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ABSTRACT

Anna Virtanen: Predicting the Workload of Home Care Personnel Using Time Series Forecasting
Master of Science Thesis
Tampere University
Electrical Engineering
February 2023

The substantial increase in the number of elderly leads to increased demand for home care
and institutional care services. Forecasting the workload of social and health care personnel is
difficult, and the allocation of resources is currently based on the experience accumulated by
experts using their "gut" feeling.

Workload prediction can be facilitated with artificial intelligence and machine learning based
solutions. In this Master of Science Thesis, the workload of the home care personnel of The
Joint Municipal Authority for Social and Healthcare in Central Uusimaa (Keusote) is predicted four
months ahead. The forecast is produced for all of Keusote’s 27 home care sites using two different
methods: a traditional ARIMA model and a modern LSTM neural network.

The models were compared by computing the root-mean-squared error, mean absolute error,
mean absolute per cent error and goodness of fit measures for the forecasts produced for each
home care unit. The key indicators gave slightly better results for the ARIMA model, but when the
forecasts were plotted side by side with the actual workload, it was noticed that the ARIMA-based
forecasts often did not have the correct DC level, they diverged from the actual workload, started
to oscillate or were constant throughout the forecasting horizon. Therefore the LSTM model, which
gave almost equally good results, was selected for production.

In the future, forecasting will probably be based on the Resident Assessment Instrument (RAI)
measurements of home care clients. The next step would be to generate a forecast utilising a
Markov model, which is a probability-based state transition model.

Keywords: time series, forecasting, demand forecasting, home care, ARIMA, LSTM
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TIIVISTELMÄ

Anna Virtanen: Kotihoidon henkilöstön työmäärän ennustaminen aikasarjamenetelmällä
Diplomityö
Tampereen yliopisto
Sähkötekniikka
Helmikuu 2023

Ikääntyneiden määrän voimakas kasvu johtaa kotihoidon ja laitoshoidon palveluiden kysynnän
lisääntymiseen. Sosiaali- ja terveydenhoidon henkilöstön työmäärän ennustaminen on vaikeaa, ja
ennustaminen perustuu tällä hetkellä asiantuntijoille muodostuneeseen mututuntumaan.

Työmäärän ennustamista voidaan helpottaa tekoälyyn ja koneoppimiseen perustuvilla ratkai-
suilla. Tässä diplomityössä ennustetaan Keski-Uudenmaan sote -kuntayhtymän (Keusote) koti-
hoidon henkilöstön työmäärää neljä kuukautta eteenpäin. Ennuste tuotetaan kaikille Keusoten
27:lle kotihoidon yksikölle kahdella eri metodilla: perinteisellä ARIMA-mallilla ja modernilla LSTM-
neuroverkolla.

Malleja vertailtiin keskenään laskemalla kullekkin kotihoidon yksikölle tuotetulle ennusteelle
tunnuslukuina keskineliövirheen neliöjuuri, keskipoikkeama, keskipoikkeaman prosenttivirhe ja yh-
teensopivuuden aste. Tunnusluvut antoivat lievästi parempia tuloksia ARIMA-mallille, mutta kun
ennusteet piirrettiin vierekkäin todellisen työmäärän kanssa, huomattiin, että ARIMA-pohjaisissa
ennusteissa DC-taso ei usein ollut oikea, ennusteet poikkesivat todellisesta työmäärästä, alkoivat
oskilloida tai olivat vakioita koko ennustehorisontin ajan. Siksi tuotantoon valittiin lähes yhtä hyviä
tuloksia antanut LSTM-malli.

Tulevaisuudessa ennustaminen perustuu todennäköisesti kotihoidon asiakkaiden Resident As-
sessment Instrument (RAI) -mittauksiin. Seuraava askel olisi ennusteen tuottaminen Markovin
mallilla, joka on todennäköisyyslaskentaan perustuva tilasiirtymämalli.

Avainsanat: aikasarja, ennustaminen, kysynnan ennustaminen, kotihoito, ARIMA, LSTM

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

According to Statistics Finland’s latest population projection, the number of elderly will

grow strongly in the next 50 years. The increase in the number of elderly is caused by the

low birth rate in Finland in the last few years. The effects of the low birth rate in Finland

are reflected in the demographic dependency ratio, that is, the number of people under

the age of 15 and over the age of 65 per 100 people of working age. At the end of the

year 2019, there were 871,036 people under the age of 15 and 3,422,982 between the

ages of 15 and 64 in Finland. 1,231,274 people were over the age of 65 at the end of

2019. The demographic dependency ratio was 61.4 in the year 2019 which is the highest

since 1922. [1] [2]

Due to large increases in the number of elderly, the need for elderly care services will

grow drastically. According to the statistics of the Ministry of Economic Affairs and Em-

ployment of Finland, Finland is in need of 20 000 new employees in the social and health

care service sector [3]. However, care work is ill-payed, demanding and mentally and

physically burdensome. In fact, many care workers intend to leave their employment due

to poor working conditions, insufficient living wages and, at the same time, large groups

of aged workers will retire. In addition to difficulties with finding care personnel, many

regional authorities and local municipalities struggle with diminishing resources and an

increased need for care. With these trends ongoing, Finland needs to restructure cur-

rent service models and produce an increasing amount of care services for the ageing

population with more efficiency than before. [4]

A significant problem in home care work management is the difficulty in estimating the

workload of the care personnel. Many customers have changes in service needs, there

are different services, care personnel’s visits have different duration and the nature of

performed services is different. In addition, there are changes in service areas, strategic

decisions and operational problems in service housing. Currently, the proper allocation of

resources is based on the experience accumulated by experts using their "gut" feeling.

Due to difficulties in estimating the workload in home care, many social and health care

service providers are interested in machine learning and artificial intelligence based help

in decision-making and resource management processes. Machine learning and artificial

intelligence have been utilized to an increasing extent in the social and health care sector,
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especially in demand forecasting. Machine learning produced forecasts can be used

to balance the workload for those offices or tasks where the need for resources is the

greatest. Additionally, low-priority routine check-ups could be planned to more suitable

time windows.

This Master of Science Thesis studies the use of two machine learning models to forecast

the workload of home care personnel for four months ahead. The study was conducted

for the Joint Municipal Authority for Social and Healthcare in Central Uusimaa (Keusote)

for 27 different home care facilities. Two machine learning models were trained for the

problem: a traditional ARIMA model and a modern LSTM neural network. At the end of

the experiment, the better-performing model was selected for production.

This Thesis begins by giving an introduction to the home care services for the elderly

in Finland in chapter 2. Chapter 3 introduces traditional time series forecasting method-

ologies as well as a modern approach with an LSTM neural network. The execution of

the study is presented in chapter 4, and the results are given in chapter 5. Chapter 6

concludes the Thesis with discussion and conclusion.
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2. HOME CARE SERVICES

In the Nordic countries, social and health care services are largely provided as a public

service. Services are tax-funded to ensure that uniform, high-quality and low-cost care

is available to all citizens, instead of relying on person’s financial status. The honest

principle is that all people use the same services and are treated the same way in similar

care situations.

However, in Finland the social and health care service sector is facing challenges in the

forthcoming years. According to Statistics Finland, the number of elderly people will grow

strongly in the following decades. The increase in the number of elderly is caused by the

low birth rate in Finland in the last years (see Figure 2.1), and its effects are reflected in

the demographic dependency ratio. [1] [2]

Figure 2.1. Number of live births in Finland from 1900 to 2020 and a projection until 2070
[1].

Figure 2.2 highlights more the vast increase in the elderly and the problems with the

demographic dependency ratio. It shows those aged 15 or under and those aged 65 or

over per 100 working-age persons from 1900 to 2020 and a projection until 2070.

Before the 1990s, home care and residential care were largely provided by regional au-
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Figure 2.2. Demographic dependency ratio from 1900 to 2020 and a projection until 2070
[1].

thorities and local municipalities. Additionally, many non-profit organisations played an

important role in providing both home care and residential care services. Currently, how-

ever, home care and residential care services are increasingly provided by for-profit ser-

vice providers and companies. The marketisation of public services has been further

developed by the economic acts many governments have to have adopted to cope with

the long-lasting crisis in the public financing of social and health care services. An impor-

tant after-effect of home-care marketisation is that the non-profit service providers have

to match up to the for-profit companies to be successful in competitive bids. [4]

2.1 Home Care Workload Estimation in Keusote

The Joint Municipal Authority for Social and Healthcare in Central Uusimaa (Keusote)

provides social and health care services in the Järvenpää, Hyvinkää, Nurmijärvi, Tu-

usula, Mäntsälä and Pornainen regions. Services are organized regionally with the goal

of effective and cost-efficient services. The basic agreement of the municipal association

was concluded between the municipalities in 2017, and the responsibility for organizing

services was transferred from the municipalities to the municipal association on January

1, 2019.

