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Abstract

This paper proposes a universal framework, called
OVE6D, for model-based 6D object pose estimation from a
single depth image and a target object mask. Our model is
trained using purely synthetic data rendered from ShapeNet,
and, unlike most of the existing methods, it generalizes
well on new real-world objects without any fine-tuning. We
achieve this by decomposing the 6D pose into viewpoint, in-
plane rotation around the camera optical axis and transla-
tion, and introducing novel lightweight modules for estimat-
ing each component in a cascaded manner. The resulting
network contains less than 4M parameters while demon-
strating excellent performance on the challenging T-LESS
and Occluded LINEMOD datasets without any dataset-
specific training. We show that OVE6D outperforms some
contemporary deep learning-based pose estimation meth-
ods specifically trained for individual objects or datasets
with real-world training data. The implementation is avail-
able at https://github.com/dingdingcai/OVE6D-pose.

1. Introduction
The 6D pose of an object refers to a geometric mapping

from the object coordinate system to the camera reference
frame [18, 22]. Most commonly, this transformation is de-
fined in terms of 3D rotation (object orientation) and 3D
translation (object location). The ability to infer the object
pose is an essential feature for many applications interact-
ing with the environment. For instance, in robotic manipu-
lation [10] and augmented reality [30], the pose is needed
for grasping or realistically rendering artificial objects.

In recent works, the object pose estimation problem is
commonly approached by either establishing local corre-
spondences between the object 3D model and the observed
data [16, 17, 36], or via direct regression [6, 39]. In both
cases, the inference models are often optimized and stored
separately for each object instance. Such approach quickly
turns intractable as the number of object instances grows.
Meanwhile, some existing works [49, 59] consider build-
ing a single model for multiple objects. However, to retain

Figure 1. A) We propose a single universal pose estimation model
(called OVE6D) that is trained using more than 19,000 synthetic
objects from ShapeNet. B) The pre-trained model is applied to
encode the 3D mesh model of the target object (unseen during the
training phase) into a viewpoint codebook. C) At the inference
time, OVE6D takes a depth image, an object segmentation mask,
and an object ID as an input, and estimates the 6D pose of the tar-
get object using the corresponding viewpoint codebook. New ob-
ject can be added by simply encoding the corresponding 3D mesh
model and including it into the codebook database (B).

the performance, the model requires expensive re-training
every time a new object instance is added to the database.
In addition, most of the best-performing methods need an-
notated real-world training data, which is laborious to ob-
tain. Although some works [24, 41, 43] consider using syn-
thetic examples in training, they suffer from noticeable per-
formance degradation due to the domain gap.

An alternative approach, called LatentFusion, was pro-
posed in [32]. In this work, they first reconstruct a latent 3D
object model from a small set of reference views, and later
use the model to infer the 6D pose of the corresponding ob-
ject from the input image. The main advantage is the ability

https://github.com/dingdingcai/OVE6D-pose


Figure 2. A) 4,000 viewpoints uniformly sampled from a sphere
centered on the object (only the upper hemisphere is shown). The
in-plane rotations Rθi around the camera optical axis are illus-
trated by synthesizing three examples at viewpoints a (Rγ

a) and b
(Rγ

b ). B) The illustration of the proposed viewpoint embeddings
using t-SNE [47], where the blue (’x’) and red (’+’) points cor-
respond to the embeddings from 10 in-plane rotated views at the
viewpoints a and b, respectively, and the black points represent
the remaining viewpoints. It can be observed that the embeddings
are relatively invariant to the in-plane rotations while varying with
respect to the camera viewpoint.

to add new objects by simply generating new latent models
while keeping all network parameters fixed. However, the
method is computationally expensive as it is based on iter-
ative optimization at the inference time. Furthermore, La-
tentFusion is very sensitive to occlusions in the input data,
resulting in a significant drop in performance.

In this paper, we present a new approach, called OVE6D,
for estimating the 6D object pose from a single depth image
and the object segmentation mask. We further assume to
have access to the 3D mesh model of the target object. Simi-
lar to LatentFusion, our approach generalizes to new objects
without any re-training of model parameters. Moreover, un-
like LatentFusion, the proposed method is computationally
efficient and robust to occlusions in the input data. In fact,
OVE6D obtains the new state-of-the-art results on the chal-
lenging T-LESS dataset [21], surpassing even approaches
optimized particularly for this dataset.

