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Transport signatures of Van Hove singularities in mesoscopic twisted bilayer graphene
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Magic-angle twisted bilayer graphene exhibits quasiflat low-energy bands with Van Hove singularities close
to the Fermi level. These singularities play an important role in the exotic phenomena observed in this material,
such as superconductivity and magnetism, by amplifying electronic correlation effects. In this work, we study
the correspondence of four-terminal conductance and the Fermi surface topology as a function of the twist angle,
pressure, and energy in mesoscopic, ballistic samples of small-angle twisted bilayer graphene. We establish a
correspondence between features in the wide-junction conductance and the presence of Van Hove singularities
in the density of states. Moreover, we identify additional transport features, such as a large, pressure-tunable
minimal conductance, conductance peaks coinciding with nonsingular band crossings, and unusually large
conductance oscillations as a function of the system size. Our results suggest that twisted bilayer graphene
close the magic angle is a unique system featuring simultaneously large conductance due to the quasiflat bands,
strong quantum nonlinearity due to the Van Hove singularities, and high sensitivity to external parameters, which
could be utilized in high-frequency device applications and sensitive detectors.
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I. INTRODUCTION

Twisted bilayer graphene (TBLG) has attracted a lot of
attention because of its fascinating phenomena at certain twist
angles [1–10], commonly referred to as magic angles. At these
twist angles, the material exhibits exceptionally flat energy
bands, leading to an enhancement of electronic interactions,
and appearance of superconductivity and other correlated
phases [4,5,9,11–20]. Besides their flatness, the low-energy
bands also feature Van Hove singularities (VHSs) in the den-
sity of states (DOS) [21] close to the Fermi level. At ordinary
VHSs, the DOS diverges logarithmically, whereas it diverges
with a power law in higher-order VHSs [7]. The importance
of VHSs for the correlated phenomena observed in TBLG has
been pointed out theoretically [12,13,15] and their existence
has been confirmed in scanning tunneling spectroscopy ex-
periments [22–24].

Most of the experimental and theoretical research on
TBLG has so far focused on observables in the thermody-
namic limit and on transport in macroscopic samples in the
semiclassical regime [25,26]. The quantum transport stud-
ies have so far addressed specific questions such as the
angle-dependent minimal conductivity, disorder effects, and
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emergent magnetic textures in driven TBLG [27–29], as well
as transport in crossed graphene nanoribbons, where the scat-
tering region is smaller than the magic-angle moiré unit cell
[30–32]. However, it remains an outstanding challenge to
understand the effects of quasiflat bands, VHSs, and the rich
variety of possible Fermi surface topologies on the quantum
transport in mesoscopic TBLG samples, where the transport
characteristics can be probed in an energy-resolved fashion.
Recently, first steps towards this direction have been taken by
identifying quantum transport signatures of VHSs in TBLG
in the regime of intermediate twist angles 3◦ � θ � 10◦ as-
suming semimetallic leads [33]. In the semimetallic leads
the DOS goes to zero at the quasiflat band energies, thereby
hindering the identification of quantum transport signatures
related to the VHSs within the quasiflat bands close to the
magic angle θ ∼ 1◦. Here, we go further into this direction by
studying four-terminal conductance in mesoscopic, ballistic
TBLG samples, containing approximately one million sites
in the scattering region, around the first magic angle. Impor-
tantly, we obtain a higher energy resolution by using metallic
leads and, therefore, we are able to study the effects of the
VHSs and of the Fermi surface topology of the quasiflat bands
on the quantum transport.

We find that the low-energy quantum transport in TBLG
close to the magic angle is affected by several factors. We
demonstrate that by tuning the twist angle or pressure to
flatten the energy bands the system can support considerably
larger minimal conductance than monolayer and Bernal-
stacked bilayer graphene devices [34–38]. We further link
energy-dependent conductance signatures to different VHSs

2643-1564/2022/4(4)/043145(11) 043145-1 Published by the American Physical Society

https://orcid.org/0000-0001-5883-4903
https://orcid.org/0000-0003-3410-5460
https://orcid.org/0000-0003-2587-9755
https://orcid.org/0000-0001-6671-8056
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043145&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevResearch.4.043145
https://creativecommons.org/licenses/by/4.0/


ALEKSANDER SANJUAN CIEPIELEWSKI et al. PHYSICAL REVIEW RESEARCH 4, 043145 (2022)

in the bulk DOS and to nonsingular band crossings, and we
observe unusually large conductance oscillations as a function
of the system size. Our findings put forward that TBLG close
the magic angle is an exceptional system combining large
conductance originating from quasiflat bands with strong
quantum nonlinearity from VHSs and high sensitivity to ex-
ternal parameters. We propose that these properties could be
utilized in compact high-frequency devices and sensitive de-
tectors. Such applications could utilize the quantum twisting
microscope technology offering the possibility to locally and
continuously tune pressure and twist angle in TBLG devices
[39].

