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From its seemingly non-intuitive and puzzling nature, most evident in numerous EPR-like
gedankenexperiments to its almost ubiquitous presence in quantum technologies, entanglement is at
the heart of modern quantum physics. First introduced by Erwin Schrödinger nearly a century ago,
entanglement has remained one of the most fascinating ideas that came out of quantum mechanics.
Here, we attempt to explain what makes entanglement fundamentally different from any classical
phenomenon. To this end, we start with a historical overview of entanglement and discuss sev-
eral hidden variables models that were conceived to provide a classical explanation and demystify
quantum entanglement. We discuss some inequalities and bounds that are violated by quantum
states thereby falsifying the existence of some of the classical hidden variables theories. We also
discuss some exciting manifestations of entanglement, such as N00N states and the non-separable
single particle states. We conclude by discussing some contemporary results regarding quantum
correlations and present a future outlook for the research of quantum entanglement.

INTRODUCTION

Until the beginning of the twentieth century, classical
mechanics, e.g. Newtonian or Lagrangian, together with
Maxwell’s electrodynamics were successful in describ-
ing and prognosticating nearly all physical phenomena.
Eventually, classical physics failed to describe several ef-
fects such as black-body radiation, Compton scattering,
and the photoelectric effect [1]. Starting with the intro-
duction of the apparently smallest energy quantum by
Max Planck [2], the formalism of quantum mechanics was
developed in the 1920s to describe the atomic and sub-
atomic world. Since its inception, quantum theory has
found numerous theoretical and practical applications in
physics, and has even branched out to areas such as bi-
ology [3–5], chemistry [6–8], and computer science [9–
13]. Countless experiments have validated its predic-
tions, and quantum theory remains today one of the most
successful scientific theories developed by mankind. Al-
though very few people disagree or question the correct-
ness of quantum formalism as a mathematical model, its
foundational aspects still confound physicists even after
more than 90 years since its initial formulation. Issues
such as the nature of the wavefunction and its collapse
(in the Copenhagen interpretation) and the state super-
position, as well as entanglement, still inspire debates
among physicists [14–16]. Apart from the “standard”
Copenhagen interpretation, there are several other inter-
pretations of the quantum formalism such as the pilot
wave theories (e.g. Bohmian mechanics [17, 18]), many
worlds theories [19], QBism [20], the retrocausal inter-
pretations [21, 22], and many more. The “apparent in-
completeness” of the wavefunction description was one
of the main reasons that led to these different interpre-
tations. Therefore, physicists suggested to augment the
wavefunction with different entities, nowadays referred

to as hidden variables [23]. Among the different classes
of hidden variables, local [24] and crypto-nonlocal hid-
den variable theories [25] have been tested and ruled
out experimentally, thus showing quantum mechanics to
be incompatible with local realistic and even some non-
local realistic theories. Alternatively, as the formalism
perfectly describes the application of quantum theory to
physical problems, many scientists choose to not dwell on
the meaning behind the formalism, i.e. on the founda-
tions of quantum mechanics, but rather but rather adopt
the famous “Shut up and calculate” proverb [26]. How-
ever, some relatively new developments in closing vari-
ous experimental loopholes, e.g. freedom-of-choice, fair-
sampling, communication (or locality), coincidence and
memory loopholes [27–32], have led to a resurgence of
interest in quantum foundations, especially in quantum
entanglement, even including a global test of entangle-
ment involving many countries, institutes and layman
participants [33].

Researchers have also been striving to reach a clear
understanding of what really differentiates a quantum
theory from a classical theory. For instance, the concept
of superposition also appears in classical wave mechan-
ics. In Young’s double-slit experiment, coherent light
waves, diffracted from two slits, superpose and interfere
constructively or destructively at different positions in
space, resulting in bright and dark fringes at the far-field
region of the slits. This experiment, easily explained by
Maxwell’s equations, is conceptually different when re-
peated with a single photon source, or any single quan-
tum objects. Though the probability of detecting pho-
tons in the far-field region follows the same fringes pat-
tern, one may ask “which slit does the photon choose to
traverse through?” One can assign some sort of unknown
local physical parameters (hidden variables) which deter-
mine the path of the single photon. However, these “hid-
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den variables” are incapable of describing the experimen-
tal outcome at the single-photon regime. Even in prin-
ciple, if we have some way of obtaining the which-path
information, then the interference pattern is different. It
is impossible to assign local hidden variables to describe
the photon’s whereabouts before it is actually detected
on the screen. These kinds of experiments, analyzing par-
ticles at the atomic or molecular level [34–41], touch the
very heart of quantum foundations and, in fact, according
to Feynman the two-slit experiment contains “the only
mystery” of quantum mechanics [42, 43]. This renders
quantum mechanics completely different from any clas-
sical theory, and classical electrodynamics in particular,
for the above example, and also illustrates many of the
questions that have been puzzling scientists since the last
century. Very recently, wave superpositions among differ-
ent degrees of freedom of a physical system, e.g. polariza-
tion and spatial modes of an optical beam, have been re-
ferred to as “classical entanglement” [44, 45]. We believe
that the term “classical entanglement” is a misnomer
as it can easily lead to confusion amongst non-experts
and, sometimes, even experts in the field. First, classi-
cal electrodynamics can perfectly describe the physics,
as well as correlations, among these different degrees of
freedom of optical waves. Thus, there is no need to in-
voke quantum mechanics for superpositions of different
degrees of freedom of light. Moreover, entanglement is
the fundamental feature of quantum physics between two
(or more) systems and the consequences drawn from the
obtained correlations do not apply to any classical sys-
tem, i.e. classical correlations cannot lead to the same
conclusions as quantum entanglement. While analogies
might be seen in the mathematical formulation, the pos-
sibility of spatial separation, which is the key aspect of
entanglement, does not hold for the classical counterpart.
However, it is important to point out that superposition
among different degrees of freedom of a quantum object,
e.g. single photon [46, 47] or neutron [49], can be used
to test the contextuality of quantum mechanics, which
is a rich subject of research in itself [47]. Historically,
the term entanglement (“verschränkt” in German) was
introduced by Schrödinger to describe nonlocal correla-
tions among different quantum systems. Numerous ex-
periments performed on multiparticle entangled states,
such as the Hong-Ou-Mandel effect [50], the Franson in-
terferometer [51], etc., have exhibited correlations that
do not have any classical counterparts, thus showing en-
tanglement to be purely a quantum effect. Here, we try
to provide a comprehensive perspective on entanglement,
local and crypto-nonlocal hidden variables, as well as con-
textual hidden variable theories. We further discuss the
relatively new terminology of “classical entanglement”
and hope to clarify its limitations. In addition to these
concepts, some recent developments in understanding en-
tanglement, e.g. improvements of nonlocal bounds and
their relation to generalized uncertainty principles. We

conclude with a future outlook in these areas.

POPPER’S DIFFRACTION EXPERIMENT

In 1934, Karl Popper proposed a thought experi-
ment [52] with entangled particles aimed at analyzing the
correctness of the Copenhagen interpretation of quantum
mechanics. In his experiment (Fig. 1), he considered a
pair of particles entangled in position and transverse mo-
mentum that are traveling in opposite directions towards
the two slits. When one of the particles passes through a
slit, then by virtue of entanglement we also acquire posi-
tion information of the second particle. Popper then ana-
lyzed the two possible ways the measurement result of the
momentum of the second particle could unfold. The first
one, which he argued, is according to his understanding
of the Heisenberg uncertainty principle, is that position
measurement of first particle should cause a large spread
in the momentum of the second particle. Heisenberg un-
certainty principle for position and momentum of a single
particle states,

∆x∆p ≥ ~
2
, (1)

where ∆x and ∆p are the uncertainties in the position
and momentum, respectively. We see that, according to
the Heisenberg uncertainty relation, when the position is
known precisely there is a large spread in the momen-
tum. However, this violates the principle of causality as,
due to the narrowing or widening of the slit for the first
particle, we would instantaneously affect the momentum
spread of the second particle. Therefore, according to
Popper, we are presented with the choice between rel-
ativistic causality and the Copenhagen interpretation.
Popper suggested that the momentum spread would not
change in an experiment and came to the conclusion that
the Copenhagen interpretation must be inadequate [53].

