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ABSTRACT

The paper is devoted to the task of estimation of the
parameters of spatially correlated noise and noise
suppression in images. Several schemes of noise removal,
including multiscale ones, are considered. A convolutional
neural network (CNN) for blind estimation of the spectrum
of spatially correlated noise images is proposed. It is shown
that the proposed network in combination with the BM3D
filter provides more efficient noise suppression than
existing solutions. A CNN for prediction of the denoising
parameters for DRUNet denoiser is also proposed and
analyzed. It is shown that the usage of this network and
DRUNet for multiscale denoising in comparison with other
methods provides better quality of image denoising and
processing speed for a wide range of sizes of “noise grain”.

Index Terms— image denoising, blind noise
parameters estimation, spatially correlated noise,
convolutional neural networks, deep learning

1. INTRODUCTION

The noise suppression is one of the oldest problems in
digital image processing [1]. However, due to constantly
increasing requirements to digital cameras (in particular, to
produce high quality photos in low light conditions),
increasing sensors resolutions by decreasing of pixel sizes,
and other factors the problem of noise suppression becomes
even more  important [2-7].

In this paper, we consider a problem of recovery of
original noise-free image 𝐱 from its noisy observation
𝐲 = 𝐱+ 𝐧⊗ 𝐤, where n is an additive white Gaussian
noise (AWGN) with standard deviation σ, ⊗ k denotes the
two-dimensional convolution with a blur kernel k. Thus,
image 𝐱 is degraded by an additive spatially correlated
Gaussian noise (ASCGN), given by 𝐧⊗ 𝐤.

ASCGN may occur in images at the stage of image
acquisition, or image processing, e.g., digital zoom, image
super-resolution, presence of a residual noise after partial
noise suppression, demosaicing, lossy compression of
noisy images, etc. For a simplicity of noise modelling in
this paper we assume that k is a rotationally symmetric
Gaussian lowpass filter with a standard deviation σk. For
this model, a noise level is characterized by σ value, while
the size of “noise grain” (level of correlation between

values of the noise in neighboring image pixels) is
characterized by σk value.

While the problems of AWGN removal [2, 8] and
estimation of AWGN variance [9, 10] are well studied,
noise suppression and parameter estimation in the case of
ASCGN noise model are studied much less and are more
complicated. It is very difficult in case of ASCGN presence
to separate a noise from informative image component
since noise values in neighboring pixels are correlated.
Potentially, the best effectiveness of ASCGN noise
removal can be reached for known or estimated noise
spectrum [9]. Some effective denoising methods such as
BM3D [2, 11] can use this spectrum as a priori information.

At the same time, many recent denoising methods,
such as DRUNet [5], are designed for AWGN removal and
require estimation of AWGN’s σ value or a map of σ values
for image pixels. Therefore, adaptation of such denoising
methods for the case of ASCGN suppression is important.

Another class of CNN-based image denoising methods
which can be applied for ASCGN removal are blind
denoisers such as DnCNN [6] and CBDNet [7]. However,
to be effective, these methods should be trained for a given
noise spectrum which is unknown at the training stage. Due
to this, effectiveness of these algorithms to suppress
ASCGN is very limited.

In the paper, we propose two convolutional neural
networks: the first one is intended for blind noise
estimation for a given image, and the second one designed
to predict the optimal σ for DRUNet’s input for a given
image distorted by ASCGN. We analyze the applicability
of the obtained estimates in different noise suppression
schemes with both BM3D (which uses the estimated noise
spectrum) and DRUNet (which is designed for AWGN
removal and uses the estimated σ as an input).

Section 2 presents the ASCGN suppression schemes
with different denoising methods, and corresponding
multiscale extensions. Section 3 describes the proposed
deep CNN for noise spectrum estimation in images,
presents details of the training procedure, and the results of
comparative analysis of ASCGN suppression using
spectrums obtained by the network and BECNS method [9,
12].  Another modification of this architecture for
prediction of an optimal σ for DRUNet denoiser is proposed
and analyzed in Section 4. Section 5 is dedicated to
quantitative and qualitative comparison of the methods. In
this section, we also analyze computational complexity of
the considered methods and their combinations.