With the establishment of the municipal association, preparations were also made for the

social security reform. According to social security legislation that came into use in 2021,

the responsibility for organizing social and health care services will be transferred to the

well-being services county of Central Uusimaa. The transition will take place in the same
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geographical area where the municipal corporation already operates. The new Central

Uusimaa welfare area has started organizing services on January 1, 2023.

Keusote’s housing services for the elderly include home care and residential care, such

as assisted living facilities, enhanced service housing and institutional care. Housing

services can be organized by Keusote or a private service provider. 24-hour housing

services are aimed at customers who need regular care services, whereas home care is

mainly intended for elderly people who need assistance to support their everyday life at

home. [5]

The Resident Assessment Instrument (RAI) evaluation system is an international eval-

uation and monitoring system used to determine an aged person’s need for services,

functional capacity, health status and reserves of energy and strength. It was developed

by the international research organization InterRAI [6] and it is nationally used in elderly

care, for example, in the United States, most Canadian states, Iceland, Belgium and New

Zealand. Additionally, the system is currently being evaluated through research and test-

ing in various other countries worldwide. In 2018, about 35 % of home care clients and

about 40 % of 24-hour care clients were assessed with the RAI evaluation system in

Finland [7].

In practice, the RAI evaluation system employs a structured query template, which com-

prises hundreds of questions. Based on the client’s responses, the system generates

different internationally validated measures. Based on these measures, the client’s treat-

ment, rehabilitation and service plan is made and the daily nursing work is planned out.

Based on the results of multiple interviews conducted with Keusote’s home care manage-

ment professionals, the RAI measures that most indicate a high risk of the need for home

care services are presented in Table 2.1

Table 2.1. RAI measures that most indicate a high risk of home care service needs
gathered from interviews with Keusote’s home care management professionals.

RAI measure meaning scale
(low to high)

CAP Risk of Institutional Care -

CHESS
Changes in Health, End-stage
disease and Symptoms and Signs 0–5

CPS Cognitive Performance Scale 6-0

CPS0 Cognitive Performance Scale 1-0

MAPLe5 Method for Assigning Priority Levels 1-5

Table 2.1 shows five RAI measures. Client Assessment Protocols or Collaborative Ac-

tion Points (CAP) are RAI-based triggers used to provide information about the client’s
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resources and risk factors. They help to create an overall picture of the client’s situation

and identify the client’s strengths as well as problems that require action. [8]

The Changes in Health, End-stage disease and Symptoms and Signs (CHESS) describe

the stability of the client’s health status. It includes questions about the swelling of lower

limbs, shortness of breath, weight loss, reduced fluid intake or food consumption, as

well as, changes in decision-making abilities and/or daily activities compared to the pre-

vious evaluation. Additionally, the CHESS measure takes into consideration if the life

expectancy of the client is less than 6 months. [8]

The Cognitive Performance Scale (CPS) measure describes an aged person’s cognition

in terms of 1) short-term memory, 2) being understood, 3) the ability to make decisions,

4) the ability to eat independently and 5) the general level of consciousness. The CPS

measure helps to identify cognitive decline and potential memory disorder and its severity.

The weaker the client’s cognition, the higher the value of the CPS meter is. [8]

Method for Assigning Priority Levels (MAPLe5) measure describes factors that have an

effect on the client’s ability to live at home. Additionally, it also describes the type of

resources the client has. [8]

RAI information is also used to support decision-making and management in home care

services. For example, the cost-effectiveness and quality of care work can be evalu-

ated with the RAI tool. Resource Utilization Groups (RUG) categorization is a RAI-based

measure that is used to determine the number of care personnel and their expertise at

a home care site. The RUG categorization uses information about the client’s state of

health, physical and psychological functioning and special treatments and needs for care.

The client is placed in a certain RUG category based on how much human resources are

needed to carry out the care and services according to their needs. Personnel resources

include for example the number of personnel, their expertise and the time spent on the

client’s care. RUG categorization defines the resource needs for care at the home care

unit level, and it is not suitable for describing the needs of individual clients. The seven

RUG clinical main groups, also affecting the need for services, are described in Table 2.2

[8]

An average home care client in the Keusote area has three visits in a week and an average

visit takes 21 minutes. Most clients are female and belong to the age group 85-89. The

average number of visits and the time spent with the client within a week grouped by age

are gathered in Tables 2.3 and 2.4, respectively. The Tables show that the number of

visits and the time home care spends with the client increase with age.

Figure 2.3 demonstrates the number of persons and the number of home care visits within

a week grouped by age. The age group 85-89 years includes the most people and the

majority of them have 1-2 daily visits from home care on average. The number of home
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Table 2.2. The seven RUG clinical main groups.

RUG clinical main groups

Multidisciplinary rehabilitation

Very high demanding care

Special care

Clinically diverse

Weakening of cognition

Behavioral disorders

Weakening of physical performance

Table 2.3. The average and the median number of visits grouped by age in the Keusote
area from 5.5.2021 to 1.9.2022.

age group average median

65-69 11 7

70-74 11 8

75-79 12 12

80-84 13 14

85-89 13 14

90-94 14 14

95-99 14 14

care visits increases with age, and only a small minority have home care visits more than

four times a day on average. This may be due to clients shifting to institutional care with

the decline in health or due to natural demise.

Figure 2.4 illustrates the number and the duration of home care visits per age group. It

shows that the number of visits is the highest among patients in the age group 85-89.

This is most likely caused by this age group including the majority of home care clients.

The number of visits grows by the increase of medium-length 10-29 minute visits until the

age group 85-89, and at 90 years and over, the number of visits decreases, again most

likely due to clients moving to institutional care or due to natural demise.

Home care work management is faced with a significant challenge in accurately assessing

the workload of care personnel. This is due to a variety of factors, such as the diversity of

clients and their service needs, the diversity of services offered, changes in service areas,

strategic decisions, and operational issues in service housing. Currently, the allocation of

resources is based primarily on the accumulated experience of experts and their intuition.

Given these difficulties in estimating workload in home care, there is a growing interest

among social and health care service providers in utilizing machine learning and artificial
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Table 2.4. The average and median time spent at a client’s house within a week grouped
by age in the Keusote area from 5.5.2021 to 1.9.2022.

age group average (h) median (h)

65-69 3 2

70-74 4 3

75-79 4 3

80-84 4 4

85-89 4 4

90-94 5 4

95-99 5 4

Figure 2.3. Number of persons and home care visits per week grouped by age in Keusote
area from 5.5.2021 to 1.9.2022.

intelligence to aid in decision-making and resource management processes. Workload

forecasting is the process of estimating the amount of work or demand that will be placed

on a system or organization in the future. This can include forecasting the number of

customers, orders, or projects that will need to be handled, as well as the resources

(such as personnel or equipment) that will be required to meet that demand. The goal of

workload forecasting is to help organizations plan and prepare for future demand, and to

ensure that they have the necessary resources to meet future requirements.
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Figure 2.4. Number and duration of home care visits grouped by age in Keusote area
from 5.5.2021 to 1.9.2022.

2.2 Previous Studies

Workload forecasting has been utilized in many sectors. For instance, an arrival count

model for call centres based on a mixed Poisson approach has been introduced in lit-

erature [9]. It involves forecasting both arrival counts and average serving times. In the

context of home care, this could mean forecasting how many clients will need to be visited,

and how long each visit will take.

Forecasting the visits to emergency departments has been featured in many sources,

such as [10], which introduces a one-step-ahead forecasting model with the Facebook

Prophet machine learning library, and [11] which compares a Long Short-Term Memory

(LSTM) network to a Temporal Fusion Transformer (TFT) architecture. In [12] Padthe et

al. introduce a way of forecasting with Generalized Linear Model with Poisson Regression

(GLM) with different regularization variants. Padthe et al. also experiment with forecast-

ing with a linear Gradient Boosting Machine (GBM). These results indicate that machine

learning can be effectively utilized in workload forecasting and further research in this

area is needed.

