)

Relative
Translation (ert)

Reprojection Error
errmse

Tsai [3] AXXB 0.046162 0.48363 1.9944
Horaud and Dornaika [11] AXXB 0.042587 0.4104 1.3804

Park and Martin [32] AXXB 0.042639 0.41033 1.3807
Li et al. [9] AXZB 0.040297 39.535 61.466

Shah [8] AXZB 0.04028 0.6078 1.5767
Xc1 AXXB 1.2697 10.038 54.436
Xc2 AXXB 9.7461 24.908 197.96

Tabb Zc1 [19] AXXB 0.61435 4.9182 16.103
Tabb Zc2 [19] AXZB 0.48439 13.518 23.672

RX AXXB 0.092173 0.6726 1.1234
Tabb rp1 [19] AXZB 0.16515 0.84439 1.1438

RZ AXZB 0.14824 0.81163 1.1567

Table 4. Comparison of methods using the described error metrics for dataset 6.

Method Evaluation
Form

Relative
Rotation (erR)

Relative
Translation (ert)

Reprojection
Error errmse

Absolute Rotation
Error (eaR)

Absolute Translation
Error (eat)

Tsai [3] AXXB 0.65051 50.062 20.423 1.1567 8.2512
Horaud and Dornaika [11] AXXB 0.049173 6.2428 0.60685 0.028066 2.0674

Park and Martin [32] AXXB NaN NaN NaN NaN NaN
Li et al. [9] AXZB 0.031909 3.6514 0.44024 0.012108 1.0889

Shah [8] AXZB 0.032997 1.5195 0.18418 0.021235 1.0213
Xc1 AXXB 0.051304 5.7074 0.50083 0.0079584 0.73682
Xc2 AXXB 0.051239 5.7076 0.493 0.0075352 0.75278

Tabb Zc1 [19] AXXB 0.049653 5.8363 0.45621 0.01299 0.97462
Tabb Zc2 [19] AXZB 0.033778 1.9665 0.31189 0.011335 0.69158

RX AXXB 0.049583 5.8213 0.34127 0.01078 0.25753
Tabb rp1 [19] AXZB 0.031857 1.0829 0.057526 0.0085848 0.19154

RZ AXZB 0.032432 1.1072 0.05826 0.0084204 0.21121

We further study the performance of the methods using our simulated datasets. The primary
difference between dataset 4 and 6 is the number and complexity of the unique camera poses for
image acquisition. During experimentation, we observed that the resolution of the accuracy slightly
improved with the increased number of images acquired from significantly different poses. However,
none of the methods suffered significantly from comparably less information in dataset 4, therefore,
we consider datasets 5 and 6 for extensive quantitative comparison of the methods. In addition to
the previous tabulated results, Tables 4 and 5 provide experimental results on simulated data with
synthetic images from dataset 6. The main difference between the two tests is that the first test (Table 4)
considers ideal simulated data, while the second test (Table 5) has visual and robot pose noise induced.
The robot pose noise is derived from the process explained in Section 3.3, while the visual noise is
selected such that the resultant reprojection error amounts to the reprojection errors of real data tests.
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Figure 7. Metric error results for Dataset 5 with constant robot pose noise; (a) mean rotation error;
(b) mean translation error; (c) reprojection error; (d) absolute rotation error against ground truth;
(e) absolute translation error against ground truth.

Tables 4 and 5, present two absolute errors due to the presence of ground truth information for
the simulated cases. It can be observed that Tabb’s rp1 [19] achieves the least erR, ert, errmse and eat.
Xc2 yields minimum Absolute Rotation Error (eaR). For this dataset, the method by Park and Martin [32],
failed to find a solution as it suffered from singularity. It is important to note for an ensued comparison
that the proposed method RZ yields the second best results over most of the error metrics with minor
differences from the least errors. This is important in a sense that all the errors are equally distributed
and restricted close to their minimum values.

The backend experiments for the results in Table 5 use the same methods, metrics and dataset,
as for Table 4. In agreement with the results of real data, Shah [8] yields the least erR for this dataset
as well. In addition to a validation on the performance of Shah [8], this indicates that a realistic amount
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of orientation noise is present in the system for the method to emanate similar response. The proposed
method RZ yields the minimum ert, errmse and, eat and the second best result for eaR. Tabb Zc1 [19]
obtains the minimum eaR.

Table 5. Comparison of methods using the described error metrics for dataset 6 with robot pose and
visual noise.

Method Evaluation
Form

Relative
Rotation (erR)

Relative
Translation (ert)

Reprojection
Error errmse

Absolute Rotation
Error (eaR)

Absolute Translation
Error (eat)

Tsai [3] AXXB 34.925 2476.4 99190 28.04 747.48
Horaud and Dornaika [11] AXXB 1.723 199.92 18.764 0.43124 47.913

Park and Martin [32] AXXB 1.7208 199.98 18.916 0.43819 47.733
Li et al. [9] AXZB 1.177 80.061 7.8757 0.0029485 23.272

Shah [8] AXZB 1.1767 58.552 8.5123 0.51765 8.3389
Xc1 AXXB 1.7752 192.86 17.442 0.12827 37.068
Xc2 AXXB 1.8026 193.22 19.031 0.20831 40.4

Tabb Zc1 [19] AXXB 1.7989 206.01 13.445 0.0042828 11.368
Tabb Zc2 [19] AXZB 1.2571 86.844 13.891 0.050182 27.247

RX AXXB 1.8087 204.06 12.534 0.027714 7.0139
Tabb rp1 [19] AXZB 1.2093 44.982 1.5463 0.0075401 0.95904

RZ AXZB 1.2079 44.932 1.546 0.0069577 0.95845

This comparison demonstrates that the proposed RZ is more robust to outliers present in the data
and performs marginally better compared to Tabb’s rp1 [19] in the presence of noise.

Figure 7 shows the evaluation results for dataset 5 composed of simulated data. As before,
the dataset is injected pseudo-realistic robotic arm pose noise and tested over varying realistic range
of visual noise. The plots represent the averaged results over 1000 iterations in order to achieve a
stable response. The 95% confidence interval from all the iterations for each experimentation point
is also shown in Figure 7. It can be observed that the confidence intervals are quite narrow with the
exception of the response of Tsai [3] over reprojection error metric. The narrow range of confidence
interval indicates that we are 95% sure that our true mean lies somewhere within that narrow interval.
Moreover, this implies that the noise introduced during different iterations is consistent in behavior
and emulates a coherent response from the methods. The plot curves for each method pass through
the mean values at each experimentation point. The results show that Tabb rp1 [19] and the proposed
RZ are quite robust to the increments in visual noise compared to other methods over all error metrics.
Moreover, at high visual noise RZ shows a slight improvement over Tabb rp1 [19]. It is noteworthy
that despite the increase in relative rotation, translation and reprojection error, the absolute rotation
and translation errors stay much more the same for Tabb rp1 [19] and RZ. Tsai [3] performs poorly and
erratically in the presence of noise in data. In the absence of visual noise Tabb’s Zc1 [19], Xc1, RX and
Shah [8] can achieve lower errors compared to Tabb rp1 [19] and RZ for multiple metrics. However,
real data always contains some magnitude of visual noise due to various reasons. The presence
of visual noise may affect each method differently depending on the approach used. Nonetheless,
the nonlinear reprojection based methods of the formulation AX = ZB show good estimation results
under visual noise and hand pose noise.

6. Conclusions

This study has examined the robot-world-hand–eye calibration problem in its two alternative
geometrical interpretations, and has proposed a collection of novel methods. It benefits from non-linear
optimizers that iteratively minimize the cost function and determine the transformations. We have
conducted a comparative study to quantify the performances of optimizing over pose errors and
reprojection errors. The code for the presented methods is provided as open-source for further use.
Our collection of methods was evaluated with respect to state-of-the-art methods. The study also
contributes new datasets for testing and validation purposes. These include subsets of three real data
and three simulated data with synthetic images. Simulated data are beneficial as they provide ground
truth. We have proposed a noise modeling approach to generate realistic robot TCP orientation noise
to study the robustness of methods under realistic conditions. We showed that our methods perform
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well under different testing conditions. RX yields good results with high accuracy under realistic visual
noise with respect to reprojection error. In addition, RZ is more robust to visual noise and yields more
consistent results for a greater range of visual noise.
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ABSTRACT This article proposes a novel approach aimed at estimating the pose of a camera, affixed to a

robotic manipulator, against a target object. Our approach provides a way to exploit the redundancy of the

robotic arm kinematics by directly considering manipulator poses in the model formulation for camera pose

estimation. We adopt a single camera multi-shot technique that minimizes the reprojection error over all

the rigid poses. The results of the proposed method are compared to four other studies employing either

monocular or stereo setup. The experimental results on synthetic and real data show that the proposed

monocular approach achieves better and in some cases comparable results to the stereo approach. Moreover,

the proposed approach is significantly more robust and precise compared to other methods.

INDEX TERMS Pose estimation, multi-view, multi-shot, machine vision, robotic arm, visual servoing.

I. INTRODUCTION
Camera pose estimation with respect to a target object/scene

has been widely researched in the fields of computer and

machine vision, photogrammetry and robotics. Accurate pose

estimation is needed in numerous applications such as cam-

era calibration [1], localization [2], reconstruction [3], robot

visual servoing [4], and augmented reality (AR) [5]. The

advances in these fields have significantly benefited users to

accomplish a variety of tasks with good accuracy. Despite

much progress, there is still need of improvement for appli-

cation specific methods to improve accuracy and robust-

ness. For example, an approach suited for achieving visually

pleasing reconstruction might not be well suited for accurate

localization.

In this study, we focus on the prerequisites of visual ser-

voing of a robotic arm for accurate manipulation. Visual

servoing uses visual information acquired from cameras to

get spatial and semantic understanding of the surrounding to

plan the motion of the robot. The most common applications

are robotic grasping [6] and medical procedures [7]. Visual

servoing depends on many independent components such

as accuracy of robot positioning, hand-eye calibration, and

target pose estimation. For this study, we restrict our scope

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro Neto .

to the accuracy of target pose estimation. Pose estimation of

the camera against a target position/object can be achieved

through various approaches that incorporate different algo-

rithms and/or hardware configurations. Among these,monoc-

ular approaches are widely adopted for AR applications [8].

This primarily means that 6-DoF pose is obtained using a

single monocular image. The depth of the object with respect

to the camera can be estimated from a scaling approach by

forming a geometric relationship between the camera and the

known metric size of an object in view of the camera.

The generic approaches for pose estimation of a single

camera with respect to the object, or vice versa, can be

categorized into two groups. The first category of methods

finds the solution by estimating the plane-to-view homog-

raphy and then decomposing it to obtain the pose. This set

of methods is known as Homography Decomposition (HD)

methods [9]–[11]. Collins andBartoli [12] proposed amethod

that analytically solves the problem after the homography

is computed. They named their method Infinitesimal Plane-

based Pose Estimation (IPPE). The underlying concept is that

even when the estimated homography is noisy, it will still be

close to the true transform between the image and the model

plane at some regions on the plane. The method takes the

points on those regions to solve for a pose using 1st order

PDE. The second category of methods treats it as a rigid

pose estimation problem. It uses 2D-3D point correspondence
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for estimating the pose of the camera relative to the object.

This approach is commonly known as Perspective from n

points (PnP) [13]. PnP methods work by minimizing the cost

function of the correspondence transfer error to estimate a

rigid pose. The correspondence transfer is the error between

the predicted positions of point correspondences compared

with their measured positions. Collins and Bartoli [12], also

makes the argument that IPPE has a deep connectionwith PnP

problem, where the n points can be centered at infinitely small

separation from each other using the estimated homography.

Lu et al. [14], proposed a provably convergent method called

RPP that iteratively solves the PnP problem. The method

minimizes the collinearity error to estimate the rotation part

of the pose followed by its associated translation. The method

is quite efficient and usually converges in 5-10 iterations

from a random geometric configuration. Schweighofer and

Pinz [15], extended the work presented in [14] and introduced

RPP-SP to handle ambiguous cases that results in the case of

planer targets. The method first computes the pose solution

in a similar way to [14] and then estimates a second pose

solution by minimizing the reprojection error along 1-DoF

rotation and translation at a time. The aim is to find the second

local minimum if such a minimum exists. The limitations

of [15] are that if the first solution is poor, then the second

solution suffers as well. Moreover, it is very difficult to

physically characterize the ambiguous cases since the second

solution is obtained from the roots of a 4th order polynomial,

where two of the roots are imaginary. Li et al. [16], proposed a
non-iterativemethod that solves the PnP problem numerically

in O(n) by producing subsets of three points. Each subset is

then solved as a separate P3P problem. The final solution is

obtained from the group of solutions that best fits the model.

Alternatively, many studies consider multi-view

approaches to achieve better accuracy. In a multi-view

approach, the feature points or parts of interest are observed

through several views to generate a coherent and accurate

model. These features can be linked across views through

robust tracking and subsequently aligned through relative

geometric transformation. Federico et al. presented a closed-
form method to estimate the pose of an object from multiple

views [17]. The method requires at least one point-point

and two point-ray correspondences from two or more views

to solve a generalized PnP problem. With the ability to

efficiently and accurately match feature point across multiple

views, many studies have opted for structure-from-motion

(SFM) based approaches, also known as full multi-view.

Daniel and Tomas proposed an SFM method that computes

the rotation and translation separately for relative views [18].

The approach then optimizes the relative poses globally and

evenly distributes the pose errors using bundle adjustment.

Typically, approaches that opt for separate estimation of

rotation and translation yield good orientation accuracy.

However, the position accuracy is often compromised as the

errors from rotations estimation step propagate to the trans-

lation estimation step. Nonetheless, in the case of study [18],

these are compensated for in the bundle adjustment step.

Collet and Srinivasa [19] introduced a modified version of

full multi-view, which they termed as introspective multi-

view approach. This multistep approach first estimates object

and camera pose using a single-view method. Once the

initial estimates are obtained, the points are clustered and

the outliers from matches are removed. Finally, the poses are

re-optimized in a bundle adjustment step using the filtered

matches. According to the authors, the approach provides

a good tradeoff between computational speed and accuracy.

This study is important for our comparative analysis since it

demonstrates its use for robot grasping application.

Some studies utilize multi-camera approaches to solve the

pose estimation problem. Theoretically, multi-camera sys-

tems are similar to multi-view approaches for specific cases

where time is not a relevant factor. Furthermore, Stereo-

scopic approach is a specific case ofmulti-camera approaches

where two cameras are separated by a fixed baseline. In such

a case, there must exist a considerable overlap between

the views. Stereo approaches can obtain highly accurate

results due to the inherent advantage of constrained two or

more views. The depth estimated from stereo can be con-

siderably more accurate compared to traditional monocular

approaches. Clipp et al. [20], proposed an approach that

estimates the pose in two steps. First, the absolute rotation

and up to scale translation are estimated using a 5-point

algorithm [21] in one of the cameras. The correction factor for

the scale is then computed separately from an additional point

correspondence in the second camera. However, the scale

retrieval approach is not robust and absolute translation can-

not be obtained all the time. Later Clipp et al. presented
a modified approach that estimates the relative pose of a

stereo pair by employing constraints on the feature point

selection for pose estimation [22]. The pose is estimated

using a selection of four feature points, where the first point

is observed in all four views (both stereo-pairs). Two more

points should be observed in two-views of one of the cam-

eras (left or right), while the last point is observed in both

views from the other camera. The results show improvement

over a random selection of points; however, the study lacks

comprehensive testing over real data. Geiger et al., proposed
a novel approach that generates dense 3D maps from high-

resolution stereo sequences in real-time [23]. The authors

claim that the presented approach achieves state-of-the-art

accuracy in terms of pose estimation and its sub-sequent

odometry. The method estimates pose by reprojecting the

world points simultaneously on the stereo views and thereby

constraining the objective function. The objective function

is iteratively optimized using the Gauss-Newton method.

Igor et al. presented a stereo approach for ego-motion esti-

mation called SOFT [24]. The approach focuses on a care-

ful selection of features and robust tracking for improving

the overall accuracy. The author estimates the rotation with

the 5- point algorithm [21] and translation with a 1-point

stereo method that is iteratively optimized in both views.

Raul and Juan presented a similar approach to SOFT for ego-

motion estimation with slightly loose constraint on feature
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selection [25]. The approach first computes the relative cam-

era pose followed by a local bundle adjustment among a few

recent poses. Later, a full bundle adjustment is performed to

optimize the camera locations by minimizing the reprojection

errors in all the observed views. The approaches in [24]

and [25] are more suited for a large amount of data where

the tradeoff is maintained between local accuracy and error

distribution among all the views.

Though multi-camera approaches provide considerable

advantages over monocular approaches, in many cases the

additional hardware and software resources required can

exceed the allocated resource budget of the task. This study

is driven by the motivation to develop an accurate and robust

pose estimation method for the International Thermonuclear

Experimental Reactor (ITER) project using an eye-in-hand

monocular approach. The goal is to perform certain tasks

autonomously using a robotic arm with high precision and

accuracy. In this work, we attempt to achieve compara-

ble results to stereo approaches by proposing a multi-view

monocular approach considering the case of robotic arm

manipulation.

The article is organized as follows: In Section 2, we present

the problem and define the preliminaries for its formula-

tion. In Section 3, we formulate the proposed method along

with other methods considered for comparative analysis.

Section 4 presents the experimental setup, error metrics and

experimental results using both synthetic and real datasets.

Finally, Section 5 concludes the article.

II. PROBLEM FORMULATION
In this study, we attempt to elucidate the approach

through geometrical relationships for thorough understand-

ing. We adopt various notations to help us describe the

problem and use them consistently throughout the study.