Looking at this experiment more closely, when consid-
ering the uncertainty relation for the second particle, we
should use the uncertainties in position and momentum
that are conditioned upon the measurement result of the
first particle. The uncertainty relation reads,

∆(x2|x1)∆(p2|x1) ≥ ~
2
, (2)

where ∆(x2|x1) and ∆(p2|x1) are the uncertainties in the
position and the momentum of the second particle, re-
spectively conditioned upon the outcome of the position
measurement of the first particle. A recent experiment
performed using entangled photons generated by sponta-
neous parametric down conversion (SPDC) [54, 55], has
shown that, while there is no spreading of the wavefunc-
tion, it is still consistent with the standard quantum for-
malism and the conditioned uncertainty principle. While
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FIG. 1. Popper’s ghost diffraction setup. Two entangled par-
ticles which we label as 1 and 2 travel in opposite directions
from a source S. One of the particles, say particle 1, passes
through a slit. We then look at the effect of it, i.e. changing
the uncertainties in the position of particle 1, on the mo-
mentum spread of particle 2. The green curve is the original
particle wavefunction, and the red curve is the second par-
ticle’s wavefunction after particle 1 passes through the slit.
While particle 2 is more localized, the momentum spread re-
mains constant, thereby saturating the uncertainty relation,
but not violating it.

there is less uncertainty in position, the momentum un-
certainty remains the same and the product saturates the
uncertainty relation but does not violate it. Several other
experiments analyzing the different aspects of Popper’s
experiment have also vindicated the correctness of stan-
dard quantum formalism [54–57]. Popper’s experiment
first showed that entangled states raise profound ques-
tions about the nature of quantum mechanics, and indeed
we will see in the subsequent sections how entanglement
plays a fundamental role in quantum foundations.

EPR AND LOCAL REALISM

In 1935, Albert Einstein, Boris Podolsky and Nathan
Rosen (EPR) first considered the now well-known EPR
pair of particles in their highly influential paper [58], al-
though without using the term “entanglement”. Ana-
lyzing these entangled states, they questioned the com-
pleteness of quantum mechanics. In line with the EPR
argument, a theory is complete only if it has a physical
quantity corresponding to each element of reality. As de-
fined by EPR, a physical quantity is real if its value can
be predicted with certainty irrespective of and before any
measurement. For example, in classical mechanics, the
set of position and momentum (or velocity) is sufficient
to assign definite values to any other dynamical phys-
ical quantities such as kinetic energy, angular velocity,
etc. In this sense, the description provided by classical
mechanics can be considered a complete characterization
of reality for the particle. EPR questioned whether the
wavefunction (or the state vector) in quantum mechanics

is a complete description of physical reality. In quantum
mechanics, two physical quantities represented by non-
commuting observables cannot be measured simultane-
ously with arbitrary precision. Whenever we measure
one observable, we influence the state in such a way that
the measurement outcomes for the other observable is
disturbed. Therefore, simultaneous “realities”, at least
as per the EPR criteria, do not exist for non-commuting
observables. Thus, EPR argued that either a) quantum
theory is incomplete because it cannot simultaneously
describe the reality of both of these observables, or b)
there is no simultaneous reality of two non-commuting
observables. By using an example of an entangled sys-
tem with two particles they claimed that there exist two
different simultaneous realities for a physical system ac-
cording to quantum theory. Thus, EPR concluded that
quantum theory must be incomplete in its current form.
Note that EPR excluded the possibility of measurements
between space-like separated events affecting each other
instantaneously, or in Einstein’s words “spooky action at
a distance” [59], as in their opinion this would contradict
special relativity. We will come back to this important
issue of nonlocality later in this section.

Although EPR phrased their argument in terms of po-
sition and momentum correlation (just like Popper), it is
more useful in the context of this manuscript to use the
simpler example of particles entangled in the spin degree
of freedom introduced by Bohm [60, 61]. Consider an
anti-correlated spin state of two particles A and B, e.g.
generated via spontaneous decay,

|ψ〉 =
1√
2

(|↑〉A |↓〉B − |↓〉A |↑〉B) , (3)

where |↑〉 and |↓〉 are spin up and spin down states in the
z direction respectively. Note that this formalism can
be extended to any other two-dimensional vector spaces,
e.g. photonic polarisation or path.

Let us assume that the two particles A and B are spa-
tially separated, such that any local physical interaction
between them is circumvented. One can perform a mea-
surement on the spin state of particle A in two different
bases, say eigenstates of the σ̂z and σ̂x operators, simi-
lar to the position and momentum basis in the original
EPR argument. Upon performing these measurements,
two scenarios will arise for the spin state of particle B :

σ̂z: Depending upon the outcome of the particle A spin-
state measurement, the spin state of particle B is
either |↑〉B or |↓〉B – it is always opposite to the par-
ticle A spin-state, since the two particles are anti-
correlated in the spin degree of freedom. Upon find-
ing the particle A in, say |↑〉A, according to EPR,
since the first particle cannot affect the second, the
state of the second particle should be |↓〉B and the
spin in z direction has a value of −~/2.

σ̂x: Now we perform the measurement in the eigenbasis
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of the σ̂x operator, i.e. |±〉 = 1√
2

(|↑〉 ± |↓〉). The

original state written in this basis is,

|ψ〉 =
1√
2

(|+〉A |−〉B − |−〉A |+〉B) . (4)

Note that this state has the same form as in the
|↑〉 , |↓〉 basis. In fact, the original state has the
same form in any orthogonal basis, and we call such
states rotationally invariant. Let us assume that we
observe particle A in the |+〉 state. Again we do not
disturb the second particle and thus we conclude
particle B to be in the state, |−〉 = 1√

2
(|↑〉 − |↓〉).

This is an eigenstate of σ̂x with spin −~/2.

Without in any way disturbing or interacting with the
second particle, we have obtained two simultaneous spin
values and states for σ̂z and σ̂x, e.g. |ψ〉B = |↓〉 and
|ψ′〉B = |−〉 = 1√

2
(|↑〉 − |↓〉) 6= |ψ〉B . Therefore, EPR

claim that it is possible to assign the spin values for the
two non-commuting operators. This means that the state
vector description of quantum mechanics must be an in-
complete description of reality.

Nowadays, we understand that there are several prob-
lems with the EPR reasoning. One is that a single parti-
cle state vector is not an accurate description of the sin-
gle particle when it is in an entangled state. Quantum
mechanics resolves the ambiguity in spin values and the
state representation of a particle in an entangled state
by using density matrices, which provide a more com-
plete way of representing mixed states. In the density
matrix formalism, the joint state of the two particles is
represented by the density matrix,

ρ̂AB = |ψ〉 〈ψ|

=
1

2
(|↑〉A |↓〉B − |↓〉A |↑〉B) (〈↑|A 〈↓|B − 〈↓|A 〈↑|B) .

If we consider only particle B, its density matrix is,

ρ̂B = TrA (|ψ〉 〈ψ|)

=
1

2
(|↑〉B〈↑|+ |↓〉B〈↓|) =

1

2
Î, (5)

where Î is the identity operator.
Similarly if we decide to measure in the |+〉 , |−〉 basis,

ρ̂AB = |ψ〉 〈ψ|

=
1

2
(|+〉A |−〉B − |−〉A |+〉B) (〈+|A 〈−|B − 〈−|A 〈+|B) .

ρ̂′B = TrA (|ψ〉 〈ψ|)

=
1

2
(|+〉B〈+|+ |−〉B〈−|),

=
1

2
Î. (6)

Hence, we observe that density matrices resolve the am-
biguity in the state representation for photon B. Photon

B possesses a unique density matrix, ρ̂′B = ρ̂B = Î/2
what we refer to as maximally mixed state, independent
of performing a measurement on photon A spin state.
The state of photon B if considered independently of A
is a mixed state. On the contrary, as described before,
a measurement conditioned on the outcome of photon A
leads to a perfectly predictable outcome for photon B,
i.e. perfect correlation in any bases.

There is another fundamental issue of nonlocality per-
taining to entangled states: the idea that measurements
performed in spatially separated locations can affect each
other. EPR assumed that nature is local and believed
that it would violate the principle of causality if experi-
ments performed in one location could affect experiments
in far away places. As we will discuss, Bell later showed
that a local-realistic description of entangled states is
inconsistent with quantum mechanics, effectively ruling
out the local hidden variables description of entangled
states [24].

SCHRÖDINGER’S CAT STATE AND
“ENTANGLEMENT”

Erwin Schrödinger, inspired by the EPR paper, intro-
duced the term “entanglement” for the first time in his
1935 paper [62]. He used the phrase “entanglement of our
knowledge of the bodies” to refer to the joint states where
the state of one system is intrinsically linked with the
state of another system. Additionally, he also provided
a thought experiment involving a macroscopic (classical)
object, namely a cat, to illustrate the nature of quantum
superpositions in entangled states. In his experiment, a
cat is placed inside a steel chamber with a small amount
of radioactive material. The radioactive material is cou-
pled with a Geiger counter and a vial of poisonous hydro
cyanic acid. With a finite probability, one atom of the
radioactive material may decay in the course of next few
hours, which then registers a click in the Geiger counter.
A mechanical apparatus is arranged such that once the
counter clicks, it smashes the bottle of hydro cyanic acid
releasing the poisonous gas, which kills the cat.

