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Abstract—Image demosaicing is problem of interpolating full-
resolution color images from raw sensor (color filter array) data.
During last decade, deep neural networks have been widely
used in image restoration, and in particular, in demosaicing,
attaining significant performance improvement. In recent years,
vision transformers have been designed and successfully used in
various computer vision applications. One of the recent methods
of image restoration based on a Swin Transformer (ST), SwinIR,
demonstrates state-of-the-art performance with a smaller number
of parameters than neural network-based methods. Inspired
by the success of SwinIR, we propose in this paper a novel
Swin Transformer-based network for image demosaicing, called
RSTCANet. To extract image features, RSTCANet stacks several
residual Swin Transformer Channel Attention blocks (RSTCAB),
introducing the channel attention for each two successive ST
blocks. Extensive experiments demonstrate that RSTCANet out-
performs state-of-the-art image demosaicing methods, and has a
smaller number of parameters. The source code is available at
https://github.com/xingwz/RSTCANet.

Index Terms—Image Demosaicing, Swin Transformer, Channel
Attention

I. INTRODUCTION

Most modern digital cameras record only one color chan-
nel (red, green, or blue) per pixel. In order to recover the
missing pixels, the image demosaicing models are proposed
to reconstruct a full color image from a one-channel mosaiced
image. Existing demosaicing methods can be classified into
two categories: model-based methods [1–4], which recover
images based on mathematical models and image priors in
the spatial-spectral domain; and learning-based methods [5–
11], based on process mapping learned from abundant ground-
truth image and mosaiced image pairs. Among these methods,
the recent ones [9–11] attain state-of-the-art performance.
However, there are still color artifacts in their resulting images
(Fig. 1), especially in high frequency regions. Besides, the cost
of these networks to improve performance is to increase the
depth of the network, which results in a bigger model size
(Table IV).

To overcome the above-mentioned problems, we turn our
attention to other lighter but effective models for image
restoration. Recently proposed vision transformer, called Swin
Transformer [12] outperforms state-of-the-art in several vision
problems, such as image classification, object detection, and
semantic segmentation. Same year, a U-Net method based on
Swin Transformer has been proposed for medical image seg-
mentation, called Swin-Unet [13]. Meanwhile, another Swin
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Fig. 1: Visual results comparison of different demosaicing
methods on image 026 from Urban100 dataset. (a) Ground-
truth and selected area; (b) Ground-truth; (c) Mosaiced; (d)
IRCNN; (e) RSTCANet-B; (f) DRUNet; (g) RSTCANet-S;
(h) RNAN; (i) RSTCANet-L.

Transformer-based method, SwinIR [14], was proposed for
image restoration. SwinIR surpasses state-of-the-art methods
on image super-resolution, image denoising, and JPEG com-
pression artifact reduction with fewer number of parameters.
Inspired by the success of SwinIR, we adopt Swin Transformer
to propose a lightweight model for image demosaicing. We
notice that while utilizing Swin Transformer in SwinIR is
helpful to fully excavate the image features patch attentions
horizontally, an extraction of the channel features vertically
has not received equal attention.

Considering the inter-dependencies among the feature chan-
nels should be utilized as well, we introduce the channel
attention [15] in the basic block of SwinIR, residual Swin
Transformer block (RSTB), to comprehensively extract image
features. The proposed combination is named RSTCAB, which
is composed of several Swin Transformer layers (STL) and
several channel attention blocks. For each two successive
STLs, one channel attention block is utilized to generate dif-
ferent attention for each channel-wise feature learned by STLs.
The channel attention (CA) is first proposed in RCAN [15]. It
consists of a GlobalPooling layer, a down-sampling convolu-
tion layer, an up-sampling convolution layer, and the sigmoid
function. The ablation study in Sec. IV-A proves the adoption
of CA can further improve the performance of RSTB on
demosaicing.

There is a recent work on SCUNet [16], a U-Net based on
Swin Transformer, for a blind denoising. The basic module SC
block of SCUNet combines the Swin Transformer and resid-
ual convolutional block. In contrast, our proposed RSTCAB
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Fig. 2: Residual Swin Transformer Channel Attention Network (RSTCANet) and Residual Swin Transformer Channel Attention
Block (RSTCAB).

introduces channel attention blocks in the Swin Transformer
blocks.