We represent the homogeneous transformation matrix by

the standard notation T and support it through various sub-

indices. The sub-indices b, t , c, and w correspond to the robot

base, robot tool/tool center point (TCP), camera optical center

and world coordinate frames, respectively. These notations

are exemplified in Fig. 1.

The TCP/end-effector pose from the base of the robot,

denoted by bT t , is provided readily by the control system

associated with the robot. Generally, the robot pose is highly

accurate due to the high precision encoders used in the robotic

arm at each joint. These robots, especially industrial robotic

arms, are designed to perform tasks that require accuracy

and high repeatability with precision around 0.1 − 0.2 mm

of the end effector’s position. The transformation from the

robot TCP to the camera coordinate frame tT c is known as

hand-eye transformation. We have discussed in detail various

approaches for hand-eye and robot-world-hand-eye calibra-

tion methods in an earlier study [26]. The aforementioned

article can be studied for a thorough understanding of the

methods and their MATLAB implementation. For this study,

we will adopt the reprojection based approach of the robot-

world-hand-eye formulation to estimate tT c.

FIGURE 1. Illustration of the setup explaining the geometrical relation
among various coordinate frames.

Finally, the unknown homogeneous transformation cTw

from camera coordinate frame to the world coordinate frame

affixed to the target object needs to be estimated. The estima-

tion of this transformation matrix defines the pose estimation

problem in the described arrangement. Generally, the pose

of the camera against the target object or vice versa can

be computed independently of the robotic arm pose. For

the case of monocular camera with one image (monocular

single shot - MSS), only one camera pose cTw1 exists at i = 1

pose. This can be estimated directly with the state-of-the-art

methods mentioned in the Introduction Section. Similarly,

in the case of stereo camera with one stereo image (stereo

single shot - SSS), we estimate only the camera pose cTw1
which should be able to validate the constrained views of the

stereo image pair. The constraint between the stereo pair is

a fixed transformation obtained during the calibration of the

stereo camera.

In contrast, we can find the reference cTw1 using multiple

images from different views (monocular multi shot - MMS).

For i = (1, 2, . . . , n), we estimate n cTwi transformations

from camera frame, at each pose, to world frame. In the

arrangement shown in Fig. 1, the camera positions at various

poses of the end-effector of the robot can be considered

independent camera bodies floating in space. The position

and orientation of the camera at these n camera poses can

be estimated and optimized freely, independent of the robot

poses. The optimization is typically performed as local and/or

full bundle adjustment [25], where the goal is to distribute the

errors and obtain the best possible 3D reconstruction of the

object/scene. Theoretically, the transformation cTw1 estimated

through MMS approach is more accurate as it is constrained

with the help of the remaining n-1 cTwi transformations.

In this study, we propose a modified form of MMS

approach where we constrain the free pose optimization of
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cameras in an attempt to model the physical system more

adequately. We estimate only the transformation cTw1 and

use the prior information (robot poses bT ti and Hand-Eye

transformation tT c) to constrain and geometrically relate the

camera views from n poses. Unlike the traditional MMS

approaches, the proposed approach does not need to estimate

the additional n− 1 cTwi transformations.

III. METHODS
In this section we discuss the stereo single-shot approach pre-

sented in [23], the monocular multi-shot approach presented

in [19] and our proposed monocular multi-shot approach. All

these methods solve the problem of camera pose estimation

in the image space. Such a method takes the world points and

estimates a suitable transformation that enables us to repro-

ject the 3D points to the image space at their corresponding

views.

The stereo single-shot approach presented by Geiger

et al. [23] was briefly discussed in Section I. We present here

the mathematical relation that we use to estimate the stereo

pose. The relationship is given as

{q(c,w) , ctw}
= argmin

q(c,w) , ctw
(||Pl − �(Kl, [q(c,w) , ctw]HT ,W )||22

+||Pr − �(Kr , [q(c,w) , ctw]HT ∗ lT r ,W )||22). (1)

Here, � is the perspective projection function that projects

the 3D points W = (X , Y , Z , 1)T from world frame space to

image space using the camera intrinsic (Kl and Kr ) and the

stereo extrinsic lT r . The superscript T indicates the transpose

of a vector. The subscript or superscript l and r indicate the
camera to which the corresponding parameters relate in the

stereo pair. The cameras intrinsic and extrinsic are estimated

using Zhang’s stereo camera calibration approach [11]. The

perspective projection yields x̃ = (ũ, ṽ, 1)T in the image

space of the camera at the pose of interest. The reprojected

points x̃ are compared directly against the observed/tracked

2D points (Pl and Pr ) in the corresponding left and right

image pair. The symbol [ ]HT indicates the conversion from

quaternion q(c,w) and translation vector ctw to the homo-

geneous transformation matrix cTw. The solver minimizes

the error function in quaternion representation of angles.

This helps to reduce the number of unknowns from 12 to

7 parameters. We use the Levenberg–Marquardt algorithm to

search for a minimum in the search space by minimizing the

L2-norm (‖ ‖22) of the residual scalar values.
The second method is a MMS approach known as Intro-

spective Multiview Approach [19]. The method first extracts

feature points from the scene and estimates a camera pose

for each view using a single-view method. The points are

then clustered, filtered, andmatched across the views. Finally,

the individual poses are re-optimized in a bundle adjust-

ment step using the filtered matches/clusters. The study

presents two mathematical relationships for solving the prob-

lem; one is based on reprojection and the other is based

on back-projection. It then argues that both relations are

equivalent in Euclidean space and one may use either of

the approaches. The reprojection based approach is generally

preferred since it is invariant to projective transformations,

while the back-projection does not provide useful informa-

tion in projective space [19]. The authors opted for back-

projection based approach to extend their implementation to

be used with other sensors e.g. LIDAR data. However, we use

the relationship provided for reprojection based approach as

it concurs to the approach we have adopted throughout this

study. In the original implementation, feature points from

multiple objects in the scene were extracted and multiple

hypotheses are generated; one for each cluster of points

tracked across views. Since we are using one target pattern,

the formulation can be simplified to a single hypothesis

optimization problem. In line with the argument in Prob-

lem Formulation Section, we estimate and re-optimize n cTwi
transformations in this MMS approach. The mathematical

relationship is given as

{h∗} = argmin
cTwi

n∑
i=1

δij ||Pi1 − �(K , cTwi ,W )||22. (2)

where h∗ = {h∗
1, h

∗
2, ..h

∗
n} indicates the set of optimal

hypotheses and δij is a logical operator that switches to 1 when

Pi1 has points in a cluster and 0 otherwise. We have fixed the

lower subscript to 1 since we assume one cluster of points i.e.

the target pattern.

In the proposed method, we use data from n poses and

explicitly take the robot poses into consideration. The pri-

mary difference between our proposed approach and [19]

is that we recommend introducing the robotic arm transfor-

mations in the optimization step to constrain the model and

minimize the number of unknow transformations from n cTwi
to cTw1 .
From Fig. 1, we can form the following relationship among

n manipulator poses.

bT t1 tT c cTw1 = bT t2 tT c cTw2
= bT t3 tT c cTw3
...

= bT tn tT c cTwn . (3)

During the estimation step, we optimize only for one

homogeneous transformation cTw that transforms a point

from camera frame position in the first/reference view to the

fixed object/world coordinate frame. Hence, we curtail the

geometric relationship in (3) and accumulate the transforma-

tions from world frame to the camera frames at all poses

except the reference pose. The resultant transformation T i
transforms the 3D world points from object/world coordinate

frame, through the first reference pose, to the camera frames

at the remaining n− 1 poses.

T i = cT t tT bi bT t1 tT c cTw. (4)
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Since we use quaternion and translation vector representation

during optimization, we re-write (4) as

T i = tT c
−1

tT bi tT b
−1

1 tT c [q(c,w) , ctw]HT . (5)

We can now estimate cTw by optimizing the following

expression

{q(c,w) , ctw} = argmin
q(c,w) , ctw

n∑
i=1

||Pi − �(K , T i,W )||22. (6)

Many studies suggest optimizing the camera intrinsic

parameters along the solution estimation to achieve better

results [27]. On the other hand, Koide and Menegatti [28]

contend this argument as an overfitting problem. The ratio-

nale that [28] provides is that upon optimizing the intrinsic

parameters for the reprojection error, the model overfits to the

given samples. This will yield poor results for all errormetrics

other than the reprojection error and carry the estimate away

from the true solution. We observed a similar response while

optimizing for tT c. As mentioned before, this transformation

is obtained from the robot-world-hand-eye calibration. The

calibration is performed on a significantly higher number

of poses (10-20) compared to the number of poses used for

object pose estimation (3-5). Due to fewer poses, the result

deteriorates and the errors propagate to the final solution.

Based on the presented argument and experimental results,

we opted for a single camera intrinsic and robot-world-hand-

eye calibration.

It is noteworthy that the proposed approach is not invariant

to the choice of initial estimates for the solver. However,

we have successfully constrained the number of unknown

parameters to just 7, which improves the convergence of

the solution, even with a rough initial estimate. The initial

estimates for [19] and our proposed method are obtained

fromMATLAB’s implementation of Zhang’s method [11] for

camera calibration and monocular pose estimation.

IV. EXPERIMENTAL SETUP AND RESULTS
To assess the performance of our proposed method against

other studies, we carry out tests on simulated data with

synthetic images and real data. The motivation for using

simulated data is to check the actual response of the method

against actual ground truth. In contrast, the real data is used

to assess the performance of the methods in a real working

environment where perturbations in the data are higher and

the ground truth is always an approximation.

When estimating the object pose by relaying information

through the image space, the selection of feature points for

tracking plays a significant role in the overall accuracy of

the system. Many studies prefer a markerless approach sim-

ilar to SFM approaches [18], [29]–[31] to make the system

independent of special fiducial patterns. These approaches

use feature point correspondences from the feature-rich scene

and track them through the views. This is immensely useful

for the case where the environment is unregulated and the

use of markers is difficult. However, the drawback of such

an approach is that the feature correspondence step is prone

to outliers. Even in the presence of powerful consensus gener-

ator algorithms such as RANSAC [32], the approach inherits

additional errors in the form of weak feature correspondence

due to tracking or matching. As a result, the accuracy is

always an approximation of what it can be in the presence of

specialized markers. The study aims to develop an accurate

pose estimation method for robotic arm manipulation, where

the environment is moderately regulated. It is to our advan-

tage to use specialized markers.

For this study, we use classical checkerboard and ChArUco

diamond marker [33], for simplicity referred hereafter

to as diamond marker. The diamond marker consists of

3 × 3 squares with 4 ArUco markers placed inside the white

squares. This pattern and its detection approach are more

robust compared to the use of only markers and compact

compared to the original ChArUco pattern.

In this section, we provide a quantitative analysis of the

proposed method against four other state-of-the-art methods.

Moreover, we discuss the error metrics used to assess the

performance of each method. Among the methods used for

comparison, IPPE [12] and Zhang [11] are based on monocu-

lar single shot (MSS) approaches. Collet and Srinivasa [19] is

a monocular multi-shot/multi-view (MMS) approach, while

Geiger et al. [23] requires a single shot from stereo (SSS)

camera pair. We have not considered a comparison with a

stereo multi-shot approach as it is redundant for this task and

is in conflict with the aim of this study i.e. improving results

with reduced hardware. Finally, we discuss and report the

experimental results of all these methods for each test case.

A. ERROR METRICS
To estimate the error in the computed pose against the ground

truth poses, we use absolute rotation error (deg), absolute

translation error (mm), and reprojection error (px). The abso-

lute errors require that the ground truth poses are known.

In the case of synthetic data, the ground truth poses are

exactly known. In the case of real data, the approximates of

ground truth are found through dedicated manual steps as

explained in later sections. The absolute rotation error eaR and
the absolute translation error eat are given as follows

eaR = || angle (bRw−1

bRwgt ) ||22, (7)

eat = || btwgt − btw ||22. (8)

Here the angle() represents the conversion from a rotation

matrix to axis-angle for simpler user interpretation. bRw and

btw are the rotation and translation from the base of the robot

to the world frame.

The final metric that we use, is the reprojection root mean

squared error (rrmse). This metric is measured in pixels and is

a good way to assess the quality of the results in image space.

Moreover, it consolidates the absolute error metrics since the

proposed model of reprojection error back-projects the 3D

points onto the images by first transforming them through

the robotic arm. Hence, each pose has to be accurate and in
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FIGURE 2. Example of the rendered images from the simulated cases and the 6DoF poses of the camera. (a) The first row of images
exemplifies case 1 with varying number of poses with motion along one axis. Second to the fourth row include extracts from case 2
(subcase 2-4) with varying inter-pose distance. The last row of images exhibits case 3 where all axes are excited during camera motion and
rotation (b-d) Camera poses against the target pattern for each synthetic case shown in (a).

agreement to the overall geometric relationship for the 3D

points to back-project precisely onto these different views

from corresponding robot poses. The transformation is the

same as used in (6) and shown in (4). The reprojection error

is given as

errmse =
√√√√1

n

n∑
i=1

||Pi − �(K , T i,W )||22. (9)

B. TESTS ON SYNTHETIC DATA
A significant advantage of using simulated data is the avail-

ability of exact ground truth information. In the case of simu-

lated data, we have the ground truth robot poses hand-to-eye

transformation and the camera to world object transforma-

tion. In real cases, the ground truth hand to eye transformation

is not available as it is not feasible to estimate the exact

location of the optical frame in a physical setup. Moreover,

any ground truth robot pose and the camera pose is only the

best possible approximation of the actual information. For

the simulated case, we generated high-resolution synthetic

images instead of simulated points, as shown in Fig. 2a.

These synthetic images were generated using Blender, a 3D

computer graphics software. It should be noted that the tripod

in the images is part of the scene and is not to be confusedwith

the virtual camera that is capturing the scene. To simplify the

experimentation, we assume that the camera and the robot

TCP position is the same for the simulated test cases. This

means the virtual position of the camera is the position of the

robot TCP. Then the homogeneous transformation from hand-

to-eye constitutes of just rotation. This rotation is the result

of the transformation between the Blender world frame and

Blender camera frame.

To study the effect of various parameters, we set up three

test cases for the simulated data based experimentation. The

excerpts from these cases are shown in Fig. 2. The results

from these simulated data aids in selecting suitable param-

eters to use for real data acquisition and testing. Moreover,

we induce visual noise to the points detected for pose estima-

tion. The noise was introduced to study howwell the methods

can converge towards an accurate solution in the presence of

uncertainties. The generated noise has a Gaussian distribution
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FIGURE 3. Metric error results for the synthetic data with added Gaussian noise to images (a-c) Results for case 1 of the synthetic data where the
camera moves along one axis (d-f) Results for case 2 of the synthetic data with varying inter-pose distance and one axis motion (g-i) Results for
case 3 of the synthetic data where all axes are excited during camera motion and rotation. The dashed line exhibit extrapolation from the first
pose estimate for the case of monocular methods.

with a mean of 0.5 and standard deviation of 0.5. To avoid a

biased result due to the addition of noise to synthetic data,

we repeat the experiment for 50 iterations. In each iteration,

we introduce the same level of noise, randomly generated,

with a Gaussian distribution. Finally, the mean performance

over these 50 iterations is considered a stable response of the

corresponding method over the given data.

In the first case, we study the effect of varying the number

of poseswhilemoving the camera only in one axis.We choose

the horizontal axis. Few images from this case are shown

in the first row of Fig. 2a, where the camera moves in one

axis only. The camera pose distribution against the calibration

pattern for case 1 can be observed from Fig. 2b. We analyze

the response of the methods when we increase the number of

poses from where the object is viewed. The response of the

methods can be observed in Fig. 3a, 3b and 3c. The rotation

and translation error show slight improvement especially in

the case of the proposed method. It is noteworthy, that the

confidence interval of the proposed method is the small-

est, which correlates to good precision over varying noise.

On the contrary, Zhang [11] show significant deviation from

its mean results. The rising trend in the reprojection error

can be explained by the fact that the single shot (MSS and

SSS) estimates the pose from one image only. The estimate

might be accurate for that specific viewpoint, however, its

global accuracy is poor as we attempt to use that geomet-

rical information to transform and reproject the points onto

other poses. Moreover, Collets and Srinivasa [19] shows a

similar increase in the reprojection error, even though, it is

based on a multi-shot based approach similar to the proposed

method. IPPE [12] shows significantly better results despite

being a single-shot approach. The proposed method begins
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to reach the minimum error using 5 unique poses for image

acquisition. It is noteworthy, that the rotation and translation

errors are constant over the increasing number of poses for

the single-shot methods. This is because they are extrap-

olated from the first/reference view for which the camera

pose is estimated against the target pattern. The extrapolated

dashed line is intended to assist readers in visually comparing

the single-shot methods with multi-shot methods along the

increasing number of poses. In contrast, the reprojection error

for the single-shot methods is not constant over the varying

number of poses. This is because the mean reprojection error

is estimated over all the views for all methods by using the

estimated first/reference pose and the ground truth poses of

the relative views. This is done to ensure that the estimated

pose from amethod is not the result of a local minimum rather

the solution is globally consistent and accurate.

In the second case, we attempt to examine the effect of

interpose distance on object pose estimation. We fix the

number of images for estimating the pose so that the only

varying parameter is the interpose distance. The second case

has further six sub-sequences where each sequence has four

images. In each of the sub-cases, the interpose distance is

varied. In Fig. 2a, we show three sub-sequences (of case 2) in

row 2, 3 and 4, where the interpose distance is 400, 600 and

800mm, respectively. We visualized the camera pose distri-

bution against the calibration pattern for the aforementioned

sub-cases of case 2 in Fig. 2c. The response of the methods

on the data from case 2 can be observed in Fig. 3d, 3e and

3f. A noticeable change can be observed between the results

of case 1 and case 2. The responses on the case 2 are more

sharply varying especially for the single-shot approaches.