Initially, when no atom has decayed and the cat is alive,
the states of the atom and the cat are:

|ψ〉atom = |no-decay〉 , |ψ〉cat = |alive〉 . (7)

After some time, it is now impossible to say whether
any atom has decayed or not. Depending upon the state
of the radioactive atom, it is impossible in turn to as-
certain whether the cat is alive or dead. So, until an
external observer checks whether the atom has decayed
or not, the cat is in a weird state of being dead and alive
at the same time. The joint state of the atom and the
cat is,

|ψ〉 = |Atom and Cat〉
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=
1√
2

(|decay〉|dead〉+ |no-decay〉|alive〉) . (8)

In the words of Schrödinger, our knowledge of the two
bodies becomes entangled. He further elaborated the def-
inition of entanglement by adding that, even if the two
bodies are taken very far from each other, “knowledge of
the two systems cannot be separated into the logical sum
of knowledge about two bodies”. It is not possible to ex-
press the state of the cat and the atom independently of
each other. Until an external observer opens the door of
the chamber, thereby performing the measurement, the
state remains in the superposition.

Schrödinger initially proposed this thought experiment
linking the microscopic world to the macroscopic, clas-
sical world to question the Copenhagen interpretation
claiming such “blurred” states where the cat is in some
kind of superposition of being alive and dead can only be
observed in the microscopic world. It raises the question
when the macroscopic objects stop being in a superpo-
sition and transform into either one or the other of the
alternatives, and if this transition needs to happen at
all. This is still an ongoing debate, and there are nu-
merous experiments pushing the limits of “macroscopic”
superpositions [63–66]. More importantly, this experi-
ment illustrates the nature of quantum superposition in
the context of entangled states.

Wigner [67] proposed an extension of this experiment,
with two observers. One observer, say Wigner, stays out-
side the chamber and another, say Wigner’s friend, is po-
sitioned inside the chamber. Wigner’s friend, by virtue
of being inside the chamber can observe a definite out-
come, i.e. whether the cat is dead or alive. On the other
hand, Wigner has no way of knowing the outcome until
his friend mentions it to him. For Wigner, the joint state
of the whole system is,

|ψ〉 = 1√
2

[
|no-decay〉 |alive〉 |friend sees alive cat〉

+ |decay〉 |dead〉 |friend sees dead cat〉
]
. (9)

The paradox occurs when we ask “when did the cat stop
being in a superposition state?” For Wigner’s friend, it
occurs whenever he decides to check if the cat is alive.
Wigner, however, sees the state in superposition until
his friend tells him the outcome. The two observers will
not agree about the time when the cat will be in a defi-
nite state. Until today, similar arguments are discussed
with novel twists [68–72], which show that the perplexing
nature of the entanglement between a “macroscopic”(or
classical) and a “microscopic” (or quantum) object is still
worth a discussion.

HIDDEN VARIABLES

In the spirit of EPR, who argued that quantum me-
chanics is incomplete, hidden variable theories attempt

to supplement quantum mechanics by adding some extra
parameters. These parameters, or the so called “hid-
den variables”, are assumed to exist beyond the stan-
dard formalism of quantum mechanics and are supposed
to resolve the probabilistic nature of quantum experi-
ments. In other words, the hidden variables ensure that
in principle there can be a deterministic description of all
observables, which might just be unknown to us, thereby
restoring the realistic (in the above mentioned sense) de-
scription of nature. To look at a simple example of how
such hidden variables work, consider, for instance, a pho-
ton’s polarization. We could represent the polarization
of a photon by a three dimensional vector in a sphere
called the Poincaré sphere, with each dimension repre-
senting the corresponding polarization component. Let
us look at four such photons whose polarization vectors
make the same angle, θ < π

2 as shown in Fig. 2, with
the z-axis, implying that they all have a positive z com-
ponent. However, along the x-axis and y-axis they can
have different polarization. In general, there can be in-
finitely many such vectors with the same z component
that form a cone around the z-axis. Standard quantum
mechanics postulates that for the particles measured to
have positive polarization in the z-direction, the polar-
ization measurement along say the y axis can give rise,
probabilistically, to either the positive, (meaning diago-
nal polarization |D〉) or negative (meaning antidiagonal
polarization |A〉). However, in the classical picture we
considered, one can assign a hidden variable λ := λ(φ),
such that,

λ(φ) =

{
+1 if 0 ≤ φ ≤ π
−1 if π ≤ φ ≤ 2π

. (10)

The variable λ would then accurately describe the polar-
ization in the y direction. For the vectors with λ = +1,
i.e. whose projection vector in the x−y plane lies on the
positive half-plane (the region shaded blue in Fig. 2),the
polarization in the y direction is positive. For the vectors
with λ = −1, i.e. whose projection vector in the x − y
plane lies on the negative half-plane (the region shaded
red in Fig. 2) the polarization in the y direction is nega-
tive. Here, λ serves an example of a hidden variable for
the polarization along y-direction.

Different variations of the hidden variables exist de-
pending on their properties and the dependence of these
variables on measurement settings in a quantum experi-
ment. We present below some classes of hidden variables
theories, a few of which have already been proven to be
incompatible with the predictions of quantum theory.

Local hidden variables and Bell’s proof

As the name implies, a local hidden variables theory
assumes that the hidden variables for a particular quan-
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FIG. 2. Four polarization-vectors A, B, C and D are repre-
sented in Poincaré sphere. The angles made by each vector
with the y-axis, which determines which half of the x-y plane
each vector lies, could the hidden variables for polarization
components in the other two directions (x and y). Here the
vectors A and C with projections in the region shaded by
blue have positive polarization in the x direction, while vec-
tors B and D with projections in the region shaded by red
have negative polarization in x direction.

tum system are local and unaffected by experiments per-
formed at any other spatially separated locations. To
define it more formally, consider an EPR-like setup with
two space-like separated and strongly correlated particles
A and B. Again let λ be the hidden variable, and A and
B the spin values of A and B measured along directions
a and b, respectively. Then according to a local hidden
variables theory, the measurement result A depends only
upon the measurement setting a and the hidden variable
λ. It is independent of B’s measurement setting b, and
similarly for B,

A = A(λ,a), (11)

B = B(λ,b).

FIG. 3. Three different directions for the polarization mea-
surements: (a) 0, (b)−2π/3, and (c)+2π/3.

We also assume that the hidden variable has probabil-
ity distribution ρ(λ). Apart from these, we do not make
any assumptions about the nature of the hidden variable
or its probability distribution. Note that by such local
hidden variables, the only assumption made are locality
and realism; hence, at this stage, no knowledge of quan-
tum mechanics has to be known. Then, in this hidden
variable formalism, the two particle correlation, or the
expectation value of the product of the two observations
of A and B, is then given by,

P (a,b) =
∑
λ

ρ(λ)A(a, λ)B(b, λ). (12)

In his seminal paper [24], John Bell proved that any
theoretical prediction for measurement outcomes fulfill-
ing the ideas of locality and realism is upper bounded for
a given set of measurements (the so-called Bell inequal-
ity). He also showed that quantum mechanics allows for
the possibility to exceed this bound proving that quan-
tum correlations cannot be obtained from any local real-
istic hidden variable theories with the form described by
Eq. (12). Since the time of his paper, numerous exper-
iments have been performed that attest to the correct-
ness of quantum mechanics and falsified the assumption
of local hidden variables [29–33, 73], most recently even
loophole-free [28, 74, 75]. Contrary to the EPR assump-
tion, nature does seem to allow the measurement of one
particle to affect the “reality” of the other.

We present here a simpler proof of incompatibility of
local hidden variables with quantum mechanics. Con-
sider a source that prepares a pair of photons with per-
fectly correlated polarization in any direction, i.e. if one
is horizontally polarized then the other is also horizon-
tally polarized and so on. In our experiment, we are able
to measure the polarization of each of the two photons,
at angles 0, +2π/3, and −2π/3 using three different po-
larizer settings (Fig 3).

Assuming that the polarization results in these three
directions are pre-defined by local hidden variables before
the measurement, we tabulate all the eight possible com-
binations of the hidden variables for each photon (Table



7

I).

TABLE I. Single photon polarization values in three
different directions in local hidden variable theory.
X means the photon will pass through the polarizer set in
that direction and 7 means that it will be blocked by the
polarizer.

Outcomes a1/b1(0) a2/b2(+2π/3) a3/b3(−2π/3)

1 3 3 3

2 3 3 7

3 3 7 3

4 3 7 7

5 7 3 3

6 7 3 7

7 7 7 3

8 7 7 7

We then look at the results of Alice’s and Bob’s mea-
surements in two different directions and note whether
they get the same results or not (Table II). From the

TABLE II. Two photon polarization measurement re-
sults. a1 b2 refers to the polarizer for the first photon is set
at 0 and that for second photon is set at 3π/4, and so on.
X means that both photons have same outcomes for the di-
rections specified, i.e. either both photons pass through the
specified polarizers or both are blocked. 7 means that they
have different outcomes.