Fig. 1. Considered denoising methods for ASCGN removal

Fig. 2. Considered multiscale schemes of image denoising

2. DENOISING SCHEMES

In this section, we consider possible strategies of ASCGN
denoising and perform a preliminary analysis of their
efficiency. Two single step strategies are shown in Fig. 1,
and two multiscale extensions, which can be applied to any
methods from Fig. 1, are shown in Fig. 2.

2.1 Test set and noise models

For the efficiency analysis, we use 30 grayscale 512x512
images from “Tampere17” database [13]: {#1, #15, #34,
#35, #42, #48, #52, #62, #63, #65, #66, #69, #71, #75, #83,
#85, #89, #91, #94, #95, #99, #105, #115, #177, #182,
#203, #209, #241, #256, #277}. Images are specially
selected to complicate the task of noise parameters’
estimation. The set contains many highly textured images.
At the same time, images with large homogeneous regions
are present as well to provide a good representativity.

“Tampere17” is a database of noise free images. Here
we have used the sharpened versions of all images as well.
Each image was used in the numerical analysis twice: as a
given image and as an image slightly sharpened (for

sharpening, we applied the Matlab function imsharpen(im,
'Radius',1,'Amount',0.5), where “im” is a processed image).

For methods verification, we will use the model of
ASCGN with the fixed σ=10, but with different σk from the
set {0.5, 0.65, 0.75, 0.9}. It allows estimating the methods
performance for different levels of noise correlation for a
wide range of practical situations.

2.2 Denoising by a method which can use estimated
noise spectrum

The block diagram of this approach is presented in Fig. 1.
Noise spectrum is estimated for noisy image blindly and
after that it is used for image denoising.

A typical denoising method which can utilize noise
spectrum in the denoising scheme is BM3D filter [11],
where different thresholds for different spatial frequencies
are set at the hard thresholding step [11] according to a
given noise spectrum.

Recently, more effective modification of BM3D with
a convenient use of noise spectrum is proposed [2]. In our
paper, we will use this modification.
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To estimate the noise spectrum, we will use BECNS
method [4] based on the analysis of similar image regions
in the discrete cosine transform (DCT) domain. The
method provides good precision of noise spectrum
estimation; however, it is very slow. We will use this
method in the paper for preliminary analysis in this section
as well as to compare it with the proposed fast CNN for
noise spectrum estimation.

BECNS provides spectrum estimation as a matrix of
size16x16. The proposed network, described in Section 3,
provides spectrum estimation as a matrix of size 8x8.
BM3D is able to use both spectrum size as its input.

Fig. 3. Effectiveness of BM3D+BECNS scheme

 It is clearly seen that BM3D+BECNS has stable
efficiency for the wide range of σk, slightly decreased for
larger σk values.

2.3 Denoising by a method designed for AWGN
suppression

It is interesting to check the possibility to use for ASCGN
suppression an effective method designed for AWGN
removal such as the state-of-the-art denoising network
DRUNet [5].

Fig. 4. Results of ASCGN noise suppression by DRUNet for
known true σ

For simplicity of this experiment, let us suppose that
we can precisely estimate the true value of σ. Note that for
effective suppression of ASCGN one could set input for
DRUNET as tσ, where t is a correcting factor.

Fig. 4 contains the results of ASCGN denoising by
DRUNet with different t for different σk. Value σk =0
corresponds to the case of AWGN.

 These results are very interesting. First, even for σk
=0.5, DRUNet with an optimal t provides significantly
better PSNR (approximately by 1 dB) than the combination
of BM3D+BECNS. Second, there are no fixed optimal t for
a wide range of σk values. Depending on σk, a quasi-optimal
t changes from 1 to 1.4. Selection of non-optimal t can lead
to losses in PSNR by up to 1 dB. Third, efficiency of
DRUNet drastically decreases for large σk.
 Thus, the use of DRUNet for ASCGN suppressions
looks promising but needs some modifications to provide a
good noise suppression for large σk. Also, a good algorithm
for selection of optimal t is needed.