The structure of the paper is as follows. In Sec. II we
introduce the four-terminal geometry for the transport calcula-
tions and the TBLG model used in this work. We continue by
presenting in Sec. III the minimal conductance as a function
of the twist angle, pressure, and the system size. In Sec. IV we
identify the effects of VHSs and the Fermi surface topology on
the energy dependence of the conductance. Finally, we discuss
possible high-frequency device applications in Sec. V and we
summarize our results in Sec. VI.

II. MODEL AND SETUP FOR TRANSPORT
CALCULATIONS

A. Twisted bilayer graphene

There are two common configurations for untwisted
bilayer graphene (BLG) [40,41]. In AA-stacked BLG, corre-
sponding atoms from different layers are on top of each other.
In Bernal AB-stacked BLG, on the other hand, one of the
layers is shifted relative to the other, such that some atoms
from one layer lie at the centers of the hexagons formed by
the other layer and vice versa. Both configurations have in
common that their primitive lattice vectors are identical to
those of single-layer graphene. In TBLG, starting from one
of these configurations, the two layers are rotated relative to
each other by an angle θ around a fixed point in space [42].
As a consequence, a moiré pattern emerges, which breaks
the translational symmetry of the individual graphene layers.
For certain angles, however, the two layers form a periodic
moiré honeycomb superlattice, whose primitive lattice vectors
and lattice constant are angle dependent. These commensurate
twist angles have the following form [43]:

cos θ = 3m2 + 3mr + r2/2

3m2 + 3mr + r2
, (1)

where m and r are coprime positive integers. Based on this
notation, the moiré lattice constant is [44]

a = a0

2 sin θ
2

r√
gcd(r, 3)

, (2)

with the lattice constant a0 = 2.46 Å of single-layer graphene
and gcd(p, q) denoting the greatest common divisors of the
integers p and q. Generally, the smaller the twist angle, the
larger the moiré lattice constant. At the first magic angle θ =
1.05◦ (m = 31 and r = 1), for instance, we have a ≈ 15 nm.
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FIG. 1. Twisted bilayer setup: Two crossed graphene nanorib-
bons with leads (red) form a bilayer region. The top layer is twisted
by an angle θ relative to the bottom layer around the center of the
overlap region. We show a system at the magic angle θ = 1.05◦ and
widths of Wtop = 250 nm for the top ribbon and Wbottom = 50 nm for
the bottom ribbon, corresponding to the largest system considered in
this work.

B. Four-terminal transport setup

In this study, we consider ballistic quantum transport
through a TBLG region formed by two crossed graphene
ribbons, as illustrated in Fig. 1. Such a setup could be realized
in the laboratory with state-of-the-art experimental techniques
[45] and the recent advances allow one also to tune the twist
angle and pressure locally and continuously [39]. We choose
the ribbons to both have armchair terminations to avoid con-
tributions from edge states to the electronic transport, as we
aim to study bulk signatures in this work. This results in
a parallelogram-shaped overlap region between the two rib-
bons. In our setup, the top ribbon can be twisted by an angle
θ around the center of the bilayer region. The ribbons are
placed such that for θ = 0 the two layers are stacked in an
AA fashion in the overlap region. We note that we obtain
qualitatively similar results as shown in this paper if we start
from an AB-stacked overlap region instead (not shown). More-
over, the continuation of the ribbons outside the bilayer region
defines four semi-infinite, monolayer graphene leads, which
we use for our transport calculations (see Fig. 1). In contrast
to previous work [33], we use metallic leads by tuning the
chemical potential outside the scattering region far away from
the Dirac-point energy (see below).