The proposed approach consists of three stages as illus-
trated in Figure 1. First (Fig. 1 A), we train the model pa-
rameters using a large number of synthetic 3D object mod-
els from the ShapeNet [4] dataset. This stage is performed

only once and the resulting parameters remain fixed in later
stages. Second (Fig. 1 B), we convert the 3D mesh mod-
els of the target objects into viewpoint codebooks. The
conversion is performed once for each object and it takes
roughly 30 seconds per instance. Finally (Fig. 1 C), the 6D
pose is inferred from the input depth image and object seg-
mentation mask. The complete OVE6D model contains less
than 4M parameters and requires roughly 50ms to infer the
pose for a single object. New, previously unseen, object can
be added by simply encoding the corresponding 3D mesh
model as in the second stage.

The core of OVE6D is a depth-based object viewpoint
encoder that captures the object viewpoint into a feature
vector. The encoded representations are trained to be in-
variant to the in-plane rotation around the camera optical
axis, but to be sensitive to the camera viewpoint, as illus-
trated in Figure 2. At the inference time, we first utilize
the viewpoint encodings to determine the camera viewpoint,
and subsequently estimate the remaining pose components
(camera in-plane rotation and object 3D position) condi-
tioned on the obtained viewpoint. The cascaded pipeline
allows compact architectures for each sub-task and enables
efficient training using thousands of synthetic objects.

To summarize, our key contributions are: 1) We propose
a cascaded object pose estimation framework, which gen-
eralizes to previously unseen objects without additional pa-
rameter optimization. 2) We propose a viewpoint encoder
that robustly captures object viewpoint while being insen-
sitive to the in-plane rotations around the camera optical
axis. 3) We demonstrate the new state-of-the-art results on
T-LESS [21], without using any images from the dataset to
train our model.

2. Related Work
Pose estimation from RGB data Most RGB-based ob-
ject 6D pose estimation methods [1,20,33,35,36,38,44,57]
attempt to establish sparse or dense 2D-3D correspondences
between the 2D coordinates in the RGB image and the 3D
coordinates on the object 3D model surface. The 6D pose
is computed by solving the Perspective-n-Point (PnP) prob-
lem [28]. These methods achieve impressive performance
for objects with rich textures providing sufficient local fea-
tures to determine reliable 2D-3D correspondences. An-
other intuitive way to estimate the 6D pose is to directly
predict the pose parameters using regression or classifica-
tion, such as [3,24,46,54]. Most of these methods are based
on supervised learning and rely on real-world training data
with pose annotations. However, recent self-supervised ap-
proaches [40–42,50] take full advantage of the costless syn-
thetic data for training and perform 6D object pose estima-
tion in real-world images at testing time. Similarly, we also
adopt self-supervised learning in our work and purely train
our network on synthetic data.



Pose estimation from depth data Some deep learning-
based 6D object pose estimation methods use depth-only
data. Gao et al. [14] proposed CloudPose, which is known
as the first deep learning system that performs 6D pose re-
gression from the point cloud segments created from the
object depth image. Later, Gao et al. proposed CloudAAE
[13] to improve the generalization of the network trained
on synthetic depth data by adopting an augmented autoen-
coder (AAE) [43] point cloud based architecture. They ar-
gue that the domain gap between the synthetic and the real
images is considerably smaller and easier to fill for depth
information. Bui et al. [2] proposed a multi-task framework
combining manifold learning and 3D orientation regression
directly from depth images to learn view descriptors. It was
further leveraged to either retrieve or regress the 3D pose.
Bui et al. [2] is most similar to our work, but in this work,
we decouple the complete 3D orientation into the viewpoint
(out-of-plane rotation) for retrieval and the 2D in-plane ro-
tation for regression. The recent method StablePose [39]
adopts the geometric stability analysis of object patches and
directly predicts the patch poses in a stable group to further
determine the pose of the object, which achieves state-of-
the-art performance on the T-LESS dataset.

Pose estimation from RGB-D data When both RGB im-
ages and depth images are available, the most straightfor-
ward utilization of the two modalities is to first perform the
initial pose estimation based on RGB images and then fur-
ther refine with depth images, such as via ICP refinement
[19, 41, 42, 54]. Alternatively, the 2D-3D feature fusion-
based approaches [6,16,17,49,55] directly fuse the deep ap-
pearance features and the deep geometry features extracted
from RGB and depth data by deep neural networks. These
methods take full advantage of multi-modal inputs and have
achieved high performance on benchmark datasets. Kehl et
al. [25] adopt RGB-D patch descriptors extracted by CNN
for 6D pose vote casting, which ignores the holistic struc-
tures of objects and easily suffers from the poor local tex-
tures. In contrast, template-based methods [52, 56] employ
triplet loss to learn view descriptors from entire RGB-D im-
ages for object recognition and 3D pose estimation via near-
est neighbor search.