This is because the camera pose for the reference image (first

image) changes as we increase the pose distance from the

middle of the scene. In case 1, we started from one side of

the scene and moved the camera along the horizontal axis by

adding more frames. As a result, the reference frame always

remained the same. In contrast, the reference pose/view point

in case 2 changes as we move further from the center of the

scene. Pose estimates of the same object from different view

points may incorporate different levels of uncertainties. As a

consequence, we observe in Fig. 3 (d-f) that the estimates

between two consecutive data points exhibit a sharp change

in response as we vary the interpose distance. This effect

strongly points toward the data dependency of many single-

camera methods. This data dependency results in the form

of imprecise solutions. Here, the primary factor causing this

dependency is variation in the poses chosen for calibration,

however, such an effect may also be observed due to the

model of the robot, and how the robot is mounted, which

may introduce new errors. Nonetheless, the proposed method

yields the best result over varying interpose distance followed

by Geiger et al. stereo based approach [23]. The overall

trend shows that increasing the interpose distance improves

the accuracy of the estimate, with the exception for Zhang’s

response [11]. Moreover, MMS and SSS approaches exhibit

more stable response compares to MSS approaches.

The final test case of the simulated data focuses on study-

ing the impact of position and orientation change in more

than one axis. The dominant motion is the same as in case 1.

However, small position and orientation changes are also

introduced in other axes as well. Few images from this case

are shown in the last row of Fig. 2a and the camera poses are

given in Fig. 2d. An apparent change between case 1 and case

3 can be observed in the images and the camera poses in the

form of change in yaw angle. All other movements are minute

and cannot be observed from the images. The response of the

methods on the data from case 3 can be observed fromFig. 3g,

3h and 3i. The results follow the trend of case 1, where

IPPE [12], Collet and Srinivasa [19], and Geiger et al. [23]
show almost similar responses with Geiger et al. [23] method

yielding the lowest errors among them. Zhang [11] shows the

largest error while the proposedmethod yields the best results

on all the error metrics. It is noteworthy that the mean errors

for case 3 are marginally lower than the errors in case 1. This

exemplifies that it is important to excite motion and rotation

around all axes to yield better results.

FIGURE 4. An example of the experimental setup (a) KUKA
KR16L6-2 robotic manipulator used for recording data (b) Close up of the
adaptor with the tool, stereo camera pair and lights affixed to the
manipulator using customized hardware (c) A snapshot from the tool
4 point XYZ-calibration step.

C. TESTS ON REAL DATA
We further study the performance of the methods using real

data. The real data is acquired using industrial-grade equip-

ment for high accuracy. The experimental setup is shown

in Fig. 4. A custom adaptor was designed to fix two Basler

acA1920-50gc cameras to KUKA KR16L6 -2 serial 6-DoF

robot arm, as shown in Fig. 4b. We use 6mm lens with each

camera. The stereo pair has a baseline of 14 cm. Moreover,

we use dedicated lamps to uniformly light the target. The use

of these lamps is not mandatory; however, they are convenient

in maintaining a uniform brightness irrespective of the room

lighting condition. The adaptor not only houses the cameras

but also holds a custom tool. The tool is an aluminum bar

with a Polycarbonate sheet at the end. A cross-hair marker is

drawn on this sheet. The purpose of this tool is to manually

measure the position and orientation of the target object

as accurately as possible. The intersection of the cross-hair

marker helps to pinpoint the position while the planer surface

of tool sheet aids in measuring the orientation of the planer

target. Since the study focuses on accurately estimating the
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TABLE 1. Comparative results using checker board as target object.

pose of the camera against the target without target handling;

the tool effectively fulfills the purpose. The tool is calibrated

for the robotic arm using KUKA’s XYZ 4-point method for

position and ABC 2-point method for orientation calibration

as illustrated in Fig. 4c.

We utilize the tool for both initial ground truth measure-

ment and evaluation of the estimated pose. The ground truth

is measured by manually aligning the tool marker on the

target object and recording the robot pose information. The

estimated poses from the experiments are then compared to

this recorded pose.

However, we observed a marginal instability at the base

of the robotic arm used for experimentation. The base insta-

bility is observed near the maximum reach of the arm inside

the workspace. As a result, the manual measurement of the

ground truth has small uncertainties (around 2mm). There-

fore, we refer to it as the desired pose instead of the ground

truth in this work. Nonetheless, the evaluation of our esti-

mates against the desired pose provides us with invaluable

results for relative comparison of the methods under consid-

eration in this study.

FIGURE 5. Example of the captured images using checkerboard and
diamond marker as target objects.

We perform two sets of experiments using different pat-

terns as the target objects, shown in Fig. 5. The first set of

experiments uses a checkerboard of size 18 × 25, while the

other uses a diamond marker. Based on our earlier results

from synthetic data, we can infer that 5 poses are sufficient

for a multishot approach to converge to a stable solution.

The distance of the target object from the tool is kept around

0.76 meters since the reach of the robot with the custom tool

is approximately 2.15 meters. It is not possible to manually

measure the desired pose on the target object for evaluation

after 2.15 meters with the current setup. Each experiment is

repeated multiple times from randomly initialed pose with

varying additional poses. At each pose, the stereo pair takes

images of the target object. We can easily see the distribution

of the poses in 3D space in relation to the calibration pattern

for the real test cases from Fig. 6.

FIGURE 6. Camera poses against target pattern for multiple set of
experiments where each color represent a unique set of experiment
(a) Poses for the checkerboard (b)Poses for the diamond marker.

The experimental results for the tests using checkerboard

as the target pattern are shown in Table 1 and Fig. 7. We com-

pute the arithmetic mean (μ) and standard deviation (σ ) of

the corresponding errors from all the test iterations. The tab-

ulated results show that the proposed method yields the least

absolute rotation error (μR) and absolute reprojection error

(μre). The least absolute translation error (μt ) is obtained

by the stereo approach in [23], however, the proposed

approach yields a comparative result with the second-best

translation estimate. The results obtained for μR, μt ,and μre
using [11], [12] and [19] are quite similar for the given set of

experiments.

In addition to accuracy, the system must be consistent

in realizing its accuracy over varying data samples. If a

method achieves good results only half of the time then the

system is not robust and requires improvement in precision.

We also tabulate the standard deviation of the estimates

for quantitative analysis of the robustness of the methods.

It can be observed from Table 1, that the proposed method

yields significantly lower deviations over translation (σt ) and

reprojection (σre) estimates. The least standard deviation for

rotation (σR) is achieved by SSS-Gieger et al. [23]. A com-

parable result is obtained by the proposed method for σR
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TABLE 2. Comparative results using diamond marker as target object.

FIGURE 7. A 2D precision plot for the set of experiments using a
checkerboard target. Each data point is the error of the estimate against
the desired pose without the measure from the axis containing the depth
information. The corresponding information from each method is shown
in a unique color. The mean of each set of data points is presented by the
+ symbol and the region encompassing the scattered estimates shows
the spread of estimates from respective methods.

with a significantly small deviation value. To better illustrate

the effect of the standard deviation, we plot the translation

estimates error without its depth dimension in Fig. 7. The

mean of the data points is presented by the + symbol and

the region encompassing the scattered estimates is shown in

a unique color. It can be easily observed from the plot that the

proposed method shows the most consistent results compared

to other aforementioned methods.

We can see from the results that an offset is observed as the

estimated errors lie in the quadrant formed by the negative

X-axis and positive Y-axis. All the estimate errors lie within

this quadrant, which is not common for a natural distribution

of error. The offset indicates an uncertainty produced by a

more direct cause, which is the instability of the robot base,

as mentioned earlier. The effect is more apparent as the tool

moves away from the robot base causing a marginal flex.

However, the comparative performance of the methods under

consideration and their statistical analysis are not directly

affected by this problem.

The results for the second set of experiments using the

diamond marker as the target object are presented in a similar

structure in Table 2 and Fig. 8. The tabulated results show that

FIGURE 8. A 2D precision plot for the set of experiments using a diamond
marker as target object. Each data point is the error of the estimate
against the desired pose without the measure from the axis containing
the depth information. The corresponding information from each method
is shown in a unique color. The mean of each set of data points is
presented by the + symbol and the region encompassing the scattered
estimates shows the spread of estimates from respective methods.

the proposedmethod achieved the best results over all metrics

except for σre, where it yields a result comparable to the stereo

approach. SSS-Gieger et al. [23] shows a comparable error

distribution to the proposed method.

The monocular single-shot approach by Zhang [11] seems

to have the least consistent performance. The standard

deviation of the estimate errors (σR, σt , and σre) is the

highest in this case. The MSS-IPPE [12] performs com-

paratively better among the MSS approaches and yields a

comparative result to the monocular multi-shot approach by

Collins and Bartoli [12].

Moreover, it can be noted that the overall error of this set of

experiments is larger by some factor compared to the results

obtained for the experiments using the checkerboard. This

might be due to the reason that we extract 408 corner points

from a checkerboard of size 18 × 25. On the other hand,

we use only 20 points from the diamond marker as illustrated

in Fig. 1. The number of points is almost 20 times less for the

case of a diamond marker with comparatively small spatial

distribution to the checkerboard. In our opinion, the increase
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in error for such a situation is in accordance with the stated

reason.

The distribution of error estimates can be observed in Fig. 8

for the case of the diamond marker. As before, the proposed

approach yields the most consistent result with its estimates

being more precise and uniformly distributed.

V. CONCLUSION
In this article, we proposed a monocular multi-shot approach

to estimate the 6-DoF pose of the camera against a planar

target (object). The proposed approach models the geometric

relation among various coordinate systems and explicitly

incorporates the robotic manipulator poses into the formu-

lation. It uses a non-linear optimizer to iteratively minimize

the reprojection error based cost function. The experimental

results were compared to four other existing studies, which

included two monocular single shot, one monocular multi-

shot, and one stereo approach. The tests were performed

on both simulated data with synthetic images and real data.

Two target patterns were considered for real data testing. Our

method demonstrates significant improvement and robust-

ness on many metrics in various test cases against other

methods. In addition to improved accuracy, our approach

achieves the most precise results.
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Abstract 

Over the years, the problem of simultaneous localization and 
mapping have been substantially studied. Effective and robust 
techniques have been developed for mapping and localizing in an 
unknown environment in real-time. However, the bulk of the work 
presumes that the environment under observation is composed of 
static objects. In this study, we propose an approach aimed at 
localizing and mapping an environment irrespective of the motion 
of the objects in the scene. A hard threshold based Iterative Closest 
Point algorithm is used to compute transformations between point 
clouds that are obtained from dense stereo matching. The dynamic 
entities along with system noise are identified and isolated in the 
form of outliers of the data correspondence step. A confidence 
metric is defined that helps in identifying and transitioning a 3D 
point from static to dynamic and vice versa. The results are then 
verified in a 2D domain with the aid of a modified Gaussian 
Mixture Model based motion estimation. The dynamic objects are 
segmented in 3D and 2D domains for any possible analysis and 
decision making. The results demonstrate that the proposed 
approach effectively eliminates noise and isolates the dynamic 
objects during the mapping of the environment. 

Introduction  
In recent years, the approaches pertaining to Visual 

Simultaneous Localization and Mapping (SLAM) have been 
developed significantly; although it is a relatively new field. The 
research in this field was significantly aided by the release of 
Microsoft Kinect RGB-D (Red, Green, Blue, and Depth) camera. 
This field has proved to be of great interest to research and 
business minds alike, due to its impact applications. The state of 
the art methods are now capable of running the application in real 
time with robust performance. However, much improvement needs 
to be done towards handling problems such as expanded spatial 
volume with loop closure [1], dense mapping [2], and managing 
dynamic objects in a scene [3]. 

A variety of SLAM implementations exist. Each 
implementation may adopt a different type of sensor or 
methodology. A typical SLAM approach relies on the Iterative 
Closest Point (ICP) for registration of point clouds, and loop 
closing techniques for drift compensation [4]. Apart from RGB-D 
sensors, simple time-of-flight (TOF), monocular and stereo 
cameras can also be used for obtaining point clouds. Each of these 
sensors has its own advantages, coupled with inherent data 
processing challenges. 

Until recently the core assumption for SLAM has been that 
the environment under observation is static, i.e. none of the 
observable objects in scene propose any change in their dynamics 
or shape.  

As a result, this assumption leads to inconsistent map, 
erroneous localization, residual noise and possible failure in 
registration, when the environment is dynamic. Nevertheless, a few 

studies have successfully dealt with dynamic objects in the scene. 
Many of these studies use Kinect to obtain the depth maps [5].  

Typically, dynamic objects in a scene can be detected and 
isolated for SLAM using CAD models or other form of prior 
knowledge with the use of commercial RGB-D sensors. However, 
such an approach limits the applications of the system. In this 
study, we demonstrate the application with a stereo camera for 
localizing and mapping an active dynamic environment without 
any prior knowledge about the dynamics in the scene. 

Related Work  
Davison et al. [6] introduced a real-time camera tracking 

system known as monoSLAM (monocular Simultaneously 
Localization and Mapping) to localize and map a freshly explored 
environment. It uses an extended Kalman filter (EKF) to estimate 
the camera pose. Later, in [7], Newcombe and Davison adopted 
structure from motion (SFM) to find the ego-motion and 
reconstructed a detailed model of the environment. Along with the 
prior mentioned studies, the approaches presented in [8], [9] and 
[10] maintain the assumption that the underlying environment is 
stationary and suggests to discard the dynamic element points by 
considering them outliers to the systems.  

Nonetheless, the research for developing SLAM algorithms in 
a static environment has matured considerably. Hence, many 
researchers are now focused on implementing SLAM in a dynamic 
environment. In [11] Andrade-cetto et al. used a stereo camera to 
build a map for mobile robot localization. It uses strength 
augmentation of features and robot localization to learn in a 
moderately dynamic indoor environment. The landmarks used for 
mapping are low (approx. 50) and provide little information about 
the nature of the environment. In an attempt to capture more 
information about the dynamic object, Aguiar et al. [12] suggested 
a multi-view camera approach. This technique utilizes eight 
cameras to track a person and reconstruct a spatio-temporally 
consistent shape, texture, and motion of the performer at a high 
quality. Through a different approach, Zollhofer et al. [13] 
proposed to reconstruct a non-rigid body in real time with a single 
RGB-D camera. The non-rigid registration of RGB-D data to the 
template is performed using an extended non-linear As Rigid As 
Possible (ARAP) framework by implementing on an efficient GPU 
pipeline. Unfortunately, like many other implementations, [12] and 
[13] require an initial static model/template of the body that is later 
tracked and reconstructed. The template is then deformed over 
time based on the rigid registration and non-rigid fitting of points. 
However, the limiting factor is that the spatial extent of the scene 
is limited to a single object of interest.  Additionally, the system 
may fail at registration and tracking in case of occlusion, sparse or 
noisy data.  

The aforementioned limitations were successfully removed by 
Keller et al. [14]. The authors proposed a Point-Based Fusion 
approach to reconstruct a dynamic scene in real-time using 
Kinect/PMD Camboard. The approach considers outliers from ICP 
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as possible dynamic points and assigns a confidence value which 
later determines if the point is static or dynamic. The dynamic 
points are used as seeds for region growing method in order to 
segment the entire dynamic object in its corresponding depth map. 
The implementation proves to work effectively as it can 
reconstruct both static and dynamic scenes at a considerably good 
quality. Unlike the previous methods, it can map a comparatively 
larger spatial area and has been tested in an indoor environment. 
However, the use of these commercial RGB-D cameras is only 
suitable for the indoor environment, and it is very difficult to 
obtain meaningful data even with Kinect V2 in an outdoor 
environment. The maximum range of depth camera in Kinect V2 
diminishes to 1.9m under the most favourable conditions with only 
two-thirds of the data being reasonably accurate [15]. In the 
presence of direct sunlight, the operation range falls below 0.8m 
[15]. The stated figures were obtained empirically with the data 
being processed and effectively denoised for better operation [15]. 

System Overview  
An overview of the proposed approach is shown in Figure 1 

in the form of a flowchart. The process pipeline takes in stereo 
images to compute the disparity maps and reconstruct 3D points 
after preprocessing. A six degree of-freedom (6DoF) pose of 
camera is computed for consecutive steps using the ICP in order to 
transform the 3D points from camera coordinates to a global map 
based in the global coordinate system. The outliers of the data 
association are not discarded. Instead, the outliers are used to 
understand the dynamics of the objects in the environment under 
observation. A Gaussian Mixture Model (GMM) based motion 
estimation method is used to corroborate the results obtained for 
the dynamic environment. The input data to GMM is preprocessed 
to extend its validity to moving sensor applications. 

 

 
Figure 1.  System pipeline 

Approach 
Preprocessing 

The stereo pair obtained for a scene is used to compute 
disparity estimates after rectification of the images. We employe 
the approach of dense disparity computation compared to sparse 
feature matching. Though feature matching based approaches can 
provide more consistent and accurate depth estimates, for pose 
estimation based on ICP and applications like 3D reconstruction, 
dense disparity estimate prove more useful. The disparity maps 
were computed using the Semi-Global algorithm as it offers a good 
compromise between computational speed and global optimality. 
Each pixel position  has its computed disparity  

. The disparity maps are obtained for both the images and a 
consistency check is performed from one camera to the other in 
order to remove false disparities. The 3D positions of the valid 
disparity points are recovered in the form of dense points clouds. 
However, to ease the computation and memory complexities for 
SLAM, the point clouds are uniformly downsampled using a grid 
filter. Each individual point cloud  has the associated 
description of each point i.e. Location ( , , ), Color 
( , , ) and Normal vectors to the plane ( , , ) 
stored along with it. 