C. Tight-binding model

In the literature, various modeling approaches have been
used to study the low-energy properties of TBLG, such as
continuum models [2,46,47], ab initio calculations [30–32],
or tight-binding models [1,48–51]. Here, we aim to investigate
multiterminal electronic transport in mesoscopic samples with
a focus on the small-angle regime. Continuum models are
long-wavelength low-energy theories and, therefore, cannot
fully capture the details at length and energy scales relevant
to transport in mesoscopic systems. In the case of ab initio
calculations, it is computationally expensive to model samples
sufficiently large to overcome finite-size effects at small twist
angles, and thereby the effects attributable to the electronic
properties of the bulk are necessarily obscured. Tight-binding
models, on the other hand, are able to accurately capture the
low-energy electronic properties of TBLG over a wide range
of twist angles [49,50] while having the advantage of being
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computationally cheaper to scale up. For this reason, we adopt
a tight-binding model approach in this work.

The generic form of a Hamiltonian for a weakly coupled
bilayer system, such as TBLG, is H = H1 + H2 + H12, where
H1,2 are the Hamiltonians of the individual layers and H12

contains interlayer-coupling terms [33,49,50]. For the individ-
ual layers and the leads, we use the common nearest-neighbor
tight-binding Hamiltonian of graphene [40]

Hm = −t
∑

〈i, j〉,σ
c†

imσ c jmσ − μ
∑
i,σ

c†
imσ cimσ , (3)

where c†
imσ (cimσ ) creates (annihilates) a pz electron with spin

σ =↑,↓ at lattice site ri of the mth layer, t = 3.09 eV is
the nearest-neighbor hopping amplitude [49], and μ is the
chemical potential. We set μ = −2 eV in the leads, such that
the leads are metallic, and μ = 0 throughout the scattering
region.

For the interlayer part of the Hamiltonian, we follow
Ref. [49] by using

H12 = −
∑

〈i, j〉,σ
t ′(ri j ) c†

i,2,σ c j,1,σ + H.c., (4)

where ri j = |ri − r j | is the in-plane distance between two lat-
tice sites in different layers at positions ri and r j , respectively,
and t ′(r) is the isotropic interlayer hopping integral given by

t ′(r) = V 0
ppσ e−

(√
r2+d2

0 −d0

)
/λ d2

0

r2 + d2
0

, (5)

with the nearest-neighbor interlayer coupling V 0
ppσ = 0.39 eV,

the distance between the graphene layers d0 = 3.35 Å, and the
decay parameter λ [49]. The form of the interlayer hopping
term is based on a Slater-Koster approximation for the overlap
integrals between the pz orbitals in different layers [52]. It
is generally found that longer-range interlayer hopping terms
have to be taken into account to capture the electronic bands
of TBLG in a wide range of angles [49]. In accordance with
Ref. [49], we use λ = 0.27 Å, which reproduces the well-
known band structures of AA- and AB-stacked BLG. Making
use of the rapidly decaying nature of the hopping integral t (r)
in Eq. (5), we further neglect interlayer terms with r > 5 Å,
which is sufficient to accurately capture the bands of TBLG at
the first-magic angle.

We note that we neglect interaction effects in our model.
These are generally important for the ground-state proper-
ties of TBLG when the Fermi level is within the quasiflat
bands and, thus, correlated phases emerge. However, this
would lead to a reconstruction of the energy bands thereby
obscuring the origin of the enhanced interactions, such as
VHSs. We therefore restrict our study to a noninteracting
description of the system, which is a good approximation
as long as the Fermi level is tuned away from the quasiflat
bands. The transport can still be studied in an energy-
resolved manner by tuning the voltage bias. In this case,
only nonequilibrium quasiparticles are occupying the flat-
band states so that interaction effects are not expected to be
as important as in the case of equilibrium flat-band systems.
Alternatively, it is also possible to screen the interactions
so that a noninteracting description becomes more accurate
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FIG. 2. Four-terminal minimal conductance Gi j at E = 0 (a) as
a function of the twist angle θ at fixed interlayer coupling V 0

ppσ =
0.39 eV and (b) as a function of the interlayer coupling V 0

ppσ at the
first magic angle θ = 1.05◦. We show the following components of
the conductance matrix: G12 (blue), G34 (orange), G13 (green), and
G14 (red). The insets show the conductance close to (a) the magic
angle θ = 1.05◦ and to (b) the equilibrium interlayer coupling V 0

ppσ =
0.39 eV, which are indicated by the respective dotted black lines.