Pose estimation for untrained objects Many category-
level 6D object pose estimation methods [5, 7, 8, 45, 51]
have appeared recently and shown good generalization to
untrained objects within the same category by assuming that
the same canonical pose and similar shape are shared for all
instances within a category. In contrast, this assumption
is not required by the instance-level object-agnostic meth-
ods LatentFusion [32] and MP-Encoder [41]. The network
in LatentFusion [32] is completely trained on the synthetic
data rendered from ShapeNet [4], and it is capable of gener-

alizing to different real-world datasets when a few reference
RGB images with pose annotations are provided at testing
time. We follow LatentFusion [32] to train our network
on the ShapeNet. However, OVE6D does not require any
pose annotation at the training or testing time. In addition,
DeepIM [29] can perform pose refinement for the untrained
objects when the initial pose is given.

3. Method

In this section, we present our framework called,
OVE6D, for 6D object pose estimation. Here, we assume
that object IDs are known, 3D mesh models are available
and object segmentation masks are provided. The task is
to predict a rigid transformation from the object coordinate
system to the camera coordinate system. Such transforma-
tion can be represented with a rotation R ∈ SO(3) and a
translation t ∈ R3. The rotation R can be further factorized
into the out-of-plane rotation (viewpoint) Rγ and the in-
plane orientation (rotation around the camera optical axis)
Rθ, i.e., R = RθRγ , (see Fig. 2A). More details are pro-
vided in the supplementary material.

3.1. Overview

The OVE6D framework is illustrated in figures 1, 3 and
4. In the training phase, the model parameters are optimized
using the synthetic 3D objects from ShapeNet [4]. Next, the
object viewpoint codebooks are constructed with the view-
point encoder module (see Fig. 5). At the inference time,
we perform the following subtasks in a cascaded fashion.
First, an initial location estimate is computed using the in-
put depth image and the object segmentation mask, and ap-
plied to preprocess the depth image (see Fig. 3A). Second,
we retrieve multiple viewpoint candidates from the object
viewpoint codebook (see Fig. 3B). Third, we regress the in-
plane 2D rotation with respect to each retrieved viewpoint
candidate and obtain a set of complete 3D orientation esti-
mates (see Fig. 3C). Next, we calculate a consistency score
for each orientation hypothesis and output one (or more) es-
timate according to the score values (see Fig. 3D). Finally,
the initial location estimate is refined based on the obtained
3D orientation (see Fig. 3E). The following subsections out-
line further details of the model components and the training
procedures.

3.2. Preprocessing

First, we calculate and subtract the median distance dc
from the segmented input depth image DM (obtained by
element-wise multiplication of the depth image and the seg-
mentation mask M ). Next, we calculate the center co-
ordinate (cx, cy) of the bounding box enclosing the input
segmentation mask, and form an initial estimate of the ob-
ject 3D location as tinit = K−1[cx, cy, dc]

T , where K is



Figure 3. The inference pipeline of OVE6D. The entire system operates in a cascaded manner. First, the raw depth image is pre-processed
to 128×128 input (A). Second, the object orientation is obtained by performing the viewpoint retrieval (B), in-plane orientation regression
(C), and orientation verification (D). Finally, the object location is refined (E) using the obtained orientation and the initial location (A).

Figure 4. Training the networks. The proposed model contains
three sub-networks to be trained. The feature maps (z, zθ, zγ) are
first extracted from the rendered depth images by the shared back-
bone network, and then consumed by the Object Viewpoint En-
coder (OVE) head (A), the In-plane Orientation Regression (IOR)
head (B), and the Orientation Consistency Verification (OCV)
head (C). ẑθ is transformed from z with the rotation Rθ .

the camera intrinsic matrix. Finally, we follow LatentFu-
sion [32] to re-scale and crop DM , according to the esti-
mated location tinit to produce 128 × 128 pre-processed
input depth image for the later stages.