Outcomes a1,b2 a2,b3 a3,b1 Psame

1 3 3 3 1

2 3 7 7 1/3

3 7 7 3 1/3

4 7 3 7 1/3

5 7 3 7 1/3

6 7 7 3 1/3

7 3 7 7 1/3

8 3 3 3 1

table, we can deduce that the probability of seeing the
same result is always at least 1/3. To see why this is
true, let us assume we are dealing with the pair of pho-
tons represented by the second row of the table. Now if
we randomly perform the measurement then, one third
of the time we would be measuring in the a1b2 basis and
we would see the states to be the same. In the remain-
ing two-thirds, we would see the states to be different.
Looking at rows 2-7 we see that each of them has the
same probability, 1/3, for observing the same outcome.
For the cases in rows 1 and 8, we get the same results
every time. Hence if we assume the existence of local
hidden variables, then we should see the same results at
least one third of the time. One subtle point to note here
is that we have not made any assumptions about how
often each of the eight possible combinations occurs in

nature. Each of the eight possible combinations of the
hidden variables could occur with any probability and
still the result would be the same. Therefore, according
to a local hidden variable (LHV) theory, the probability
for observing the same outcome is bounded as,

P(LHV, same) ≥ 1

3
. (13)

Now we turn to quantum mechanics and what it tells us
about such states. For a source that produces photons
with perfectly correlated polarizations in any direction,
the initial two-photon state is an entangled state which
is written as,

|ψ〉 =
1√
2

(
|H〉A |H〉B + |V 〉A |V 〉B

)
, (14)

where |H〉 and |V 〉 refer to the horizontal and vertical
polarization respectively.

Let us denote the three measurement directions (or
polarization bases) for A by ai, and for B by bi. Written
in terms of |H〉 and |V 〉,

|a1〉 = |H〉 ,

|a2〉 = −1

2
|H〉+

√
3

2
|V 〉 ,

|a3〉 = −
√

3

2
|H〉 − 1

2
|V 〉 ,

(15)

and similarly for B.
Then the probability of observing the same polariza-

tion in the same basis is given by the cosine of the angle
between the two states, which is 2π/3 in our case. Hence,
according to Quantum Mechanics(QM),

P(QM, same) = cos2(2π/3) = 0.125. (16)

Thus, we observe that the probability obtained from
the assumption of local hidden variables contradicts the
probability derived by quantum mechanics. Experimen-
tally, the results have always vindicated the predictions
of quantum mechanics, thus favoring quantum mechan-
ics over local hidden variables theories. Alongside with
many Bell inequalities [73] that were proposed to rule out
local hidden variables models, it is worth mentioning the
existence of proofs which do not invoke inequalities [76–
78].

Nonlocal hidden variables theories

Until now we restricted the hidden variable model to
be local, which is an assumption well-justified by another
major physical theory known today, i.e. general relativ-
ity. However, as we have seen above, local hidden vari-
able models cannot explain the correlations in entangled
states; thus, it might be a natural thing to ask if the local-
ity assumption is too strong and can be lifted to find an
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agreement with quantum mechanics. Leggett laid out a
more general nonlocal hidden variable theory [25], which
assumes that:

1. Each pair of photons in an EPR-like setup is char-
acterized by a hidden variable λ.

2. The distribution of the hidden variable λ, ρ(λ), is
independent of the measurement settings a, and b
and the results of the measurements A, and B of
either of the particles.

3. The results of each measurements A and B depend
upon the hidden variable λ, as well as both of the
measurement settings a and b, and the results of
the measurement performed on the other particle.
I.e.,

A = A(a,b, λ,B), (17)

B = B(a,b, λ,A). (18)

Previously, in the local hidden variable theory,
Eqs. (11), we saw that the outcomes A and B depend
only on the hidden variable λ and the respective mea-
surement settings. In a local theory, the measurement
settings of A and its results cannot affect the outcomes
of B and vice versa, as it assumes that space-like sepa-
rated events cannot influence each other. In contrast, a
nonlocal hidden variable theory assumes nature is non-
local, and, consequently, the outcomes for A and B are
dependent not only upon their respective measurement
settings, but also upon the setting of the other party and
their outcomes. In such a theory, the expectation value
of the product of the two outcomes is then given by,

P (a,b) =
∑
λ

ρ(λ)A(a,b, λ,B)B(a,b, λ,A), (19)

or for the case of a continuous hidden variable λ,

P (a,b) =

∫
λ

dλ ρ(λ)A(a,b, λ,B)B(a,b, λ,A). (20)

Such nonlocal hidden variable models can describe any
correlations possible-they can both give rise to the quan-
tum mechanical predictions, for e.g. Bohmian mechan-
ics [17, 18], or in some cases even exceed the correla-
tions given by quantum mechanics. Although some of
them have to be considered non-physical, they are inter-
esting lines of thought themselves. [79, 80] To enable a
test of a subclass of such Non Local Hidden Variables
(NLHV) models called crypto-nonlocal theories, Leggett
added another condition, namely:

4. The outcomes A and B each depend upon the mea-
surement setting of the other but are independent
of the outcome,

A(a,b, λ,B) =A(a,b, λ),

B(a,b, λ,A) =B(a,b, λ).

Let us look at a nonlocal hidden variable model [81]
that satisfies this condition. We will see how this model
successfully recreates quantum correlations for photons
when the polarization measurement vectors are confined
to a certain plane in the Poincaré sphere. As a conse-
quence, for measurements performed in that plane, the
model can even account for the violation of the CHSH
inequality [82], an inequality which is satisfied by local
hidden variable theories. However once we start perform-
ing measurements in a different plane, this model fails to
recreate the quantum correlations. We will then look at
the Leggett inequality that bounds correlations obtained
from this type of nonlocal hidden variable model, which
nevertheless is violated by quantum correlations.

Our two parties, Alice and Bob each share a pair of
photons A and B, with the initial polarization vectors u
and v, respectively. We denote the polarization measure-
ment vectors by a and b, respectively, for A and B. The
measurement outcomes A and B both are binary val-
ued (±1) variables and as required for a crypto-nonlocal
theory, do not depend upon each other. The hidden vari-
able model predicts the measurement outcome for A as
follows,

A =

{
+1 if 0 ≤ λ ≤ λA
−1 if λA ≤ λ ≤ 1

,

where λA depends upon A’s initial polarization and the
measurement setting as,

λA =
1

2
(1 + u · a). (21)

Similarly for B,

B =

{
+1 if x1 ≤ λ ≤ x2
−1 if 0 ≤ λ ≤ x1 & x2 ≤ λ ≤ 1.

Now if we choose the parameters x1 and x2 such that,

x1 =
1

4
(1 + u · a− v · b + a · b), (22)

x2 =
1

4
(3 + u · a + v · b + a · b) (23)

then the model reproduces Malus’ law,

〈A〉 =

∫ λA

0

dλ−
∫ 1

λA

dλ = u · a,

〈B〉 =

∫ x2

x1

dλ−
∫ x1

0

dλ−
∫ 1

x2

dλ = u · b.

Also, the expectation value of the product of A and B
is given by,

〈AB〉 = −
∫ x1

0

dλ+

∫ λA

x1

dλ−
∫ x2

λA

dλ+

∫ 1

x2

dλ = −a ·b,

(24)
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FIG. 4. a) The nonlocal hidden variable model reproduces
quantum correlations and can even violate the CHSH inequal-
ity for measurements performed along vectors a and b lying in
the plane (purple) perpendicular to the u and v. b) Leggett’s
inequality is violated once the measurement vectors are not
in the plane perpendicular to u and v.

which is the same expression as obtained from quantum
mechanics. However, the problem with this model is that
it is inconsistent for some measurement directions. To see
how, we first note that the variables x1 and x2 also have
to satisfy the condition,

0 ≤ x1, x2 ≤ 1. (25)

Substituting the expressions for x1 and x2, Eqs. (22, 23),
in the above equation, leads to the following inequality,

|a · b± u · a| ≤ 1∓ v · b. (26)

For this hidden variables model to successfully give
rise to quantum correlations, inequality (26) needs to
be satisfied. We observe that in a plane perpendicular
to the initial polarization vectors u and v, no matter
what a and b we choose, the inequality (26) is always
satisfied. Hence for any measurement directions a and b
lying in this plane (colored purple in Fig. 4), this model
correctly predicts quantum correlations and hence we
can also observe the violation of the CHSH inequality.
However for some polarization vectors lying outside this
plane, the inequality cannot be satisfied, and this is
where the model fails.

