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1. INTRODUCTION 
 

Control of flexible robotic manipulators inherently 
involves many different issues pertaining to the fields of 
multi degree-of-freedom (DOF) robotics, nonlinear 
control theory, and continuous-system dynamics. To 
achieve objectives such as development of fully 
automated industrial sites or space robotics, control 
schemes assigned to robotic manipulators should 
consider all the aforementioned effects. In such cases, 
conventional control algorithms often cannot ensure 
functionality of the closed-loop system and therefore are 
not able to achieve desired characteristics such as precise 
tracking control and elimination or mitigation of 
undesired effects such as displacement of a beam due to 
link flexibility. 

Over the years, researchers have applied increasingly 
more sophisticated control theories to ensure that 
appropriate performance quality of a flexible system is 
maintained throughout a given operation despite the 
added complexity. Many iterations of such researches 
focus mostly on mitigation of undesired vibrational 
effects [1] but in recent years increasing attention has 
been devoted to investigations pertaining to qualities 
such as closed-loop stability, reference tracking and 
optimality. Furthermore, the great majority of the studies 
in this field have often considered the flexible system 
dynamics to be estimable by sets of ordinary differential 
equations (ODE) [2]. However, this can be at best 
considered an approximation as flexible systems feature 
distributed states and should be considered as infinite-
dimensional for precise modeling and control tasks. 
Modelling procedure for various classes of infinite-
dimensional flexible system is well-documented in the 
existing literature [3–5]. The obtained PDE-based sets of 

equations are difficult to work with for control purposes 
which is why their approximations as ODEs using 
methods such as finite-element method or assumed-mode 
methods are often used in their place. Naturally, such 
schemes do not feature all characteristics of distributed 
systems as they cannot describe the dynamical effects 
existing due to link flexibility and hence cannot reliably 
maintain high-quality control performance in physical 
applications. For example, while desired joint angles may 
be maintained using conventional scheme, the precision 
of end-point trajectory would suffer significantly due to 
flexibility-based displacement effects. 

To address the issues regarding lack of precision and 
feasibility of conventional schemes for control of flexible 
manipulators, some researchers have adapted alternate 
control strategies where distributed state calculations are 
directly incorporated in control calculations instead. The 
work of Zhang et al. [6] presenting a PID-based PDE 
control scheme for flexible systems can be considered as 
an early milestone in this field. Later modifications such 
as the use of boundary control strategies (which are based 
on exertion of control action onto boundary conditions of 
the mechanism) allow consideration of additional effects 
such as mitigation of end-point deflection [7,8]. Some 
researchers such have also proposed the use of additional 
modifications including incorporation of state or 
disturbance observers for estimating unavailable states or 
external disturbances [9,10]. It should be noted that even 
when using PDE-based control strategies, various 
simplifications are often considered when assigning a 
control scheme for flexible systems. The existing 
literature is often based on derivation of flexible link 
dynamics based on estimation of deflections as perfect 
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arcs [11,12]. This leads to obtaining a set of linear PDEs 
and boundary conditions which are relatively easy to 
work with but cannot be considered as extremely 
accurate. Assigning an appropriate control scheme using 
a fully nonlinear set of equations would be considerably 
more difficult. Furthermore, the studies addressing the 
topic of simultaneous stabilization and vibration 
mitigation normally adapt boundary control strategies 
which would require exertion of additional inputs at 
boundary points. This approach may not be feasible in 
applications where modifications to existing hardware 
would not be possible or efficient. Hence, alternate 
schemes capable of satisfying the discussed objectives 
using standard control inputs must be considered. 

Noting the aforementioned issues, this study presents 
a novel nonlinear PDE control scheme capable of 
ensuring reference tracking for system states alongside 
with mitigation and boundedness of link flexibility 
effects for a robotic manipulator considering link 
flexibility effects. The proposed controller solely works 
with fully nonlinear set of PDEs and no reduction in 
control calculations or derivation of governing dynamical 
equations have been employed (other than the ones 
directly corresponding to Euler-Bernoulli beam theory). 
The presented controller also ensures maintenance of 
bounded displacement effects over the length of the 
flexible beam, which essentially means satisfaction of 
more control objectives than the number of used inputs 
would allow when using standard schemes.  Therefore, 
the proposed scheme should be considered as more 
feasible for many existing applications. Numerical 
simulations demonstrate the effectiveness of proposed 
strategies. 

 
2. PROBLEM STATEMENT 

To address the problem of control of robotic 
manipulators with flexible arms, the commonly 
considered case of coupled rigid-flexible manipulator 
[7,13] depicted in Fig. 1 is investigate in this study. The 
mechanism constitutes of one rigid link and one flexible 
link, which will be considered as an infinite dimensional 
system due to distributed displacement states 𝑤(𝜉, 𝑡) 
where 𝜉 indicates the position of an element of flexible 
beam alongside its longitudal axis. 𝑡 is the system time. 
𝑙௜  , 𝑚௜  , 𝐴௜ , 𝜌௜  , 𝐸௜  and 𝐼௜   respectively indicate the 
length, surface area, mass density, elastic modulus and 
surface moment of the inertia of the beam 𝑖 . 𝜃௜ 
expresses the angle of the beams. 𝐹ଵ and 𝐹ଶ are system 
inputs respectively located at the distances 𝑙଴ଵ and 𝑙଴ଶ 
from the corresponding joints alongside the beams’ 
longitudal axis and exerted at a perpendicular angle to the 
beam surface. The lumped mass 𝑀଴ is installed at the 
end of the flexible beam and acts as the payload of 
mechanism. 