3.3. Object Viewpoint Encoder

The viewpoint encoder is a lightweight neural network
comprising of a CNN-based backbone (eight Conv2D + BN
layers) and an encoder head FOV E (a single Conv2D, Pool-
ing, and FC layer). The encoder takes the preprocessed
128×128 depth image as input and outputs a feature vector
with 64 elements. The feature vector is intended to encode
the camera viewpoint, but to be invariant to the in-plane ro-
tation around the camera optical axis.

We train the viewpoint encoder using depth images ren-
dered from ShapeNet [4]. The generated samples are orga-
nized into triplets {V, Vθ, Vγ}, where V and Vθ differ only
in terms of in-plane rotation (by angle θ), and Vγ is ren-
dered from a different camera viewpoint (by angle γ). The
depth images are further embedded into feature representa-
tions {v, vθ, vγ} using the viewpoint encoder network (see

Fig. 4A). The encoder parameters are optimized to rank the
representation pairs according to the cosine similarity, i.e.,
S(v, vθ) > S(v, vγ), where S is the cosine similarity func-
tion. Thus, the equivalent loss function can be written as,

ℓvp = max(S(v, vγ)− S(v, vθ) +mvp
λ , 0), (1)

where mvp
λ ∈ (0, 1) is the ranking margin.

The trained viewpoint encoder is later used to construct
viewpoint codebooks for novel real-world objects. To do
this, we first uniformly sample N viewpoints {Ri}Ni=1 from
a sphere centered on the object with the radius of dradius =
fbase ∗ ddiameter, where ddiameter is the object diameter
(obtained from the 3D mesh model) and fbase is a distance
factor (5 in this paper). Then the synthetic noise-free depth
images {V syn

i }Ni=1 are rendered using the sampled view-
points and the object 3D mesh model. Last, viewpoint rep-
resentations {vi}Ni=1 are extracted from these images (pre-
processed as described in Sec. 3.2) using the viewpoint en-
coder and stored into the codebook database along with the
object mesh model, as illustrated in Figure 5. The generated
viewpoint codebook is a set {{vi, Ri}Ni=1, Omesh, Oid} that
contains the corresponding viewpoint embeddings, rota-
tion matrices, mesh model, and object ID. The entire con-
struction requires approximately 30 seconds per object with
N = 4000 viewpoint samples.

At the inference time, the object viewpoint representa-
tion vreal is first extracted from the preprocessed depth im-
age V real using the viewpoint encoder. Then, we utilize
vreal to compute the cosine similarity scores with all entries
in the corresponding viewpoint codebook (indexed with the
known object ID). The entry {vknn, Rknn} with the highest
similarity between vreal and vknn is selected as the near-
est viewpoint for V real. Optionally, we can select multiple
candidate entries {vknnk , Rknn

k }Kk=1 from the codebook to
obtain a pool of K viewpoint hypotheses according to the
descending cosine similarity scores, as shown in Figure 3B.



Figure 5. Viewpoint codebook construction. The viewpoints are sampled from a sphere centered on the object mesh model with a radius
proportional to the object diameter. The viewpoint representations are extracted from the rendered depth images by the viewpoint encoder.

3.4. In-plane Orientation Regression

Once the viewpoint is known, the in-plane rotation
around the camera optical axis can be approximated using
a 2D rotation of the depth image (exact for orthographic
camera). To this end, we build a regression network by ap-
pending a regression head FIOR (one Conv2D and two con-
secutive FC layers) to the backbone shared with the view-
point encoder. This module takes a pair of feature maps
{z, zθ} ∈ Rc×h×w of the same viewpoint with varying in-
plane orientations (intra-viewpoint) as input and regresses
the relative in-plane rotation angle θ (represented as a ma-
trix Rθ), as shown in Figure 4B.

We train this module to minimize the discrepancy be-
tween the depth images transformed by the ground-truth ro-
tation matrix R̂θ and the predicted Rθ. Here, we employ
a negative logarithmic cosine similarity to measure the dis-
crepancy, written as

Scos = S(F(TRθ
(V )), F(TR̂θ

(V )),

ℓθ = − log((1.0 + Scos) / 2.0),
(2)

where F refers to the flattening operation, TRθ
represents

the 2D spatial transformation [23] with Rθ, and V is the
viewpoint depth image.