In addition to demand forecasting, the classification of patients according to patient load

as well as direct patient load forecasting has also been studied. In [13], Floa et al. re-
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view internationally published literature to identify the patient classification systems used

to classify nursing intensity and the assessment of staffing resources currently used in

home health care. They highlight the validity and reliability of staffing resources and staff

allocation. Floa et al. found out that the included papers (13) were considered to be ap-

propriate for the measurement of patients’ needs as well as for assessing workload and

proper allocation of staff.

Mtonga et al. propose in their paper [14] a deep convolutional neural network (CNN)

model for patient load forecasting, that is capable of predicting the future patient load

given the current and historical patient load data. Furthermore, Mtonga et al. present

a framework for an Internet of Things (IoT) based smart bus transport system, allowing

patients stable enough to transfer to query bus location and time-related information and

to travel from one health facility to another to avoid overgrowing.

Overall, effective workload forecasting is crucial for maintaining the quality and accessibil-

ity of social and health care services, and for improving the overall efficiency of health care

organizations. Workload forecasting can be utilized, for example, to determine weekly

staffing levels. A mismatch between service demand and staffing ratios leads to over-

crowding, excessive waiting times, incomplete preventive service delivery and irritated

staff.
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3. TIME SERIES FORECASTING

Time series forecasting is an essential part of businesses nowadays. It involves using

historical data through statistical analyses and modelling to make assumptions about the

future. At the time of computing the forecast, the actual outcome is often not available.

A traditional example of time series forecasting is an extrapolation of past weeks’ mean

temperature values in predicting next week’s mean temperature of the day. Forecasting

with machine learning and deep learning methods has gained a lot of attention in the

past few years. However, traditional forecasting methods are still widely used in many

applications. [15]

3.1 Time Series Data

Time series data is a collection of recorded sequential observations over a particular

time interval. This ordered set of data points indicates, how things change over time.

Time series data is an important source of information in many fields of industry, such as

marketing, finance, meteorology, telecommunications, robotics and healthcare. [16]

Forecasting models are characterized by univariate and multivariate types in nature. Uni-

variate models are often more suitable for simpler analyses, whereas advanced multivari-

ate models are used more and more often in solving industry problems. [17]

3.2 Forecasting Methodologies

Traditionally, forecasting applications and online tutorials focus on one-step forecasting,

where a forecasting model is trained to forecast one time step ahead. Industrial applica-

tions often require more complicated models: the forecasting horizon is typically at least

a few weeks, months or even a year ahead. [17]

A multi-step forecasting model can be built in a direct or recursive manner. Direct methods

refer to a strategy where each forecasting horizon is computed independently from the

other forecasting horizons.

Let us denote a time series of n observations by [yt−1, ..., yt−n] and h ≥ 0 as the fore-

casting horizon. To forecast h time steps [yt, . . . , yt+h] ahead with the direct method,

h + 1 independent forecasting models fh+1 are learned, and each independent model
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forecasts a single time step in the forecasting horizon:

ŷt = f1(yt−1, yt−2, ..., yt−n)

ŷt+1 = f2(yt−1, yt−2, ..., yt−n)

.

.

.

ŷt+h = fh+1(yt−1, yt−2, ..., yt−n),

where ŷt is the forecasted time step at time t.

The direct method does not use any predicted values to compute the forecasts and there-

fore, possible prediction errors will not accumulate in the process. However, training one

model for each time step of the forecasting horizon is computationally burdensome, espe-

cially when the forecasting horizon is far in the future. Additionally, using separate models

means that there is no possibility to model the dependencies between the predictions.

[17]

The recursive strategy is the oldest and most intuitive strategy. In this approach, first

a single model f is trained to forecast one time step yt ahead. Then, to forecast the

following time step yt+1, the value previously forecasted in the first step is used as part

of the input steps and the forecast is computed using the same one-step ahead model.

By continuing this manner for h time steps, the forecast for the entire horizon can be

produced:

ŷt = f(yt−1, yt−2, ..., yt−n)

ŷt+1 = f(ŷt, yt−1, ..., yt−n+1)

ŷt+5 = f(ŷt+4, ..., ŷt+1, ŷt, ..., yt−n+5)

.

.

.

ŷt+h = f(ŷt+h−1, ..., ŷt+1, ŷt, ..., yt−n+h), n > h.

As opposed to the direct strategy, the recursive method is able to learn the dependen-

cies in the time series data and is much faster to train. However, the recursive strategy

uses approximations of previously computed forecasts and therefore makes it prone to
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accumulation of errors. [17]

3.3 Conventional Linear Methods

The most basic building blocks of univariate time series forecasting models are the au-

toregression (AR) and the moving average (MA) models. Autoregression assumes that

future observations are related to prior observations through a linear relationship. Autore-

gressive model of order p, AR(p), can be written as

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + εt, (3.1)

where c is a constant, ϕ1, ϕ2, .., ϕp are the parameters of the model, yt−1, yt−2, .., yt−p are

the lag variables included in the model and εt is the white noise. [18]

The moving average model focuses on the model error of past predictions and uses them

as an impulse for forecasted values. Moving average model of order q, MA(q), can be

described by

yt = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, (3.2)

where θ1, θ2, .., θq are the parameters of the model and εt, εt−1, .., εt−q are the white noise

error terms. [18]

The autoregressive moving average (ARMA) model is a combination of the AR and MA

models. The main principle of combining these models is simply that two models are

more powerful than one model. The ARMA model is defined by the following equation:

yt = c+ ϕ1yt−1 + ...+ ϕpyt−p + θ1εt−1 + ...+ θqεt−q + εt. (3.3)

The autoregressive integrated moving average (ARIMA) model assumes that future ob-

servations can be represented as a linear function of the differenced observations and

residual errors at prior time steps. It is generally considered as a development of the

simpler ARMA model. Furthermore, ARIMA includes the idea of integration. [15]

In this connection, integrating (the letter I in ARIMA) stands for a mathematical synonym

for differencing a non-stationary time series. A stationary time series does not show a

long-term trend, and time series can be made stationary by applying differencing: all

actual values are replaced by the difference between the present and the previous value.

The order of the difference is often denoted as d. ARIMA(p, d, q) model is described with

the following equation:
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y′t = c+ ϕ1y
′
t−1 + ...+ ϕpy

′
t−p + θ1εt−1 + ...+ θqεt−q + εt, (3.4)

where y′t is the differenced time series. Sometimes taking the difference more than once

may be necessary to achieve a stationary series. However, it is uncommon to go beyond

second-order differences anywhere in practice. [18]

Equation 3.4 is often written in the backshift notation as

(1− ϕ1B − ...− ϕpB
p)(1−B)dŷt = c+ (1 + θ1B + ...+ θqB

q)εt, (3.5)

where ŷ′t = (1 − B)dŷt. The first part in equation 3.5 represents the AR(p) part, the

second differences (d) and the third MA(q) part. [18]

In summary, the parameters of the ARIMA(p, d, q) model are specified as follows: p stands

for the number of lag variables included in the ARIMA model, often called the lag order.

Variable d denotes the difference between consecutive observations and is generally re-

ferred to as the degree of differencing. Letter q stands for the magnitude of the moving

average window, and it is appointed as the order of the moving average.

3.4 Artificial Neural Networks

Artificial neural networks (ANN) are advanced machine learning methods inspired by the

biology of the brain. They allow complex nonlinear relationships between the variable

and its predictors and are nowadays state-of-the-art methods for complex forecasting

tasks and thus featured in many sources [15] [16] [18].

A neural network can be considered as a network of neurons, often referred to as nodes,

which are organized in layers. The input nodes form the bottom layer and the output nodes

form the top layer. The intermediate layers are called hidden layers. The forecasts are

obtained by a linear combination of the inputs and passing the result through an activation

function. Activation functions are used to regulate values flowing through the network.

The most common choices of activation functions are hyperbolic tangent, rectified linear

unit (ReLU) and sigmoid function, all featured in Figure 3.1. [15]

Before making any forecasts, the weights of the network need to be adjusted to best fit

the data. This is called training and it is done with the backward propagation of errors

using the backpropagation algorithm. The algorithm is designed to work back from output

nodes to input nodes and to compute the gradient of the loss function with respect to

the weights of the network. The data is passed to the network iteratively batch by batch

and after each iteration, the weights of the network are updated to minimize loss. One

of the most common optimization algorithms to find the set of weights to minimize loss
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Figure 3.1. ANN activation functions: hyperbolic tangent, rectified linear unit and sigmoid
functions.

is gradient descent, where the weights are updated along the direction of the steepest

descent. [15]

A network architecture where every node in the previous layer is connected to each node

in the following layer is called a fully connected network. There are also other shapes

of network architectures such as convolutional neural networks (CNNs), where some of

the hidden layers perform mathematical operations called convolutions, and recurrent

networks, where information can pass through nodes connected in a cycle, allowing the

output of some nodes to affect the succeeding input to the same nodes. [15]

3.4.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of artificial neural networks. The differ-

ence between a traditional, dense ANN and RNN is a feedback loop. The difference is

illustrated in more detail in Figure 3.2.