The extended Hamilton principle [3] is used in this 
study to obtain the mathematical model for the described 
dynamical system. To this end, the position vector 𝒓ത𝝃(𝑡) 
for an infinitesimal element of flexible beam located at 

the distance 𝜉 from the connecting joint and the position 
vector for 𝒓ത𝑴(𝑡) for the payload are expressed as in Eqs. 
(1-3). 

𝒓ത𝝃(𝑡) = ቈ
𝑟௫,క(𝑡)

𝑟௬,క(𝑡)
቉ (1) 

𝑟௫,క(𝑡) =  𝑙ଵ cos 𝜃ଵ (𝑡) + 𝜉 cos 𝜃ଶ (𝑡)

− 𝑤 (𝜉, 𝑡) sin 𝜃ଶ (𝑡) 
(2) 

𝑟௬,క(𝑡) = 𝑙ଵ sin 𝜃ଵ(𝑡) + 𝜉 sin 𝜃ଶ (𝑡)

+ 𝑤(𝜉, 𝑡) cos 𝜃ଶ(𝑡) 
𝒓തெ(𝑡) = 𝒓ത௟మ

(𝑡) 
(3) 

 

 
Fig. 1. Coupled rigid-flexible mechanism 

 
 According to the Euler-Bernoulli beam theory, the 

kinetic energy 𝑇(𝑡) , potential energy 𝑉(𝑡)  and 
generalized force corresponding to the entire mechanism 
with position vector 𝒓ത𝝃(𝑡) for the elements of flexible 
beam are described as follows. 

𝑇(𝑡) =
ଵ

ଶ
𝐼௠భ

𝜃̇ଵ
ଶ(𝑡) +

ଵ

ଶ
𝜌ଶ𝐴ଶ ∫ 𝒓ത̇𝝃

்(𝑡)𝒓ത̇𝝃
௟మ

଴
(𝑡)𝑑𝜉 + 𝑀଴𝒓ത̇ெ

் (𝑡)𝒓ത̇ெ(𝑡)  
(4) 

𝑉(𝑡) =
ଵ

ଶ
𝑚ଵ𝑔𝑙ଵ sin 𝜃ଵ (𝑡) +

ଵ

ଶ
𝑚ଶ𝑔𝑙ଶ sin 𝜃ଶ (𝑡) + 𝑚ଶ𝑔𝑙ଵ sin 𝜃ଵ (𝑡) +

𝑀଴𝑔𝑙ଵ sin 𝜃ଵ (𝑡) + 𝑀଴𝑔𝑙ଶ sin 𝜃ଶ (𝑡) +

𝑀଴𝑔𝑤(𝜉, 𝑡)𝑐𝑜𝑠 𝜃ଶ(𝑡) +
ଵ

ଶ
𝐸ଶ𝐼ଶ ቂ

డమ௪

డకమ
(𝜉, 𝑡)ቃ

ଶ

𝑑𝜉  

(5) 

𝑄ఏೕ
= ෍ 𝐹௜

𝜕𝑟௟̅బ௜

𝜕𝜃௝

ଶ

௜ୀଵ

, 𝑗 = 1,2 (6) 

[–̇ ]  expresses derivation with respect to time and 

𝐼௠೔
=

ଵ

ଷ
𝑚௜𝑙௜

ଶ is the mass moment of inertia of the beams 

without considering link flexibility effects (which are 
described by the other terms in Eqs. (4-6)). 
 Substituting the aforementioned terms in extended 
Hamilton principle 𝛿(𝑇 − 𝑉 + 𝑄) = 0 , after some 
lengthy but straightforward calculations, the 
mathematical model for system dynamics featuring 
governing equations and boundary conditions is obtained 



as follows. For brevity, we will use the expressions 

𝑤(𝜉) = 𝑤(𝜉, 𝑡), 𝜃௜ = 𝜃௜(𝑡) and (−)క =
ௗ(ି)

ௗక
. 