At the inference time, we first use the shared backbone
network to extract a feature map pair {zreal, zknnk } from
the preprocessed depth image pair {V real, V knn

k }, where
V knn
k is the synthesized depth image using the retrieved

viewpoint Rknn
k . Next, the regression module takes the fea-

ture map pair to estimate the relative 2D rotation matrix
Rθ

k = Frot(z
real, zknnk ) to produce the complete 3D ori-

entation estimate via Rest
k = Rθ

kR
knn
k . In addition, the in-

plane orientation regression can be concurrently performed
for several retrieved viewpoints to obtain multiple 3D ori-
entation hypotheses {Rest

k }Kk=1, as shown in Figure 3C.

3.5. Orientation Consistency Verification

Multiple complete 3D orientation hypotheses {Rest
k }Kk=1

can be derived from the previous modules, as described in
Section 3.4. To rank the candidates, we adopt an orientation
verification module that estimates the consistency between

the candidates and the actual object orientation depicted in
V real. Similar to the regression module, the verification
module is built by appending a verification head FOCV (two
Conv2D layers, a Pooling and FC layer) to the shared back-
bone.

At the training time, we adopt a ranking-based loss to
optimize this module. As shown in Figure 4C, the feature
map z is first spatially transformed using the in-plane rota-
tion, i.e. ẑθ = TRθ

(z) where TRθ
is the spatial transforma-

tion [23] with Rθ. Then, we separately concatenate ẑθ with
zγ and zθ along the feature channel dimension, i.e., [ẑθ; zγ ]
and [ẑθ; zθ], where [; ] denotes the concatenation, and feed
them into FOCV to produce the consistency scores sγ and
sθ. The equivalent loss function can be written as,

ℓcss = max(sγ − sθ +mcss
λ , 0), (3)

where mcss
λ ∈ (0, 1) is the ranking margin.

During the inference, we transform the feature map
zknnk , from the retrieved viewpoint, using the estimated
in-plane rotation Rθ

k and feed it to the verification head
Fcss along with the feature map zreal from the observed
depth image, as shown in Figure 3D. In this way, we ob-
tain a consistency score for each 3D orientation hypoth-
esis. According to the estimated scores, we rank all hy-
potheses {Rest

k }Kk=1 in descending order and select the top
P ∈ [1,K] orientation proposals {Rest

p }Pp=1 as the output.

3.6. Location Refinement

We further refine the initial location estimate tinit based
on the obtained 3D orientation. Specifically, we first syn-
thesize a depth image Dest

p using the object mesh model
and the pose [Rest

p |tinit], where Rest
p is the 3D orientation

obtained in Section 3.5. Next, we estimate the 3D cen-
troid tsynp of the object in the depth image Dest

p , as de-
scribed in Section 3.2. Furthermore, we calculate an offset
t′∆ = tinit− tsynp which can be regarded as the position off-
set caused by the self-occlusion of the object in the current
orientation Rest

p . We assume that t′∆ is approximately equal
to t∆ = test − tinit, which allows us to obtain the final 3D
location estimate testp = 2tinit− tsynp for the object with the



pth orientation proposal, as testp − tinit = tinit − tsynp .

3.7. Pose Hypothesis Selection and Refinement

As presented in previous sections, we may obtain multi-
ple orientation proposals, each of which results in one pose
hypothesis. We calculate the following quality measure for
each pose hypothesis,

qp =
1

mp

∑
I(|Dsyn

p −DM | > 0.1d) (4)

where I represents the indicator function, DM is the seg-
mented object depth image (obtained in Sec. 3.2), Dsyn

p

is the rendered depth image with the pose hypothesis
{Rest

p |testp }, mp is the total number of pixels belonging to
the object in Dsyn

p , and d is the diameter of the target ob-
ject and qp represents the ratio of the outlier pixels. The
pose hypothesis with the lowest qp value among {qp}Pp=1 is
selected as the final output pose.

Furthermore, the obtained pose can be optionally refined
using the Iterative Closest Point (ICP) algorithm ICP [9,58].
The ICP refinement can be done before or after the pose
hypothesis selection as shown in the experiments.

3.8. Combined Loss Function

The entire network consists of a single shared backbone
with three head branches and is trained in an end-to-end
fashion. The overall training loss is

L =
1

bs

bs∑
i

(λ1ℓ
vp
i + λ2ℓ

css
i + λ3ℓ

θ
i ), (5)

where bs is the batch size, and λ1, λ2 and λ3 are weighting
parameters. In our experiments, we set the ranking mar-
gins mvp

λ = mcss
λ = 0.1 and the weights λ1 = 100, λ2 =

10, λ3 = 1.