The feedback loop enables the inputs of an RNN to have a feedback relation with each

other: RNNs use the feedback loop, often referred to as the hidden state, to be able to

remember what it has seen before. When an RNN cell receives an input, it also processes

the content of the memory and combines the information before making a prediction. This

characteristic feature makes RNNs great for modelling sequence types of data, such as
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Figure 3.2. A traditional, dense ANN vs RNN.

time series data, as it is capable of learning long-term processes. [15]

As described before, a single RNN cell receives not one but two inputs. This is described

in more detail in Figure 3.3: X is the input at time t, Y is the prediction at time t and a

represents the weights that pass from left to right in Figure 3.2 and enable the model fit

as a sequence through time.

Figure 3.3. A schematic overview of an RNN cell, adapted from [18].

Hyperbolic tangent is the standard activation function in RNNs. ANNs commonly use

rectified linear units (ReLU) activation layers, but with long sequences, such as time se-

ries data, the repeated multiplications with weights act like exponentiation and make the

system explode. Tanh activation layer forces the values to stay between -1 and 1 and

therefore suits better for time series forecasting purposes.

RNNs’ limitations are their short-term memory. If an input sequence is long enough,

RNNs are not able to transfer information from earlier time steps to later time steps, and

they sometimes leave out important information from the beginning of the time series

sequence during the backpropagation process. In RNN backpropagation processes, the

gradient decreases as it is backpropagated through time. If the value of the gradient

becomes too small, it is not able to contribute to the learning process. This issue is called



17

the vanishing gradient problem, and it is solved in more advanced RNN architectures,

such as long short-term memory (LSTM). [16]

3.4.2 Long Short-Term Memory (LSTM)

LSTM is a subclass of RNNs with a special type of cell structure. They were already

introduced in 1997 [19], and are now one of the state-of-the-art models for time series

forecasting. As mentioned before, LSTMs help preserve the error propagated through

time and layers without any risk of losing important information. This is done with a

special type of architecture that includes cell states and gates that can regulate the flow

of information. The cell learns to make decisions about how much, what and when to

release and store information by an iterative process of making guesses, backpropagating

the error and adjusting the weights with gradient descent. A schematic model of a single

LSTM cell is shown in Figure 3.4.

Figure 3.4. A structure of a single LSTM cell, adapted from [18].

In Figure 3.4, the horizontal line at the top represents the cell state. Ct−1 is the cell state

at time t − 1 and at−1 is the hidden state coming from the previous LSTM cell at time

t− 1. Ct is the new cell state and at is the outgoing hidden state. Xt is the input coming

to the LSTM cell and Yt is the output of the cell.

The cell state is regulated with gates. Gates are the way of letting information through the

cell and are marked with yellow in Figure 3.4. The three gates are regulated with sigmoid

neural net operations in the cell. The first gate is called the forget gate, the second the

input gate and the final the output gate. Each of these three gates passes the input Xt

and information from the previous hidden state at−1 through a sigmoid function in order

to regulate the input values between 0 and 1. The closer the 0 means to forget and the

closer to the 1 means to remember.
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The forget gate is the first sigmoid-regulated gate on the left side of the cell. Its job is to

determine what information should be forgotten. The function of the forget gate is

ft = σ(Wf · [at−1, xt] + bf ), (3.6)

where σ is the sigmoid operation, Wf are the weights for the forget gate neurons and bf

is the bias for the forget gate.

The second gate in the cell is the input gate. The input gate will decide what new infor-

mation should be stored in the cell state. The formula for the input gate is:

it = σ(Wi · [at−1, xt] + bi), (3.7)

where Wi are the weights for the input gate neurons and bi is the bias for the input gate.

After the input gate has decided what values should be updated, a tanh layer creates a

vector of new candidate values Ct̃ that could be added to the state:

Ct̃ = tanh(Wc · [at−1, xt] + bc), (3.8)

where tanh is the hyperbolic tangent operation, Wc are the weights and bc is the bias

for the vector of new candidate values. The values passed through the input gate and

the values from the new candidate vector are then multiplied to create an update to the

state. The new cell state is then updated by forgetting the things the forget gate decided

should be forgotten and updating the things the input gate determined should be updated,

scaled by how much each state value should be updated. Or in other words, written with

a formula:

Ct = ft ∗ Ct−1 + it ∗ Ct̃. (3.9)

The third gate in the cell is the output gate. The output gate decides what the next

hidden state should be. Firstly, the current input and the previous hidden state are passed

through a sigmoid function:

ot = σ(Wo · [at−1, xt] + bo), (3.10)

where Wo are the weights for the output gate neurons and bo is the bias for the output

gate. Secondly, the newly modified cell state is passed through a hyperbolic tangent

function. The output from tanh function is then multiplied with the output from the sigmoid

function to decide, what information the hidden state should keep:
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ht = ot ∗ tanh(Ct), (3.11)

which is the hidden state at time t. [16]

3.5 Model Evaluation Metrics

A machine learning model should not be trained with the whole dataset. The universal

principle is to leave some data for testing the model and evaluate its performance with a

few evaluation metrics. Some of the most well-known metrics in time series forecasting

are the root-mean-squared error (RMSE), mean absolute error (MAE) and mean absolute

percentage error (MAPE). [15]

The RMSE is the square root of the mean squared error (MSE):

RMSE =

⌜⃓⃓⎷1

h

h−1∑︂
i=0

(yi − ŷi)
2, (3.12)

where h is the forecasting horizon, yi stands for the actual values and ŷi for the forecasted

values.

The RMSE uses squared errors rather than original errors since original errors can involve

positive or negative values and after summation, could cancel each other out. Taking a

square root of the average of the squared errors makes the scale of the error the same

as the original variables and consequently, making the error easier to interpret.

The MAE is computed by taking the row-wise absolute differences between the predicted

and the actual values:

MAE =
1

h

h−1∑︂
i=0

|yi − ŷi| . (3.13)

Because the MAE is computed by taking the absolute values of the errors before averag-

ing them, summing the errors will not make them cancel each other out. Like the RMSE,

the MAE also yields a score in the same range as the original variables.

Generally, the RMSE is favoured over the MAE in error calculation, since RMSE uses

squares rather than absolute values and therefore, is easier to use in mathematical com-

putations that require taking derivatives. The derivatives of squared errors are easier to

compute than the derivatives of absolute errors, and as derivatives are widely used in

function optimization and minimization, it is a significant criterion. [15]

The MAPE is computed by taking the error for each prediction and dividing it by the actual
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value. This will make the error measure a percentage and therefore standardized:

MAPE =
1

h

h−1∑︂
i=0

⃓⃓⃓⃓
yi − ŷi

yi

⃓⃓⃓⃓
. (3.14)

Standardization of the error between zero and one makes it easy to communicate of the

performance results. The MAPE can be easily converted to a goodness of fit measure by

computing 1 - MAPE. It is often easier to communicate model performance in terms of a

positive result compared to a negative one.

The MAPE has one significant drawback: when the actual value is zero, the formula will

divide the error by the actual value. In other words, this scenario leads to a division by

zero, which is problematic.
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4. HOME CARE WORKLOAD PREDICTION IN

KEUSOTE

The determination of workload for home care personnel represents a significant chal-

lenge in contemporary home care management. In addition to the anticipated strong

growth in the number of elderly individuals in the coming decades, the frequent changes

in customer need for home care services, the diversity of services offered and the varying

nature of home care visits, as well as changes in service areas, strategic decisions and

operational issues related to service provision play a significant role in the complexity of

determining appropriate staffing levels in the home care service sector. The appropriate

staffing levels need to meet customer needs for service, ensure customer satisfaction and

at the same time, minimize service costs.

The aim of this study was to create a machine learning model that is able to predict

the workload of home care personnel in the Keusote operating area. Two models were

designed to forecast the daily workload of home care personnel in each Keusote’s home

care site four months ahead: a traditional ARIMA model and a modern LSTM neural

network. The better-performed model was selected for production to weekly forecast the

workload for each home care unit at the Keusote operating area. The forecasted values

are sent to a third-party interface through which the forecast is available to home care

personnel, for example, in resource management.