ቀ𝐼௠ଵ +
ଵ

ଶ
𝑚ଶ𝑙ଵ

ଶ + 𝑀଴𝑙ଵ
ଶቁ 𝜃̈ଵ +

ቂ
ଵ

ଶ
𝑚ଶ𝑙ଵ𝑙ଶ cos(𝜃ଵ − 𝜃ଶ) + 𝑀଴𝑙ଵ𝑙ଶ cos(𝜃ଵ −

𝜃ଶ) + 𝑀଴𝑙ଵ𝑤(𝑙ଶ) sin(𝜃ଵ − 𝜃ଶ)ቃ 𝜃̈ଶ +
ଵ

ଶ
𝑚ଶ𝑙ଵ𝑙ଶ𝜃̇ଵ

ଶ sin(𝜃ଵ − 𝜃ଶ) −
ଵ

ଶ
(𝑚ଵ +

𝑚ଶ)𝑔𝑙ଵ cos 𝜃ଵ − 𝑀଴𝑔𝑙ଵ cos(𝜃ଵ) +

𝑀଴𝑙ଵ𝑙ଶ𝜃̇ଶ
ଶ sin(𝜃ଵ − 𝜃ଶ) +

2𝑀଴𝑙ଵ𝑤̇(𝑙ଶ)𝜃̇ଶ sin(𝜃ଵ − 𝜃ଶ) −

𝑀଴𝑙ଵ𝜃̇ଶ
ଶ𝑤(𝑙ଶ) cos(𝜃ଵ − 𝜃ଶ) −

𝜌ଶ𝐴ଶ ∫ ൣ𝑙ଵ𝜃̈ଶ sin(𝜃ଵ − 𝜃ଶ) 𝑤(𝜉) −
௟మ

଴

𝑙ଵ𝜃̇ଶ
ଶ cos(𝜃ଵ − 𝜃ଶ) 𝑤(𝜉) − 𝑙ଵ𝑤̈(𝜉) cos(𝜃ଵ −

𝜃ଶ)൧ 𝑑𝜉 + 𝑀଴𝑙ଵ cos(𝜃ଵ − 𝜃ଶ) 𝑤̈(𝑙ଶ) = 𝐹ଵ𝑙଴ଵ +

𝐹ଶ𝑙ଵ  

(7) 

ቂ
ଵ

ଶ
𝑚ଶ𝑙ଵ𝑙ଶ cos(𝜃ଵ − 𝜃ଶ) + 𝑀଴𝑙ଵ𝑙ଶ cos(𝜃ଵ −

𝜃ଶ) + 𝑀𝑙ଵ𝑤(𝑙ଶ) sin(𝜃ଵ − 𝜃ଶ)ቃ 𝜃̈ଵ + [𝐼௠ଶ +

𝑀଴𝑙ଶ
ଶ + 𝑀଴

ଶ𝑤(𝑙ଶ)]𝜃̈ଶ − ቀ
ଵ

ଶ
𝑚ଶ +

𝑀଴ቁ 𝑙ଵ𝑙ଶ𝜃̇ଵ
ଶ sin(𝜃ଵ − 𝜃ଶ) + 𝑀଴𝑙ଶ𝑤̈(𝑙ଶ) +

2𝑀଴𝑤(𝑙ଶ)𝑤̇(𝑙ଶ)𝜃̇ଶ + 𝑀଴𝑙ଵ𝜃̇ଵ
ଶ𝑤 cos(𝜃ଵ −

𝜃ଶ) − 𝑀଴𝑔𝑙ଶ cos(𝜃ଶ) −

𝜌ଶ𝐴ଶ ∫ ൣ−𝑤ଶ(𝜉)𝜃̈ଶ + 𝑙ଵ𝜃̈ଵ sin(𝜃ଵ −
௟మ

଴

𝜃ଶ) 𝑤(𝜉) + 𝑙ଵ𝜃̇ଵ
ଶ cos(𝜃ଵ − 𝜃ଶ)𝑤 (𝜉) −

𝜉𝑤̈(𝜉) + 2𝑙ଵ𝜃̇ଵ sin(𝜃ଵ − 𝜃ଶ) 𝜔̇(𝜉)൧ 𝑑𝜉 = 𝐹ଶ𝑙଴ଶ  

(8) 

𝜌ଶ𝐴ଶ𝑤̈(𝜉) − 𝜌ଶ𝐴ଶ𝜃̇ଶ
ଶ𝑤(𝜉) + 𝜌ଶ𝐴ଶ𝜉𝜃̈ଶ +

𝜌ଶ𝐴ଶ𝑙ଵ𝜃̈ଵ cos(𝜃ଵ − 𝜃ଶ) − 𝜌ଶ𝐴ଶ𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ −

𝜃̇ଶ൯ sin(𝜃ଵ − 𝜃ଶ) + 𝐸ଶ𝐼ଶ𝑤కకకక (𝜉) = 0  
(9) 

𝑤̈(𝑙ଶ) − 𝑤(𝑙ଶ)𝜃̇ଶ
ଶ + 𝑙ଶ𝜃̈ଶ + 𝑙ଵ𝜃̈ଵ cos(𝜃ଵ −

𝜃ଶ) − 𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ − 𝜃̇ଶ൯ sin(𝜃ଵ − 𝜃ଶ) +

𝑔𝑤(𝑙ଶ) sin 𝜃ଶ − 𝑔 cos(𝜃ଶ) + 𝐸ଶ𝐼ଶ𝑤కకక = 0  
(10) 

𝑤(𝑜) = 𝑤కక (0) = 0 (11) 
𝑤కక(𝑙ଶ) = 0 (12) 

Remark 1 (Control Objective). Control objectives are 
considered asymptotic stability of closed-loop system 
and tracking of position reference signals 𝜃ଵ௥(𝑡)  and 
𝜃ଶ௥(𝑡)  with respect to system states 𝜃ଵ(𝑡)  and 𝜃ଶ(𝑡) . 
Furthermore, the objective of mitigating link deflection 
𝑤(𝜉), 𝜉 ∈ [0, 𝑙ଶ]  and ensuring its boundedness is 
considered. Furthermore, the set of PDEs Eqs. (7-12) 
should be directly incorporated in control calculations 
without any reduction for increased feasibility. 
 In Section 3, a nonlinear PDE-based control scheme 
will be presented satisfying the described control 
objective for dynamical system described by Eqs. (7-12). 