2.4 Noise suppression by blind denoising

It is possible to use totally blind methods of noise removal
for ASCGN suppression. Fig. 5 shows the results for blind
version of DnCNN denoising network (included in
Matlab’s deep learning toolbox).

Fig. 5. Results of ASCGN noise suppression by DnCNN

 It is clearly seen that DnCNN has poor efficiency of
noise suppression for σk=0.5 and it is not effective for larger
σk.

2.5 The first multiscale scheme of denoising

In this paper, we propose two multiscale extensions of the
methods considered in Sections 2.2 – 2.4.
 The main idea is that for a smaller version of a given
image the noise becomes less correlated and, thus, simpler
for suppression.

For the first multiscale scheme (M1), a given image is
denoised by a selected denoising method. Then, the filtered
image is decomposed into a smaller downsampled image
and the difference between the filtered and upsampled
image, like in image pyramid decomposition. In this paper,
we use for this purpose the 2D discrete wavelet transform
db13 from Daubechies family.

The same denoising method is applied to the
downsampled image (containing a residual noise with
smaller σk). After this, the output image is composed by
adding difference image to the upsampled result of the
second denoising (like in pyramid reconstruction). For
image upsampling, we use inverse db13.

Let us denote a method using this scheme as
XXX+M1, where XXX is  the base denoising method. For
example, BM3D+BECNS+M1 means the usage of the
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proposed multiscale method with BM3D+BECNS as the
base method.

Fig. 6. contains the results for the proposed M1 scheme
for the considered methods. We denoted DRUNet with a
priori known quasi-optimal t as DRUNet+opt+M1, and
DRUNet with the fixed t=0.9 as DRUNet+t09+M1.

Fig. 6. Results of ASCGN noise suppression using the first
multiscale scheme M1

It is clearly seen that M1 helps DnCNN to slightly
improve its denoising efficiency, it does not help BECNS,
but helps significantly DRUNet.

DRUNet+opt+M1 provides better noise suppression
than BM3D+BECNS for almost all the range of σk.
However, for the empirically selected t=0.9 the
DRUNet+t09+M1 loses up to 1 dB for large σk. This proves
that a good method of prediction of t value is needed.

2.6 The second multiscale scheme of denoising

For the second multiscale scheme (M2), a given image is
denoised first on a smaller resolution (noise removal for
low spatial frequencies), and after composing the result into
a full-size image it is denoised again to remove a noise from
its high spatial frequencies.

Fig. 7 shows the results for the proposed M2 scheme
for the considered methods. Methods are denoted here
similarly to the M1 scheme. BM3D+BECNS and DnCNN
for M2 provide weak results, so, we show only the results
for DRUNet equipped by M2 and M1.

Fig. 7. Results of ASCGN noise suppression using second
multiscale scheme M2 in comparison to M1

 One can see that for M2 the DRUNet provides even
better quality of filtered images than for M1, outperforming
BM3D+BECNS for the whole range of σk.

3. CNN FOR NOISE SPECTRUM ESTIMATION

For blind estimation of noise spectrum, we have selected an
architecture of deep convolutional network similar to
DRUNet. It estimates spectrum on several image scales
(well corresponds to the nature of spatially correlated
noise).
 A structure of the proposed network SPNet is drawn in
Fig. 8. The symbols used in Fig. 8 are explained in Fig. 9.
 In comparison to DRUNet, we have changed the input
size, added convolutional layer with 64 filters and global
average pooling layer. As a result, the network has 2D input
of size 64x64 pixels and 1x64 output corresponding to
spectrum 8x8. In fact, after training it can be applied to any
2D input size and always produces 1x64 output.
 For the network training, we used 270 noise-free
images from the database Tampere17 [13] and 1000 images
from the database Tampere21 [14]. Fragments of size
64x64 were cropped from the ground truth images
randomly, small sharpening has been applied, and then
images were corrupted by ASCGN with a random σ in the
range 0..20, and with random σk in the range 0.45..1.7. With
a probability 3%, AWGN noise was generated to provide
an ability of the network to estimate a spectrum of AWGN
noise.
 Network training was carried out in Matlab R2020a
environment. We have used custom training loop with the
minibatch size 8, initial learning rate 0.0001 and learning
rate decay 0.00001. Adam optimizer was used and 160000
iterations were performed.
 Fig. 10 shows the result of testing the trained SPNet
for spectrum estimation for BM3D filter.