4.1 Data Storage

Keusote’s patient information data is stored in a data warehouse. The warehouse ar-

chitecture is based on the Virta initiative [20]. The Virta initiative is a joint project by

DigiFinland, the Ministry of Social Affairs and Health, the well-being services counties,

the Finnish Institute for Health and Welfare (THL), the National Supervisory Authority for

Welfare and Health (Valvira) and the Social Insurance Institution of Finland (Kela). The

goal of the project is 1) to facilitate the management of welfare areas with reliable and up-

to-date information, 2) to support the regions in increasing their capacity for information

management and 3) to develop a data warehouse reference architecture that especially

takes into consideration of processing of personal data. Virta reference architecture is

illustrated in Figure 4.1.
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Figure 4.1. Virta reference architecture [20].

The warehouse architecture is based on Azure Cloud services, and a more detailed

architecture and technology description can be seen in Figure 4.2. Data is first gath-

ered from various internal sources, such as patient information, finance and human re-

source systems and dumped into an Azure data lake. Personal data, subject to European

General Data Protection Regulation (GDPR) [21], is pseudonymised at the data lake.

Pseudonymisation means processing personal data in such a way that makes it impos-

sible to identify individuals from the data without the use of additional information. To be

more precise, personally identifiable information fields within the data are replaced by an

artificial identifier, a pseudonym. The pseudonym serves to identify the data within the

warehouse, but the real-world identity of the individual remains unknown.

Figure 4.2. Keusote’s data warehouse architecture.

Next, the pseudonymised data is transported through Azure Data Factory processes to

Snowflake database service staging area. Azure Data factory processes also fetch data

from external data sources and feed it to the staging area. The Snowflake data ware-
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house is built according to the Data Vault 2.0 principle [22]. Data Vault 2.0 is a largely

used system of business intelligence in data warehousing and information delivery. It is

designed to provide long-term storage of data without any use of re-engineering. The

data warehouse architecture consists of three main architectural layers of Data Vault 2.0:

the raw data warehouse (RDW), the business data vault (BDV) and the information deliv-

ery layer, also referred to as the publish layer. In the raw data warehouse, data is divided

into easily expandable data models: hubs, links and satellites using business keys [22].

At the business data vault layer, business rules are applied and larger data constructions

are created, such as "visit" or "diagnose". The publish layer is used to deliver information

to the end-user, for example, in the form of reports.

When data is moved from the business vault layer to the publish layer, it is anonymised.

Anonymisation means processing the data in such a way that makes it impossible to iden-

tify individuals. In addition to preventing identification by a third party, identification must

be prevented also by the data controller itself. Contrary to pseudonymisation, data iden-

tifiability is reduced by changing the identifier with each query. Additionally, the precision

of the data is reduced, for example, by replacing age fields with age group fields.

4.2 Derived Variables

When a nurse visits a home hospice care client, the visit is entered into a patient informa-

tion system, and each visit has a certain duration. In this study, to forecast the amount

of daily work of home care personnel four months ahead, daily totals of the duration of

the visits have been selected as the dependent variable. The study used pseudonymised

data in order to connect information for example about patient’s age, visits, visit duration,

and RAI assessment results.

As a result of several discussions with Keusote’s home care professionals, three infor-

mation sources were identified to have an effect on home care personnel’s workload and

that could be utilized in making the forecast. The independent variables were 1) daily visit

duration sums, 2) patient-specific treatment and service plan information and 3) patient-

specific values of certain RAI parameters.

Eventually, patient-specific treatment and service plans and RAI parameters could not be

utilized in forecasting. Since the primary objective of the model is to forecast the work-

load of home care personnel, it is imperative that each independent variable is directly

related to the workload (= the sum of daily visit durations). While the data warehouse did

contain information on patient-specific treatment and service plans, it did not provide in-

sight into the amount of work and effort required by care personnel for a specific service.

Furthermore, treatment and service plans are subject to frequent updates in response to

changes in the customer’s needs for service. Unfortunately, the data warehouse did not

contain information on the original plans prior to any updates and, therefore, prevented
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the use of treatment and service plans in training the forecasting algorithms.

Problems with RAI parameters were similar than with patient-specific treatment and ser-

vice plans. Since RAI measurement is a fairly new method to evaluate patients’ need for

care services, there was not enough RAI data available in the data warehouse. In fact, not

a single patient had any change in RAI parameters in the data warehouse and therefore,

comparing changes in RAI parameters with increasing or decreasing workload was not

possible. Later during the study, it was found that some RAI data might be located in a

different data system and not yet accessible in the data warehouse. However, as there

was no certain information about the existence of new RAI data, the study was decided

to be carried out with the data that was available in the data warehouse at the time of the

study.

To sum it all up, after these findings the original plan to develop a multivariate model had

to be changed to a univariate model. Eventually, the forecasting model was chosen to be

trained with daily visit duration sums while still keeping the aim of forecasting the workload

for four months ahead.

4.3 Forecasting

After the information sources to best estimate the workload were selected, the data had

to be reshaped to suit a univariate forecasting problem. This was done with multiple SQL

queries in the data warehouse. The dataset was limited to include home care visits in the

Keusote area from 5.5.2021 to 1.9.2022 so that the first 365 days were used for training

and the last 120 days (= four months) were used for testing. Home care visits were

extracted from other visits by the following criteria: 1) the form of service being home

care, home nursing and home help service, 2) the type of visit being a professional’s

visit to the customer’s home and 3) the truth value of being a visit being 1, meaning True.

Additionally, visits having a longer duration than the number of minutes in a 24-hour period

were filtered out as errors. An example of the final univariate dataset is shown in Figure

4.3.

The data was reindexed to catch possible missing dates and missing data. If a missing

date was found, the data for that missing row was fixed as the median value for that care

site.

The forecasts were programmed in the Azure Databricks environment. Azure Databricks

is a data analytics platform, and it is optimized for Microsoft Azure cloud services. It

provides a web-based platform for working with Spark, which offers automated cluster

management and IPython-style notebooks.

In total, there were 27 different care sites in the Keusote area, for which a four-month

forecast had to be produced. Two models were chosen to be trained for the forecasting
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Figure 4.3. An example of the forecasting dataset.

problem: a traditional ARIMA model and a modern LSTM neural network. One year of

historical data was selected for training, and the forecasts for each 27 care sites were

computed independently without taking any influence from each other.

After making the forecasts for each 27 home care units, the forecasted values were eval-

uated with RMSE, MAE and MAPE error metrics. Additionally, the forecasted workload

and the actual workload were plotted in the same figure to evaluate the goodness of the

forecast.

4.3.1 Forecasting with Auto-ARIMA

The ARIMA forecast was programmed with the auto-ARIMA process using Python’s pm-

darima library [23]. It is used to identify the most optimal parameters for an ARIMA model:

the number of lag variables p, order of differencing d and the magnitude of the moving

average window q. Basically, auto-ARIMA takes the data and fits many models with differ-

ent ARIMA parameters to the data. Each model characteristic is compared and the best

fit is chosen according to the selection criteria.

As part of the auto-ARIMA process, the order of differencing d is determined with a series

of differencing tests, such as Kwiatkowski–Phillips–Schmidt–Shin, Augmented Dickey-

Fuller and Phillips–Perron tests. The optimal values for p and q are decided by fitting many

models with different ranges of defined start_p, start_q, max_p and max_q, and selecting

the model with the best information criterion based on Akaike Information Criterion (AIC),

Corrected Akaike Information Criterion, Bayesian Information Criterion (BIC), Hannan-

Quinn Information Criterion (HQIC), or “out of bag” validation scoring. [23]

For example, the auto-ARIMA process suggests ARIMA(8,1,7) model (Figure 4.4) for
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care site 5. The output summary uses the same template for all autoregressive models

and therefore the header displays SARIMAX (seasonal autoregressive integrated moving

average with exogenous factors) results even though the model is actually an ARIMA

model. The output summary shows basic information such as the name of the variable

attempted to predict, date and time information and the number of observations. The Log-

Likelihood, AIC, BIC and HQIC help compare models with different parameters for the

best fit. The log-likelihood recognises the distribution that best fits the dataset. AIC, BIC

and HQIC punish the model for complexity as complex models may result in overfitting,

are hard to interpret and the overall computational efficiency is not optimal.

Figure 4.4. Auto-ARIMA’s automatically produced output summary of the model selection
process.