3. CONTROLLER DESIGN 
This section will detail the procedure of designing the 

nonlinear PDE-based controller for flexible manipulators 
(NPCFM). To present control calculations in a concise 
and orderly format, Eqs. (7,8) will be expressed as state-
space equations. 

𝑴௥௥(𝑡)𝒒̈ഥ௥(𝑡) + 𝒉ഥ௥(𝑡) = 𝑩𝒓𝒓(𝑡)𝒖ഥ(𝑡) (13) 
𝒒ഥ௥(𝑡) = [𝜃ଵ, 𝜃ଶ]் (14) 
𝒖ഥ(𝑡) = [𝐹ଵ(𝑡), 𝐹ଶ(𝑡)]் (15) 

𝑴௥௥(𝑡) = ቈ
𝑀௥௥ଵଵ

(𝑡), 𝑀௥௥ଵଶ
(𝑡)

∗ 𝑀௥௥ ଶଶ
(𝑡)

቉ (16) 

𝑀௥௥ଵଵ
= 𝐼௠ଵ +

ଵ

ଶ
𝑚ଶ𝑙ଵ

ଶ + 𝑀଴𝑙ଵ
ଶ −

𝜌ଶ𝐴ଶ ∫ 𝑙ଵ sin(𝜃ଵ − 𝜃ଶ) 𝑤
௟మ

଴
(𝜉)𝑑𝜉  

(17) 

𝑀௥௥ଵଶ
=

ଵ

ଶ
𝑚ଶ𝑙ଵ𝑙ଶ cos(𝜃ଵ − 𝜃ଶ) +

𝑀଴𝑙ଵ𝑙ଶ cos(𝜃ଵ − 𝜃ଶ) + 𝑀଴𝑙ଵ𝑤(𝑙ଶ) sin(𝜃ଵ −

𝜃ଶ) + 𝜌ଶ𝐴ଶ ∫ 𝑤ଶ(𝜉)
௟మ

଴
𝑑𝜉  

(18) 

𝑀௥௥ଶଶ
= 𝐼௠ଶ + 𝑀଴𝑙ଶ

ଶ + 𝑀଴
ଶ𝑤(𝑙ଶ) (19) 

𝒉ഥ௥(𝑡) = [ℎଵ(𝑡), ℎଶ(𝑡)] (20) 

ℎଵ(𝑡) =
ଵ

ଶ
𝑚ଶ𝑙ଵ𝑙ଶ𝜃̇ଵ

ଶ sin(𝜃ଵ − 𝜃ଶ) −
ଵ

ଶ
(𝑚ଵ +

𝑚ଶ)𝑔𝑙ଵ cos 𝜃ଵ − 𝑀଴𝑔𝑙ଵ cos(𝜃ଵ) +

𝑀଴𝑙ଵ𝑙ଶ𝜃̇ଶ
ଶ sin(𝜃ଵ − 𝜃ଶ) +

2𝑀଴𝑙ଵ𝑤̇(𝑙ଶ)𝜃̇ଶ sin(𝜃ଵ − 𝜃ଶ) −

𝑀଴𝑙ଵ𝜃̇ଶ
ଶ𝑤(𝑙ଶ) cos(𝜃ଵ − 𝜃ଶ) −

𝜌ଶ𝐴ଶ ∫ ൣ−𝑙ଵ𝜃̇ଶ
ଶ cos(𝜃ଵ − 𝜃ଶ) 𝑤(𝜉) −

௟మ

଴

𝑙ଵ𝑤̈(𝜉) cos(𝜃ଵ − 𝜃ଶ)൧ 𝑑𝜉 + 𝑀଴𝑙ଵ cos(𝜃ଵ −

𝜃ଶ) 𝑤̈(𝑙ଶ)  

(21) 

ℎଶ(𝑡) = − ቀ
ଵ

ଶ
𝑚ଶ + 𝑀଴ቁ 𝑙ଵ𝑙ଶ𝜃̇ଵ

ଶ sin(𝜃ଵ − 𝜃ଶ) +

𝑀଴𝑙ଶ𝑤̈(𝑙ଶ) + 2𝑀଴𝑤(𝑙ଶ)𝑤̇(𝑙ଶ)𝜃̇ଶ +

𝑀଴𝑙ଵ𝜃̇ଵ
ଶ𝑤 cos(𝜃ଵ − 𝜃ଶ) − 𝑀଴𝑔𝑙ଶ cos(𝜃ଶ) −

𝜌ଶ𝐴ଶ ∫ ൣ𝑙ଵ𝜃̇ଵ
ଶ cos(𝜃ଵ − 𝜃ଶ)𝑤 (𝜉) − 𝜉𝑤̈(𝜉) +

௟మ

଴

2𝑙ଵ𝜃̇ଵ sin(𝜃ଵ − 𝜃ଶ) 𝜔̇(𝜉)൧ 𝑑𝜉  

(22) 