3.9. Implementation Details

We implement the method using the PyTorch [34] frame-
work and utilize Adam solver [26] with the cosine annealing
learning rate starting from 1×10−3 to 1×10−5 and weight
decay 1 × 10−5 for training 50 epochs (around three days)
on a single Nvidia RTX3090 GPU.

Training Data Our training data is generated from the
public 3D shape dataset [4]. Following LatentFusion [32],
we exclude large objects for efficient data loading and ob-
tain ∼19k shapes over the original 52,274 shapes. For
each object, we first randomly sample 16 anchor viewpoints
{Ri}16i=1 distributed on a sphere centered on the object.
Next, we separately apply a random in-plane rotation Rθ

i

(Rθ
iRi) and a random out-of-plane rotation Rγ

i (Rγ
i Ri) for

each anchor viewpoint, which results in a batch of view-
point triplets for a single object. We randomly select eight

General-
ization

Train
Data Method Input ICP

VSD
(%)

Single
Trained
Object

Real
(+Syn.)

Pix2Pose [33] RGB 29.5
PVNet [36] RGB 40.4
PPFNet [11] D 49.0

PointNet++ [37] D 54.0
StablePose [39] D 73.0

Syn.
Only

AAE [43] RGB 19.3
AAE [43] RGBD ✓ 68.6

Multi-
Trained
Objects

Real
(+Syn.)

CosyPose [27] RGB 63.8
DenseFusion [49] RGBD 10.0

Kehl-16 [25] RGBD ✓ 24.6
Syn.
Only

MP-Encoder [41] RGB 20.5
MP-Encoder [41] RGBD ✓ 69.5

Universal
Objects

—
DrostPPF [12] D 57.0
VidalPPF [48] D 72.0

Syn.
Only

LatentFusion [32] RGBD –
OVE6D(GT) D 85.1
OVE6D(GT) D ✓ 89.0

OVE6D(GT)‡ D ✓ 91.0
OVE6D(MRCNN) D 69.4
OVE6D(MRCNN) D ✓ 73.1
OVE6D(MRCNN)‡ D ✓ 74.8

Table 1. Evaluation on T-LESS. We report the average VSD recall.
‡ represents the ICP refinement performed for all pose proposals
before selection. We highlight the best performance in bold for
each group. MRCNN and GT indicate using the masks provided
by Mask-RCNN and the ground truth, respectively.

objects each time and form a training batch with the size
of 128. The Pyrender [31] library is employed to synthe-
size the corresponding depth images from these sampled
viewpoints. Similar to [32], we use data augmentation tech-
niques to improve the generalization of the network.

More details are provided in the supplementary material.

4. Experiments

Datasets OVE6D is evaluated on three public benchmark
datasets: LINEMOD [18], Occluded LINEMOD [1], and
T-LESS [21]. LINEMOD (LM) is one of the most popular
datasets for single object 6D pose estimation, and it con-
tains RGB-D images and 3D object models of 13 texture-
less household objects in cluttered scenes. We construct
the test set following the previous works [44, 49]. We
note that the training set of LINEMOD is completely ig-
nored as OVE6D is fully trained using ShapeNet. Occluded
LINEMOD (LMO) is a subset of LINEMOD for multi-
object 6D pose estimation and contains eight annotated ob-
jects in 1214 testing images with heavy occlusions. T-LESS
is a challenging dataset including 30 texture-less and sym-
metric industrial objects with highly similar shapes. The
evaluation is performed on the PrimeSense test set, and we
report the results for a single object per class following the
protocol specified in the BOP challenge [22].



General-
ization

Train
Data Method Input ICP

ADD
(-S)(%)

Single
Trained
Object

Real
(+Syn.)

Self6D [50] RGBD 86.9
G2LNet [6] RGBD 98.7
PVN3D [17] RGBD 99.4
FFB6D [16] RGBD 99.7

Syn.
Only

Self6D [50] RGBD 40.1
AAE [43] RGBD ✓ 71.6

SSD6D [24] RGBD ✓ 90.9

Multi-
Trained
Objects

Real
(+Syn.)