[53,54]. Furthermore, the correlated phases appear only at low
temperatures.

For the four-terminal transport calculations of the device
shown in Fig. 1 we use the quantum transport Python package
KWANT [55]. To be able to capture bulk effects in the transport
calculations, the size of the bilayer region needs to be at least
on the order of several moiré unit cells. Using an interlayer-
hopping cutoff as explained above enables us to efficiently
study systems with close to 106 lattice sites. In particular,
for Fig. 2 we perform calculations for samples of 3.2 × 16
magic-angle moiré unit cells, which is equivalent to 40 nm ×
200 nm. For Fig. 4 we increased the size of the samples
to 4 × 20 magic-angle moiré unit cells (50 nm × 250 nm).
For such samples, the bottom-layer nanoribbon represents a
long and narrow junction, whereas the top-layer nanoribbon
realizes a short and wide junction (see Fig. 1). Our setup also
allows us to study the effect of pressure, which changes the
value of the interlayer coupling.

We further aim to draw a connection between transport sig-
natures and spectral features of the bulk, in particular VHSs.
Therefore, for commensurate twist angles, we impose peri-
odic boundary conditions on the moiré unit cell and calculate
the band structure. This enables us to extract the bulk DOS
and the Fermi surface of the system at fixed energies, which
we use to pin down the VHSs. We note, however, that the
observed transport signatures do not depend on whether the
system is commensurate or incommensurate. Throughout this
work, we align E = 0 with the energy of the Dirac points at
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FIG. 3. Minimal conductance as a function of the system size: we
show the wide-junction conductance G12 at the Dirac-point energy
E = 0 for small and large angles. We have fixed the aspect ratio of
the systems to Wtop/Wbottom = 5.

the K and K ′ points of the moiré Brillouin zone (BZ). For
incommensurate twist angles, we interpolate linearly between
the Dirac-point energies corresponding to the closest com-
mensurate twist angles.

III. CONDUCTANCE AT THE DIRAC-POINT ENERGY

For a multiterminal setup, the differential conductance G
is a tensor defined through Gi j = dIi/dVj , where Ii is the
current at the ith lead and Vj is the voltage at the jth lead
of the system. Here, we consider a system with four leads,
so our conductance tensor is represented by a 4 × 4 matrix.
Moreover, our setup has an approximate C2 symmetry, which
is only weakly broken along the boundaries of the system
due to its terminations. Hence the conductance tensor Gi j

has only four independent components, which we choose to
be the intralayer conductances G12 (short and wide junction)
and G34 (long and narrow junction), as well as the interlayer
conductances G13 and G14.

First, we compute the conductance Gi j as a function of the
twist angle θ at the Dirac-point energy E = 0, which we dub
minimal conductance of the quasiflat band system in analogy
with monolayer graphene. In fact, for twist angles θ > 1.05◦
the wide junction conductance typically has a local minimum
at this energy. We note, however, that at smaller twist angles
the conductance is no longer necessarily minimal at E = 0 for
reasons explained in Sec. IV. We show our results in Fig. 2(a).
At large angles, θ � 4◦, the conductance shows a universal
behavior independent of the twist angle. The short-junction
conductance G12 approaches a value corresponding to the
minimal Dirac-point conductivity of single-layer graphene,
namely G12 Wbottom/Wtop ≈ 4e2/πh, which is in agreement
with previous results in the literature [27,34,35]. The long-
junction conductance G34, on the other hand, approaches the
quantized value of 2e2/h. We find that it corresponds to a
single spin-degenerate, propagating bulk mode confined to the
bottom layer, whose presence is attributed to the particular
width of the nanoribbon [56]. At the same time, the interlayer
conductances G13 and G14 vanish. Hence the two nanoribbons

are effectively decoupled and the conductance tensor decom-
poses into two independent two-terminal conductances. This
is in agreement with previous results [27].