The output summary in Figure 4.4 additionally shows the error term sigma2 and the lag

variables from L1 to L8. Statistically insignificant variables at 5% risk level are the inter-

cept, ar.L7, ma.L1, ma.L4, and ma.L6, as their p-values are above the 0.05 threshold.

Ljung-Box test states that the null hypothesis suggesting the errors are white noise, can-

not be rejected as the probability is above 0.05. Heteroscedasticity tests whether the error

residuals have the same variance. Since the probability is again above the threshold of

0.05, the null hypothesis cannot be rejected. Jarque-Bera tests the null hypothesis that

the data is normally distributed. The probability of this test is zero which states that the

data is not normally distributed. Additionally, the Jarque-Bera test indicates that the data

is right-skewed and it has a large kurtosis.
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The auto-ARIMA process outputs diagnostics graphs for the standardized residuals. The

residual plots can be seen in Figure 4.5 for care site 5.

Figure 4.5. Diagnostic plots for standardized residuals for auto-ARIMA based ARIMA(8,
1, 7) model for care site 5.

At the top left corner in Figure 4.5, standardized residuals fluctuate around a mean of

zero. The density plot at the top right corner shows a histogram and estimated density

function of standardized residuals along with a normal(0,1) density function plotted for

reference. It shows a slightly right-skewed distribution with a mean of zero. The normal

quantile-quantile (Q-Q) plot at the bottom left corner shows that most data points are

located more or less in line with the red line. The deviation at the right side suggests

that the distribution is right skewed. The correlogram at the bottom right corner shows no

autocorrelation in the data.

4.3.2 Forecasting with LSTM

The application of an artificial neural network (ANN) based Long Short-Term Memory

(LSTM) model for forecasting required certain modifications to the dataset prior to feed-

ing the dataset values to the model. Specifically, in order to align the dataset values with

the hyperbolic tangent activation function of the LSTM units, the dataset values had to be

rescaled to a range between -1 and 1. This was accomplished by utilizing the MinMaxS-

caler functionality of the scikit-learn library [24].

Subsequently, the dataset had to be modified to look like a supervised learning problem.

A supervised learning problem is a type of machine learning problem in which the model
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is trained on a labeled dataset, that is, a dataset in which the outcome or target variable

is already known. The goal of a supervised learning algorithm is to learn a mapping from

the input variables to the output variable and make predictions about new data based on

the mapping.

In practice, to frame the dataset as a supervised learning problem, it was rephrased such

that the input data consisted of seven previous time steps, while the next time step was

designated as the output:

input output

1, 2, 3, 4, 5, 6, 7 8

2, 3, 4, 5, 6, 7, 8 9

3, 4, 5, 6, 7, 8, 9 10.

The LSTM model was created with the Sequential class from Keras [25] to linearly stack

layers into the model. Different numbers and combinations of layers and cells were tested

until the performance of the model did not significantly improve. Eventually, the network

consisted of three LSTM layers and one dense layer at the end, with each LSTM layer

having 64 cells. The dense layer consisted of one cell to match the desired output size.

The model loss was computed with the mean-squared error, which is similar to the RMSE

introduced in chapter 3 in equation 3.12 but without the square root. The optimization

algorithm was selected to be Adam, and the activation function a hyperbolic tangent to

regulate values between -1 and 1. The LSTM network structure in total is presented in

Program 4.1.

1 model = Sequent ia l ( )
2 model . add (LSTM( n_neurons , return_sequences=True ,
3 batch_input_shape =( n_batch , X . shape [ 1 ] , X . shape [ 2 ] ) ,
4 s t a t e f u l =True ) )
5 model . add (LSTM( n_neurons , return_sequences=True ) )
6 model . add (LSTM( n_neurons ) )
7 model . add (Dense ( y . shape [ 1 ] ) )
8 model . compile ( loss = ’ mean_squared_error ’ , op t im i ze r = ’adam ’ )

Program 4.1. LSTM network structure.

The LSTM model was programmed to produce the four-month forecast with a recursive

technique: first, seven days of historical data were used to produce a one-step-ahead

forecast. Next, the newly predicted day was transferred to the seven-day historical data

set and the first day was dropped from the beginning of the period making it seven days

long again. Then a new one-step-ahead forecast was again computed, and this process
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was iterated until the target length of four months was reached. The recursive forecasting

process is illustrated in more detail in Figure 4.6.

Figure 4.6. A drawing of the recursive forecasting strategy of the LSTM network.

After computing the forecasts, a reverse transformation was applied using the MinMaxS-

caler to facilitate the comparison of the forecasts with the observed workload values.

Furthermore, statistical metrics Root Mean Squared Error (RMSE), Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE), and a measure of goodness of fit were

computed for each home care site in order to facilitate a more comprehensive comparison

between the forecasts and the actual observations.
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5. RESULTS

The forecasting results for all care sites can be seen in Appendix A in Tables A.1 and A.2

for the ARIMA and the LSTM models, respectively. Figure 5.1 shows a visual summary

of these tables as a boxplot presentation.

Figure 5.1. A visual summary of Tables A.1 and A.2 presented as boxplots. The median
value of the boxplot is shown above the plot.

The figure shows four subfigures, one for each model evaluation metric described in sec-
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tion 3.5. Each subfigure displays two boxplots, one for the ARIMA model-based forecasts

and one for the LSTM model-based forecasts. The comparison of the two reveals that

the boxplots computed from the ARIMA model errors are comparatively shorter in com-

parison to those generated from the LSTM model errors. Moreover, the boxplots derived

from the LSTM model-based forecasts have longer whiskers compared to those gener-

ated from the ARIMA model-based forecasts. These observations demonstrate that the

results from LSTM-based forecasts exhibit greater variability as compared to the forecasts

produced by the ARIMA model. This can be interpreted as the LSTM-based forecast er-

rors having a higher variance. Furthermore, the box plots constructed from the ARIMA

model errors possess more outliers in comparison to those generated from the LSTM

model errors. Interestingly, the box plots constructed from the RMSE and MAE error

metrics for the LSTM model do not feature any outliers.

The median values for each boxplot in each subfigure in Figure 5.1 are relatively close.

RMSE median values around four and five hours and MAE median values around three

and four hours indicate promising results for both the ARIMA and LSTM model-based

forecasts. The mean value of around four hours of forecasting error per day is deemed

acceptable. The median values for MAPE around twelve and fourteen per cent corre-

spond to a goodness of fit median values of 88.06 % for the ARIMA model and 85.61 %

for the LSTM model.

In general, the error metric values RMSE, MAE and MAPE appear to be slightly better

for the forecasts computed with the ARIMA model than with the LSTM model, leading

to a slightly better overall goodness of fit with the ARIMA model. As a result, by only

looking at the error metrics and goodness of fit measures for the forecasts, the ARIMA

model seems like a better fitting model for this type of forecasting problem. However, upon

further examination, it becomes apparent that this is not the case and a more thorough

analysis of the results will provide an explanation for the situation.

Table 5.1 shows three care sites with the best forecasting results obtained with the ARIMA

model. LSTM model results for the corresponding care sites are shown for reference.

Table 5.1. ARIMA model results for the best three forecasts according to the goodness
of fit. LSTM model results for the same care sites are shown for reference.

ARIMA LSTM

care site id RMSE MAE MAPE Goodness RMSE MAE MAPE Goodness
(h) (h) (%) of fit (%) (h) (h) (%) of fit (%)

care site 5 2.75 1.99 6.96 93.04 5.00 3.88 13.90 86.10

care site 25 3.25 2.65 9.05 90.95 5.09 4.22 14.39 85.61

care site 19 3.79 3.12 9.27 90.73 6.80 5.89 16.87 83.13

The table highlights that the ARIMA model achieved a goodness of fit of approximately

90% for these best three forecasts. Conversely, the goodness of fit for the LSTM model is
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slightly inferior, with values ranging from 83% to 86%. The error metrics RMSE and MAE

are comparatively small for these care sites, around 3 hours for the ARIMA model and

about 4 hours for the LSTM model, with the exception of care site 19 where the RMSE

value with the LSTM model is 6.80 hours. The model evaluation metrics RMSE, MAE

and MAPE are all smaller for the ARIMA model results as compared to the LSTM model

results.

Nevertheless, an inspection of the plotted forecasts in Figures 5.2 and 5.3 offers a deeper

understanding of the characteristics of the forecasts. Figure 5.2 displays the historical

workload of one year prior to the start of the forecast, the forecasted workload and the ac-

tual workload of the four-month forecasting horizon for the best three forecasts computed

with the ARIMA model. Figure 5.3 provides a more detailed close-up of the forecasted

workload and the actual workload for these three forecasts.