DenseFusion [49] RGBD 94.3
PR-GCN [59] RGBD 99.6

CloudAAE(GT) [13] D 86.8
CloudAAE(GT) [13] D ✓ 95.5

Syn.
Only

CloudPose (GT) [14] D ✓ 75.2
CloudAAE(GT) [13] D 82.1
CloudAAE(GT) [13] D ✓ 92.5

Universal
Objects

Syn.
Only

LatentFusion(GT) [32] RGBD 87.1
OVE6D(GT) D 96.4
OVE6D(GT) D ✓ 98.3
OVE6D(GT)‡ D ✓ 98.7

OVE6D(MRCNN) D 86.1
OVE6D(MRCNN) D ✓ 91.4
OVE6D(MRCNN)‡ D ✓ 92.4

Table 2. Evaluation on LINEMOD. We report the average ADD(-
S) recall. We highlight the best performance in bold for each
group. ‡ represents ICP refinement performed for all pose propos-
als before selection. MRCNN and GT indicate using the masks
provided by Mask-RCNN and the ground truth, respectively.

Segmentation Mask The object segmentation mask is
one of the inputs to the proposed pose estimation method.
In the experiments, we obtain the masks using off-the-shelf
implementation of Mask-RCNN [15] from the Detectron2
[53] library. We train Mask-RCNN using a large set of syn-
thetic images generated from the object models. We use
the class labels provided by Mask-RCNN as object IDs in
the experiments. In addition, we also report the results for
ground truth segmentation masks.

Metrics and Configurations We follow prior works [19,
41, 42] and report the results in terms of two standard 6D
pose estimation metrics ADD(-S) [19, 22] (for LM and
LMO) and VSD [22] (for T-LESS). Please refer to [19, 22]
for more details. Furthermore, we use N = 4000, K = 50,
and P = 5 for OVE6D if not otherwise stated.

4.1. Comparison with the state-of-the-art

We compare OVE6D against the recent (mainly
learning-based) pose estimation works using the popular T-
LESS, LINEMOD, and Occluded LINEMOD datasets. We
categorize the methods into three main groups in terms of
generalization. The methods in the first and second groups
train a separate model for each individual object or a model
for multiple objects, respectively. The third group consists
of methods that do not require any dataset-specific train-
ing, other than obtaining the 3D models of the target ob-
jects. We further split these groups into approaches that use

General-
ization

Train
Data Method Input ICP

ADD
(-S)(%)

Single
Trained
Object

Real
(+Syn.)

PVNet [36] RGB 42.4
PVN3D [17] RGBD 63.2
FFB6D [16] RGBD 66.2
PVNet [36] RGBD ✓ 79.0

Multi-
Trained
Objects

Real
+Syn.

PoseCNN [54] RGB 24.9
PR-GCN [59] RGBD 65.0
PoseCNN [54] RGBD ✓ 78.0

CloudAAE(GT) [13] D 58.9
CloudAAE(GT) [13] D ✓ 66.1

Syn.
Only

CloudPose (GT) [14] D ✓ 44.2
CloudAAE(GT) [13] D 57.1
CloudAAE(GT) [13] D ✓ 63.2

Universal
Objects

Syn.
Only

LatentFusion [32] RGBD -
OVE6D(GT) D 70.9
OVE6D(GT) D ✓ 80.0
OVE6D(GT)‡ D ✓ 82.5

OVE6D(MRCNN) D 56.1
OVE6D(MRCNN) D ✓ 70.3
OVE6D(MRCNN)‡ D ✓ 72.8

Table 3. Evaluation on Occluded LINEMOD. We report the av-
erage ADD(-S) and VSD recalls. ‡ depicts ICP refinement per-
formed for all pose proposals before selection. We highlight the
best performance in bold for each group. MRCNN and GT in-
dicate using the masks provided by Mask-RCNN and the ground
truth, respectively.

real and/or synthetic data during model training. Notably,
OVE6D and LatentFusion belong to the third category and
use only synthetic data for training.

T-LESS The results for OVE6D and the baseline meth-
ods are reported in Table 1 in terms of VSD metric. We
do not report the results for LatentFusion as it does not
perform well due to the occlusions. Note that all other
learning-based methods are trained on the T-LESS dataset,
unlike OVE6D, which is trained on ShapeNet. Neverthe-
less, OVE6D still achieves the state-of-the-art performance.
In particular, OVE6D with ICP improves over the recent
state-of-the-art method StablePose [39] by noticeable mar-
gin of 1.8%, regardless that StablePose trains a separate
model for each object using real-world examples with pose
annotations. The non-learning based VidalPPF [48] also
performs well, but the approach is computationally expen-
sive. Moreover, OVE6D achieves 91% recall when us-
ing the ground truth masks, indicating the potential for
performance improvement with better segmentation masks.
The results indicate that OVE6D is particularly suitable for
texture-less and symmetric industrial objects.