In summary, there are three main contributions in this paper:
(1) We propose the first vision transformer-based method
RSTCANet for image demosaicing; (2) The proposed resid-
ual Swin Transformer channel attention block (RSTCAB)
takes advantage of both Swin Transformer and channel at-
tention. Compared with either other Swin Transformer-based
block [14] or residual channel attention block [15], RST-
CAB attains the best performance on image demosaicing;
(3) RSTCANet achieves state-of-the-art performance on four
datasets with smaller model size compared with the existing
image demosaicing methods. In addition, the resulting images
generated by RSTCANet contain much less visible artifacts
(see an example in Fig. 1).

II. RELATED WORKS

Vision Transformer. Recently, inspired by the suc-
cess of Transformer in natural language processing (NLP)
domain [17], more and more researchers proposed the
Transformer-based architectures for computer vision tasks.
The new creation work ViT [18] proposed a Transformer-based
architecture for image classification. In order to improve the
computational efficiency of Vision Transformer, several works
made different efforts, such as the pyramid Transformer archi-
tecture [19, 20], and self-attention on local windows [12, 21].
Besides image classification, Transformer-based architectures
also achieve impressive performance on other high-level vision
tasks, such as object detection [12, 22–24], segmentation [12,
13, 25, 26], and crowd counting [27, 28].

For image restoration tasks, IPT [29] is first proposed based
on standard Transformer. However, IPT needs to pretrain on a
large-scale synthesized dataset and multi-task learning to get
good performance. To improve the efficiency and effective-
ness of the Transformer-based on image restoration problems,
several methods [14, 30, 31] are proposed in recent years.

III. METHOD

A. Framework

Network architecture. The architecture of our proposed
residual Swin Transformer Channel Attention network (RST-
CANet) is shown in Fig. 2. Similar to SwinIR [14], the
network consists of three modules: the shallow feature extrac-
tion, the deep feature extraction, and the image reconstruction
modules. The shallow feature extraction module is composed
of a pixel shuffle layer and a vanilla linear embedding layer.
For deep feature extraction, we propose residual Swin Trans-
former Channel Attention blocks (RSTCAB) to extract both
hierarchical window based self-attention-aware features [12]
and vertical channel-attention-aware features. This module
consists of K RSTCAB and one 3 × 3 convolutional layer.
The shallow and deep features are first aggregated by a long
skip connection before they fed into the image reconstruction
module. The image reconstruction consists of the up-sampling
layer and two 3× 3 convolutional layers.

Loss function. We optimize the RSTCANet with the L1

loss function. Given the training pairs {IiM , IiGT }Ni=1, contain-
ing N mosaiced inputs and their corresponding ground truth
images, the optimization of the parameters of RSTCANet can
be formulated as :

L(Θ) =
1

N

N∑
i=1

∥RSTCANet(IiM )− IiGT ∥1, (1)

where Θ denotes the parameter set of RSTCANet and ∥ · ∥1
denotes ℓ1 norm.

B. Residual Swin Transformer Channel Attention Block

As shown in Fig. 2, there are N Swin Transformer layers
(STL) and N/2 channel attention blocks (CA), and one 3× 3
convolutional layer in our proposed residual Swin Transformer
Channel Attention block (RSTCAB). There is also a skip
connection in the RSTCAB, guaranteeing that the RSTCAB
will focus on the differences between the input and output
images. The skip connection in RSTCAB and the long skip
connection in the network results in the proposed RSTCANet



becoming a residual in residual framework, as in many other
image restoration methods [11, 15, 32].

For each two successive STL, the channel attention block
generates the channel statistics with the input of two STLs
and multiplies the produced attention with the output of two
STLs. The N channel attention blocks in the same RSTCAB
share parameters. The structure of the channel attention block
is same as the one in [15], see Sec. I). With the channel
attention blocks, the residual component learned by STL in the
RSTCAB is adaptively rescaled. The convolutional layer at the
end of RSTCAB is very important for the vision transformer-
based image restoration network. We prove this in Sec. IV-A.
The discussions about the effect and the number of the channel
attention blocks are also included in Sec. IV-A.