 
Data Association and Pose Estimation 

The data association and pose estimation are the constituent 
steps of point cloud registration. During the registration step, the 
points from  are searched for correspondence with points 
from .The algorithm Iterative Closest Point (ICP) is used to 
select the optimum points by iteratively minimizing the error 
metric   given in equation (1). 

 
     (1) 

where  is the signed distance from a point to the plane,  is 
the transformation computed in the iteration i of the error 
minimization process,  are points from  and  depicts the 
tangent plane of at point  for the points in .The 
transformation matrix  depicts the 6DOF camera pose change 
between the time t and t-1, where  is composed of a rotational 
matrix  and translational vector .The 3D points 
and the associated normal are converted to global coordinate using 
the transformation matrix. 

Generally, a percentage of closest points are selected as inliers 
for minimizing the error metric and computation of camera pose. 
However, we adopted a hard threshold based approach that filters 
the nearest points selected in each iteration, thereby removing most 
of the wrong correspondences (outliers) from the process that are 
present either due to noise (erroneous depth estimation, different 
sampling of an entity or motion of the objects. The points that help 
to obtain the correct transformation during the iterative process are 
known as the inliers. 

Once spatially transformed, the new point cloud is merged 
with the global cloud or the 3D map. The global cloud in our work 
stores additional two descriptions for each 3D point in addition to 
the original three properties of a point in a point cloud. A 
confidence metric  and frame presence  is defined for each 
3D point. The confidence  of a point informs us about the 
integrity of the point for being static and valid while the frame 
presence  stores the information about first time the point was 
introduced to the system. 
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Merging and Confidence Gain 
The addition of new points in each iteration adds a significant 

amount of computational complexity and memory load on the 
processing pipeline. Therefore, it is advisable to remove any 
redundant or erroneous 3D points from the global map. Merging of 
points serve as one of the two steps that help in reducing the 
number of points in the global map. A point qn in  may find 
multiple valid inlier correspondences in  during the 
transformation computation, however, only the closest single point 
pn is merged physically after registering of the point clouds. The 
physical properties (location, color and normal vectors) are 
averaged to create a new point, which helps to remove the 
redundant duplicate. The confidences of both pn and qn are 
summed and increased by a constant (0.1 for our experimentation). 
The frame presence  is incremented once for all the inliers, to 
signify that it has been observed in the scene. In contrast the 
remaining valid associations (among the inliers) of qn are not 
merged physically but added with the original properties to the 
global map since they might represent a different view of the same 
object. However, the confidence of these points is merged with qn 
and raised through a gaussian distribution as shown in Figure 2. 
The maximum confidence is set equal to the constant 0.1 for the 
closest points. The further the points are from each other, the lower 
confidence it gains. The standard deviation of the gaussian 
distribution is set to be half of the correspondence threshold used 
during ICP.  

 
Figure 2. Gaussian distribution based confidence assignment at thresh=0.05 

Confidence Reduction and Removal 
Confidence gain during merging of the points helped to 

determine the stability of points in the map. The higher the 
confidence, the more stable and static the point has been in the 
scene. However, the reverse is equally important in order to 
accurately update the global map. If a stationary object in the scene 
starts to move, the associated 3D points should logically change its 
position in the global map. The dynamic nature of the points is 
obtained by continuously reducing the confidence of all the points 
by a constant (1/10 of the confidence gain in this study) that are in 
view of the camera and therefore expected to be seen. 

The 3D points from the global map are projected to the image 
plane using the camera intrinsics K and the inverse of global 
camera pose  at time t. The points that are projected within the 
bounds of the plane are assumed to be in the camera perspective 
and, therefore, reduced in confidence. Among these points, those 

that have been associated with other points would still have a 
positive confidence change, however, the points that did not find 
any association would only be reduced in confidence. If the 
confidence of a point falls below 1, it is assumed to be unstable or 
dynamic. 

In order to maintain and update the map, unstable points 
representing noise and dynamic 3D points are removed in each 
timestamp. For this study, the maximum confidence that a point 
can acquire is 1.25 which was selected empirically while keeping 
into consideration the confidence gain and reduction values. The 
global map is searched for these unstable points that have remained 
unstable for more than a threshold time tmax and are removed from 
the map.  

 
(a) 

 
(b) 

Figure 3.  Projection of points to image plane for confidence reduction (a) 
illustration of the camera viewing the global cloud (b) projected points onto the 
image plane from the perspective view 

Dynamic Estimation 
The Global Cloud is composed of both static and 

unstable/dynamic points. The static points have high confidence 
measure that is obtained through the continuous merging of points 
from close timestamps. The unstable noise or points from a 
dynamic object are observe at different position and with less 
consistency, hence, they do not accumulate enough confidence. It 
is essential to discriminate the unstable points due to point cloud 
reconstruction inaccuracy or slightly off localization and the points 
pertaining to true dynamic entities. 

For an image frame at time t, the low confidence points from 
the global point cloud are projected on to the image using the 
accumulated transformations  computed during the 
registration. The points that lie within the bounds of the image 
plane are indexed and clustered in 3D space based on their 
distances. For each frame at time t multiple k clusters  might 
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be created. Clusters with fewer points than a threshold are 
removed. This threshold may vary depending on the 
downsampling of the original point clouds. A 2D mask is 
generated from the boundaries of the projected clusters on the 
image plane. This mask may contain the bounds of both dynamic 
points and the unstable noise. In order to discriminate between the 
two, another verification step is included in the process. 

A GMM based motion detection approach [16] is adopted to 
highlight moving objects in the scene. GMM is a background 
modelling technique that is trained on images to learn the 
background model at pixel level and describe each pixel with K 
gaussian distributions. The approach detects any moving object 
that does not fit the model’s description in the form of foreground. 
However, a limitation exists to the direct application of GMM. The 
approach is only applicable for static camera systems. In this study, 
we extended the use of GMM with specific preprocessing steps. 
With a moving camera, the background changes frequently, 
therefore, the model is continuously trained with few images as 
function of displacement. For this study we used 3 to 10 images 
based on the displacement from current scene. Moreover, the 
training images are geometrically transformed to the current frame 
by tracking salient features in the images in order to maintain the 
assumption of static camera for GMM application. The approach 
provides a clean highlight of the moving objects for small 
translation between consecutive images. The mask obtained using 
motion detection with GMM is used as seed to select the blobs 
from the first mask obtained by the projection of the clustered 3D 
points. The verified clusters are used for segmentation of the 
moving object from the images as shown in Figure 4. 

 

  
(a)       (b) 

 
(c) 

Figure 4.  Segmentation of the dynamic object using binary masks (a) Mask 
obtained by projecting the clustered 3D dynamic points onto image plane (b) 
Masked obtained using GMM based motion detection(c) Segmented dynamic 
object from 2D images 

Experimental Results 
This section provides an overview of the experimentation 

setup adopted for this study and analysis the results obtained using 
the proposed approach. 

In this study, the data was recorded using a commercial stereo 
camera Zed [17]. The stereo camera follows the Pinhole camera 
model with a baseline of 12cm between the camera pair. The 
standard specifications of the camera quote to work both indoor 
and outdoor with an effective range of 0.5 to 20 meters [17]. 

However, the accuracy of depth estimation decreases with 
distance, therefore, we limited our interest to 6.5–7.5 meters during 
outdoor usage for more consistent and accurate data. The Zed 
camera was calibrated using the calibration approach provided by 
Computer Vision System Toolbox™, which is based on the work 
of Jean-Yves Bouguet [18]. 

The system is tested on various test scenes of varying 
dynamic nature to better comprehend the performance of the 
approach. The scene shown in Figure 5 demonstrates the ability of 
the system to incorporate dynamic objects in the environment. The 
scene was recorded at 30fps with the camera being fixed in the 
environment. The 1st Column of images show the excerpt from the 
videos sequence; the seconds column shows the updated map/ 
global cloud and the last column shows the objects segmented 
objects when in dynamic state. The dynamic points from the 
moving object are successfully incorporated as part of the map and 
then effectively updated during the motion. 

 
Figure 5.  Test sequence with stationary camera 

The second indoor scene shown in Figure 6 records a dynamic 
environment where camera motion is introduced as an additional 
challenge. The test sequence updates the map while the person 
passes by in the corridor. The segmentation step not only 
accurately segments the dynamic object in the middle of the scene 
but also at the far end of the corridor where most of points are 
unreliable. 

The test sequence shown in Figure 7 was recorded in an 
outdoor environment over a longer time. The scene was recorded 
on a cloudy winter day. In order to test the robustness of the 
approach, the video was acquired using a hand-held Zed camera at 
10 fps, and as a result, the scene includes sudden erratic motion. It 
can be observed that the moving objects in the scene are 
highlighted in the global map and effectively removed once they 
pass from the scene, however, the static objects such as the tree is 
retained in the map even though they are exposed for 
approximately the same period. 

  

  

  

  

  

463-4
IS&T International Symposium on Electronic Imaging 2018

Image Processing: Algorithms and Systems XVI



 

 

   

   

   

Figure 6. Indoor test sequence with moving camera

  

  

  

Figure 7.  Excerpts from outdoor test sequence with dynamic objects and 
moving camera 

Conclusion 
We proposed a scheme to discriminate active dynamic objects 

present in an environment while localizing and mapping the scene 
using a stereo camera. The approach is tested on datasets 
composed of both indoor and outdoor test scenes recorded at 
various acquisition rates and external challenges such as erratic 
camera motion, less distinct geometrical structures, and low 
illumination. The system effectively localizes the observer in the 
dynamic environment and builds a map irrespective of the relation 
of motion of camera to the motion of objects in the observed 
environment. The moving objects are successfully segmented in 
both the 2D and 3D domains for further extensive analysis. 
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a b s t r a c t

This paper presents a novel challenging dataset that offers a new landscape of testing material
for mobile robotics, autonomous driving research, and forestry operation. In contrast to common
urban structures, we explore an unregulated natural environment to exemplify sub-urban and forest
environment. The sequences provide two-natured data where each place is visited in summer and
winter conditions. The vehicle used for recording is equipped with a sensor rig that constitutes
four RGB cameras, an Inertial Measurement Unit, and a Global Navigation Satellite System receiver.
The sensors are synchronized based on non-drifting timestamps. The dataset provides trajectories of
varying complexity both for the state of the art visual odometry approaches and visual simultaneous
localization and mapping algorithms. The full dataset and toolkits are available for download at: http:
//urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d. As an alternative, you can browse for
the dataset using the article title at: http://etsin.fairdata.fi.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The intense competition to develop a safe marketable self-
driving car has motivated a huge amount of research in the field
of autonomous vehicles. Coupled with the growing interest of
companies to put self-driving cars on the road, various companies
are also interested in introducing other forms of autonomous
vehicles to automate various industrial processes such as mining,
shipping, agriculture, and forestry. Irrespective of the industry
and targeted operations, the autonomy of any machine is highly
dependent on advancements in a number of vision technologies,
such as object detection [1], reconstruction quality [2], scene
perception [3]. However, the base capabilities of an autonomous
vehicle that need most attention remain visual odometry, relo-
calization and mapping [4]. This requires testing and validation
on all scenarios that a vehicle/machine can face in a simulated
environment. A variety of public datasets are available that pro-
vide a good amount of data for testing in various conditions and
locations. We will mention some of the well-known datasets in
an attempt to measure the expanse of the collections and find
a horizon. Most of these datasets focus on urban environments

∗ Corresponding author.
E-mail addresses: ihtisham.ali@tuni.fi, ihtishamaliktk@gmail.com (I. Ali).

(for example, [5–9]) in order to facilitate testing on public roads
in urban areas. The earliest among these datasets that recorded
urban environment are Ford Campus [10] and KITTI [11]. Be-
ing among the first public datasets in the field, these datasets
contributed significantly towards testing and validation. The re-
cent additions to the publicly available datasets are The Oxford
RobotCar [12], KAIST Multi-Spectral Day/Night [13], and Complex
Urban LiDAR Data Set [14]. All these datasets, when combined,
provide a significant amount of testing data for urban environ-
ment with short and long trajectories at various speeds [10].
Moreover, they incorporate weather and seasonal changes [12],
long term changes in urban structure [12] and gradual/sudden
illumination variations [13]. However, all these datasets target
indoor or outdoor urban environment.

In contrast, some unique datasets target entirely different en-
vironments to assist automation of other form of vehicles. Among
these are Aqualoc Underwater [15], Canoe [16] and Underwater
Caves SONAR and Vision Dataset [17]. These datasets comprise of
data acquired for under water exploration and surface sailing con-
ditions. On the other hand, a few public datasets target more do-
main specific terrains for their experimentation. In [18], authors
recorded data in the Chile’s largest underground production-
active copper mine. The data was recorded for a length of ap-
proximately 2 km using Lidar, radar and stereo cameras fixed on

https://doi.org/10.1016/j.robot.2020.103610
0921-8890/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Recording platform. Our vehicle is equipped with four Basler HD cameras,
a NovAtel GNSS antenna, and a KVH 1750 IMU with fiber optic gyro.

a robotic platform. The Devon Island rover navigation dataset [19]
provides a dataset for testing rovers for planetary explorations.
The dataset was recorded on Devon Island in the Canadian High
Arctic, which is assumed to be analogous to Moon/Mars terrains
due to the wide variety of geological features and microbiological
attributes of the site.

The dataset that has high relevance to our work is the SFU
Mountain dataset [20]. The study used a mobile ground based
robot to traverse walking trails in the Burnaby Mountain, British
Columbia, Canada. The dataset provides a semi-structured wood-
land terrain with different illumination and weather conditions
and with changing vegetation, infrastructure, and pedestrian traf-
fic. The dataset provides a good amount of data for visual odom-
etry, however, lacks to present opportunities to test loop closure
and re-localization.

In [21], the authors carried out brief experiments on the SFU
Mountain dataset and their own dataset, Hillwood. The Hill-
wood dataset consists of photorealistic rendered and real forest
video scenes. However, the Hillwood dataset only provide video
recordings for testing without any ground truth information. In
their conclusive remarks, the authors stressed upon the need and
advantage of actual forest dataset with complete synchronized
groundtruth poses [21].

In this paper, we present a new dataset that will target a real
forest landscape recorded in the outskirts of Tampere, Finland.
The goal is to provide testing data in order to facilitate the
research towards increasing the autonomy of vehicles traversing
rural areas and heavy machines working in the forest. Unlike
urban settings, a terrain environment provides fewer discrimi-
nate landmarks and more repetitive textures in the scene. Pre-
sumably, such a situation strengthens visual odometry to some
extent, however, affects adversely relocalization algorithms. This
dataset provides semi-structured forest routes under different
conditions (i.e. lighting, weather, vegetation, and infrastructure)
in a highly self-similar natural environment. Furthermore, the
sequences include scenes that best replicate the motions (i.e. sta-
tionary, sharp motion, bumps and potholes, slopes, and back-
and-forth motion) and environments (i.e. log piles, close-up of
trees, off-road routes) involved in actual forestry operations. The
dataset includes unique trajectories to test both visual simultane-
ous localization and mapping (visual-SLAM) and visual odometry
algorithms thoroughly. Moreover, each path is traversed in two
different condition, namely sunny summer and snowy winter.
The dataset provides images from 4 cameras and ground truth
poses for each sequence in each condition using Global Naviga-
tion Satellite System (GNSS) and Inertial Measurement Unit (IMU)
data fusion. We provide processed rectified images, calibration

Fig. 2. Rendered 3D model of the sensor rig.

data and ground truth at three sampling rates i.e. 40, 13.33 and
8 Hz except for two sequences which are sampled at 20, 10
and 7 Hz. For simpler representation, here onwards, we will
approximate 13.33 to 13 Hz in the manuscript. Additionally, we
provide raw images (40 Hz) for most of the sequences and the
calibration images to the public. For this purpose, we also provide
development tools to process raw data and evaluation tools in
order to facilitate benchmarking against the state-of-the-art.

We hope this dataset provides a good reference for rural, forest
and general terrain environment in order to facilitate the re-
searchers to mitigate the challenges faced in this field of research.

2. Recording platform and sensor configuration

The recording platform and the arrangement are illustrated in
Fig. 1. The data was recorded using a sensor rig mounted on a vi-
bration dampening platform affixed to the vehicle. The vibration
dampening platform was affixed to the Jeep using strong suction
cups. The rig houses all the sensors as shown in Fig. 2.

The sensor and hardware specifications are as follows:

(i) 4 × Basler acA1920-50gc GigE camera with the Sony
IMX174 CMOS Color sensor, Resolution (HxV) 1920 × 1200
(2.3 MPx), 84◦ HFoV, 59◦ VFoV, 6 mm Focal Length Lens,
20 cm baseline for each stereo pair.

(ii) 1 × KVH 1750 IMU, fiber optic gyro, bias instability ≤
0.05 ◦/h, 1σ , 200 Hz.

(iii) 1 × NovAtel PwrPak7, OEM7 GNSS, 20 Hz.
(iv) 1 × CC320 Machine Vision Timing Controller, 8 Digital

Inputs of 5 V to 24 V at 3 mA to 20 mA, 8 Digital Outputs
of 24 V and 20 mA.

(v) 1 × Embedded system with Quad Core Intel Core i7 pro-
cessor, 2 DDR4 with 64 GB memory, 6 GigE LAN with 4
PoE.

For the sensors and their coordinate systems, we use the
following notations,
C1 Camera 1
C2 Camera 2 (reference frame)
C3 Camera 3
C4 Camera 4
I IMU
G GNSS

All cameras were connected to the embedded computer. The
cameras stored data on the computer while the IMU and GNSS
data was recorded on the internal memory of the NovAtel Mod-
ule. To minimize write latency into storage and to prevent losses,
we used CAT7 cable and wrote on SSDs using parallel threads for
all the cameras.