For a nonlocal hidden variable model as described
above, when A uses two different measurement settings
a1, a2, and B uses three b1, b2 and b3 = a2, a more
general Leggett’s inequality is given by,

SNLHV = |E11(φ) + E23(0)|+ |E22(φ) + E23(0)| (27)

≤ 4− 4

π

∣∣∣∣sin φ2
∣∣∣∣ ,

where, Ekl is the expectation value of the product Ak Bl

over all the initial polarization directions u and v.

Ekl =

∫
u,v

du dvF (u,v)A(ak,bl, λ)B(ak,bl, λ), (28)

where F (u,v) is the distribution of the initial polariza-
tion of two photons. Quantum mechanically, this expec-
tation value is given by,

Ekl = −ak · bl = − cosφak,bl
. (29)

Substituting the expression in the left hand side of in-
equality (28), the quantity S takes the value,

SQM = |2(cosφ+ 1)| . (30)

For some values of φ, SQM > SNLHV goes above the
upper bound set by Eq. (28) (the maximal violation oc-
curs when φ = 18.8◦). Hence, we can conclude that the
crypto-nonlocal hidden variable theories also fail to fully
describe quantum correlations.

Experiments performed with photon pairs entangled in
polarization and spatial modes have indicated the viola-
tion of Leggett’s inequality [81, 83].

NON-CONTEXTUALITY

After looking into correlations between space-like sep-
arated quantum systems, we turn our focus to another
feature of quantum mechanics, namely the context of
the measurement. Two physical observables are non-
commuting if they do not have a set of simultaneous
eigenstates. Therefore, the order in which one measures
the two non-commuting quantities affects their measure-
ment outcomes. Mathematically, the two measurement
results, say for observables Â and B̂, are related by the
uncertainty relation,

σAσB ≥

∣∣∣∣∣ [Â, B̂]

2i

∣∣∣∣∣ , (31)

where σA and σB are the uncertainties in the two physical
quantities Â and B̂. The commutator, [Â, B̂], is zero if
Â and B̂ commute with each other, i.e if their order of
measurement does not matter, and is non-zero if they do
not commute (i.e. if their order of measurement matters).

[Â, B̂]

{
= 0 if Â and B̂ commute.

6= 0 if Â and B̂ do not commute.

For the non-commuting physical quantities, we see
that the uncertainty principle forbids simultaneous as-
signment of pre-determined measurement results. More-
over, if we now include a third observable Ĉ that also
commutes with Â, i.e. [Â, Ĉ] = 0, which does not need
to commute with B̂, i.e. [B̂, Ĉ] 6= 0, the value assigned
to Â is considered to be non-contextual. In other words,
the outcome of a measurement should not be different
if the observable Â is measured alone, together with B̂
or together with Ĉ. In the spirit of the EPR argument,
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one can now discuss non-contextual realism by assigning
predefined values v(Âi) to all the observables Âi.

Therefore, non-contextuality, i.e. the notion that the
measurement of a physical quantity is independent of the
measurement of any other commuting physical quanti-
ties, or the “context” of the measurement, seemed like a
valid assumption in quantum mechanics. However, Bell
and Kochen-Specker (BKS) [84–86] separately proved
that it is impossible for the commuting observables to
have pre-existing values independent of the context of
the measurement. Kochen and Specker considered spe-
cial kinds of observables that have binary eigenvalues
(0 or 1), e.g. projection operators, and proved that it
is impossible to assign values classically to the projec-
tion operators in a 3-dimensional Hilbert space. For the
proof, they used projection operators along 117 differ-
ent vectors. Cabello later provided a simpler proof [87]
of quantum contextuality, involving only 18 projection
directions in a four dimensional Hilbert space. Addition-
ally, Klyachko, Can, Binicioglu and Shumovsky (KCBS)
simplified it even further and found a proof that only
requires 5 measurements for spin-1 particles [88].

In the following, we focus on the latter, i.e. the KCBS
version of the Bell-Kochen-Specker theorem, as it is the
most simple BKS-proof regarding measurement settings
and dimensionality of the quantum state [88, 89]. Math-
ematically, if we assume quantum theory to be non-
contextual, then for a state ψ described by commuting
observables say {Â, B̂, . . .}, it is possible to assign an un-
derlying value for the outcomes of each observables as
say {v(Â), v(B̂), . . .} independent and before the actual
measurement (non-contextual realism). Since we know
that the result of projective measurement of an observ-
able can return only one of its eigenvalues, the value of
the observable also must be one of the eigenvalues.

Now classically if these observables satisfy the equa-
tion,

f(A,B, . . .) = 0, (32)

then the pre-assigned values should also satisfy the equa-
tion,

f(v(A), v(B), . . .) = 0. (33)

Note that a special case of this logical step, i.e. Eq. (32)
⇒ Eq. (33), is the so-called sum rule

A = B + C ⇒ v(A) = v(B) + v(C). (34)

Let us now consider five numbers a, b, c, d, e that can
either take the value +1 or −1. For all possible combi-
nations, the following algebraic inequality has a minimal
value of −3:

ab+ bc+ cd+ de+ ea ≥ −3. (35)

This can be easily seen because at least one term always
needs to be +1. As we already discussed above, according

to a non-contextual hidden variable model each measure-
ment has a predefined value, which is independent of the
context, i.e. v(A)B = v(A)C . As this holds for all mem-
bers of the ensemble, we can rewrite the inequality in
terms of ensemble averages:

〈AB〉+ 〈BC〉+ 〈CD〉+ 〈DE〉+ 〈EA〉 ≥ −3. (36)

We note that this inequality holds not only for non-
contextual hidden variable models but also for any joint
probability distribution describing the measurements.

However, KCBS realized that this inequality can be
violated by quantum mechanics using five measurements
of a spin-1 particle [88]. The measurements required are
expressed by the spin operator Âi = 2Ŝ2

i − I, where the

operator Ŝ2
i has the eigenvalues 0 and 1 and, thus, needs

to be rescaled and shifted to realize the required ±1 val-
ues. The five observables Âi are defined by the projection
directions ~li according to:

Âi = 2Ŝ2
i − I = I − 2

∣∣∣~li〉〈~li∣∣∣ . (37)

Two measurements Âi and Âj (for i 6= j) are commut-
ing, i.e. are compatible, if and only if the projections
~li and ~lj are orthogonal, which means that we need to
find five pairwise orthogonal measurement directions. As
the directions ~li can be directly depicted in a real three-
dimensional space, we find that they form a pentagram.
The maximal violation of the above described minimal
value for non-contextual hidden variable can then be
found for a quantum state Ψ that lies on the symmetry
axis of the pentagram (see Fig. 5). If we now use these
five pairwise orthogonal projections as our measurements
on the quantum state Ψ0, the quantum mechanical pre-
diction is 5 − 4

√
5 ≈ −3.944; thus, we can surpass the

lowest limit given above. This simple proof demonstrates
that quantum mechanics cannot be modeled by a non-
contextual hidden variable model. Although there have
been some discussions about the general validity of an
experimental test of quantum contextuality [90], nowa-
days it has been generally accepted to be a valid task
and many of experiments have been conducted [91], in-
cluding one verifying the quantum mechanical prediction
for the above given KCBS proof [92].

Interestingly, Bell searched for a more physical as-
sumption than non-contextuality, and thus he studied
locality instead. The important connection between the
two arguments is that, simply phrased, in nonlocal hid-
den variable models, measurements cannot depend on
measurements done in a space-like separated place. On
the other hand, in non-contextual hidden variable mod-
els, measurements can “only” question the dependence
of the measurement on the context if local or nonlocal.
In other words, showing the mismatch between quan-
tum mechanics and local realistic theories according to
the Bell theorem is a stronger statement and as such
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FIG. 5. Three-dimensional representation of the measure-
ment directions Âj . We see that each measurement is orthog-
onal to two other directions and as such is compatible with it,
i.e. commuting with these two other measurements. However,
when using a quantum state Ψ along the symmetry axis, the
inequality for non-contextual hidden variable models given in
formula (36) can be violated.

includes (as a special case) non-contextual realistic the-
ories. Thus, the possibility of space-like separation is an
essential assumption in the Bell argument and requires
two entangled particles that can be separated.