𝑩𝒓𝒓 = ൤
𝑙଴ଵ 𝑙ଵ

0 𝑙଴ଶ
൨ (23) 

 Theorem 1 will detail the procedure of assigning an 
appropriate controller capable of ensuring satisfaction of 
control objectives i.e., tracking of assigned position 
references and mitigation of undesired link flexibility 
effects. To address this, a candidate Lyapunov function 
(CLF) will be assigned featuring measures of tracking 
errors and link flexibility effects. Through mathematical 
manipulations of CLF and without introducing additional 
boundary inputs, it will be ensured that the controllable 
system states will converge to desired references. 
Simultaneously, boundedness of distributed system states 
and mitigation of undesired flexibility effects will be 
maintained. 
Theorem 1. The control input Eq. (24) will ensure the 
satisfaction of control objectives of Remark 1 for the 
flexible dynamical system described by Eqs. (7-12). 

𝒖ഥ(𝑡) = 𝑩௥௥
ିଵൣ𝑴௥௥(𝑡)𝒒̈ഥ௥௙(𝑡) + 𝒉ഥ௥(𝑡)൧, (24) 

where 𝒒̈ഥ௥௙(𝑡) is the solution for a control inequality that 
will be defined in Eq. (40). 
Proof. The CLF 𝑉(𝑡) is defined in Eq. (25) as follows. 

𝑉(𝑡) =  𝑉ଵ(𝑡) + 𝑐௙𝑉ଶ(𝑡) (25) 

𝑉ଵ(𝑡) =
1

2
𝒆ത்(𝑡)𝒆ത(𝑡) (26) 

𝑉ଶ(𝑡) =
1

2
න ൤𝑤̇ଶ(𝜉) +

𝐸ଶ𝐼ଶ

𝜌ଶ𝐴ଶ

𝑤కక
ଶ (𝜉)൨

௟మ

଴

𝑑𝜉 (27) 

𝒆ത(𝑡) is the error vector defined as: 
𝒆ത(𝑡) = [𝑒ଵ(𝑡), 𝑒ଶ(𝑡)]், (28) 
𝑒௜(𝑡) = 𝜃௜(𝑡) − 𝜃௥௜(𝑡) + 𝜆ൣ𝜃̇௜(𝑡) − 𝜃̇௥௜(𝑡)൧. (29) 

𝜆 ∈ (0,1)  and 𝑐௙ > 0 are control parameters. 



  
 

 To calculate derivative of CLF, 𝒆ത̇(𝑡) is expressed as: 
𝒆̇ത(𝑡) = 𝑴௥௥

ିଵ(𝑡)𝑩௥௥(𝑡)𝒖ഥ(𝑡) − 𝜆𝑴௥௥
ିଵ(𝑡)𝒉ഥ௥(𝑡)

+ 𝜹ഥ(𝑡), 
(30) 

𝜹ഥ(𝑡) = ቈ
𝜃̇ଵ(𝑡) − 𝜃̇ଵ௥(𝑡) − 𝜆𝜃̈ଵ௥(𝑡)

𝜃̇ଶ(𝑡) − 𝜃̇ଶ௥(𝑡) − 𝜆𝜃̈ଶ௥(𝑡)
቉. (31) 

It follows that: 
𝑉̇ଵ(𝑡) = 𝒆ത்(𝑡)𝒆̇ത(𝑡) =
𝒆ത்(𝑡)𝑴௥௥

ିଵ(𝑡)𝑩𝒓𝒓(𝑡)𝒖ഥ(𝑡) − 𝒆ത்(𝑡)𝑴௥௥
ିଵ𝒉ഥ௥(𝑡) +

𝒆ത்(𝑡)𝜹ഥ(𝑡),  
(32) 

𝑉̇ଶ(𝑡) = ∫ ቂ𝑤̇(𝜉)𝑤̈(𝜉) +
௟మ

଴
ாమூమ

ఘమ஺మ
𝑤కక(𝜉)𝑤̇కక(𝜉)ቃ 𝑑𝜉.  

(33) 

 To simply 𝑉̇ଶ(𝑡) , based on Eq. (9), the acceleration 
value 𝑤̈(𝜉) is expressed as Eq. (34) instead. 