For small angles, θ � 4◦, the interlayer conductances be-
come nonzero, clearly indicating coupling between the two
nanoribbons. This is also reflected in the behavior of the long-
junction conductance G34, which is suppressed, because the
propagating bulk mode in the bottom layer can now interfere
with the corresponding mode in the top layer, thereby lower-
ing the conductance. Close to the magic angle, G34 becomes
nearly zero. On the contrary, the short-junction conductance
G12 is strongly enhanced as we get closer to the magic an-
gle and deviates considerably from the single-layer value.
The behavior of the different conductance channels can be
attributed to the formation of quasiflat energy bands in small-
angle TBLG: The presence of the flat band enhances the DOS
around E = 0, while the Fermi velocities of the corresponding
bulk modes are decreased. A measurable enhancement of con-
ductance requires a sufficiently large number of lead modes,
which is why the wide-junction conductance G12 shows the
largest effect. Therefore, G12 is a suitable quantity to probe
how the Van Hove singularities affect the transport properties
through their enhancement of the DOS. We note that there are
also other factors influencing the conductance beyond the bulk
DOS, as we will discuss below.

The wide-junction conductance G12 is generally enhanced
towards smaller angles, but shows a nonmonotonic behavior.
It features two pronounced maxima, one at θ = 1.14◦ and
one at the magic angle θ = 1.05◦, and increases again for
θ � 1.0◦. We discuss this behavior in more detail below in
the context of the correspondence between conductance and
DOS.

In Fig. 2(b), we show the minimal conductance also as a
function of the nearest-neighbor interlayer coupling V 0

ppσ at
the magic angle θ = 1.05◦. This parameter can be controlled
by applying pressure [16,57]. Overall, all components of the
conductance tensor Gi j exhibit the same qualitative behavior
as in the case of a variation of the twist angle. In particular,
the conductances for vanishing interlayer coupling V 0

ppσ ≈ 0
are the same as in the large twist-angle regime confirming
the picture of effectively decoupled nanoribbons. In the large-
coupling regime, we further observe the same enhancement
of the interlayer conductances and of the wide-junction con-
ductance, while the long-junction conductance is suppressed.
Close to the magic angle, the similarities between the varia-
tions of these two parameters, θ and V 0

ppσ , even show a good
quantitative agreement, as can be seen by comparing the insets
of Figs. 2(a) and 2(b). More generally, we find that also the
corresponding bulk energy bands evolve in a similar way. Our
results suggest that a TBLG sample at an incommensurate
angle can be approximated by a sample at the closest com-
mensurate angle in combination with applied pressure. Below,
we will use this insight to continuously trace the evolution of
VHSs as a function of the twist angle.

Finally, in Fig. 3 we compare the minimal conductances
of our setup for small and large twist angles as a function
of the system size with fixed aspect ratio. For large angles,
the minimal conductance converges quickly to the universal
single-layer graphene value, which is in agreement with an
effective decoupling of the layers. On the contrary, as we
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FIG. 4. Low-energy conductance, bulk density of states, and bulk energy bands for four selected twist angles θ and interlayer hopping
amplitudes V 0

ppσ . The first row shows the four independent components of the conductance tensor Gi j as a function of energy E : G12 (blue), G34

(orange), G13 (green), and G14 (red). In the second row, we plot the bulk DOS. The third row shows the bulk spectrum along high-symmetry
lines of the moiré BZ. Red dashed lines indicate the energetic positions of selected VHSs, whereas black dotted lines indicate other, nonsingular
crossings of energy bands discussed in the text. The Fermi surface features of the VHSs labeled α–ζ are illustrated in Fig. 5.

get closer to the magic angle the minimal conductance is
enhanced and develops pronounced oscillations as a function
of the system size. Notably, the minimal conductance in this
regime is much larger than the universal value of Dirac-point
conductance for a single layer indicating that both layers now
contribute to the electronic transport.

IV. CONDUCTANCE SIGNATURES OF VAN HOVE
SINGULARITIES

Next, we compare the conductance Gi j (E ) of the TBLG
device to the bulk spectrum of TBLG focusing on the energy
regime around the quasiflat bands. Figure 4 shows our results
for a few selected cases. To better link the features in the
conductance to the DOS and the dispersion of the energy
bands, we show the evolution of the Fermi surface at energies
around these features in Fig. 5. More results can be found
in the Supplemental Material (SM) [58]. We note that with
decreasing twist angle, additional energy band crossings lead
to a plethora of features in tiny regions of the moiré BZ. Even
though we see some of these features as peaks in our finite-
momentum grid calculations of the DOS, we do not observe
conductance signatures that can be attributed to them for the
system sizes considered. In the following, we will therefore
restrict the discussion regarding Van Hove singularities to

the most pronounced peaks in the computed DOS. We have
checked that all of the discussed peaks correspond to ordinary
Van Hove singularities with a logarithmic divergence.