SINGLE PARTICLE “ENTANGLEMENT”

So far we have only taken one degree of freedom of the
quantum system into account. However, there are other
quantum properties of single-particle systems that are
similar in form to those of multipartite entangled states,
i.e. non-separable correlations between two different de-
grees of freedom of a single particle. For instance, if
we pass a diagonally polarized light through a polarizing
beam splitter, it gets transformed to the state:

|ψ〉 =
1√
2

(|I,H〉+ |II,V〉) , (38)

where the |I,H〉 indicates that the photon is in path I and
is horizontally polarized, and similarly for |II,V〉. The
mathematical expression for such states cannot be sepa-
rated into a product of individual states in each of the two
Hilbert spaces, quite similar to the entangled states. Al-
though lacking nonlocality, these states have been shown

to violate the CHSH inequality [47, 48]. Such “entan-
glement” tests can be used to probe the non-separability
of such states. However, by using Bell-like inequalities,
these experiments are challenging classical concepts that
are closer to non-contextuality rather than nonlocality.
Consequently, the violation of these inequalities rules out
the “local non-contextual hidden variable” description for
such states.
We will discuss the details about such tests below [93],
following an idea that was originally proposed for non-
locality by Hardy [78]. Let us look at three statements
regarding probabilities, which, when simultaneously sat-
isfied, would also imply a fourth statement in classical
probability theory. We will then show that for certain
quantum states and measurements in which the first
three statements are true, the fourth statement turns out
to be false, resulting in a contradiction with the classical
picture. We assume that:

P(α = +1, β = +1) = 0,

P(α = −1, β′ = −1) = 0,

P(α′ = −1, β = −1) = 0,

(39)

where, α, α′, β, and β′ are all binary variables which can
take values ±1. P (α = +1, β = +1) refers to the prob-
ability that α = +1 and β = +1, and so on. Now if all
three statements are true, then logically a fourth state-
ment should follow:

P(α′ = −1, β′ = −1) = 0. (40)

Let us first see why this is true for a classical non-
contextual theory. We tabulate all the possibilities for
these binary variables in Table III .

Looking at Table III, the first statement, i.e. P (α =
+1, β = +1) = 0 implies,

P1 + P2 + P3 + P4 = 0. (41)

Similarly, from the second and third statements,

P10 + P12 + P14 + P16 = 0 (42)

P7 + P8 + P15 + P16 = 0. (43)

Since probabilities cannot be negative, these state-
ments imply that the individual probabilities
P1, P2, P3, P4, P7, P8, P10, P12, P14, P15, P16 are all
zero. Now, for the fourth statement to be true, the
following expression must be satisfied,

P4 + P8 + P12 + P16 = 0. (44)

We observe that all the individual terms on the left hand
side are already zero from the first three statements.
Hence, it follows that the fourth statement must be true.

Now in the quantum version, we assume that our usual
two parties, namely Alice and Bob, each have access to
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TABLE III. Possible combinations of the values of the
binary variables α, β, α′, and β′ as per the classical
non-contextual theory. Pis are the corresponding proba-
bilities for the particular combination of binary values of the
variables.

Probability α β α′ β′

P1 +1 +1 +1 +1

P2 +1 +1 +1 −1

P3 +1 +1 −1 +1

P4 +1 +1 −1 −1

P5 +1 −1 +1 +1

P6 +1 −1 +1 −1

P7 +1 −1 −1 +1

P8 +1 −1 −1 −1

P9 −1 +1 +1 +1

P10 −1 +1 +1 −1

P11 −1 +1 −1 +1

P12 −1 +1 −1 −1

P13 −1 −1 +1 +1

P14 −1 −1 +1 −1

P15 −1 −1 −1 +1

P16 −1 −1 −1 −1

one of the two different degrees of freedom of the single
particle quantum state:

|ψ〉 = cos γ |0〉A |1〉B − sin γ |1〉A |0〉B . (45)

The two kets can represent any two degrees of freedom
of a single particle (for e.g. path and polarization) in
the two dimensional Hilbert space. Alice can perform a
measurement of two projection operators α and α′, and
Bob can perform his measurement of projection operators
β and β′.

The projection operators α, β and α′, β′ are defined
as,

α, β = |+〉 〈−| − |−〉 〈+| (46)

α′, β′ = |+〉′〈−| − |−〉′〈+|. (47)

where,

|+〉 = N
(√

sin γ|0〉+
√

cos γ |1〉
)

(48)

|−〉 = N
(
−√cos γ|0〉+

√
sin γ |1〉

)
(49)

|+〉′ = N ′
(√

cos3 γ|0〉+

√
sin3 γ |1〉

)
(50)

|−〉′ = N ′
(
−
√

sin3 γ|0〉+
√

cos3 γ |1〉
)

(51)

and N = 1√
sin γ+cos γ

and N ′ = 1√
sin3 γ+cos3 γ

are the

normalization constants. For these states we find that
the probabilities are as defined in Eq. (39). However the

expression for the fourth probability is,

P (α′ = −1, β′ = −1) =

(
sin 4γ

4(cos3 γ + sin3 γ)

)2

(52)

For certain angles γ, this expression is not zero which
is in conflict with the assumption that the values of the
four operators can pre-exist before we conduct the mea-
surement. Thus, it disproves the non-contextual hidden
variable description for non-maximally separable states.

Spin-energy entangled states in massive single particles
such as neutrons have also been used [94] to demonstrate
the violation of Leggett type inequalities for the contex-
tual realistic hidden variables theories.

N00N STATES

After having discussed various scenarios where quan-
tum systems involving one or two particles, show features
that cannot be explained with classical theories, we now
turn to many-body quantum systems that resemble bi-
partite systems and exhibit interesting correlations. One
such state is a N00N state [95–97], which is an equal su-
perposition of N indistinguishable particles in one mode
and none in the other, and vice versa. Mathematically,
such states have the form,

|ψ〉 =
1√
2

(
|N〉a |0〉b + |0〉a |N〉b

)
, (53)

where the subscripts “a” and “b” now refer to the modes
a and b which photons can occupy, in contrast to our
previous notation where the subscripts represented the
photons themselves. These states are sometimes also re-
ferred to as Schrödinger cat states [98] as they represent
a superposition of N particles (in theory N could be ar-
bitrarily large) in two distinct states, comparable to the
“dead” or “alive” states. These N00N states have inter-
esting applications in quantum metrology [98–100] and
can provide sensitivity even upto to the Heisenberg limit.

For our purposes, N00N states present an interesting
case of “entanglement”. For instance, let us consider the
simplest N00N state with just a single particle,

|ψ〉 =
1√
2

(
|1〉a |0〉b + |0〉a |1〉b

)
. (54)

Expressed in the number basis, here it looks like we
have a single particle “entangled” with the vacuum. It
gets even more intriguing when we have a particle in
this state interacting with other atoms or particles. Let
us look at a photon in such a state, which is generated
by passing a photon through a 50:50 beamsplitter, and
creating a superposition between the two different paths
(modes). In each of the two paths, we place an atom in
a ground state such that it jumps into an excited state
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when it comes in contact with the photon. Unless we
perform a measurement, we do not know which path the
photon has taken and which one of the atoms is in the
excited state. At this instant, the joint state of the two
atoms is,

|ψ〉 =
1√
2

(
|e〉a |g〉b + |g〉a |e〉b

)
, (55)

where |e〉a |g〉b denotes that the atom in mode a is in the
excited state and the atom in mode b is in the ground
state, and so on. Now this is unequivocally an entan-
gled state. As any local operations cannot increase or
decrease entanglement, this also strengthens the claim
that the single photon state posses some characteristics
similar to an entangled state. Similar arguments on the
“nonlocality” of a single particle have been much debated
in the literature [101–105].

N00N states with two indistinguishable particles also
offer an interesting case. For instance, let us look at two
such photons in a 2002 state, with equal superposition of
either both being diagonally polarized or anti-diagonally
polarized,

|ψ〉 =
1√
2

(
|2〉A |0〉D − |0〉A |2〉D

)
. (56)

When written in a terms of individual kets of each pho-
tons,

|ψ〉 =
1√
2

(
|A〉1 |A〉2 − |D〉1 |D〉2

)
. (57)

This two photon state can be obtained by passing two
indistinguishable photons in a state,

|ψ〉 = |1〉H |1〉V (58)

through a polarizing beamsplitter (PBS) set at an angle
of 45◦,

|ψ〉 = â†H â
†
V |0〉

=
1

2
(â†A + â†D)(â†A − â

†
D) |0〉

=
1

2
(â†Aâ

†
A + â†Aâ

†
D − â

†
Dâ
†
A − â

†
Dâ
†
D) |0〉

=
1

2
(â†Aâ

†
A − â

†
Dâ
†
D) |0〉

=
1√
2

(
|2〉A |0〉D − |0〉A |2〉D

)
.