C. Architecture Variants

In order to fairly compare our proposed RSTCANet with
state-of-the-art image demosaicing methods, we build three
different model variants, like in [12]. We build our base
model, called RSTCANet-B, to have the smallest model size
and computation complexity. We also introduce RSTCANet-S
and RSTCANet-L, which are versions of about 3× and 6×
the model size and computational complexity, respectively.
The parameter settings of these model variants are shown
in Table I. The model size of the model variants for image

TABLE I: The parameter settings of different model variants.
C is the channel number. K and N denote the number of RST-
CAB and the number of STL in one RSTCAB, respectively.

Model Variants C K Multihead N

RSTCANet-B 72 2 6 6
RSTCANet-S 96 4 6 6
RSTCANet-L 128 4 8 8

demosaicing is shown in Sec. IV-B.

IV. EXPERIMENTS

For the training, we have applied Nvidia Tesla V100 GPU
with 32 GB memory from the Tampere University TCSC Narvi
computing cluster. We select DIV2K [33] as our training set,
which contains 800 training images. Data augmentation is
performed on images, which are randomly rotated by 90◦,
180◦, 270◦ and flipped horizontally. The batch size is 16, and
the patch size is 64 × 64. For optimization of the network
parameters, we use Adam [34] with β1 = 0.9, β2 = 0.999,
and the learning rate is initialized to 0.0001. For three model
variants, RSTCANet-B,S and L, the learning rate decreases by
half each 40k, 100k, and 200k iterations, respectively. Here k
equals to 1000. The window size is set to 8 by default. Other
parameter settings can be found in Table. I.

A. Ablation Study and Discussion

Table II shows the results of ablation study of RSTCAB. We
have investigated the effect of Multihead size (MS), short skip
connection (SSC), and the number of channel attention (CA)
blocks in one RSTCAB. We have selected the RSTCANet

trained with 2 RSTCAB, Multihead size 4, three channel
attention blocks in one RSTCAB, channel number (C) 64
as the benchmark (see Table II). All models are evaluated
for image demosaicing on McM dataset [35] by two metrics,
cPSNR and SSIM.

TABLE II: The ablation study of different components of
RSTCAB.

Case MS SSC CA cPSNR/SSIM

RSTCANet 4 % 3 38.71/0.9897
RSTCANet-h2 2 % 3 38.55/0.9892
RSTCANet-SSC 4 ! 3 38.60/0.9896
RSTCANet-CA0 4 % 0 38.66/0.9897
RSTCANet-CA1 4 % 1 38.68/0.9896
RSTCANet-CA6 4 % 6 38.65/0.9896

Impact of Multihead size. We have designed a RSTCANet-
h2, with size of Multihead equals to 2. It can be observed that
the model performance can be improved by a bigger attention
Multihead size with the same channel number.

Impact of short skip connection. The RSTCANet-SSC is
designed to check if adding a short skip connection for every
two successive STLs would provide any improvement. By
comparing RSTCANet and RSTCANet-SSC, one can see that
extra skip connection reduces the performance of RSTCAB.

The impact of the number of channel attention blocks
in one RSTCAB. Three other variations of RSTCANet are
designed to examine the effect of CA blocks. There are no
CA blocks in RSTCANet-CA0. Note that the structure of
RSTCANet-CA0 is identical to the structure of SwinIR [14].
In the RSTCAB of RSTCANet-CA1 there is only one CA
block, and the input of this CA block is the input of RSTCAB.
The attention generated by this CA block is multiplied by
the features produced by the sixth STL of RSTCAB. For
RSTCANet-CA6, in the RSTCAB, there is one CA block for
each STL.

A comparison with RSTCANet-CA0 presented in Ta-
ble II, shows that by exploiting one CA block for six STLs
(RSTCANet-CA1) or applying one CA block for each two
successive STLs (RSTCANet) can improve the performance
of the RSTCAB. It also demonstrated that the proposed RST-
CANet outperforms another Swin Transformer-based method
SwinIR on image demosaicing. However, when there are six
CA blocks in RSTCAB (RSTCANet-CA6), a performance of
RSTCANet becomes worse, which can be explained by the
shifted window partitioning mechanism for two successive
STLs [12]. To make up for the deficiency of cross-window
connections in the window-based self-attention module, the
authors of [12] introduced the shifted window partitioning
strategy in two successive Swin transformer blocks. When the
channel attention is learned for each STL, the connections
across windows are ignored. In contrast, by applying the
channel attention for every two successive STLs, there is a
positive effect of the shifted window partitioning strategy.