𝑤̈(𝜉) = 𝜃̇ଶ
ଶ𝑤(𝜉) −

ாమூమ

ఘమ஺మ
𝑤కకకక(𝜉) +

𝑓൫𝒒ഥ௥ , 𝒒̇ഥ௥ , 𝒒̈ഥ௥൯  
(34) 

𝑓൫𝒒ഥ௥ , 𝒒̇ഥ௥ , 𝒒̈ഥ௥൯ = −𝜉𝜃̈ଶ − 𝑙ଵ𝜃̈ଵ cos(𝜃ଵ − 𝜃ଶ) +

𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ − 𝜃̇ଶ൯ sin(𝜃ଵ − 𝜃ଶ)  
(35) 

 Similarly, using consecutive integration by parts for 

∫ ൣ𝑤కక(𝜉, 𝑡)𝑤̇కక(𝜉, 𝑡)൧
௟మ

଴
𝑑𝜉  and substituting boundary 

conditions Eqs. (11,12), it is obtained that: 

𝑉̇ଶ(𝑡) = ∫ ቄቂ𝜃̇ଶ
ଶ𝑤(𝜉) −

ாమூమ

ఘమ஺మ
𝑤కకకక (𝜉) +

௟మ

଴

𝑓(𝒒ഥ௥ , 𝒒̇ഥ௥ , 𝒒̈ഥ௥)ቃ 𝑤(𝜉)̇ ቅ 𝑑𝜉 +
ாమூమ

ఘమ஺మ
 ∫ 𝑤కకకక(𝜉)𝑤̇(𝜉)

௟మ

଴
𝑑𝜉 +

ாమூమ

ఘమ஺మ
൫𝑤̇క  𝑤̇కక −

𝑤̇𝑤కకక ൯
଴

௟మ
= ∫ ൛ൣ𝜃̇ଶ

ଶ𝑤(𝜉) + 𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ −
௟మ

଴

𝜃̇ଶ൯ sin(𝜃ଵ − 𝜃ଶ)൧𝑤̇(𝜉)ൟ 𝑑𝜉 − ∫ 𝑙ଵ cos(𝜃ଵ −
௟మ

଴

𝜃ଶ) 𝑤̇(𝜉)𝑑𝜉𝜃̈ଵ − ∫ 𝜉𝑤̇
௟మ

଴
(𝜉)𝑑𝜉𝜃̈ଶ −

ாమூమ

ఘమ஺మ
𝑤̇(𝑙ଶ)𝑤కకక(𝑙ଶ).  

(36) 

 Then, from Eq. (32) and Eq. (36), 𝑉̇(𝑡) is expressed 
as: 

𝑉̇(𝑡) = 𝜸ഥ்𝒒̈ഥ௥ + 𝒆ത்(𝑡)𝜹ഥ(𝑡) −

𝑐௙
ாమூమ

ఘమ஺మ
𝑤̇(𝑙ଶ)𝑤కకక(𝑙ଶ) + 𝑐௙ ∫ ൛ൣ𝜃̇ଶ

ଶ𝑤(𝜉) +
௟మ

଴

𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ − 𝜃̇ଶ൯ sin(𝜃ଵ − 𝜃ଶ)൧𝑤̇(𝜉)ൟ,  

(37) 

𝜸ഥ =

⎣
⎢
⎢
⎢
⎡𝜆𝑒ଵ(𝑡) − න 𝑙ଵ cos(𝜃ଵ − 𝜃ଶ)

௟మ

଴

𝑤̇(𝜉)𝑑𝜉

𝜆𝑒ଶ(𝑡) − න 𝜉𝑤̇
௟మ

଴

(𝜉)𝑑𝜉
⎦
⎥
⎥
⎥
⎤

. (38) 

 Now, based on Eq. (37), 𝑉̇(𝑡) < 0 is solvable for 𝒒̈ഥ௥ 
and therefore for 𝒖ഥ. as 𝑴௥௥𝒒̈ഥ௥ + 𝒉ഥ௥ = 𝑩𝒓𝒓𝒖ഥ according 
to state space representations above. The solution for 𝒒̈ഥ௥ 
is expressed as 𝒒̈ഥ௥௙ . To obtain the solution, inequality 
𝑉̇(𝑡) < 0  is transformed using slack variable 𝛼  as 
follows. 

𝜸ഥ்𝒒̈ഥ௥ = ቂ𝜆𝑒ଵ(𝑡) − ∫ 𝑙ଵ cos(𝜃ଵ −
௟మ

଴

𝜃ଶ) 𝑤̇(𝜉)𝑑𝜉ቃ 𝜃̈ଵ௙ + ቂ𝜆𝑒ଶ(𝑡) −

∫ 𝜉𝑤̇
௟మ

଴
(𝜉)𝑑𝜉ቃ 𝜃̈ଶ௙ = 𝑐௙

ாమூమ

ఘమ஺మ
𝑤̇(𝑙ଶ)𝑤కకక (𝑙ଶ) −

𝑐௙ ∫ ൛ൣ𝜃̇ଶ
ଶ𝑤(𝜉) + 𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ − 𝜃̇ଶ൯ sin(𝜃ଵ −

௟మ

଴

𝜃ଶ)൧𝑤̇(𝜉)ൟ 𝑑𝜉 − 𝒆ത்(𝑡)𝜹ഥ(𝑡) − 𝛼ଶ.  

(39) 

 Then, the solution 𝒒̈ഥ௥௙ is calculated as Eqs. (40,41). 