(a) Care site 5 with ARIMA. (b) Care site 5 with ARIMA.

(c) Care site 25 with ARIMA. (d) Care site 25 with ARIMA.

(e) Care site 19 with ARIMA. (f) Care site 19 with ARIMA.

Figure 5.2. Left-hand side shows the historical workload of one year before the start of
the forecast, the forecasted workload and the actual workload for the top 3 best forecasts
with the ARIMA model. Right-hand side shows a close-up of the forecasted workload and
the actual workload.

The ARIMA model demonstrates an excellent fit for care site 5 in Figure 5.3a. However,

Figure 5.3c reveals that the ARIMA forecast exhibits oscillatory behaviour and an incorrect

DC level. Furthermore, Figure 5.3e highlights a quite common phenomenon observed in

multiple ARIMA-based forecasts within the study: after a short period of time, the model

sticks to forecast the median value of the workload instead of attempting to forecast any

peaks or sudden increases or decreases in workload.

This is due to the residual errors being calculated as the difference between the observed

value and the estimated workload value; forecasting the mean value is a safe way to min-
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(a) Care site 5 with ARIMA. (b) Care site 5 with LSTM.

(c) Care site 25 with ARIMA. (d) Care site 25 with LSTM.

(e) Care site 19 with ARIMA. (f) Care site 19 with LSTM.

Figure 5.3. A close-up of the ARIMA model results plotted for the top 3 best forecasts.
LSTM model results for the same care sites are plotted for reference.

imize the error and thus, resulting in slightly improved RMSE, MAE, MAPE and goodness

of fit values. This phenomenon was observed in multiple ARIMA-based forecasts, in care

sites 1, 4, 7, 12, 13 and 19.

Conversely, Figures 5.3b, 5.3d, 5.3f demonstrate that the LSTM model has a more robust

approach on how the workload develops throughout the forecasting horizon. The DC level

is accurate, and the model also attempted to predict peaks in workload, such as around

day 455 of the forecasting horizon in Figure 5.3d.

Additionally, the LSTM model never stuck to predict a constant workload value, whereas

the ARIMA model did for some home care sites. Based on the interviews with Keusote’s

home care management professionals, one of the main requirements for the forecast was

to provide a comprehensive assessment of the expected workload throughout the fore-

casting horizon. This includes identifying times of increased and decreased demand, as

well as, predicting instances of peak demand where additional workforce may be needed.

Therefore, the ability to accurately predict peaks and avoid forecasting constant workload

values throughout the forecasting horizon is a crucial characteristic of the model and one

of the main requirements of the forecasting task.

The three poorest forecasting results with the ARIMA model are shown in Table 5.2. LSTM

model results for the same care sites are shown for reference.

Table 5.2 illustrates the lowest three forecasting outcomes with the ARIMA model. The

worst three results are given for care sites 3, 10, and 22. The performance of the model,

as indicated by the RMSE, MAE, and MAPE values, is relatively poor for care site 3,
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Table 5.2. ARIMA model results for the worst three forecasts according to the goodness
of fit. LSTM model results for the same care sites are shown for reference.

ARIMA LSTM

care site id RMSE MAE MAPE Goodness RMSE MAE MAPE Goodness
(h) (h) (%) of fit (%) (h) (h) (%) of fit (%)

care site 3 11.49 10.63 39.99 60.01 8.66 7.39 26.76 73.24

care site 10 5.72 4.55 27.95 72.05 9.47 7.40 45.95 54.05

care site 22 0.87 0.73 22.30 77.70 1.02 0.82 23.69 76.31

resulting in a goodness of fit of 60%. However, the results for care sites 10 and 22 exhibit

a more satisfactory performance. The table also reveals that while the LSTM model

performs better in terms of forecasting for care site 3, it does not necessarily demonstrate

a superior performance for care sites 10 and 22.

Again, a more in-depth examination of the forecast plots presented in Figure 5.4 provides

a clearer understanding of the nature of the forecasts. The examination reveals that the

forecast for care site 3 diverges significantly from the actual workload and starts to oscil-

late, leading to poor performance as indicated by the error metric calculations. Although

the error measures for care sites 10 and 22 do not exhibit significant issues as portrayed

in Table 5.2, the relatively high goodness of fit of around 70% can largely be attributed to

the ARIMA model consistently forecasting a nearly constant value throughout the forecast

horizon.

(a) Care site 3 with ARIMA. (b) Care site 3 with ARIMA.

(c) Care site 10 with ARIMA. (d) Care site 10 with ARIMA.

(e) Care site 22 with ARIMA. (f) Care site 22 with ARIMA.

Figure 5.4. Left-hand side shows the historical workload of one year before the start of
the forecast, the forecasted workload and the actual workload for the top 3 worst forecasts
with the ARIMA model. Right-hand side shows a close-up of the forecasted workload and
the actual workload.
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Figure 5.5 further clarifies the differences between the nature of ARIMA-based and LSTM-

based forecasts. The results demonstrate that while the ARIMA model was unable to

generate a satisfactory forecast, the LSTM model was successful in doing so. Specifically,

the starting and ending points of the waves in the forecast by the LSTM model for care

site 3, as shown in Figure 5.5b, align well with the actual workload, although the forecast

predicts a generally higher workload compared to the actual workload.

(a) Care site 3 with ARIMA. (b) Care site 3 with LSTM.

(c) Care site 10 with ARIMA. (d) Care site 10 with LSTM.

(e) Care site 22 with ARIMA. (f) Care site 22 with LSTM.

Figure 5.5. A close-up of the ARIMA model results plotted for the worst three forecasts.
LSTM model results for the same care sites are plotted for reference.

Table 5.3 presents the lowest three forecasts produced by the LSTM model. ARIMA

model results for the corresponding care sites are shown for reference.

Table 5.3. LSTM model results for the worst three forecasts according to the goodness
of fit. ARIMA model results for the same care sites are shown for reference.

LSTM ARIMA

care site id RMSE MAE MAPE Goodness RMSE MAE MAPE Goodness
(h) (h) (%) of fit (%) (h) (h) (%) of fit (%)

care site 3 8.66 7.39 26.76 73.24 11.49 10.63 39.99 60.01

care site 9 6.77 5.44 24.64 75.36 3.63 3.11 13.12 86.88

care site 10 9.47 7.40 45.95 54.05 5.72 4.55 27.95 72.05

Similar to the results obtained from the ARIMA model, the goodness of fit for the worst

three forecasts is approximately 70% with the exception of care site 10, which exhibits a

goodness of fit of 54.05%. It is noteworthy that care sites 3 and 10 presented challenges

for both the ARIMA and LSTM models in terms of forecasting workload accurately.
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Table 5.3 suggests that the ARIMA model outperforms the LSTM model in terms of fore-

casting accuracy. However, a visual comparison of the plotted forecasts for the two mod-

els in Figures 5.6 and 5.7 reveals that the LSTM-based forecasts are superior, as the

ARIMA model’s forecasts are relatively constant throughout the forecast horizon. Ulti-

mately, even the worst three forecasts computed with the LSTM model are more reliable

than the ARIMA model’s forecasts for the given care sites, despite the numerical results

suggesting otherwise.

(a) Care site 10 with LSTM. (b) Care site 10 with LSTM.

(c) Care site 8 with LSTM. (d) Care site 8 with LSTM.

(e) Care site 22 with LSTM. (f) Care site 22 with LSTM.

Figure 5.6. Left-hand side shows the historical workload of one year before the start of
the forecast, the forecasted workload and the actual workload for the worst three forecasts
with the LSTM model. Right-hand side shows a close-up of the forecasted workload and
the actual workload.
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(a) Care site 10 with LSTM. (b) Care site 10 with ARIMA.

(c) Care site 8 with LSTM. (d) Care site 8 with ARIMA.

(e) Care site 22 with LSTM. (f) Care site 22 with ARIMA.

Figure 5.7. LSTM model results plotted for the worst three forecasts. ARIMA model
results are plotted for reference.

In summary, the comparison between the ARIMA and LSTM models for forecasting work-

load reveals that the ARIMA model provides slightly superior numerical results in terms

of the evaluation metrics RMSE, MAE, MAPE and goodness of fit. Nonetheless, a visual

inspection of the forecast plots highlights that the ARIMA model had a tendency to pre-

dict a constant workload value, while the LSTM model aimed to identify peak demand

instances. While the evaluation metrics favour the ARIMA model, the ability to accurately

predict peaks and to steer away from forecasting constant workload values throughout

the forecasting horizon are critical aspects of the model and a key requirement of the

forecasting task.
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6. DISCUSSION AND CONCLUSION

Determining the appropriate workload of home care personnel is a prevalent challenge in

the field of home care management. Specifically, the identification of appropriate staffing

levels on a weekly basis is essential for meeting the future demands of customers, ensur-

ing customer satisfaction, and minimizing service costs.