The two photons are clearly entangled with each other
after passing through the beamsplitter. Note that this is
the famous Hong-Ou-Mandel (HOM) interference for two
identical photons passing through a beamsplitter [50].
One crucial point to be made here is that the entangled
state is created by the physical action of the beamsplitter

on both of these photons. It may seem that the entan-
gled state could be obtained simply by just changing the
basis of polarization as,

|ψ〉 = |H〉1 |V 〉2 (59)

=
1

2
(|A〉1 + |D〉1)(|A〉2 − |D〉2)

=
1

2
(|A〉1 |A〉2 − |A〉1 |D〉2 + |D〉1 |A〉2 − |D〉1 |D〉2).

and then canceling the two terms in the middle. How-
ever, there are two things that have to be considered.
First, since we are dealing with two indistinguishable
photons, it is essential to symmetrize the initial state
and hence Eq. (59) does not characterize the state of two
indistinguishable photons. The second state, written in
the number basis (in Fock space), i.e. Eq. (58), is the
correct approach for writing such states. It captures all
the possible combination of the two photons in such a
state. Another fundamental reason is that the physics,
or the phenomenon of entanglement in this case, should
not change just by altering the basis. In contrast to the
discussion before, where we had a beamsplitter perform-
ing a joint physical action on the two photons, here only
a rotation of the coordinate system has been performed.
Such a rotation cannot lead to a change or creation of
entanglement.

BOUNDS ON QUANTUM CORRELATIONS

In the preceding sections, we saw how local, crypto-
nonlocal or non-contextual hidden variable theories are
bounded by Bell-like inequalities and how quantum cor-
relations can violate these and reach beyond the classical
bounds. We now shift our focus to the other side of this
picture, i.e. to what extent quantum mechanics departs
from classical physics and what promise such maximal
violations hold for unique quantum technologies? Math-
ematically, the maximal violation of a Bell inequality is
given by the Tsirelson bound, following the seminal work
in this respect [106]. It was shown that,

S = 〈A0B0〉+〈A0B1〉+〈A1B0〉−〈A1B1〉 ≤ 2
√

2, (60)

where 〈AiBj〉 are the expectation values of the product
of Alice’s and Bob’s ±1-valued observables Ai and Bj ,
respectively. Quantum correlations can therefore violate
the CHSH inequality [82], S ≤ 2 mentioned above by at
most a multiplicative factor of

√
2.

Despite its importance, the Tsirelson bound provides
only the point of maximal violation; hence, a much more
detailed characterization of quantum mechanics would
consist of all nonlocal correlations achievable by quantum
operators acting on quantum states, i.e. the quantum
set of correlations. In between these two descriptions,
there are partial characterizations of quantum correla-
tions such as the Uffink inequality [107], some of which
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have already been tested experimentally with a high-
fidelity source of polarization-entangled photons [108].
However, a general, finite characterization of the quan-
tum set is still missing. In the simplest bipartite case with
binary inputs and outputs, the TLM (Tsirelson-Landau-
Masanes) inequality is known to be necessary and suf-
ficient for the correlators to be realizable in quantum
mechanics [109–111]

|c00 c10 − c01 c11| ≤
∑
j=0,1

√
(1− c20j) (1− c21j), (61)

where we have used cij = 〈AiBj〉. In recent years, there
has been a growing interest in further exploring this set
of quantum correlations from within and from outside
the quantum formalism [112–117] in order to derive the
strength of quantum correlations based on first princi-
ples [118–123].

According to a recent approach [124], some well-known
bounds on quantum correlations (such as the Tsirelson
and TLM bounds), as well as some new ones, origi-
nate from a principle called “relativistic independence”,
encapsulating relativistic causality and indeterminism.
This means that even a very general probabilistic struc-
ture can give rise to quantum-like correlations (but not
stronger-than-quantum correlations) if it obeys a gener-
alized uncertainty principle (i.e. an uncertainty principle
which is applicable even beyond quantum mechanics, but
when assuming an Hilbert space structure reduces to the
well-known Schrödinger-Robertson uncertainty relation),
which is moreover local. Locality in this context means
that choices made by remote parties do not affect the
uncertainty relations of other parties. This result quan-
titatively supports a famous conjecture [125–127] arguing
that quantum mechanics can be as nonlocal as it is with-
out violating relativistic causality only due to its inherent
indeterminism. Moreover, it shows that entanglement-
assisted nonlocal correlations and uncertainty are two as-
pects of the same phenomenon, imprinted in the algebra
of quantum mechanics (which can be accessed from out-
side the quantum formalism using local uncertainty re-
lations). This result therefore attributes the differences
between classical and quantum correlations to the exis-
tence of fundamental uncertainty within quantum me-
chanics. Several applications of this approach can be
found in [128–130]. For related analyses see [131, 132].

“CLASSICAL ENTANGLEMENT”

Having discussed different aspects of quantum physics,
such as realism, locality and non-contextuality for sin-
gle and multiple particles, we can now study how con-
cepts such as “classical entanglement” relate to these
fundamental concepts. Some works [44, 45, 133–137]
have compared the true quantum phenomenon of en-
tanglement with classical waves of light and called the

analogies “classical entanglement”. For instance, instead
of single photons if we send a classical electromagnetic
wave through the polarizing beamsplitter, then the elec-
tric field is now written as a superposition of the two
components,

E(r) = EH(r) eH + EV (r) eV ,

where eH and eV are unit vectors along horizontal and
vertical directions, and EH(r) and EV (r) are the cor-
responding electric field components, respectively. The
electric field and the polarization are correlated and the
intensities also violate inequalities that resemble Bell in-
equalities [47, 138, 139]. However, in this case, classical
fields are used instead of single particles, such as photons,
and, therefore, we are not performing tests of the as-
sumptions such as realism, locality, non-contextuality or
any class of hidden variables. As all these considerations
using classical states of light, i.e. coherent states, are
fully described by Maxwell’s equations, i.e. only require
a wave picture without invoking the field quantization,
they cannot challenge any of the above mentioned fun-
damental concepts. All contradictions to classical con-
cepts and mind-boggling questions arose upon consider-
ing the particle nature of light, i.e. when using single
photons. Hence, it is misleading to challenge fundamen-
tal concepts using states of light that are fully described
by the electromagnetic wave picture and Maxwell’s equa-
tions. Therefore, we suggest that the term entanglement
should only be used in connection to quantum experi-
ments with single or multiple particles, and in particu-
lar for the cases involving non-locality as it was origi-
nally suggested by Schrödinger. Using the equally valid
term of “non-separability”, which is not as closely re-
lated to fundamental ideas as entanglement, might be
more appropriate and simplify the distinction between
classical and quantum correlations, for experts as well
as the interested layman. Moreover, although analogies
might be correct, the beauty as well as deep implica-
tions due to quantum entanglement might otherwise be
misinterpreted, oversimplified or even entirely misunder-
stood. This type of classical states, i.e. non-separable
states, nevertheless have important applications [45] for
example in polarization metrology [137], kinematic sens-
ing [140], computation [141], communication [142, 143],
and many more [144, 145].

CONCLUSION

Stemming directly from the principles of quantum me-
chanics, the presence of entanglement in any multipar-
tite system marks a distinct departure from classical
physics. Defying any classical explanation, entangle-
ment raises some intriguing fundamental questions about
the physical universe such as realism, non-locality, etc.
Some exciting manifestations of entanglement, such as
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Schrödinger cat states and N00N states, serve to ques-
tion the boundary between the quantum and classical
world, highlighting some stark differences between the
two regimes. Non-separable single-particle states, simi-
lar to entangled states in their mathematical form, yet
lacking non-locality, present some intriguing instances
of correlations allowing one to investigate the meaning
of contextuality. Classical electromagnetic phenomena
analogous in their form to entangled states, although use-
ful in a variety of applications [137, 140–145], cannot act
as tests of the fundamental concepts of non-locality, real-
ism or contextuality as entangled states can. As such, we
suggest “non-seperability” as a more appropriate term for
these states to clearly distinguish them from the quantum
phenomenon of entanglement.

In addition to being an integral concept of quantum
foundations, entanglement is also a key resource in mod-
ern technological advances in quantum computing, quan-
tum communication and quantum metrology. To a large
extent, the second quantum revolution we are witnessing
these days strongly relies on generation and manipula-
tion of entangled quantum states. Bell inequalities [24]
and Tsirelson bounds [106] quantify the lower and upper
limits, respectively, on the correlations obtainable from
entangled states to be non-classical and still considered
quantum. Striking forms of quantum correlations, dif-
ferent from entanglement, have also been studied, most
notably, quantum discord [146–149], which poses some
avenues for future research. Moreover, nonlocality itself
is believed to be a broader phenomenon than presented
here, often including dynamical nonlocality [150, 151],
such as the one commonly attributed to the Aharonov-
Bohm effect [152, 153], which is also closely connected
to entanglement [154–157]. This type of nonlocality still
merits further quantitative study [150].
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[2] M. Planck, Über irreversible Strahlungsvorgänge,
Sitzungsberichte der Königlich Preußischen Akademie
der Wissenschaften zu Berlin 5.1, 440-480 (1899).

[3] N. Lambert, Y-N. Chen, Y-C Chen, C-M. Li, G.Y.
Chen, and F. Nori, Quantum Biology, Nat. Phys. 9,
10-18 (2013).

[4] H. B. Gray, J. R. Winkler, Electron tunneling through
proteins, Q. Rev. Biophys. 36, 341-372 (2003).