𝒒̈ഥ௥௙ = ൣ𝜃̈ଵ௙ , 𝜃̈ଶ௙൧
்
 (40) 

𝜃̈ଵ௙ =
ఉ(௧)

ఒ௘భ(௧)ି∫ ௟భ ୡ୭ୱ(ఏభିఏమ)
೗మ

బ
௪̇(క)ௗక

ቂ−𝑐௙
ாమூమ

ఘమ஺మ
𝑓௕(𝑡) −

𝑐௙ ∫ ൛ൣ𝜃̇ଶ
ଶ𝑤(𝜉) + 𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ − 𝜃̇ଶ൯ sin(𝜃ଵ −

௟మ

଴

𝜃ଶ)൧𝑤(𝜉)̇ ൟ 𝑑𝜉 − 𝑒ଵ(𝑡)𝛿ଵ(𝑡) − 𝛼ଶቃ  

(41) 

𝜃̈ଶ௙ =
ଵିఉ

ఒ௘మ(௧)ି∫ క௪̇
೗మ

బ
(క)ௗక

ቂ−𝑐௙
ாమூమ

ఘమ஺మ
𝑓௕(𝑡) −

𝑐௙ ∫ ൛ൣ𝜃̇ଶ
ଶ𝑤(𝜉) + 𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ − 𝜃̇ଶ൯ sin(𝜃ଵ −

௟మ

଴

𝜃ଶ)൧𝑤̇(𝜉)ൟ 𝑑𝜉 − 𝑒ଶ(𝑡)𝛿ଶ(𝑡) − 𝛼ଶቃ  

(42) 

 𝛽(𝑡) ∈ [0,1]  is a control parameter. From Eq. (13) 
and Eq. (40), it follows that control input 𝒖ഥ(𝑡) 
satisfying control objectives expressed in Remark 1 is 
calculated as Eq. (24), which completes the proof. 
Remark 2. The significance of deflection mitigation or 
state tracking can be adjusted in CLF 𝑉(𝑡) through the 
control parameter 𝑐௙ . Higher magnitudes of 𝑐௙  would 
correspond to better vibration mitigation, whereas 
smaller values would prioritize state tracking. 
Remark 3. A potential limitation of the proposed 
controller is the requirement for availability of data 
corresponding to distributed states as they may be 
difficult to measure. This issue could be addressed by 
assigning observation or estimation schemes or assigning 
a set of corresponding sensors to the flexible beam. 

4. NUMERICAL RESULTS 
 This section will present the results of numerical 
simulations for the control scheme developed in Sections 
2 and 3. To this end, numeric values presented in Table 1 
are considered for investigated mechanical system. 

Table 1. Properties of mechanical system and control 
parameters 

Parameter Value Parameter Value 
𝝆𝒊𝑨𝒊 1.872[𝑘𝑔/𝑚] 𝑙଴௜  𝑙௜/3  
𝑬𝒊𝑰𝒊 5.76𝑒7[𝑁. 𝑚ଶ] 𝑔 9.8 [𝑚/𝑠ଶ]  

Sample time 0.001 [s] 𝛽 0. 0 
𝜶(𝒕) 10.0𝑒௜(𝑡) 𝐶௙ 1. 0 

𝑴𝟎 1.0[𝑘𝑔] 𝜆 0.8 
𝒍𝟏 1.0[𝑚] 𝑙ଶ 2.0[𝑚] 

Remark 3. While no reduction has been considered in 
design of control scheme, the nonlinear set of PDEs (7-
12) have no analytical solution. Therefore, for numerical 
simulations and verification of controller efficiency, the 
Galerkin method [3] is employed in this study. To this end, 
the distributed estimation of deflection Eq. (43) is 
considered in numerical simulations. 

𝑤(𝜉, 𝑡) = ෍ 𝜂௜(𝑡)𝜙௜(𝜉)

௡೘

௜ୀଵ

, (43) 

where 𝜂௜(𝑡)  are unknown transformed states that are 
determined during numerical calculations and 𝜙௜(𝜉) 
describe the mode shapes of flexible beam assumed to be 
in the form of Eq. (47). 

𝜙௜(𝜉) = 𝑐ଵ௜(cos 𝛽௜𝜉 + cosh 𝛽௜𝜉)
+ 𝑐ଶ௜(cos 𝛽௜𝜉 − cosh 𝛽௜𝜉)
+ 𝑐ଷ௜(sin 𝛽௜𝜉 + sinh 𝛽௜𝜉)
+ 𝑐ସ௜(sin 𝛽௜𝜉 − sinh 𝛽௜𝜉) 

(44) 

 𝛽௜ , 𝑐ଵ௜  , 𝑐ଶ௜ , 𝑐ଷ௜  and 𝑐ସ௜  are determined by 
substituting Eq. (43) in boundary conditions Eqs. (10-12). 