Impact of Convolutional layers. We have also added
extra convolution layers in the RSTCANet, at the end of



TABLE III: The ablation study of convolutional layers in
RSTCANet. Image demosaicing on McM dataset. #Conv.
represent the number of convolution layers. DFE denotes the
deep feature extraction module.

Case #Conv. in cPSNR/SSIM #param.
RSTCAB DFE (MB)

RSTCANet-B 1 1 38.89/0.9902 5.5
RSTCANet-1 1 2 38.88/0.9899 5.7
RSTCANet-2 2 1 38.82/0.9898 5.9
RSTCANet-3 0 1 38.52/0.9894 5.1

RSTCAB and at the end of deep feature extraction module. We
have trained these two variations of RSTCANet, and denoted
them as RSTCANet-1 and RSTCANet-2, respectively. Another
variation, RSTCANet-3 without convolutions in the RSTCAB
is trained as well. All models in this experiment are trained
with channel features 72 and Multihead size 6 as RSTCANet-
B. From the results presented in Table III, we unexpectedly
find that utilization of more convolution layers in RSTCANet
does not guarantee the performance improvement, but leads to
an increase of the model size.However, the experimental result
demonstrated (RSTCANet-3) that the convolutional layer at
the end of RSTCAB is necessary. It should be the case because
the STL layers are more relevant for recognition rather than
reconstruction [39].

Impact of the Basic Block. A comparison between RST-
CANet and RSTCANet-CA0 in Table II shows that RSTCAB
performs better than RSTB [14] on demosaicing. Besides
this, we train another RSTB-based model with a bigger
channel number (72), denoted as SwinIR∗. We also compare
our proposed RSTCAB with other two related basic blocks,
RCAB [15] and SC block [16]; we marked these models
as RCAN∗ and SCNet∗, respectively. The number of RCAB
in RCAN∗ is 24, and the number of SC blocks in SCNet∗

is 2 and each SC block has 6 Swin Transformer blocks.
For fair comparison, all other training settings of SwinIR∗,
RCAN∗ and SCNet∗ are same with the proposed RSTCANet-
B, including the structure of shallow feature extraction module
and the image reconstruction module.

From Table V, one can see that combining the CA blocks
whose parameters are shared with the Swin Transformer
blocks can improve the demosaicing performance of model
without additional storage cost. The numbers of parameters of
RSTCANet-B and SwinIR∗ are same, but the demosaicing per-
formance is improved by 0.13 dB. In addition, the model size
of RCAN∗ is 1.4 times of RSTCANet-B. While the number of
parameters is more, the demosaicing performance of RCAN∗

on McM set is slightly worse than RSTCANet-B. This shows
that the proposed RSTCAB combines advantages of RCAB
and RSTB. For SCNet∗, it achieves a slight improvement (0.11
dB) at the cost of 1.4 times parameters of RSTCANet-B. This
demonstrates that RSTCAB has a better trade-off between
the demosaicing performance and model size than SC block.
We also report FLOPs and run-time comparisons in Table V.
Among these basic blocks, RSTCAB achieves the best trade-

off between performance, FLOPs, runtime and #param.

B. Results on Image Demosaicing

Quantitative comparison. Table IV shows the quantita-
tive comparisons between RSTCANet and the state-of-the-art
methods: DRUNet [9], IRCNN [10] and RNAN [11]. We test
different methods on four benchmark datasets, McM [35],
Kodak [36], CBSD68 [37] and Urban100 [38]. The color
PSNR and SSIM values are evaluated on resulting images.

As one can see, compared with these state-of-the-art demo-
saicing methods, our RSTCANet can get comparable perfor-
mance with smaller size. The RSTCANet-B performs better
than IRCNN at least 1 dB with 0.3× model size. RSTCANet-
S outperforms DRUNet by 0.08 dB on McM, 0.31 dB on
Kodak and 0.47 dB on Urban100 with only 0.13× of its size.
On CBSD68, our RSTCANet-S also performs slightly better
than DRUNet. Compared with the SOTA method RNAN,
our RSTCANet-S gets the comparable performance with only
half size parameters. On Urban100, the RSTCANet-S even
achieves a slightly better performance (0.04 dB) than RNAN.