A. Twist angles θ � 1.12◦

We begin by discussing the conductance in the small-angle
regime leading up to the first pronounced maximum in the
minimal conductance G12(E = 0) at θ = 1.14◦ [see Fig. 2(a)].
Figure 4(a) shows the conductance, the DOS, and the energy
bands at the closest commensurate angle θ = 1.12◦. As we de-
crease the twist angle to small values, the energy bands of the
system are reconstructed due to the enlargement of the moiré
unit cell. This reconstruction flattens the Dirac cones at the K
and K ′ points of the moiré BZ and eventually decouples the
four corresponding spin-degenerate bands from the rest of the
bulk bands, thereby forming isolated quasiflat bands. Close
to the Dirac point energy E = 0, we observe two pronounced
peaks in the wide-junction conductance G12 that align with
the two main peaks of the bulk DOS. These peaks originate
from VHSs in the bulk energy bands. As illustrated in Fig. 5
[see panels (α)] for one of the singularities, each of them
corresponds to a double saddle point involving two energy
bands crossing along the �K lines of the BZ. At these points,
the topology of the Fermi surface changes constituting a Lif-
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FIG. 5. Evolution of Fermi surfaces around the VHSs labeled (α) to (ζ ) in Fig. 4: For each case, we show the Fermi surfaces at energies
slightly below the VHS, at the VHS, and slightly above the VHS (from left to right). The dashed black line indicates the corresponding moiré
Brillouin zone. The red boxes highlight band crossings corresponding to VHSs. In the first panel of (α), we further show the high-symmetry
points used in Fig. 4.

shitz transition leading to a measurable transport signature.
Similar signatures arising from Lifshitz transitions associated
with Van Hove singularities have been experimentally probed
in the context of untwisted bilayer graphene [59–61].

In agreement with the literature, the DOS goes to zero
at the Dirac point energy, which is similar to monolayer
graphene. In monolayer graphene the conductance still takes
a finite value, as discussed above. Here, however, the con-
ductance G12 at E = 0 is large and exceeds the monolayer
and the Bernal-stacked bilayer value [38] considerably, as we
already pointed out above. This is mainly due to the strong
coupling of the layers in this regime, so the Dirac points of
both layers now contribute to the conductance. Another reason
for the enhancement is the broadening of the DOS peaks in the
conductance of the device: as the bands become flatter, the
two broadened VHS features move closer together and their
overlap at E = 0 is enhanced. These are factors contributing
to the increase of G12(E = 0) towards smaller angles seen in
Fig. 2(a).

We further observe two smaller peaks around the two main
peaks in the wide-junction conductance G12. In contrast to the
main peaks, these do not correspond to distinct features in the
DOS and, therefore, do not correspond to VHSs. Nevertheless,
we find that they instead correspond to a band crossing at
the M points in the BZ (see Appendix A). These band cross-
ings constitute Lifshitz transitions that are not associated with
VHSs.

B. Twist angles 1.12◦ > θ � 1.05◦

As we lower the twist angle further from θ = 1.12◦ down
to the first magic angle at θ = 1.05◦, the bandwidth of the
quasiflat bands is reduced by nearly one order of magni-

tude [see Fig. 4(b)]. This enhances the DOS overall and,
consequently, leads to a generally larger wide-junction con-
ductance G12 within the energy range of the isolated quasiflat
bands. We still observe two pronounced main peaks close to
E = 0, which correspond to the same type of double-saddle
point VHSs as before [see panels (β) in Fig. 5]. The band
crossings responsible for the additional conductance features
at θ = 1.12◦ have moved to the band edges of the isolated
quasiflat bands and no longer stand out as much as before. We
merely see small kinks in the G12 conductance close in energy
to these features. At the Dirac point energy, the DOS is no
longer zero because of other parts of the moiré bands crossing
this energy. As before, the wide-junction conductance G12 is
largely enhanced at E = 0 and almost one order of magnitude
larger than the monolayer and Bernal-stacked bilayer value.
This is due to several factors: the strong coupling between the
layers, the broadening of the VHS features, and also additional
states crossing the Dirac-point energy. Besides the two main
peaks in the DOS, we note that there are also two smaller
features in the DOS slightly below the Dirac point energy. We
find that these correspond to ordinary VHS originating from
saddle points close to the center of the BZ (see SM [58]). They
are not clearly visible in the wide-junction conductance G12,
because their contributions merge with the broadened features
associated with the other VHSs. Note that these are the same
singularities that are visible in the DOS of Fig. 4(a) in between
and close to the two main peaks discussed in Sec. IV A.