To obtain high quality images it was essential to control the
exposure time of the cameras during the acquisition. To minimize
the effect of motion blur, the exposure time was kept below
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Fig. 3. The figure illustrates the mounting positions of the sensors with respect to each other from various views. The calibrated transformations are provided as
part of the dataset.

10 ms. Moreover, to obtain images from four cameras for stereo
analysis, it was of the utmost importance to enforce synchronic-
ity. Hence, to acquire synchronized feed from four cameras at 40
fps on a Windows based platform, we utilized a special purpose
triggering hardware known as Machine Vision Timing Controller.
This timing controller or triggering device sent synchronized
signals to all the cameras in order to enforce realtime consistent
capture. Additionally, one trigger signal was sent to the NovAtel
Module from the triggering device to generate timestamps. The
NovAtel module was configured to store a timestamp in GPS time
upon receiving the signal from the triggering device. The GPS
time is more accurate and does not drift, unlike the clock on the
Windows platform. This timestamp signal was sent at a delay
of 1.5 ms. Even though this would have had a negligible effect,
nonetheless, we compensated for this delay during the ground
truth generation. The IMU and GNSS data are pre-synchronized by
the NovAtel receiver. Hence, we have a precise synchronization
among the cameras, IMU and GNSS data in effect. The raw data
of GNSS and IMU are acquired at 20 Hz and 200 Hz, respectively.
However, they are not the limits of the system. The maximum
acquisition rate of the system is 100 Hz and 1000 Hz, respectively.
For this study 20 Hz GNSS is used and interpolated to 50 Hz with
the IMU data during post-processing by NovAtel Inertial Explorer
software.

The sensor arrangement is illustrated in Fig. 3. It constitutes
four cameras, a GNSS antenna and an IMU unit. The sensor rig
has the middle cameras (C2 and C3) facing forward and houses
the IMU unit in between them. The outward facing cameras (C1
and C4) are at nearly same angle from the forward direction.
The motivation backing this camera arrangement is to test the
effects of various camera configurations on the accuracy of joint
perception. It is mostly observed in SLAM implementations that
during forward motion, the view is dominated by consistently
tracked areas of interest that are further away from the camera.
This negatively affects the scale estimation for visual odometry.
This is more apparent in monocular SLAM algorithms where the
SLAM methods fail at certain point because the further points
do not exhibit enough disparity change. The methods survive
as long as the closest features are not lost due to motion blur.
However, if the camera is fixed at an angle, instead of facing the
forward direction, then the effective area in which the feature
points exhibit disparity change increases as well.

Fig. 4. The GPS trajectory of our recordings in the forest area in the outskirts
of Tampere, Finland.

3. Data overview

Our primary contribution through publishing this dataset is
to provide publicly accessible data recorded in forest for re-
search towards Advanced driver-assistance systems (ADAS) and
autonomous work machines. In general the dataset provides chal-
lenges by incorporating sequences that are recorded at various
times of day and weather conditions. Moreover, the sequences
have been recorded so that they present considerable challenges
for both visual odometry and SLAM approaches. The area ex-
plored during the course of the recording sessions can be viewed
in Fig. 4. The dataset comprises unique trajectories, most of which
are recorded in two seasonal conditions. In winter, a part of
the route was blocked due to heavy snow and could not be
re-recorded in snowy conditions. An overview of the dataset is
provided in Table 1. The dataset offers a total of 11 sequences.
We provide the dataset at different sampling rates to facilitate
testing. The original visual data was recorded at 40 Hz and later
subsampled to facilitate testing. The subsampled versions are
provided in the form of compressed image packages and Rosbags.
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Fig. 5. Montage of images from all cameras arranged left to right illustrating the significant changes in appearance of same scene over seasonal and route changes.

Table 1
An overview of the nature of data in the FinnForest Dataset.
Seq. No Frames Distance (km) Loop Season Time of Day

40/20 Hz 13/10 Hz 8/7 Hz

W01 27630 9210 5526 1.29 Yes Winter Daylight, Overcast
W03 23100 7700 4620 1.69 No Winter Daylight, Overcast
W04 37010 12337 7402 2.35 No Winter Daylight, Overcast
W05 57288 19096 11458 4.74 No Winter Daylight, Overcast
W06 20875 10438 6959 3.59 No Winter Night
W07 43780 21890 14594 6.48 No Winter Dusk, varying illumination
S01 27960 9320 5592 1.29 Yes Summer Daylight, Sunny
S02 21333 7111 4267 1.99 Yes Summer Daylight, Sunny
S03 15000 5000 3000 1.69 No Summer Daylight, Overcast
S04 30662 10221 6133 2.32 No Summer Daylight, Sunny
S05 61662 20554 12333 5.84 No Summer Daylight, Overcast

The number of frames at each sampling rate is provided against
the sequence name in Table 1. Three of the sequences offer loop
closure opportunities while the remaining sequences are aimed at

testing visual odometry. We have also tabulated the distance cov-
ered while traversing each path. The range of distance traveled
varies from 1.3 km to 6.48 km. Information regarding the season
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Fig. 6. Illustration of the drastic changes in appearance of the scene produced
by different illumination and weather conditions.

and the illumination condition is also provided corresponding
to each sequence. The seasonal name is also abbreviated in the
name of each sequence for clarity. The dataset covers a variety
of conditions with different illumination such as overcast, direct
sunlight, dusk and night. However, we would like to state that the
dataset does not offer sequences with rain and fog which would
have provided further useful information for testing. Further de-
tails about the unique challenges of each sequence are provided
in Section 7, Discussion.

Fig. 5 presents a montage of selected images illustrating the
range of varying appearances of the environment encountered
as a result of different season and routes. The left half of the
montage constitutes the left to right camera images from the
summer dataset while the right half of the montage shows the
left to right images from the winter dataset of same scene from
almost the same vehicle locations.

Fig. 6 illustrates the changes in appearance of the scene from
almost similar camera perspective and location during both sea-
sons and the challenges it brings about. The dark overcast in
winter demands longer exposure time and slower vehicle motion
to capture the details in the scene accurately. On the other hand,
summer season presents challenges like overexposure, rain, pud-
dle and flares in the scenes. The last row of images exhibit the
conditions of a night and dusk time with varying illumination.

The high resolution and frame rate of the data recordings
make it challenging to store the data on online data repositories.
In order to make the usage of the data convenient for users,
we have split the dataset into subset sequences. Each sequence
can be downloaded and used independently as a .zip package at
three sampling rates. Moreover, the most common configuration
preferred for stereoscopic analysis is parallel, hence, we only
provide the processed images from the forward facing stereo pair
i.e C2 and C3. Nonetheless, the raw images from all the cameras

Fig. 7. Directory layout for a sub-sampled subset from the dataset. Extracting
them will preserve the folder structure.

are provided in the dataset along with a toolkit to easily extract
and process them in ready to use format. The MATLAB toolkit
readily extracts the raw images into stereo pairs C1-C2, C2-C3 and
C3-C4.

The data structure or format for each sequence is illustrated
in Fig. 7. The name of the folder constitutes the nature of the
data and the rate at which it is sampled. Each sequence is self-
contained and is provided with supporting files inside the com-
pressed file format. The compressed file in turn constitutes sub
folders, which correspond to the stereo pairs for forward facing
cameras (C2 and C3). The Rosbag version contains the Rosbag
file instead of the PNG image files for the cameras (C2 and C3).
Additionally, the calibration files, timestamps and the ground
truth poses are provided in the corresponding directories for
the rectified cases. The ground truth data already corresponds
directly to the images provided and does not need further match-
ing or synchronization. Each row of the ground truth text file
corresponds to a new reading of the ground truth pose of 3 × 4
matrix [R|t] in the row first vectored form as shown below:

[R11 R12 R13 tx R21 R22 R23 ty R31 R32 R33 tz]

4. Sensor calibration and ground truth

In this section, we will discuss two forms of calibration that
are essential to use the data effectively.
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4.1. Cam-to-cam calibration

The first calibration step is the camera-to-camera calibration,
which is performed to compute the intrinsic parameters and
extrinsic transformations for the cameras. In the dataset, we have
included both the processed data (using the calibrations) and the
raw data. The processed data from the cameras can be directly
used with any SLAM pipeline using the provided calibration pa-
rameters. However, for researchers who wish to re-calibrate the
cameras and process the raw data themselves, we have included
the raw images along with the calibration images in the dataset.

The calibration images are provided as stereo pairs between
the nearest two cameras. Special attention was given to cali-
bration by recalibrating the cameras for each recording session.
Although, the sensor setup was not altered, some minute nu-
merical differences are possible. It is strongly recommended to
use the calibration parameters from the calibration files and not
the illustrations. The camera-to-camera calibrations are provided
for the nearest camera pairs, namely C1-C2, C2-C3 and C3-C4.
These camera pairs are jointly calibrated using MATLAB stereo
calibration toolbox for their intrinsic and extrinsic parameters
based on the approach presented in [22]. The calibration informa-
tion is provided in two forms, namely MATLAB stereo-parameters
object file and a text file with excerpts of the object file along the
dataset.

4.2. Cam-to-IMU calibration

We calibrate the camera and IMU in order to obtain the exter-
nal transformation between the camera and IMU unit. For this, a
sequence was recorded in front of the calibration board, where
the motion in all the six degrees of freedom was stimulated by
moving along and around each axis. The relation between the
camera and the IMU is then analogous to hand-eye calibration
problem. For this, we utilize Kalibr toolkit [23] which estimates
the spatial and temporal parameters of a camera system with re-
spect to an intrinsically calibrated IMU. Since we have an accurate
synchronization between the images acquired from the camera
and the data from IMU/GNSS using the timestamps, we are not
interested in the temporal relationship provided by the toolkit.
However, the spatial parameters or the extrinsic transformation
between the camera and the IMU is of interest to this work. We
calibrate the IMU unit with the camera C2. We choose camera
C2 for calibration in order to be consistent with our ground
truth coordinate system and the general approach of choosing a
forward facing camera.

4.3. Ground truth quality evaluation

Acquiring ground truth information in an enclosed environ-
ment is a challenging step. The global accuracy of the ground
truth solution is dependent on the availability of GNSS signals.
In general, the strength and accuracy of GNSS signals are high in
an open area, while poor signals are received in enclosed areas
such as indoors, narrow city streets and forests. On the other
hand, the local accuracy can be improved by fusing the infor-
mation acquired through local sensing mechanisms such as IMU,
Odometer, Radar, Lidar, Camera, etc. with the GNSS information
for better results. As mentioned earlier, we utilize the NovAtel’s
PwrPak7TM module to acquire a ground truth solution through a
tightly coupled pose estimation framework that uses GNSS and
IMU information.

To assure the readers of the quality of the ground truth, we
provide the estimated position accuracy in the form of standard
deviations for the positions at every timestamp for all sequences

Fig. 8. Estimated position accuracy for ground truth poses (a) Winter sequences
W01–W05 (b) Winter sequence W06 (c) Winter sequence W07 (d) Summer
sequences S01–S05.

in Fig. 8. The graphs indicate the standard deviation in the esti-
mated position in the North, East and Elevation/Height directions.
The accuracy in North, East, and Elevations directly correspond to
the accuracy in the local coordinate frame. The statistics in these
figures are provided by the Inertial Explorer application used with
the NovAtel’s PwrPak7TM module.

To facilitate readers, we show the range of each sequence in
the figures. It can be observed from Fig. 8(a–c) that the average
standard deviation for the winter sequences (W01, W03–W07)
is lower than 2 cm for East and North with occasional larger
deviations. The spikes in deviation are obtained where the vehi-
cles traverse a narrow path with trees densely covering the area
around it for a longer period. In all the sequences, the errors in
the East axis are the lowest followed by errors in the North. The
largest deviations are found in the elevation, which is typical of
such a system.

On the other hand, the summer sequences (S01–S05) exhibit
slightly larger standard deviations (see Fig. 8(d)). Except for S02,
the errors for all the summer sequences in East and North are
lower than 15 cm and 20 cm, respectively. As before, the largest
deviation is observed in the elevation. This is in the sequence
S05 with a value of 0.54 m. The deterioration of the GNSS per-
formance for the summer sequence is logical. In contrast to the
winter sequence, which was recorded in December 2018, the
summer sequence was recorded near the springtime of May
2019. In the springtime, the GNSS results can be affected by the
foliage which can cause 24 to 35% attenuation at L-band [24].
The contributing factor to the attenuation of the signals is the
combined effect of signal absorption and scattering from the con-
glomeration of tree canopies and trunks. In winter, the sparsity
of foliage in the tree canopy provides for a larger interval of non-
attenuating space, while that advantage is lost in springtime in
the presence of dense foliage [25]. In the absence of the GNSS
signal, the ground truth pose estimation system relies more on
the information provided by the IMU. Nonetheless, considering
the task at hand, the results obtained for the summer sequence
are good and provide a valid reference for experimentation.

5. Development and evaluation toolkit

The dataset is accompanied by a set of MATLAB scripts that can
be used for processing of raw data or evaluating the odometry
obtained from user’s algorithm against the ground truth poses.
The dataset includes ready to be used information for easy access
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to the researchers. Nonetheless, we provide a set of MATLAB tools
for processing the data. Each data sequence is accompanied by a
set of raw images. The raw data is of interest to the researchers
who wish to re-calibrate the cameras using the set of calibration
images provided with the dataset with their own or different
calibration algorithms. The new calibration can then be used
to process the raw images of the dataset. MATLAB script read-
Raw_Debayer.m and readRaw_Rectify.m can be used to read the
raw images from a folder and write the debayered and rectified
images onto another directory, respectively. The debayered color
images can then be used with the provided calibration data or any
newly computed calibration data using the calibration images.

An evaluation script is also provided as part of the toolkit
to assess the results. The MATLAB script mainEvaluate.m can be
used to evaluate the obtained visual odometry poses against the
ground truth poses. Prior to using the script, the directories for
the text file with the ground truth poses and the self-computed
poses should be specified. The evaluation script computes relative
pose error (relative translation and rotation errors) and absolute
trajectory error (ATE) for each sequence and the overall errors
for all sequences. The core reason for selecting these metrics
is that relative pose error provides a good analysis of the local
accuracy of the trajectory over a fixed distance. Relative compar-
ison over fixed distances can measure the effect of drift more
effectively and provide a better response for visual odometry.
On the other hand, ATE provides a more coherent and globally
consistent comparison using the absolute distances between the
corresponding ground truth poses and the poses estimated by the
assessed system.

The ATE can be obtained by computing the absolute distance
between the estimated and the ground truth trajectory. For global
consistency, it is essential that both trajectories are in the same
reference coordinate system. If that is the case, then the ATE can
be computed directly, otherwise, the alignment can be calculated
in the form of a transformation matrix T in closed-form using
Umeyama’s method [26]. It is to be noted that ATE only considers
the translational errors. The commonly used form of ATE is given
as follows [27]

ATErmse =
√√√√ 1

N

N∑
i=1

‖Tpi − p̂i‖2, (1)

where T ∈ SE(3) transforms the trajectory pi to the coordinate
system of the ground truth poses p̂i. Additionally, the mean,
standard deviation, minimum, median and maximum errors can
be computed to analyze the performance from different perspec-
tives.

As mentioned earlier, relative errors can provide more accu-
rate local information about visual odometry errors. Kümmerle
et al. [28] proposed to compute relative error over an interval
followed by an average over all these errors. The interval was se-
lected based on fixed distance. This is a good approach, however,
the trajectory and orientation errors are amalgamated and form a
joint error metric. Geiger et al. [11] took this concept and isolated
the rotation and translation part. This enabled them to compute
the rotation and translation error independent of each other. The
isolated relative translation error (RTE) and relative rotation error
(RRE) are defined as follows

RTE(τ ) = 1
|τ |

∑
(i,j)∈τ

‖(pj � pi) � (p̂j � p̂i)‖2 (2)

RRE(τ ) = 1
|τ |

∑
(i,j)∈τ

� [(pj � pi) � (p̂j � p̂i)], (3)

where the interval τ corresponds to the set of image frames (i, j)
that cover a specific length in the trajectory and pi and p̂i are

the estimated and ground truth poses, respectively. The symbol
� denotes the inverse compositional operator explained in [28]
and � [ ] is the rotation angle for the rotation error.

6. Benchmarking

In this section, we discuss the nature of the trajectories
planned and traversed during the dataset recording. Furthermore,
we provide experimental results of using state-of-the-art visual
SLAM methods on the FinnForest dataset.

All sequences start from and end at the same location. Each
trajectory has been recorded with an intent to tackle different
conditions. The first route (W01 and S01), shown in Figs. 9(a–
c) and 10(a–c), comprises a short ellipse shaped trajectory that
offers two repeated loop closures while traveling in the same
direction and a third loop closure from the opposite direction.
The terrain is rather harsh and mimics the uneven ground tra-
versed by work machines. The second sequence (S02), shown
in Fig. 10(d–f), offers another loop based trajectory for SLAM
approaches. Unlike W01 and S01, this path is traveled only once
and therefore forming a single closed loop. Moreover, as men-
tioned before, no winter recordings are available for this trajec-
tory due to route blockage. The remaining sequences are more
visual odometry oriented sequences. These sequences do not offer
loop closures by traveling in the same direction. However, the
same routes are traversed from the opposite direction, hence, of-
fering an opportunity to explore relocalization possibilities while
traveling from the opposite direction. The third, fourth and fifth
sequence routes offer short, medium and relatively long trajec-
tories for estimating visual odometry. The third route (W03 and
S03), shown in Figs. 9(d–f) and 10(g–i), is the shortest of visual
odometry sequences and offers the simplest case for testing. The
fourth route (W04 and S04), shown in Figs. 9(g–i) and 10(j–l), of-
fers more of an exploration type of trajectory with back and forth
driving to mimic investigative movements of work machines. The
fifth route (W05 and S05), shown in Figs. 9(j–l) and 10(m–o), is
relatively long and provides more of a challenging odometry test
course. Two more visual odometry sequences are provided in the
winter condition W06 and W07 (see Fig. 9(m–o) and (p–r)) that
are recorded in night and dusk time, respectively. In our opinion,
sequence 3–7 are helpful for improving the autonomy of heavy
work vehicles in such environments. The sequences mimic the
movements of heavy machines that are more fixated on the task
at hand in an exploratory manner.