Fig. 10. Results of ASCGN noise suppression using the
combination of BM3D and spectrum estimation by the trained

SPNet

 It is clearly seen that BM3D+SPnet works better in M1
multiscale scheme and significantly (up to 1 dB)
outperforms the BM3D+BECNS combination.

4. PROPOSED NETWORK FOR PREDICTION OF
OPTIMAL INPUT PARAMETER FOR DRUNET

For estimation of optimal t parameter for DRUNet, we
designed and trained another convolutional network
NLNet. The NLNet structure is similar to PSNet except of
last two layers which are replaced by convolutional layer
with 1 filter. As a results, the network has 2D input of size
64x64 pixels and the 64x64 output.
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Fig. 8. Structure of the proposed convolutional network for blind noise spectrum estimation

 Fig. 9. Symbols description for figure 8

In fact, after training it can be applied to any 2D input
size and produces output tσ map of the same size.

The same training set was used, however, contrary to
SPNet, the NLNet was trained to predict quasi-optimal
value of tσ for a given image which provides the smallest
MSE between the true image and DRUNet output.

We have used custom training loop with the minibatch
size 32, initial learning rate 0.0001 and learning rate decay
0.0001. Adam optimizer was used and 41500 iterations
were performed.

Fig. 11. Results of ASCGN noise suppression using combination
of DRUNet and noise level estimation by NLNet

Fig. 11 shows the result of testing the trained NLNet in
the combination with DRUNet. Input parameter for
DRUNet is calculated as a median from the output map of
NLNet.

It is clearly seen that DRUNet+NLNet+M2 provides
almost the same denoising efficiency as DRUNET+M2
with a priori known quasi-optimal t parameter and the
known σ of the noise.

5. COMPARATIVE ANALYSIS

Fig. 10 shows PSNR curves for the most efficient blind
methods.

Fig. 11. Results of ASCGN noise suppression by the compared
fully automatic denoising methods
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a b c
Fig. 11. Denoising of real life image: a) noisy image, b) BM3D+SPNet+M1, c) DRUNet+NLNet+M2

One can see that both proposed predictors provide
better noise suppression than BM3D+BECNS.

DRUNet+NLNet+M2 scheme provides better noise
suppression for smaller σk, while BM3D+SPNet+M1
provides better noise suppression for larger σk.

Table 1 contains computational time for the considered
and proposed methods (CPU i5-9300H 2.40GHz, GPU:
Nvidia GeForce GTX 1660 Ti).

Table 1. Computational time for compared methods for input
image 512x512 grayscale image, sec

BM3D
(CPU)

BECNS
(CPU)

SPNet
(GPU)

NLNet
(GPU)

DRUNet
(GPU)

30 sec 20 sec 0.2 sec 0.2 sec 0.2 sec

 It is clearly seen that DRUNet+NLNet+M2 processing
scheme provides both good noise suppression and fast
image processing.
 Fig. 11 shows a real-life image and the results of
processing by the proposed methods. In contrary, DnCNN
preserves the noise on this image almost unchanged, same
happens if one applies DRUnet with the noise σ estimation
by blind methods [13, 15] for AWGN noise.

CONCLUSIONS

The paper proposes novel methods of estimation and
removal of ASCGN from images. It is shown that the
proposed methods provide effective and fast noise
suppression outperforming existing methods.

A link to pretrained network models and demo codes
will be published in the camera-ready paper.
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