C. Twist angles 1.05◦ > θ � 1.02◦

Tuning the twist angle to the next commensurate angle
θ = 1.02◦ below the magic angle [see Fig. 4(c)], the quasi-
flat bands reconnect with the other bulk bands close to �.
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The DOS features four pronounced peaks instead of two. A
closer analysis reveals that they correspond to different VHSs,
as illustrated in the panels (γ ) to (ζ ) in Fig. 5, connected
to different local transitions of the Fermi surface topology.
However, we find that only the VHS indicated by (δ) in Fig. 5
close to the Dirac-point energy leads to a clear feature in the
wide-junction conductance G12. The two VHSs indicated by
(ε) and (ζ ) above the Dirac points are too close in energy to be
resolved separately and, together, they only cause a small kink
in G12. We note that the band crossing at M, leading to a small
conductance feature at larger angles [see Fig. 4(a)], is close
in energy to these VHSs and, therefore, might also contribute
to the kink in G12. Similarly, the related band crossing at M
below the Dirac point is close in energy to the VHS at (γ )
and, therefore, we attribute them together to a small bump in
the G12 conductance within this energy range.

In addition, we find another pronounced peak in the G12

conductance roughly at the Dirac-point energy. This feature
is relatively far in energy from all VHSs and, therefore, does
not correspond to a singularity. Nevertheless, we note that it is
close in energy to a tangential band touching point along the
�M high-symmetry lines of the moiré BZ (see Appendix A).

Generally, we observe discrepancies between the energetic
positions of features in the conductance and the associated
spectral features of up to 0.1 meV for the TBLG devices con-
sidered. For angles θ � 1.05◦, such discrepancies are small
with respect to the width of the quasiflat bands. For smaller
angles, the features of the quasiflat bands move even closer
together leading to a larger relative discrepancy in this regime.
In Appendix B, we analyze how the system size affects the
broadening and the energetic positions of the conductance
features.

D. Evolution of Van Hove singularities between commensurate
angles

Instead of lowering the twist angle, we can alternatively
increase the nearest-neighbor interlayer coupling V 0

ppσ to ap-
proximate the bulk spectrum at the next commensurate twist
angle. We demonstrate this in Fig. 4(d), showing that the bulk
energy bands and the bulk DOS are almost identical to those
in Fig. 4(c). Also the conductances are in good qualitative
agreement despite minor quantitative deviations. This makes
it possible to unravel the evolution of VHSs between two
commensurate twist angles.

We have used the interlayer hopping to continuously tune
between the energy bands and DOS spectra corresponding to
the commensurate angles θ = 1.05◦ and 1.02◦ (see SM [58]).
Starting from the magic angle θ = 1.05◦ [see Fig. 4(b)], the
two VHSs below the Dirac point energy close to � merge,
which is accompanied by changes in the Fermi surface topol-
ogy close to the � point. We observe that a single VHS
emerges from the two original VHSs, which moves further
up in energy. It passes through the Dirac-point energy and
eventually merges with the large double-saddle point VHS
feature. The energy bands associated with the two singulari-
ties reconnect and form new singularities, which subsequently
split in energy. These are the two pronounced VHS features
we observe at θ = 1.02◦ for positive energies. On the other
hand, the double-saddle point VHS below the Dirac-point

energy we observe at the magic angle θ = 1.05◦ splits into
two separate VHSs in the DOS.

A similar analysis can be performed to study the evolution
of energy bands and VHSs between any two commensurate
twist angles provided that the angle difference is sufficiently
small. In particular, this applies to the small angle regime
below the magic angle where the distance between adjacent
commensurate angles rapidly goes to zero.