It is noteworthy that the area traversed is deliberately kept
limited in terms of displacement from the starting point. Un-
like urban infrastructure, forest covered routes provide limited
chances to record loop closure over large distances. Recording
large distances without loop closure does not suit visual SLAM
approaches, therefore, we focused on maintaining short distances
with more information in terms of frame rate for improved ac-
curacy. Moreover, at the given framerate, the data recorded is
significantly high for the route traversed during the recordings.

Among the state-of-the art visual SLAM implementations that
rank high in the KITTI benchmarking suite [29], we chose ORB-
SLAM2 [4] and Stereo-Parallel Tracking and Mapping (S-PTAM)
[30]. These studies provide open-source implementation of a
stereo based visual SLAM method which facilitates the testing
phase of our study. It is important to note that both ORBSLAM2
and S-PTAM are used in their standalone mode in order to process
all the frames. S-PTAM in specific was not able to process all the
incoming frames in its native ROS mode, where it attempts to
simulate time-constrained real-time scenario. The implementa-
tion was not able to keep up with the incoming frames using
the given computational resources. As a consequence, some of
the frames were dropped in the ROS mode. To provide a fair and
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Fig. 9. Estimated trajectories plotted against the ground truth for the winter sequences in FinnForest dataset.
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Fig. 10. Estimated trajectories plotted against the ground truth for the summer sequences in FinnForest dataset.

thorough comparison, we provide the results of both methods in
their standalone mode with no time constrains for processing. In
addition, S-PTAM was used without the loop closure capability
due to compatibility issues of the implementation with new
versions of dependencies. Except for the sequences with loops,
the remaining majority visual odometry sequences should not be
affected.

Nonetheless, ORB-SLAM2 and S-PTAM yield excellent results
in a typical structured urban environment. These methods have
been extensively tested in urban and indoors settings over KITTI,
EuRoC, and Level 7 block-set datasets [4,30].

The results obtained with the aforementioned implementa-
tions over FinnForest dataset are plotted against the ground
truth in Figs. 9 and 10 for all the sequences recorded with the
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forward facing stereo pair (C2-C3). Thorough quantitative result is
tabulated in Tables 2 and 3. For all these experiments, a standard
laptop with an Intel Core i7 @ 1.90 GHz processor and 32 GB RAM
was used.

The primary aim of testing the dataset with state-of-the-art
method is to educate the readers about the challenges provided
by the dataset. Large drift and scale errors are observed for
the visual odometry sequences, compared to the sequences with
loops, in spite of short distances being covered. We will discuss
the results obtained from experimentation in more detail in the
next section.

7. Discussion

In this section, we discuss the experimental results using the
new dataset and state our observations. Our remarks are intended
to aid further research and experimentation with the given data.

7.1. Feature tracking in FinnForest

The forest environment provides unique challenges for track-
ing features. Due to self-similar and repetitive patterns, extracting
correct matches and maintaining tracking with a low number of
feature points is tricky. To avoid any obvious obstacles towards
tracking, we recorded the data at low driving speeds around
25–30 km/h and low exposure time for image acquisition to
avoid motion blur. Following the recommendation in [21], we
include the skyline in the scene which is expected to be useful
for navigation and augments to reliable features for matching.
Furthermore, the forest view near the skyline significantly adds
to the rotation accuracy (especially yaw and pitch) by providing
features that are far away from the camera.

In most of the testing cases, we used 2000 feature points to
track with ORB-SLAM2 and 1000 feature points with S-PTAM. The
number of feature points selected was a compromise between
the image resolution and memory management of the imple-
mentation. However, we observed that the selected parameters
were suitable for testing most of the sequences and provided
sufficient cross over candidates between frames for matching.
During experimentation, we observed that S-PTAM required more
tuning of the parameters compared to ORB-SLAM2, in which they
were kept mostly the same for all experiments. ORB-SLAM2 uses
ORB features which are both faster and more robust (due to
rotation invariance) compared to features used by S-PTAM. S-
PTAM uses the GFIT feature and BRIEF descriptors for matching.
The descriptor is not invariant to rotation and as a result, the
implementation requires parameter adjustment for various se-
quences of FinnForest dataset to maintain tracking on the parts
of the route with harsh terrain.

As mentioned earlier, unlike urban routes, the path traversed
while recording the dataset is a rough terrain. The combined
effect of erratic motion, speed and data sampling introduce chal-
lenges for testing. It is apparent from the experimental results
that the highest errors are observed in the visual odometry se-
quences while the errors are reduced and distributed in the
sequences where loop closure has been achieved.

Effect of data sampling on tracking: The sampling of the
dataset at lower rates is intended to facilitate testing and investi-
gate a suitable data rate for real cases. Though lower frames per
second (fps) are advantageous for testing purposes, information
processing at lower fps can considerably compromise the visual
odometry pipeline during real field operation. To exemplify the
behavior, we take the experimental results of ORBSLAM2 on S02
at 8 Hz. ORBLSLAM2 fails to continue its tracking of feature
points when the vehicle hits a pothole and the scene observes a
sharp motion. It is important to note, that ORBSLAM2 successfully

completed the same test sequence at higher frame rates (13 and
40 Hz). For further investigation, we significantly changed the
parameters by increasing the feature points to 5000 and varying
the FAST feature threshold between 4 and 18. However, the result
remained the same. Surprisingly, S-PTAM successfully completed
the test sequence S02 at 8 Hz when the feature points to detect
were set to 1500.

On the contrary, ORBSLAM2 was able to handle a similar
situation in W01 at 8 Hz with loosened parameters while S-PTAM
failed to continue the tracking. However, none of the implemen-
tations were able to successfully complete the sequences W05,
W06, and S04. A similar effect was observed in W07 at 7 Hz and
the parameters were loosened again. This time ORB-SLAM was
able to successfully process the entire sequence while S-PTAM
failed.

Effect of motion on tracking: In some cases, the erratic
motion due to terrain in combination with the scene is already
too much even at a higher frame rate. In the case of W01,
we observed that S-PTAM fails to complete the sequence at all
sampling rates. The implementation fails while locally adjusting
the poses that lie in the range where the sharp movements are
observed. On the other hand, ORBSLAM2 was able to process the
sequence with relative ease at 40 and 13 Hz without fine-tuning
of the parameters. However, at 8 Hz the feature points used for
tracking were increased, and the feature threshold lowered to
maintain tracking even with ORBSLAM2.

A different cause is expected to be affecting S-PTAM while
processing W05 at 8 Hz. The tracking failure occurs when the
vehicle slows down to a momentary stationery state and restarts
motion. We believe the source of the issue is the predictive
feature search that fails to find matches. In both S-PTAM and ORB-
SLAM2, a motion model is used to predict the position of the map
points on the latest image frame and find matches in the small
neighborhood for tracking. In case, if the feature matches are not
found in the small predicted neighborhood, ORBSLAM2 expands
the search window as a fallback option. On the other hand, we
believe, S-PTAM relies only on the decaying velocity model and
does not expand its search neighborhood as a fallback option. As
a result, a sudden change in velocity at a lower frame rate affects
the tracking of feature points. This phenomenon is aggravated
by the sub sampling since the same behavior is handled by S-
PTAM at sampling of 13 Hz but fails at 8 Hz when change is more
abrupt. By requesting more feature points to be detected in the
new image frame, we can avoid the tracking failure altogether,
however, poor matches with the map then lead to convergence
issue in the local bundle adjustment step of S-PTAM.

Effect of illumination on tracking: The dataset includes var-
ious opportunities to test the robustness of visual SLAM im-
plementation towards tracking and pose estimation in a scene
with varying illumination. The notable opportunities regarding
illumination change are provided by W07, S04, and W06. In W07,
we observe gradual illumination change as it gets darker. The
sequence was recorded at the dusk time and the illumination
changes drastically between the start and end of the sequence.
ORBSLAM2 did not face any issue in terms of tracking feature
points in this sequence, however, S-PTAM faced considerable
problems to maintain tracking at all sampling rates. S-PTAM also
failed tracking at sampled data of 13 Hz, however, we have
included the results since the failure point was close to the end
of the sequence.

On the other hand, a more rapid change is observed in il-
lumination due to direct sunlight in the sequence S04. At a
sampling rate of 40 and 13 Hz, both ORBSLAM2 and S-PTAM can
successfully process the sequence. However, at 8 Hz they fail at
different points. The S-PTAM fails directly due to overexposure
and flare observed in the scene while ORBSLAM2 fails due to fast
erratic motion following the over-exposed scene in the recording.
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Table 2
Quantitative results of ORBSLAM2 for the FinnForest dataset at different sampling rates.
Data Sampling 40/20 Hz 13/10 Hz 8/7 Hz

Seq. No ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m)

W01 3.35 2.1785 0.00014197 3.6738 2.3016 0.00019584 3.4914 2.4092 0.00021607
W03 12.266 9.1805 0.00012107 12.025 9.2299 0.00013344 12.249 9.1962 0.0001253
W04 17.421 7.7753 9.7778e−05 17.244 7.8332 9.935e−05 20.666 7.6746 0.00011482
W05 55.422 9.2678 0.0001298 56.323 9.4365 0.00013865 75.715 9.7977 0.00022451
W06a 21.789 32.14 0.00020608 TL TL TL TL TL TL
W07a 37.933 7.2208 0.00011185 34.324 7.2193 0.00013786 48.88 7.2107 0.00016175
S01 4.3677 1.9672 0.00022474 3.8189 1.917 0.00019894 6.2793 2.1462 0.00027508
S02 26.132 4.2061 0.00017796 26.874 4.2181 0.0001728 TL TL TL
S03 12.633 5.873 0.00020877 10.986 5.6022 0.00018197 9.8899 5.5459 0.00018258
S04 30.053 5.5827 0.0001988 26.825 5.4608 0.00018299 TL TL TL
S05 228.88 9.4575 0.00025169 191.52 8.8165 0.00020505 200.81 8.9426 0.00021338

aIndicates that the data is subsampled at 20/10/7 Hz.
TL: Tracking lost.

Table 3
Quantitative results of S-PTAM for the FinnForest dataset at different sampling rates.
Data Sampling 40/20 Hz 13/10 Hz 8/7 Hz

Seq. No ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m)

W01 TL TL TL TL TL TL TL TL TL
W03 19.709 10.166 0.00011828 27.663 12.63 0.0004809 28.369 14.819 0.00063508
W04 25.852 9.4934 0.00014839 45.091 14.9 0.00071498 48.944 14.914 0.00073208
W05 TL TL TL 79.774 11.312 0.00011181 TL TL TL
W06a TL TL TL TL TL TL TL TL TL
W07a TL TL TL 102.54 8.319 0.00019895 TL TL TL
S01 7.3247 2.883 0.00018821 9.4022 4.0914 0.00066569 8.652 3.9342 0.00030787
S02 34.391 9.2735 0.0005317 44.68 11.63 0.00061402 34.752 9.2786 0.00020271
S03 21.779 7.0644 0.00025365 31.418 11.105 0.00025333 47.392 14.82 0.00031883
S04 31.891 7.1297 0.00023556 39.749 9.703 0.00019259 TL TL TL
S05 130.41 10.182 0.00022272 171.55 14.517 0.00032586 201.65 17.9 0.00038022

aIndicates that the data is subsampled at 20/10/7 Hz.
TL: Tracking lost.

The Night sequence, W06, is especially challenging for both
implementations. Neither of the implementations could process
the sequences under normal parameter settings. ORBSLAM2 was
able to process the sequence at 40 Hz with relaxed parameters
after the FAST feature threshold was reduced to 4 to avoid losing
the track of features. S-PTAM is not able to process the W06
sequence at any sampling rate. Even after the feature threshold
is reduced, S-PTAM fails to converge at local bundle adjustment.
This is expected since the scene in view is limited to a few meters
of the snow-covered road. As a result, the poses estimated do
not agree over a longer duration and fail to converge at bundle
adjustment.

7.2. Loop closure

The dataset provides three sequences with loop closure oppor-
tunities. Among these, S01 and W01 repeat the same route twice
in one direction and the third time in the opposite direction. This
means that ORBSLAM2 can identify the loop closure opportunity
at any time of the second lap of the drive. During experimen-
tation we observed that ORBSLAM2 successfully closes the loop
and distributes the errors for the aforementioned sequences. In
contrast, ORBSLAM2 fails to close the loop for the sequence S02,
even though, enough overlap of the start and end scenes is
provided. Oddly, ORBSLAM2 can re-localize itself at the end of the
sequence S02 that is processed at 8 Hz after losing track of the
feature points. A closure can be observed due to re-localization in
Fig. 10(f) in the trajectory estimated by ORBSLAM2. We believe
that sparser keyframes formed at 8 Hz provided more decisive
information compared to the same sequence at higher fps, where
the relocalization was not observed.

7.3. Drift

A drift in scale and rotation can be observed in the estimations
provided by ORBSLAM2 and S-PTAM for all of the visual odometry
sequences. This effect of drift becomes stronger as the sample rate
drops down from 40 to 8 Hz. The effect is most apparent in S03
and W03 (see Fig. 9(d–f) and (g–i)).

7.4. Seasonal effect

Seasonal changes have an apparent effect on various aspects
of this dataset. As discussed earlier, the ground truth accuracy
reduced in the summertime compared to the wintertime due to
considerably higher foliage effect in the summer. An added chal-
lenge from the perspective of recording was that, while traversing
the forest, different parts of the forest provided different levels of
shade from the sun due to the density of the trees in that specific
part. This created a challenge to avoid over or underexposure of
the scenes since we used a fixed aperture. These effects are more
obvious in the sequence S04.

The winter sequences, on the other hand, were adequately
exposed since most of the recordings are in overcast. In addition,
there was enough texture on the ground due to tire tracks in
the snow. ORBSLAM2 handled tracking very well with evenly
distributed points on the snow-covered ground. S-PTAM focused
more on the obvious texture from the trees. Most of the feature
points from the snow-covered road are discarded by S-PTAM as
false matches.

7.5. Effect of ground truth precision

It is important to note that the experimentation is indepen-
dent of the precision level of the ground truth position since
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the test algorithms did not use the IMU and GNSS information.
However, the effect of the ground truth precision indeed has to
be considered when comparing the experimental results against
the ground truth poses. The ground truth precision for each
sequence is shown using Fig. 8 and discussed in Section 4.3. In the
context of benchmarking, we can say that we are more confident
in the comparison performed in Tables 2 and 3 for the winter
sequences (W01–W07) than the summer sequences (S01–S05)
since the precision of ground truth position for winter sequences
is comparatively higher. Nonetheless, the precision of the ground
truth is high enough in both cases for valid analysis of visual
odometry/SLAM algorithms.

It is important to remember that the visual odometry/SLAM
algorithms may give different responses for the same trajectory
recorded under different condition, as we discussed throughout
Section 7. Therefore, arguing that one result is better than the
other without comparing to the provided ground truth is not an
objective conclusion.

8. Summary

In this paper, we have presented a novel dataset that offers
a forest-like environment in various light and weather condi-
tions for visual odometry and SLAM systems to process. The
dataset provides synchronized and processed image frames from
4 cameras that can be used independently or as stereo pairs.
Moreover, raw data is also provided to encourage further exam-
ination into the system. We believe this dataset will prove im-
mensely useful towards enlarging the spectrum and diversity of
the testing data for autonomous vehicles, especially, autonomous
heavy work machines. We hope that this dataset will provide
new challenges and inspire exploration of new possibilities for
autonomous vehicles/machines.
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Abstract

A key functional block of visual navigation system for intelligent autonomous vehicles is Loop Closure detection and subsequent
relocalisation. State-of-the-Art methods still approach the problem as uni-directional along the direction of the previous motion.
As a result, most of the methods fail in the absence of a significantly similar overlap of perspectives. In this study, we propose an
approach for bi-directional loop closure. This will, for the first time, provide users with the capability to relocalise to a location
even when traveling in the opposite direction, thus significantly reducing long-term odometry drift in the absence of a direct loop.
We devise a technique to select training data from large datasets in order to make them usable for the bi-directional problem. The
data is used to train and validate two different machine learning models for loop closure detection and subsequent regression of
6-DOF camera pose between the views in an end-to-end manner. The outcome packs a considerable impact and aids significantly to
real-world scenarios that do not offer direct loop closure opportunities. We provide a rigorous empirical comparison against other
established approaches and evaluate our method on both outdoor and indoor data from the FinnForest dataset and PennCOSYVIO
dataset.