𝑐ଵ = 𝑐ଶ = 0 (45) 

൤
𝑀ଵଵ, 𝑀ଵଶ

𝑀ଶଵ, 𝑀ଶଶ
൨ ቂ

𝑐ଷ

𝑐ସ
ቃ = ൤

0
𝒽ଶ

൨ (46) 

𝑀ଵଵ = −sin 𝛽௜𝜉 + sinh 𝛽௜𝜉 (47) 
𝑀ଵଶ = − sin 𝛽௜𝜉 − sinh 𝛽௜𝜉 (48) 
𝑀ଶଵ = 𝐸ଶ𝐼ଶ𝛽ଷ(−cos 𝛽௜𝜉 + cosh 𝛽௜𝜉) +
𝑀଴ൣ−𝜃̇ଶ

ଶ + 𝑔൧  
(49) 

𝑀ଶଶ = 𝐸ଶ𝐼ଶ𝛽ଷ(sin 𝛽௜𝜉 − sinh 𝛽௜𝜉) +

𝑀଴ൣ−𝜃̇ଶ
ଶ + 𝑔൧  

(50) 

𝒽ଶ = 𝑙ଶ𝜃̈ଶ + 𝑙ଵ𝜃̈ଵ cos(𝜃ଵ − 𝜃ଶ) − 𝑙ଵ𝜃̇ଵ൫𝜃̇ଵ −

𝜃̇ଶ൯ sin(𝜃ଵ − 𝜃ଶ) − 𝑔 cos(𝜃ଶ)  (51) 

Remark 4. To obtain a numerically solvable set of ODEs, 
Eq. (43) is substituted in governing equations Eqs. (7-9). 
After substituting Eq. (43) in Eq. (9), the resulting 
equation is multiplied by 𝜙௝(𝜉)  for 𝑗 = 1, … , 𝑛௠ and 
integrated over [0, 𝑙ଶ]  [13]. This would result in 𝑛௠ 
equations corresponding to 𝜂ଵ, 𝜂ଶ, … and 𝜂௡೘

. 
As it was expressed, the procedure of calculation of 

control inputs do not require any internal variable used in 
Galerkin method and are only based on system states and 
inputs. In other words, no reduction or assumed mode is 
employed within the control scheme itself. 

The performance of the closed-loop system for the 
described configuration is described in Figs. 3-5 . In this 
study, tracking response of the system for assigned 
references 𝜃௜௥(𝑡) = 𝑎௜௥ cos 𝜔௜௥𝑡  [𝑚]  with 𝑎ଵ௥ = 𝜋/5 , 
𝑎ଶ௥ = −𝜋/6 , 𝜔ଵ௥ = 0.6 𝜋  and 𝜔ଶ௥ = 0.9 𝜋  is 
investigated which activates the first vibrational mode of 
the considered mechanism (which can be calculated by 
solving Eqs. (45-50) for 𝛽ଵ).  

 
(a) 

 
(b) 

Fig 2. State tracking performance (a) 𝜃ଵ (b) 𝜃ଶ 

 
(a) 

 
(b) 

Fig 3. Control input (a) 𝐹ଵ (b) 𝐹ଶ 

 
Fig 4. Analysis of boundedness of distributed deflection 

for flexible beam 
As it is shown by Fig. 2, the control system 

successfully tracks the assigned reference for joint angles 
signals in finite time. Fig. 3 depicts control inputs 𝐹ଵ 
and 𝐹ଶ . In Fig. 4, the magnitude of distributed 
displacement over the simulation time is investigated 

using the displacement measure 𝑁(𝑤) = ∫ 𝑤ଶ(𝜉)
௟మ

଴
𝑑𝜉 

which retain bounded values over the length of flexible 
beam, as proven by direct incorporation of PDE 
calculations in the proposed control scheme. 

One of the main features of the presented controller in 
comparison with existing schemes is that it does not 
require incorporation of any other additional input to the 
boundary conditions, which renders this method as 
readily applicable to many applications. In this scheme, 
the effects of nonlinear link-flexibility dynamics and 
interactions between different bodies are directly 
incorporated into inputs exerted at conventional locations 
which is different from previous studies including 
Control of Two-Link Manipulator (CTLM) [6] and 
Boundary Control for Flexible Manipulator (BCFM) [14]. 
Inputs ensure satisfaction of control objectives without 
the need to assign control gains corresponding to velocity 
and position tracking error, which in our tests had 
significant impact on controllability of the overall system 
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using previous methods. Results of performance 
comparisons with existing methods are described in Fig. 
5. Previous methods cannot be considered as feasible for 
the considered system because they require exertion of 
additional inputs or were derived for simpler systems.  

 
Fig 5. Convergence analysis for NPCFM compared 

to CTLM, BCFM and NPCFM without link flexibility 
effects 

5. CONCLUSIONS 
 In this paper, a novel nonlinear PDE-based method 
was proposed for tracking control of multi-DOF 
manipulators. The presented control scheme does not 
include any form of reduction or assumption for 
transforming PDEs to solvable ODEs. As a result, it 
should be considered as considerably more feasible for 
various applications where accurate estimation of PDEs 
would not be possible or in cases where that would be too 
cost intensive. Furthermore, the investigated dynamical 
model uses a fully nonlinear set of equations for 
describing dynamics of flexible mechanism rather than 
linear models which are based on estimation of arc-length 
of flexible beam. This scheme does not require exertion 
of additional boundary inputs for satisfying control 
objectives including state tracking and maintenance of 
bounded vibration effects. Hence, based on combination 
of realistic modeling and PDE-based control calculations, 
the presented method can be considered as a feasible 
algorithm for general classes of manipulators with 
flexible arms. Future research opportunities include 
design of distributed state observers for practical 
applications as well as construction of convenient 
controllers for high-DOF flexible robotics. 
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