LINEMOD and Occluded LINEMOD The results for
the LINEMOD (LM) and Occluded LINEMOD (LMO)
datasets are reported in tables 2 and 3, respectively. All
methods, except for OVE6D and LatentFusion [32], are
specifically trained for the LM dataset. The LatentFusion



Figure 6. Evaluation of OVE6D submodules. The precision values for different error thresholds for the viewpoint retrieval (left), in-plane
orientation regression (middle), and location refinement (right) modules using the LINEMOD dataset. “Real-depth” and “Synthetic-depth”
separately refer to real-world depth images and the synthesized depth images (using the ground truth poses). “GT-*” and “Pred-*” indicate
using the corresponding ground truth and predicted results of *, respectively.

results are reported only for LM due to heavy occlusions in
LMO. In general, the RGBD based methods, trained with
real-world and synthetic data, achieve the best performance
(e.g. 99.7% recall on LM with FFB6D [16] and 79.0% recall
on LMO with PVNet [36]). However, OVE6D obtains com-
petitive results, particularly when compared to the meth-
ods trained with purely synthetic data. Without ICP refine-
ment, OVE6D obtains 86.1% and 56.1% recall for LM and
LMO, respectively. In addition, OVE6D with ICP results in
73% recall on LMO, which shows that OVE6D is able to
generalize to real-world scenes, even in the case of heavy
clutter and occlusion. Moreover, compared with Latent-
Fusion [32], another universal model trained on ShapeNet,
OVE6D obtains better results with a clear margin of 9.3%
(96.4% vs. 87.1%) on LM, while relying only depth infor-
mation in the pose estimation.

4.2. Additional Experiments

Parameter Configuration The main parameters in
OVE6D are the sampling number of viewpoints (N), the re-
trieving number of viewpoint candidates (K), and the num-
ber of orientation proposals (P). We examined how these
parameter values affect the performance, and observed that
the method is relatively stable over a wide range of different
settings. We found N = 4000,K = 50, and P = 5 to be a
good trade-off between the accuracy and the efficiency. The
detailed results are provided in the supplementary material.

Viewpoint Retrieval Figure 6 (left) illustrates the per-
formance of the viewpoint retrieval module over multiple
thresholds using estimated and ground-truth segmentation
masks on the LINEMOD dataset. In this experiment, we
consider only a single, top scoring, pose hypothesis. We
note that already 70% of the cases are retrieved with higher
than 10◦ accuracy. In addition, the gap between synthetic
and real data is relatively small, indicating good generaliza-
tion despite of the domain gap.

In-plane Orientation Estimation The results for in-
plane rotation module are illustrated in Figure 6 (middle).
Given viewpoints, retrieved with the predicted masks, we
reach up to 73% precision at the 10◦ error threshold with
a single forward pass, and further improve it to 80% with
ICP refinement. We also note that by using the ground truth
viewpoint, the precision can be further improved over 90%
even without ICP.

Location Refinement Figure 6 (right) illustrates the per-
formance of the proposed non-parametric location refine-
ment module. We observe that, at the error tolerance of
10mm, the refinement can improve the precision from the
initial estimate 13% to 60% and further to 81% with the ICP
refinement. Thus, the proposed refinement module clearly
improves the translation estimation with or without ICP re-
finement.

Inference Time The full pose inference with OVE6D
requires approximately 50ms per object with Nvidia
RTX3090 GPU and AMD 835 Ryzen 3970X CPU. In com-
parison, LatentFusion requires roughly 20 seconds per ob-
ject with 100 back propagation iterations.

5. Discussion, Limitations and Conclusion
In this work, we proposed a model called OVE6D for

inferring the object 6D pose in a cascaded fashion. The
model was trained using a large body of synthetic 3D ob-
jects and assessed using three challenging real-world bench-
mark datasets. The results demonstrate that the model gen-
eralizes well to unseen data without needing any parameter
optimization, which significantly simplifies the addition of
novel objects and enables use cases with thousands of ob-
jects. The main limitations of this approach include the re-
quirements for the object 3D mesh model and instance seg-
mentation mask, which may not always be easy to obtain.
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