Keywords: Bi-directional, loop closure, relocalisaion, pose regression, deep learning, siamese network, autonomous driving,
mobile robotics, field robotics

1. Introduction

Inferring where you are on a map, of your local world, is a
core problem of mobile robotics [1], navigation [2], and aug-
mented reality [3]. This problem is widely known as the lost or
kidnapped robot [4]. A potential solution is Localisation which
refers to the process of recognizing a previously visited place
and determining your current pose w.r.t the previous pose from
the visual scene representation [5]. Loop closure is a specific
case of localisation which is essential to attain robust navigation
in any intelligent transportation system as it aids in significantly
reducing the accumulated errors during visual navigation [6].
Traditionally, loop closure is detected in an environment that
has been previously viewed from a similar perspective e.g., a
vehicle traveling toward the north passes by the same location
moving in the same direction. Such a configuration maximizes
the chances of place recognition. Generally, a binary feature de-
scriptor in conjunction with Bag-of-Words (BoWs), or a deep
learning-based approach is used to tackle this problem, with the
latter approach exhibiting better performance after the advent
of modern Convolutional Neural Network (CNN) architectures.
In this paper, we propose an approach to expand the capability
of loop closure detection methods towards bi-directional prob-
lems. Our proposed approach is able to correctly recognize pre-
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viously visited places and find the relative pose irrespective of
the direction of motion of the vehicle.

Traditionally, the place recognition problem has been ap-
proached in a similar manner as the Image Retrieval problem
[7, 8]. In general, a query image, whose location needs to be
estimated, is compared against a large geo-tagged database of
images from previous visits. Each image is represented as an
aggregate of numerous local invariant features. The state-of-
the-art method still relies on feature detectors and descriptors
such as SIFT [9], ORB [10], SURF [11], etc., that are used to
extract local information from an image and accumulated into
a single feature vector for an entire image using encoded rep-
resentation through methods such as bag-of-visual-words [12],
vector of locally aggregated descriptors (VLAD) [13] or Fisher
vector [14]. Fisher Vector adopts the Gaussian mixture model
(GMM) to build a visual word dictionary. As a result, Fisher
Vector encodes more image information than BoW and at times
outperforms BoW in some computer vision tasks. In con-
trast, VLAD is a simplification of Fisher Vector and provides
a trade-off between performance and computational efficiency.
In most cases, VLAD performs similarly to Fisher with better
efficiency. These methods aid in compressing the image rep-
resentation and subsequent efficient retrieval of a match from
the database [15]. A popular approach based on the aforemen-
tioned concepts is FAB-MAP [16] which learns a generative
model for the BoW data. The model observes and learns the
co-occurrence of appearance words from common objects that
are likely to appear or disappear together thus providing valu-
able probabilistic information. However, FAB-MAP proves to
be computationally expensive due to its complex methodology
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for image description and matching.
On the other hand, recent studies have shown that the de-

ployment of CNNs results in significant improvement in accu-
racy and reduction in complexity for localisation. The models
trained on very large datasets significantly outperform the local
descriptors such as SIFT in a variety of applications such as ob-
ject and scene recognition [17]. McManus et al. [18] proposed
to learn features from image patches and called them scene sig-
natures. These scene signatures were for matching and retriev-
ing scenes under varying appearance changes. However, the ap-
proach required a considerably more careful training phase with
data of the test environment under all possible environmental
conditions. Some studies directly opt for using the intermedi-
ate representations which are learned using object recognition
dataset and use them for scene identification [19, 20]. Sunder-
hauf et al. [20] propose the use of features from intermediate
layers to form a descriptor for matching. Features from higher
layers of a CNN encode semantic information about the place
while features from the lower layer encode more descriptive in-
formation about the geometry of the scene. The authors exper-
iment with varying combinations of these descriptions and at-
tempt to find the nearest neighbor based on the cosine distance
between the feature vectors of the query and the database.

It is noteworthy that all the aforementioned studies targeted
uni-directional or traditional loop closure cases. The clos-
est work done to bi-directional loop closure is [21]. The au-
thors claim to target the problem of bi-directional loop clo-
sure in panoramic images. In our humble opinion, the use of
panoramic images diminished the complications of the prob-
lem by providing roughly similar views to a uni-directional
case. The panoramas are captured in an enclosed structural en-
vironment with a circular trajectory. As a result, the motion
in the reverse direction captures a considerable overlap of the
forward motion scenes with some spatial offset in images and
only marginal difference in perspectives. This can also be ob-
served from the illustrations in the study which exhibit only
spatial changes in the scene. Moreover, the study reports that
traditional methods such as FAB-MAP fail to close the loop in
practice even in these panoramic images. To the best of our
knowledge, this is the only study that targets place recognition
and loop closure while moving in the opposite direction and
high perspective change.

In our work, we introduce a novel automated technique to
leverage the use of existing large datasets for training CNNs to-
wards the task of bi-directional loop closure. This is essential
since acquiring new data every time requires considerable time
and resources. Then, we present two machine learning mod-
els based on CNN that are assigned to first identify potential
candidates for loop closure between the query and database and
subsequently regress the pose between the matched candidates.
The proposed model for place recognition uses a VGG-16 as
the base CNN topped with a neural network implementation of
VLAD known as NetVLAD [22]. The model learns to recog-
nize places in an end-to-end manner on the training data specif-
ically prepared for the bi-directional loop closure task. After-
wards, the matches are fed to a siamese network with a VGG-16
base model topped with fully connected layers that are regular-

ized with dropout layers. The 6-DoF pose regression in the
proposed bi-directional case is significantly more challenging
compared to traditional cases and is performed with an inde-
pendent model. We employ two public datasets namely Finn-
Forest Dataset [23] and PennCOSYVIO dataset [24] to conduct
our tests for place recognition and pose regression. The gener-
alization is successfully tested on unseen data thus exhibiting
strong comprehension of the visual cues by the model and not
just scene memorization.

The article is organized as follows: In Section 2, we give
out the system overview and formulate the proposed approaches
for place recognition and pose regression tasks. Moreover, we
also discuss in detail, the data preparation steps involved in this
study for the task at hand. Section 3 provides the experimen-
tal results and a comprehensive comparison with other well-
established methods on two challenging datasets. Finally, Sec-
tion 4 concludes the article.

2. System Overview

In this section, we present the overall pipeline of the pro-
posed approach for localisation. The approach constitutes of
two modules: a siamese CNN network [25] with triplet struc-
ture for maximizing similarity learning and a bi-input siamese
model for 6 DoF relative camera pose regression. The over-
all pipeline is shown in Figure 1. Initially, images are used
from the database to train the siamese with a triplet structure
for place recognition tasks by learning to identify maximum
similarity. Each trained branch of the network is essentially a
feature encoder and the extracted feature vectors can be em-
ployed to identify matches from the database of images that are
nearest neighbors (NN) to the query image in the feature space.
Afterward, samples with true positive matches are fed into the
independently trained network for pose regression to estimate
the relative pose between true matches. The processes are com-
prehensively explained in the following sections.

2.1. Place Recognition

Feature Encoding We adopt a siamese approach for the task
of place recognition, as illustrated in Figure 1. The network
constitutes of a base CNN model that takes three inputs, namely
query image sample Iq, positive image sample Ip, and negative
image sample In from the database ID. These input images are
pre-processed based on the prescribed pre-processing technique
adopted for the base model. Here, we take VGG-16 as an ex-
ample which will be mainly used in our work; however, we also
provide results with other base models for comparison later in
the study. VGG-16 takes an input image of 224x224 pixels
and propagates it through five sets of convolution and pooling
layers, where the layers are connected through Rectified Lin-
ear Unit (ReLU) as an activation function. Each layer in the
network learns a further abstraction of the input data with the
highest-level abstraction residing towards the last layers. The
structure is essential since features from the higher layers of
the CNN hierarchy encode abstract semantic information about
the scene, while features from intermediate and lower layers
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Figure 1: Illustration of the overall system pipeline. A siamese network constituting a VGG-16 base model topped with a VLAD pooling layer is used to learn
similarity in the scenes using a triplet loss. Once the training process is completed, we employ the branch as a descriptor to compute feature representations of
database and query images for image retrieval towards localisation. The pose regression network (lower) is independently trained to directly regress the 6-DoF
relative camera poses between the query and the retrieved match from the database.

encode finer details from the image such as a change in appear-
ance and structure [20].

The outputs of the base model are normalized and fed into the
neural network form of VLAD descriptor known as NetVLAD
pooling layer [22]. Essentially, VLAD encodes information
about the statistics of local descriptors aggregated over an im-
age in the form of feature distance from a cluster centre. For N
D-dimensional local image descriptors �xi as input, and K clus-
ter centres (visual words) ck as VLAD parameter, the output
VLAD image representation V is K × D-dimensional. The L2-
Normalized vector form of V with elements ( j, k) is

V( j, k) =
N∑

i=1

ak(�xi)(xi( j) − ck( j)). (1)

Here, xi( j) and ck( j) are the j-th dimensions of the i-th descrip-
tor and k-th cluster centre, respectively. ak(�xi) indicates whether
the descriptor �xi belongs to the k-th visual word, i.e. it is 1 if �xi

belongs to the cluster ck and 0 otherwise.

To develop a layer reactive to training via backpropagation,
it is required that the layer’s operation is differentiable with re-
spect to all its parameters and the input. The original relation
lacks this differentiation due to the binary nature of ak(�xi). To
overcome this issue NetVLAD re-writes the original relation
as:

V( j, k) =
N∑

i=1

ewT
k �xi+bk

∑
k′ ewk

′T �xi+bk
′ ((xi( j) − ck( j)). (2)

where wk and bk are sets of trainable parameters for each
cluster k which are learned in an end-to-end manner during
training. Conceptually, the weight that the descriptor �xi is as-
signed to the cluster ck proportional to their proximity. More-
over, the relative proximity to other cluster centres also plays a
part in the relation.

For our study, we found emperically that 64 clusters and 512-
dimensional VGG16 backbone work effectively for the locali-
sation task. The NetVLAD feature vector dimension becomes
512 × 64 = 32, 768. We further extract principle components
through a convolution block and retrieve the encoded descrip-
tion as a normalized feature vector.

Loss Function The similarity in an image is learned by em-
ploying a triplet loss over the output of each branch of the triplet
siamese. For training, we gather training sample set S such that

S = {(si, si
+, si

−)|(si, si
+ ∈ S +); (si, si

− ∈ S −), i = 1, ...,M}.
(3)

Here, S + refers to the set of relevant image pairs, S − refers
to negative image pairs, and M indicates the span of the entire
triplet set. The triplet loss is then given as

�(si, si
+, si

−) =

max(0,m +
∥∥∥ f (si) − f (si

+)
∥∥∥2

2 −
∥∥∥ f (si) − f (si

−)
∥∥∥2

2).
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Here, margin m is a scaler that defines an offset between pos-
itive and negative pairs, and f (.) is an embedding of an image
sample. The global loss over all triplet samples is given as

L =
∑

(si,si
+,si

−)∈S
�(si, si

+, si
−). (4)

Retrieving the nearest neighbours To retrieve a potential
match for a query image from the database of images, both im-
ages must have a suitable representation before comparison. In
the proposed case, we use one branch of the fine-tuned net-
work as a feature extractor to encode the query and database
images. This enables us to have the representation in the same
embedding space (i.e. 4096-dimensional feature vectors, see
Figure 1). In the experimentation section, we will use other
methods of feature extraction to encode our images for the
sake of comparison. Finally, the top N-ranked database images,
d = (dn|dn ∈ D, n = 1...N) are selected as the nearest neighbors
to the query image based on the squared Euclidean distance in
the embedding space. It is important to note that a query im-
age might have one, many, or no match in the database as it
depends on the number of keyframes generated during earlier
exploration of the environment.

Neighbour Confidence Sharing Place recognition is a crit-
ical task for loop closure in visual SLAM. The problem can
become significantly more challenging when the environment
contains repetitive textures even for distinct locations such as
in forests and large open areas. It is often the case that wrong
matches are generated due to similar semantics of different
scenes. To overcome this problem, we propose a confidence
sharing scheme where the confidence of the previously local-
ized points is propagated to their neighbors in a causal man-
ner. In our case, we consider three neighbors for sharing confi-
dence. We incorporate the traveled distance between the neigh-
bors in order to ascertain the sanity of a potential match for
a query point. A new query point has a valid match if (1) it
has a considerable match score (in embedding space from the
model) with an image from the database and (2) it has nearby
localized neighbors that agree in distance traveled with the esti-
mates from odometry. If a new neighbor is found far away from
a nearby localized neighbor and the odometry estimates run in
favor of the previously localized neighbor, then the new match
is discarded as a possible wrong match.

2.2. Pose Regression
The pose estimator block is composed of a VGG-based

siamese architecture that takes two monocular images as raw
input and predicts a 6-DoF relative transformation between the
poses for those specific inputs. The siamese regression block
is shown in Figure 1. The shared weights are initialized with
a network pre-trained for large-scale place classification task
[26] using the Places 365 dataset, and later fine-tuned for the
relative pose estimation task as described below. The output of
each branch is vectorized and combined into a single encoded
description. The relative pose is regressed by passing the fea-
ture vector through three fully connected (FC) layers activated
through Leaky ReLu functions and intermediate dropout layers

for regularization, as shown in Figure 1. The final FC layer
gives out the predicted relative pose. Different studies adopt
different representations for the angles. In study [27], the au-
thors use deeply learned key points to estimate the Fundamen-
tal matrix between the two images using two CNN modules.
In a similar study titled UnDeepVO [28], the authors opt for
direct image alignment in conjunction with the camera intrin-
sic to estimate the relative pose. The relative pose is obtained
as a decoupled combination of a translation vector and rotation
vector in Euler angles.

Euler angles carry briefer representation compared to the
fundamental matrix, however, it suffers from discontinuities in
the form of gimbal lock. On the other hand, rotation parame-
terization such as rotation matrices that lie on a manifold, their
distance computation requires finding a Euclidean embedding.
In our work, we represent the angles using quaternions similar
to the work [29]. It is important to note that quaternions lie on
a unit sphere, however, during optimization/training the differ-
ence becomes so small that the distinction between spherical
distance and Euclidean distance becomes insignificant. There-
fore, to avoid obstructing the optimization with unnecessary
additional constraints, we avoid the use of spherical geometry.
Hence, the distance between two quaternions can be measured
by the Euclidean l2 norm ‖qGT − q‖. The authors of the popular
study PoseNet [30] and its derivative study [29] advocate using
a decoupled approach with a weighted parameterization of the
angle, with a scale factor β, to balance the loss function

L = ‖ΔtGT − Δt‖22 + β ‖ΔqGT − Δq‖22 . (5)

During experimentation, we observed that the approach
seemed cumbersome as the vale of β has to be manually ad-
justed for each dataset. The authors of [30] remark that the
value of β can lie anywhere in the range of 120 to 2000 depend-
ing on the structure and semantics of the scene [30]. To avoid
this issue we propose to discard the scale factor β and inde-
pendently scale down the entire translation vector and quater-
nions to the same range during the preprocessing step of dataset
preparation. Since we wish to use an adaptation of ReLu acti-
vation for the FC layer, it is advisable to rescale both the quater-
nions and the translation vectors between [0, 1]. This makes the
relation invariant to any scale factor for the training phase. The
scale factors can be extracted from the range of the data in the
dataset and applied using the following relation

dscaled =
(scmax − scmin) ∗ (d − dmin)

dmax − dmin
. (6)

where d denotes the data array and sc indicates the scaler values
of the desired range for scaling. The model is trained to predict
an arbitrarily scaled version of the pose where the scale is re-
stored in a post-processing step after the prediction. The MSE
is then given as

LMS E =
1
n

n∑

i=1

(Tscaled GT − TEst.)2. (7)

Here, Tscaled GT is the pose constituting scaled [tx, ty, tz] and
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scaled [qw, qx, qy, qz]. TEst. is a similar vector to TscaledGT which
is predicted by the model. At test time, a pair of images are fed
into the regression model, consisting of two branches, which
directly estimates the relative camera pose vector. Finally, the
estimated quaternion and translation vectors are scaled up to
retrieve real-world values.

2.3. Data Selection and Dataset Preparation

Visual SLAM is a widely researched problem and many
datasets exist for testing purposes [31, 32, 33, 34, 35]. How-
ever, most of the datasets do not provide bi-directional motion
since they are tailored for handling the problem from a uni-
directional perspective. For our work, we found that FinnFor-
est dataset [23] and parts of PennCOSYVIO dataset [24] can be
used for training and testing purposes.

As indicated by the name, the FinnForest dataset provides
data, for visual odometry and SLAM, in a forest landscape. The
dataset provides recordings from four RGB cameras that are
synchronized with an Inertial Measurement Unit (IMU), and
a Global navigation satellite system (GNSS). The dataset con-
tains sequences for odometry that are well suited for this study.
Each route is traveled from both directions within the same se-
quence thus providing all the relevant data for bi-directional
loop closure. The dataset is challenging for the problem since it
contains repetitive texture, unlike an urban landscape that pro-
vides more distinct landmarks over its trajectory. We will only
utilize the data recorded in the summer conditions in our study
since it offers slightly more landmarks than the winter condition
for the localisation block.

The second dataset that we use for training and testing of-
fers indoor data. This was specifically chosen to check the
performance of our approach in both indoor and outdoor envi-
ronments. The dataset records similar sequences with multiple
configurations and types of sensors. We found four sequences,
recorded with GoPro Hero 4 Black, that are reasonably well
suited for the task of bi-directional loop closure. The sequences
include slow and fast motions that can represent vehicular mo-
tion using a forward-facing camera. Moreover, the data in-
cludes ground truth poses that can be used for automatic ex-
traction of training and testing samples in our approach. Other
sequences in this dataset are wall-facing and more suited for
Structure from Motion applications.

Both of the datasets are passed through a data preparation
phase in order to generate sequences that can be used for train-
ing our localisation and pose regression models. We generate
sub-datasets out of the original datasets and use them for train-
ing. Since the localisation and the pose regression are to be
performed on the same scenes we can use the data generated
for localisation in the pose regression block. For simplification,
we split and consider two cases of the bi-directional localisation
problem. Assume that a route is traversed in a straight line from
both directions then we have images acquired with a camera at
somewhat regular intervals from both directions for roughly the
same location, given that the camera frame rate is high enough.