[5] G.S. Engel et al., Evidence for wavelike energy transfer
through quantum coherence in photosynthetic systems,
Nature 446, 782 (2007).

[6] I. N. Levine, D. H. Busch, H. Shull, Quantum chemistry,
Upper Saddle River, NJ: Prentice Hall (2000).

[7] A. Szabo, N.S. Ostlund, Modern quantum chemistry:
introduction to advanced electronic structure theory
Courier Corporation (2012).

[8] A. Halpin et al., Two-dimensional spectroscopy of a
molecular dimer unveils the effects of vibronic coupling
on exciton coherences, Nat. Chem. 6, 196 (2014).

[9] M. A. Nielsen and I. Chuang, Quantum computation
and quantum information, Cambridge University Press
(2000).

[10] P. Benioff, The computer as a physical system: A micro-
scopic quantum mechanical Hamiltonian model of com-
puters as represented by Turing machines, J. Stat. Phys.
22, 563-591 (1980).

[11] R.P. Feynman, Simulating physics with computers, Int.
J. Theor. Phys. 21, 467-488 (1982).

[12] D.P. DiVincenzo, Quantum computation, Science 270,
255-261 (1995).

[13] D. Deutsch, Quantum theory, the Church-Turing princi-
ple and the universal quantum computer, Proc. R. Soc.
Lond. A 400, 97-117 (1985).

[14] S. Saunders, J. Barrett, A. Kent, and D. Wallace, eds.
Many worlds?: Everett, quantum theory, and reality,
Oxford University Press, 2010.

[15] G. Bacciagaluppi, and A. Valentini, Quantum theory at
the crossroads: reconsidering the 1927 Solvay confer-
ence, Cambridge University Press, 2009.

[16] J. S. Bell, Speakable and unspeakable in quantum me-
chanics: Collected papers on quantum philosophy, Cam-
bridge university press, 2004.

[17] D. Bohm, A suggested interpretation of the quantum
theory in terms of “hidden” variables I, Phys. Rev. 85,
166 (1952).

[18] D. Bohm, A suggested interpretation of the quantum
theory in terms of “hidden” variables II, Phys. Rev. 85,
180 (1952).

[19] H. Everett, Relative State Formulation of Quantum Me-
chanics, Rev. Mod. Phys. 29, 454-462, (1957)

[20] C. A. Fuchs, QBism, the Perimeter of Quantum
Bayesianism, arXiv:1003.5209.

[21] J. G. Cramer,The transactional interpretation of quan-
tum mechanics, Rev. Mod. Phys. 58, 647-687 (1986).

[22] Y. Aharonov, and L. Vaidman. The two-state vector for-
malism: an updated review, in Time in quantum me-
chanics, pp. 399-447. Springer, Berlin, Heidelberg, 2008.

[23] M. Genovese, Research on hidden variable theories: A
review of recent progresses, Phys. Rep. 413, 319-396,
(2005).

[24] J. S. Bell, On Einstein-Podolsky-Rosen Paradox,
Physics 1, 195 (1964).

[25] A.J. Leggett, Nonlocal hidden-variable theories and
quantum mechanics: An incompatibility theorem,

mailto:ekarimi@uottawa.ca
http://arxiv.org/abs/1003.5209


16

Found. Phys. 33, 1469-1493 (2003).
[26] N. D. Mermin, Could Feynman have said this, Physics

Today, 57(5), 10 (2004).
[27] T. Scheidl et al., Violation of local realism with freedom

of choice, Proc. Natl. Acad. Sci. USA 107, 19708-19713
(2010).

[28] B. Hensen et al., Loophole-free Bell inequality violation
using electron spins separated by 1.3 kilometres, Nature
526, 682 (2015).

[29] M. Giustina et al., Bell violation using entangled pho-
tons without the fair-sampling assumption, Nature 497,
227 (2013).

[30] D. Rauch et al., Cosmic Bell Test Using Random Mea-
surement Settings from High-Redshift Quasars, Phys.
Rev. Lett. 121, 080403 (2018).

[31] M. Ansmann et al., Violation of Bell’s inequality in
Josephson phase qubits, Nature 461, 504 (2009).

[32] M. A. Rowe et al., Experimental violation of a Bell’s
inequality with efficient detection, Nature 409, 791
(2001).

[33] The BIG Bell Test Collaboration, Challenging local re-
alism with human choices, Nature 557, 212-216 (2018).

[34] C. Jönsson, Elektroneninterferenzen an mehreren
künstlich hergestellten Feinspalten, Z. Phys. 161, 454-
474 (1961).

[35] A. Zeilinger, R. Gahler, C. G. Shull, W. Treimer, and W.
Mampe, Single-and double-slit diffraction of neutrons,
Rev. Mod. Phys. 60, 1067-1073 (1988).

[36] O. Carnal, and J. Mlynek, Young’s double-slit experi-
ment with atoms: A simple atom interferometer, Phys.
Rev. Lett. 66, 2689 (1991).

[37] M. Arndt, et al., Wave-particle duality of C60
molecules, Nature 401, 680-682 (1999).

[38] M. R. Andrews, et al., Observation of interference
between two bose condensates, Science 275, 637-641
(1997).

[39] L. Hackermuller, et al., Wave nature of biomolecules and
fluorofullerenes, Phys. Rev. Lett. 91, 090408 (2003).

[40] O. Nairz, M. Arndt, and A. Zeilinger, Quantum inter-
ference experiments with large molecules, Am. J. Phys.
71, 319-325 (2003).

[41] S. Gerlich, et al., Quantum interference of large organic
molecules, Nat. Commun. 2 263 (2011).

[42] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman
Lectures on Physics, Vol. 3. Addison-Wesley, (1965).

[43] R. P. Feynman, The Character of Physical Law, Modern
Library (1965).

[44] R. J. C. Spreeuw, A Classical Analogy of Entanglement,
Found. Phys. 28, 361-374 (1998).

[45] A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and
G. Leuchs, Quantum-like nonseparable structures in op-
tical beams, New J. Phys. 17, 043024 (2015).

[46] H-W. Lee, and J. Kim, Quantum teleportation and
Bell’s inequality using single-particle entanglement,
Phys. Rev. A 63 012305 (2000).

[47] E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L.
Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J.
Padgett, and E. Santamato, Spin-orbit hybrid entan-
glement of photons and quantum contextuality, Phys.
Rev. A 82, 022115 (2010).

[48] T Stav, A Faerman, E Maguid, Dikla Oren, V Kleiner,
E Hasman, M Segev, Quantum entanglement of the spin
and orbital angular momentum of photons using meta-
materials, Science 361, 1101 (2018).

[49] Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, and
H. Rauch, Violation of a Bell-like inequality in single-
neutron interferometry, Nature 425 45-58 (2003).

[50] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of
subpicosecond time intervals between two photons by
interference, Phys. Rev. Lett. 59, 2044 (1987).

[51] J. D. Franson, Bell inequality for position and time,
Phys. Rev. Lett. 62, 2205-2208 (1989).

[52] K. R. Popper, Quantum Theory and the Schism in
Physics, Die Naturwissenshaften, 22, 807 (1934).

[53] K. R. Popper, Quantum Theory and the Schism in
Physics: from the Postscript to the Logic of Scientific
Discovery. Routledge, 2013.

[54] E. Bolduc, E. Karimi, K. Piche, J. Leach and R. W.
Boyd, Experimental investigation of Popper’s proposed
ghost-diffraction experiment, J. Opt. 19, 104002 (2017).

[55] P.-A. Moreau, P. A. Morris, E. Toninelli, T. Gregory,
R. S. Aspden, G. Spalding, R. W. Boyd and M. J. Pad-
gett, Experimental Limits of Ghost Diffraction: Pop-
per’s Thought Experiment, Sci. Rep. 8, 13183 (2018).

[56] Y.-H. Kim, Y. Shih, Experimental Realization of Pop-
per’s Experiment: Violation of the Uncertainty Princi-
ple?, Found. Phys. 29, 1849 (1999).

[57] P. A. et al., Experimental Limits of Ghost Diffrac-
tion: Popper’s Thought Experiment, Sci Rep. 8, 13183
(2018).

[58] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-
Mechanical Description of Physical Reality Be Consid-
ered Complete?, Phys. Rev. 47, 777 (1935).

[59] Max Born(editor), The Born Einstein Letters, p.221.
(Macmillan, London (1971).

[60] D. Bohm, Quantum Theory, New York: Prentice Hall
(1951).

[61] D. Bohm and Y. Aharonov, Discussion of Experimental
Proof for the Paradox of Einstein, Rosen, and Podolsky,
Phys. Rev. 108, 1070 (1957).

[62] E. Schrödinger, Die gegenwärtige Situation in der Quan-
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