The goal of this study was to develop a machine learning model to forecast the daily

workload of home care personnel in home care units operating in the Keusote area. The

forecasting horizon was medium-long, spanning four months ahead. A total of 27 home

care units were included in the study, for which the four-month forecast was produced.

Two distinct forecasting models were designed to tackle the forecasting problem: a tra-

ditional ARIMA model and a modern LSTM neural network. Initially, three information

sources were identified as potentially impacting the workload: patient-specific treatment

and service plans, patient-specific RAI measures, and historical workload. However, after

a thorough examination of these sources, it was determined that patient-specific treat-

ment and service plans, as well as patient-specific RAI measures, had to be excluded

from the study. As a result, the original plan to develop a multivariate model had to be

changed to a univariate model, which resulted in a significant reduction of the model’s

forecasting power.

The ARIMA model utilized an auto-ARIMA forecasting process to define the model pa-

rameters (p, d, and q), while the LSTM model employed a recursive forecasting technique

in which future time steps were forecasted based on previously forecasted values.

The results of the study were encouraging, particularly in light of the initial starting point

where two out of three information sources had to be excluded from the study. The median

value of the MAPE for the ARIMA model was 11.94, resulting in a goodness-of-fit score of

88.06%, and the median value of MAPE for the LSTM model was slightly higher at 14.39,

resulting in a goodness-of-fit value of 85.61%. However, a visual examination of the

forecasts revealed that the LSTM model had a better ability to produce reliable forecasts

over the four-month forecasting horizon and demonstrated an aptitude for forecasting

peaks in workload. As a result, the LSTM model was selected for production.

It is worth noting that the results of the LSTM model may have been influenced by the

recursive forecasting technique, which can lead to the accumulation of errors. The LSTM
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model may have produced better results than the ARIMA model if more information

sources, such as patient-specific treatment and service plans and patient-specific RAI

parameters, could have been included in the training. The use of exogenous variables,

such as holidays, could also be exploited in future research, as the workload during the

holidays is often greater than on normal weekdays.

The analysis of the data revealed some limitations in terms of data quality. There were

instances of biases in the records, as the majority of visit durations were divisible by

five due to the use of a phone application by nurses to record the visit duration and the

prompt’s availability of such durations as speed selector options. Additionally, some errors

were found in the records, as some of the recorded home care visit durations exceeded 24

hours. These records were removed from the training data. Furthermore, some records

were missing for some days for certain home care units. These missing values were

substituted with the median workload (=sum of daily visits durations) of the respective

home care unit. The errors and biases present in the data can potentially compromise

the accuracy and reliability of the forecasting models. Therefore, a thorough examination

of data quality is crucial in detecting and correcting data deficiencies in order to obtain

robust and trustworthy forecasts.

Additionally, the results of both the LSTM model and the ARIMA model may have been

affected by the temporal context in which the data was collected, as the data was gathered

during the COVID-19 pandemic. During the pandemic, many resources were transferred

to the tasks of pandemic prevention and control and the treatment of corona patients. For

example in elderly care services, the prolonged pandemic and the growing shortage of

home care staff delayed service need assessments and limited the availability of home

care services. Additionally, the backlog in treatment and services has increased in areas

such as oral health care, non-urgent specialised medical care and, in particular, basic

public services for vulnerable clients. On the other hand, the use of remote services has

increased during the pandemic. The use of remote digital services could also be taken

into account in the future development of the forecast.

The study also raises the issue of appropriate accuracy metrics. As the residual errors

are calculated by comparing the observed workload value to the estimated value, fore-

casting a constant value throughout the forecasting horizon serves as a reliable method

for minimizing error and subsequently producing slightly superior values for the RMSE,

MAE, MAPE and goodness of fit. This ultimately provides a preference for the ARIMA

model over the LSTM model, even though a visual inspection of the forecasts suggested

otherwise. However, most prediction performance metrics used in regression are based

on the difference between the observed and predicted values and, therefore, studying al-

ternative ways to measure prediction performance may prove worthwhile. In addition, an

interesting area for future research could be to examine the forecasting error with a few

different forecasting horizons and to analyse, how different forecasting horizons would
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affect the RMSE, MAE and MAPE accuracy metrics.

Furthermore, in future research, it would be advantageous to explore other ways of fore-

casting. One potential model to consider is the Markov model, which is a probability-

based model of state transitions. A state-based model would allow taking into account

home care clients in a specific state and the probabilities of clients transitioning from one

state to another. In this context, each state would correspond to a particular duration

and intensity of home care visits. The state assignment of home care clients could be

computed by utilizing the Resident Assessment Instrument (RAI) measurements of home

care clients, as they provide insight into the needs for service. This approach would en-

able the computation of the workload based on the number of clients in different states

and the probabilities of state transitions. The Markov model would enable a more detailed

understanding of the nature of clients in a certain state and help anticipate a large number

of clients moving from a less labour-intensive state to a more labour-intensive one.
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APPENDIX A: RESULT TABLES

Table A.1. Auto ARIMA model results for all care sites. The best fit and the worst fit are
highlighted with green and red colour.

care site id RMSE (h) MAE (h) MAPE (%) Goodness of fit (%)

care site 1 6.68 4.33 14.67 85.33

care site 2 3.73 2.42 10.19 89.81

care site 3 11.49 10.63 39.99 60.01

care site 4 3.52 2.87 12.21 87.79

care site 5 2.75 1.99 6.96 93.04

care site 6 4.33 3.55 10.20 89.80

care site 7 6.45 5.49 16.38 83.62

care site 8 5.70 3.91 13.55 86.45

care site 9 3.63 3.11 13.12 86.88

care site 10 5.72 4.55 27.95 72.05

care site 11 4.76 2.97 12.51 87.49

care site 12 8.76 5.83 9.84 90.16

care site 13 3.61 2.88 9.05 90.95

care site 14 4.80 3.68 10.75 89.25

care site 15 4.70 3.97 9.37 90.63

care site 16 3.72 3.07 11.82 88.18

care site 17 3.18 2.48 11.58 88.42

care site 18 3.49 2.69 10.46 89.54

care site 19 3.79 3.12 9.27 90.73

care site 20 2.67 2.16 12.38 87.62

care site 21 0.32 0.22 11.19 88.81

care site 22 0.87 0.73 22.30 77.70

care site 23 4.07 3.02 12.09 87.91

care site 24 4.67 3.30 11.94 88.06

care site 25 3.25 2.65 9.05 90.95

care site 26 5.52 4.37 13.16 86.84

care site 27 4.91 4.09 13.19 86.81
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Table A.2. LSTM model results for all care sites. The best fit and the worst fit are high-
lighted with green and red colour.

care site id RMSE (h) MAE (h) MAPE (%) Goodness of fit (%)

care site 1 7.66 5.21 16.18 83.82

care site 2 5.70 3.83 16.27 83.73

care site 3 8.66 7.39 26.76 73.24

care site 4 4.12 3.12 13.22 86.78

care site 5 5.00 3.88 13.90 86.10

care site 6 4.42 3.52 9.72 90.28

care site 7 9.13 6.27 17.78 82.22

care site 8 6.86 5.00 16.97 83.03

care site 9 6.77 5.44 24.64 75.36

care site 10 9.47 7.40 45.95 54.05

care site 11 5.07 3.16 14.04 85.96

care site 12 9.38 6.20 9.73 90.27

care site 13 4.65 3.56 11.53 88.47

care site 14 6.85 5.36 15.21 84.79

care site 15 4.14 3.25 7.19 92.81

care site 16 3.45 2.74 11.39 88.61

care site 17 3.67 3.03 13.07 86.93

care site 18 5.25 4.35 15.74 84.26

care site 19 6.80 5.89 16.87 83.13

care site 20 2.99 2.36 13.61 86.39

care site 21 0.44 0.35 18.45 81.55

care site 22 1.02 0.82 23.69 76.31

care site 23 4.26 3.24 11.81 88.19

care site 24 7.31 6.16 23.94 76.06

care site 25 5.09 4.22 14.39 85.61

care site 26 4.53 3.68 10.19 89.81

care site 27 4.54 3.61 10.69 89.31
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