Considering the forward motion case, in Figure 2, an anchor
sample is acquired at query location (green). For these anchor

samples, we can obtain positive sample pairs from nearby loca-
tions that share the perspective view. Moreover, it is fairly safe
to assume that an image acquired further away or from far back
will provide a significantly different view and can be selected
as negative samples (red) for the localisation model training.
For all the sample pairs we compute the relative ground-truth
poses in the form of translation vector and quaternion angles
which are later used in the pose regression block. We generate
6 sample triplets for each query location, however, any number
of triplets can be generated according to the needs of the task.
The straight-line route shown in Figure 2 is a simplified case,
however, we should expect irregular movements and changes in
angles in real cases. The FinnForest dataset attempts to mimic
the conditions that a heavy vehicle might face in a real forest
during its operation. We expect close-by samples from a query
point that might not share the same visual information due to
sharp turns, camera jitter, motion blur, sudden overexposure, or
sun flare in the camera view. These samples can deteriorate the
learning performance of the model as it expects them to be pos-
itive samples however they no longer share the semantic and/or
geometric information with the query sample.

(Far away)

Figure 2: Illustration of training data selection based on distance and direction.
The cones represent camera body placed at various locations. The shaded area
in the backward case represents potentially overlapping regions in the perspec-
tive view

To overcome this, we leverage structure from motion to au-
tonomously generate training triplets by validating the previ-
ously created triplet samples. We generate 3D world points
from a query stereo pair and track the corresponding key points
among all the positive samples for that specific query sample.
Similarly, the 3D points are also propagated between the cam-
era frames using the 6 DoF ground-truth poses. The trans-
formed world points are then projected into corresponding im-
age space. Any sample with cumulative reprojection error (for
the tracked keypoints) higher than a threshold is discarded. The
reprojection error is computed using

Epx = ||Ps+i − Π(K, [q(si,s+i ) , si t
s+i ]HT ,Wsi )||22. (8)

This validation step gets rid of the sample pairs with high
angular changes in perspective (such as in the case when the
vehicle is turning). Here, Π is the perspective projection func-
tion that projects the 3D points W = (X, Y, Z, 1)T from world
frame space to image space using the camera intrinsic K. The
superscript T indicates the transpose of a vector. The perspec-
tive projection yields x̃ = (ũ, ṽ, 1)T in the image space of the
camera at the pose of interest. The reprojected points x̃ are
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compared directly against the observed/tracked 2D points (P)
in the corresponding sample image. The symbol [ ]HT indicates
the conversion from quaternion q and translation vector t to the
homogeneous transformation matrix. We use quaternion angle
representation for the sake of coherence.

For the backwards case, we use the same query image sam-
ples initially selected and filtered for the forward case and at-
tempt to find pairs for it in the backward motion part of the
sequence. In contrast to the forward case, the backward motion
case can have positive samples only ahead of the query location
(see Figure 2). All the potential samples are expected to be ori-
ented in the direction opposite to the camera orientation at the
query point. Moreover, the assumption is that camera poses that
are slightly ahead of the query point would share potentially
more of the same scene even if from the opposite perspective.
The similarity in the scene in this small range is what we want
our model to learn and discriminate. A camera pose that is too
far ahead or at the back of the query pose would have little and
no match with the query perspective, respectively. As before
the positive samples are indicated in blue while negative sam-
ples are shown in red. The reprojection-based verification is
not possible for the backward case since the traditional feature
detector cannot detect and track features with such high per-
spective changes. As a result, there are no reference key point
image positions for the reprojected 3D points.
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Figure 3: Visualization of the automatic sample selection scheme for the case
of backward motion. Valid training samples within the field of view of the
anchor/query pose (green) are shown in blue while the negative samples are
shown in red. The poses shown in black indicate rejected samples in the vicinity
of the query.

A visualization of the automatic sample selection, based on
the camera poses, from a sequence of FinnForest dataset is

Figure 4: Upto scale visualization of the training loss (purple) and general-
ization gap (indigo) when the training data is changed for the backward case.
The horizontal axis indicates the minimum valid distance (in meters) i.e, the
distance from query to the nearest sample while the vertical axis indicates the
maximum valid distance (in meters) i.e, the distance from query to the furthest
valid sample. We indicate the best result with a green overlay.

shown in Figure 3. Samples within the field of view of the query
pose are considered as potential candidates for triplet grouping.
Similarly, we discard very close samples since target samples
that are too close will share very little view with the query per-
spective. Here, the camera poses are shown that pass the con-
straints set on the field of view, distance from the query pose,
and the tolerance of orientation difference from the query pose
orientation. The candidates for positive samples are shown in
blue while the negative samples are shown in red. Additionally,
some camera poses that do not pass the constraints are visual-
ized in black for the sake of understanding.

It is difficult to conclude from merely visually observing the
data as to what should be the minimum and maximum distance
between the query and the positive samples. To understand
the relationship we follow an empirical approach and train the
model with different data distributions. In Figure 4, we explain
the effect of data distribution. The figure shows an Upto scale
visualization of the training loss (purple) and generalization gap
(indigo) for the backward case. The horizontal axis indicates
the minimum valid distance i.e, the distance from the query to
the nearest sample while the vertical indicates the maximum
valid distance i.e, the distance from the query to the furthest
valid sample. We observed that the training loss and the gen-
eralization gap were minimum for the training data when the
nearest positive sample was limited to a distance of 2 meters
and the farthest sample was kept to be at 11 meters from the
query pose. This indicates that the maximum overlap is found
within this range for the given data and that anything out of this
range is a potential outlier to what the model attempts to learn.
This is obviously specific to the datasets in this study and might
vary slightly depending upon the camera and optics used for
recordings.
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3. Results and Discussion

In this section, we provide our experimental results and quan-
titatively demonstrate the effectiveness of the proposed system
on the FinnForest and PennCOSYVIO datasets. To ascertain
the generalization capability of our pipeline, on data previously
unseen during training, we hold out one of the scenes in the
FinnForest dataset (S5) and PennCOSYVIO dataset (C2-bs) for
evaluating and training our model on the remaining scenes. We
will discuss the results in the forthcoming subsections and com-
pare our results with other well-established methods. The net-
work models were implemented with the Tensor Flow frame-
work using Keras API. We employ the Adam optimizer to train
the network with an early stop. The network setup preferred a
small learning rate that started from .0000001 and decreased by
one-tenth every epoch.

3.1. Place Recognition

For testing place recognition capability, we compare our pro-
posed method with three other approaches to gauge the rela-
tive quality of the results. Among these methods, VGG-FC and
VGG FC-norm are variants of deep learning approaches where
we deploy two fully connected layers with dropouts applied
after the VGG-16 network. VGG FC-norm has an additional
normalization layer before the feature encoded vectors are ex-
tracted from the network. The third approach which we term
here as ORB-VLAD uses ORB feature detector and descrip-
tor to encode keypoints from the images and uses VLAD to
further re-encode and reduce the dimensionality of the feature
vectors. The use of VLAD helps us to have a more direct com-
parison with our proposed approach since we employ a variant
of VLAD known as netVLAD.

For both datasets, the localisation performance is expressed
in the form of a Precision-Recall (PR) curve. The results are
shown in Figure 5. It can be observed from the results that
the proposed approach VGG16-VLAD and VGG16-FCnorm
outperform VGG16-FC and ORB-VLAD. The difference be-
tween the area under the curve (AUC) for VGG16-VLAD and
VGG16-FCnorm in case of both datasets is almost the same.
Nonetheless, we remark that VGG16-VLAD is more suited
for the task at hand. Our proposition is based on the obser-
vation that VGG16-VLAD performs better on the FinnForest
dataset which is considerably more challenging compared to
the PennCOSYVIO dataset. FinnForest dataset is recorded over
a significantly larger spatial area which has repetitive textures
and fewer discriminative landmarks. On the other hand, the
PennCOSYVIO dataset offers the same indoor scene in all se-
quences where the route is the same and motion speed is slightly
varied. This means we can expect a high correlation in the
training and testing data in the case of PennCOSYVIO dataset.
In contrast, the route and scene are varied in the FinnForest
dataset which will result in a lower correlation between training
and testing data, and higher data center distribution (in space
that houses encoded data clusters). Hence, we can infer that
VGG16-VLAD has better generalization capability compared
to the other methods. It is important to mention that we also
tested the SURF and SIFT features in combination with VLAD.
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Figure 5: Precision-recall curves for bi-directional loop closures in the (a) Finn-
Forest dataset and (b) PennCOSYVIO dataset.

However, the results were not included as they were poor and
inhibited the readability of the PR curve. These classical fea-
ture descriptors work well for the uni-directional cases where
the perspective does not change a lot, however, they fail to per-
form well in the bi-directional cases.

To gain a better understanding of what the network has
learned and what it sees in an image, we overlay the activa-
tion maps on their corresponding images for visual observation.
The activation maps for the forward motion case are shown in
Figures 6 and 8 for FinnForest and PennCOSVIO datasets, re-
spectively. Similarly, the activation maps for the motion in the
opposite direction (bi-directional case) are shown in Figures 7
and 9. For the forward motion case, it can be observed that al-
most the same regions are activated in the query and positive
test image pairs, which is an intuitive conclusion. In contrast,
the activation maps are flipped left-right in the backward mo-
tion case for the query image and the positive sample pair. This
effect makes sense since the images are acquired from the oppo-
site directions for roughly the same location. This flip effect is

7



(a) (b) (c)

(d) (e) (f)

Figure 6: Activation maps over sample image triplet used for testing from Finn-
Forest Dataset for forward/uni-directional case, where maps in (a-c) are for
query images, (d-f) are for corresponding (column wise) positive samples.

(a) (b) (c)

(d) (e) (f)

Figure 7: Activation maps over sample image triplet used for testing from Finn-
Forest Dataset for bi-directional motion case, where maps in (a-c) are for query
images, (d-f) are for corresponding (column wise) positive samples

dominant and easily observed from image pairs in Figure 7.a,d
and 7.b,e. Moreover, the regions closer to the camera exhibit
stronger activation compared to the regions that are far away.
All these observations are in agreement with our hypothesis for-
mulated in Section 2.3 that motivated the study.

PR curves are a good metric for binary classification and to
understand the overall performance of a system. However, to
fully prove that our method is capable of accurately closing
loops in practice, we perform loop closure offline in a causal
manner. For this experiment, we simulate keyframe selection
for loop closure at regular intervals based on the distance trav-
eled. A loop closure candidate is detected, if the score of
the query and a keyframe from the database is above a priori
threshold τ and if it has passed the confidence sharing crite-
rion among its neighboring localized keyframes. We eliminate
the most recent images from the search space and wait until

(a) (b) (c)

(d) (e) (f)

Figure 8: Activation maps over sample image triplet used for testing from Pen-
nCOSYVIO Dataset for forward/uni-directional motion case, where maps in
(a-c) are for query images, (d-f) are for corresponding (column wise) positive
samples.

(a) (b) (c)

(d) (e) (f)

Figure 9: Activation maps over sample image triplet used for testing from Pen-
nCOSYVIO Dataset for bi-directional motion case, where maps in (a-c) are for
query images, (d-f) are for corresponding (column wise) positive samples.

the database is large enough to start loop detection. The val-
ues of τ for the experiments shown in Figures 10 and 11 were
selected from Figure 5 such that the recall rate is maximized
with good precision returns. A slightly higher threshold was
selected to illustrate all the possible outcomes in the experi-
ments. As illustrated, a search can result in no match, a single
unique match, multiple valid matches, a valid match with one
or many false positives, or an invalid match. Multiple matches
can be observed when the query images are acquired in open
spaces and the scene does not change much among subsequent
keyframes. In some cases, a keyframe can find a true and false
positive at the same time due to visual similarity between mul-
tiple keyframes. This is more apparent in the FinnForest case
where we observe quite frequent repetitive textures in the trees
and on the road. Nonetheless, these false positives and invalid
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Figure 10: illustration of localisation results for FinnForest dataset. The top row shows the results for detections from the forward pass while the lower row shows
the results for localisation from the backward pass.

Figure 11: illustration of localisation results for PennCOSYVIO dataset. The top row shows the results for detections from the forward pass while the lower row
shows the results for localisation from the backward pass.

matches can be removed with the confidence-sharing approach
between the neighboring keyframes.

It can be observed that the matches for the forward motion

cases are significantly higher than the reverse case for the Finn-
Forest. This makes sense since the forward motion provides
more opportunities to observe similar scenes. In contrast, it is
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difficult to localize in the case of motion in the opposite di-
rection for the FinnForest dataset as most of the scenes do not
provide distinct landmarks within that short spatial window of
observation. Nonetheless, the model was able to successfully
identify the absence of matches and found enough matches that
could be used to significantly improve odometry results. Even
one valid match is enough to drastically improve odometry re-
sults and mitigate the errors due to drift that are accumulated in
the odometry results.

On the other hand, the model works very well on the Pen-
nCOSYVIO dataset since the indoor constrained environment
provides distinct visual landmarks that are specific to their cor-
responding locations. Extrapolating on this observation, we can
postulate that the approach would be effective in outdoor scene
recorded within a city environment that provides distinct land-
marks for bi-directional localisation. As mentioned earlier, we
were not able to use the existing visual odometry datasets that
were recorded in an urban environment as they are tailored for
uni-directional odometry and SLAM purposes.

3.2. Pose Regression

Earlier in Section 2.2, we discussed the pose regression block
in detail and stressed the necessity of pose estimation through
end-to-end learning. Here, we provide the experimental results
of the proposed approach and compare the results against al-
ternative approaches. The experimental results are tabulated in
Tables 1 and 2 for FinnForest and PennCOSYVIO datasets, re-
spectively. For comparison, we test the network by replacing
the base model (VGG16) with Resnet50. Moreover, the rela-
tive impact of weight initialization is also studied by initializ-
ing the base models with weights acquired from models previ-
ously trained on ImageNet and Places 1365 (an extension of the
Places 365 dataset) for classification tasks.

For both datasets, the pose regression performance is mea-
sured as the absolute difference between the predicted and
ground truth values for the location (in meters) and orientation
(in degrees). Similar to localisation, we test the performance of
the pose regression network and state the results on individual
sequences and the combined case. The combined testing results
are effectively the average of the individual results. The number
of test image samples and the spatial extent of the area where
each sequence was recorded are also mentioned.

It can be observed that the network that has VGG16 as the
base model and initialized with the weights of Places 1365
yields the best results followed by VGG16 initialized with Im-
ageNet. This improvement was observed since Places 1365 in-
corporates visual scenes for scene classification that are quite
relevant to our localisation task. In contrast, ImageNet is a
more diverse dataset that is tailored for object classification.
As a result, initialization with Places 1365 aids our network
to generalize better to landscapes. On the other hand, Resnet50
performed poorly for both datasets. It is important to remem-
ber that the task at hand is localisation and not visual odome-
try. The pose regression is aimed at finding the relative pose
between the query and a potential match for localisation. Tra-
ditional methods fail when we consider bi-directional cases of

localisation. The results obtained for bi-directional pose regres-
sion in this study match the performance of other state-of-the-
art approaches that are reported in studies conducted for uni-
directional loop closure [30, 29].

Table 1: Comparison of pose estimation results from the regressor model
trained on FinnForest dataset.

Sequence Test
Samples

Spatial
Extent (m)

Resnet50
Imagenet VGG-Imagenet VGG-Places 1365

S1 2044 47 x 193 5.38m, 1.02◦ 2.42m, 0.352◦ 2.26m, 0.3◦

S3 2706 800 x 190 5.26m, 1.00◦ 2.38m, 0.33◦ 2.31m, 0.29◦

S4 3566 812 x 568 5.68m, 1.06◦ 2.54m, 0.39◦ 2.36m, 0.32◦

S5 8866 1826 x 1883 7.35m, 0.84◦ 3.35m, 0.44◦ 3.23m, 0.53◦

Combined 17182 2633 x 2014 5.92m, 0.98◦ 2.67m, 0.38◦ 2.54m, 0.36◦

Table 2: Comparison of pose estimation results from the regressor model
trained on PennCOSYVIO dataset.

Sequence Test
Samples

Spatial
Extent (m)

Resnet50
Imagenet VGG-Imagenet VGG-Places 1365

C2-af 3361 144 x 36 3.79m, 0.71◦ 1.51m, 0.21◦ 1.35m, 0.22◦

C2-bs 3330 144 x 36 3.85m, 0.72◦ 1.51m, 0.20◦ 1.33m, 0.21◦

C2-bf 3090 144 x 36 3.81m, 0.73◦ 1.49m, 0.19◦ 1.36m, 0.22◦

C2-bs 3375 144 x 36 5.75m, 0.80◦ 2.20m, 0.40◦ 1.81m, 0.26◦

Combined 13156 144 x 36 4.3m, 0.74◦ 1.68m, 0.25◦ 1.46m, 0.22◦

4. Conclusion

The article presents a learning-based approach to solve the
problem of bi-directional loop closure in monocular images.
We segregate the tasks of localisation into place identification
and pose regression and solve them in two end-to-end deep
learning steps. We demonstrate that it is indeed possible to
achieve bi-directional loop closure on monocular images by
carefully posing the problem and leveraging the training data
for the networks. Moreover, we demonstrate that the networks
generalize well and aim for learning the geometric and spatial
relations in images rather than memorize the scenes/locations.
This is validated by the performance of the model on unseen
data. We compare the proposed approach with other deep learn-
ing methods and classical approaches and demonstrate superior
performance for localisation. We provide both qualitative and
quantitative results to corroborate the claim. A natural exten-
sion of the work would be to extend the case scenarios and test
the approach with more datasets.
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