The large model variant, RSTCANet-L, is a lighter (1.7 MB)
than RNAN, but has better performance than RNAN on three
datasets. Especially on Urban100, our RSTCANet-L performs
better than RNAN by 0.42 dB.

In addition, by increasing the channel number C and the
number of RSTCAB blocks, RSTCANet-S and RSTCANet-
L improve the performance by at least 0.5 dB and 0.63 dB
compared with RSTCANet-B.
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Fig. 3: Visual comparison of different demosaicing methods
on image 1 from McM dataset. (a) Full ground-truth and
selected area; (b) Ground-truth; (c) Mosaiced; (d) IRCNN; (e)
RSTCANet-B; (f) DRUNet; (g) RSTCANet-S; (h) RNAN; (i)
RSTCANet-L.

Visual comparison. Fig. 1 and Fig. 3-4 illustrate the visual
comparisons between our proposed RSTCANet and the state-
of-the-art demosaicing methods. In these illustrations, one can
observe that the proposed RSTCANet-L can generate less
color artifacts than other methods. For high frequency regions,
the color artifacts exist even in RNAN resulting images, such
as the right border of the curtain in Fig. 3, and the texture of
jeans in Fig. 4. In contrast, our method can reconstruct the
color image with less color artifacts.

V. CONCLUSION

In this paper, we propose a Swin Transformer-based image
demosaicing model RSTCANet, based on the residual Swin



TABLE IV: The quantitatively comparison with state-of-the-art methods for demosaicing on benchmark datasets. The last
column is the size of the model. The best values are in bold.

Method McM [35] Kodak [36] CBSD68 [37] Urban100 [38] Size
cPSNR/SSIM cPSNR/SSIM cPSNR/SSIM cPSNR/SSIM (MB)

IRCNN [10] 37.84/0.9885 40.65/0.9915 40.31/0.9924 37.03/0.9864 18.0
DRUNet [9] 39.40/0.9914 42.30/0.9944 42.33/0.9955 39.22/0.9906 124.5
RNAN [11] 39.66/0.9915 42.92/0.9952 42.45/0.9959 39.65/0.9923 34.3
RSTCANet-B 38.89/0.9902 42.11/0.9948 41.74/0.9954 38.52/0.9906 5.5
RSTCANet-S 39.58/0.9910 42.61/0.9951 42.36/0.9958 39.69/0.9924 16.0
RSTCANet-L 39.91/0.9916 42.74/0.9952 42.47/0.9960 40.07/0.9931 32.6

TABLE V: The ablation study of basic block of demosaicing network. Image demosaicing on McM dataset (500× 500).

Case Basic Block cPSNR/SSIM #param.(MB) Runtime FLOPs
RSTCANet-B RSTCAB 38.89/0.9902 5.5 0.375s 93.5G
SwinIR∗ RSTB [14] 38.76/0.9898 5.5 0.368s 92.9G
RCAN∗ RCAB [15] 38.86/0.9899 7.7 0.308s 52.8G
SCNet∗ SC block [16] 39.00/0.9901 8.5 0.385s 200.8G
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Fig. 4: Visual comparison of different demosaicing methods
on image 5 from McM dataset. (a) Full ground-truth and
selected area; (b) Ground-truth; (c) Mosaiced; (d) IRCNN; (e)
RSTCANet-B; (f) DRUNet; (g) RSTCANet-S; (h) RNAN; (i)
RSTCANet-L.

Transformer Channel Attention blocks (RSTCAB), which
takes advantage of both Swin Transformer and Channel Atten-
tion blocks. Experimental results show that RSTCAB surpass
other Swin Transformer-based blocks on image demosaicing.
The quantitative and qualitative results also demonstrate that
RSTCANet achieves state-of-the-art performance on image de-
mosaicing, generating much less color artifacts in the resulting
images. In the future, we plan to extend the RSTCANet to
other image restoration tasks, such as image denoising and
super-resolution.
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