V. NONLINEAR TRANSPORT AND DYNAMICS

The predicted nonlinear current response to an applied
voltage, following from the energy dependence of the conduc-
tance, suggests that TBLG systems can be utilized in various
kinds of generators, frequency multipliers, frequency mixers,
parametric amplifiers, and detectors of electromagnetic radi-
ation [62–68]. Here, we briefly comment on some aspects
regarding potential applications of TBLG devices in the light
of our transport results.

The simplest approach to describe the photon-assisted cur-
rent I (t ) as a response to a time-dependent voltage

V (t ) = Vdc +
N∑

k=1

Vωk cos(ωkt + αk ) (6)

is based on the formula

I (t ) =
∑

n1,...,nN

∑
m1,...,mN

[
N∏

k=1

Jnk (βk )Jnk+mk (βk )

]

×
{

IS

(
eVdc +

N∑
k=1

nk h̄ωk

)
cos

[
N∑

k=1

mk (ωkt + αk )

]

+KS

(
eVdc +

N∑
k=1

nk h̄ωk

)
sin

[
N∑

k=1

mk (ωkt + αk )

]}
,

(7)

where Jn(x) are Bessel functions, the summations are from
−∞ to ∞, and βk = eVωk /h̄ωk . Here, IS (eVdc) is the static
current-voltage characteristic and KS is related to it by the
Kramers-Kronig relation

KS (E ) = 1

π
P

∫ ∞

∞
dE ′ IS (E ′)

E ′ − E
, (8)

where P denotes the Cauchy principal value. The formula in
Eq. (7) is a generalization of the Tien-Gordon-Tucker rela-
tions [62–64] to arbitrary polychromatic fields and it has been
utilized in the description of photon-assisted transport in var-
ious quantum systems operating in sequential tunneling and
miniband transport regimes as well as in Josephson junctions
and exciton condensates [63–65,69–71]. From Eq. (7) it is
easy to notice that for the type of applications discussed above
it would be preferable to have large conductance and strongly
nonlinear IS (eVdc) characteristics. Namely, the magnitudes of
the Fourier components of I (t ) depend, in addition to the
amplitudes of the driving fields, on the overall conductance.
Additionally, it follows from the properties of the Bessel
functions that for linear IS (eVdc) characteristics the current
response would be I (t ) = G0V (t ), where G0 is the conduc-
tance. Thus linear IS (eVdc) characteristics are unsuitable for
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use in generators, frequency multipliers, frequency mixers,
parametric amplifiers, or the type of detectors discussed in
Refs. [63–68]. We also point out that for some applications
it is advantageous if the energy scale of nonlinearities in the
IS (eVdc) characteristics roughly matches the photon energies
h̄ωk . According to our calculations, TBLG devices close to
the magic angle typically have almost an order of magni-
tude larger conductance than monolayer graphene systems
of similar size. Moreover, our calculations demonstrate that
there exists a strong quantum nonlinearity due to the Van
Hove singularities. Furthermore, we point out that the energy
scales of the nonlinearities vary within the range 0.1–1 meV,
so that TBLG devices are promising also for high-frequency
applications in the range of frequencies from 100 GHz to
1 THz. This frequency range is particularly important from
the technological perspective because of the lack of compact
solid-state technologies for generating and detecting THz ra-
diation.

VI. CONCLUSION

We have studied low-energy, four-terminal conductance
of twisted bilayer graphene in mesoscopic samples formed
by crossing a narrow and a wide graphene nanoribbon. At
large twist angles, the interlayer conductance vanishes be-
cause the two junctions effectively decouple. At small twist
angles, however, the interlayer conductance becomes nonzero,
indicating coupling between the graphene sheets, whereas
the narrow-junction conductance goes to zero. Notably, the
wide-junction conductance is largely enhanced due to the
formation of quasiflat energy bands. We have shown that the
conductance can also be controlled with pressure.

We find that the low-energy quantum transport close to the
magic angle is affected by several factors. We have identified
VHSs within the quasiflat bands contributing to conductance
features through their effect on the bulk DOS. We observe that
such features are generally pronounced around the center of
the quasiflat bands, whereas they are suppressed closer to their
edges. Moreover, we find additional peaks in the conductance
not corresponding to features in the bulk DOS. These peaks
coincide in energy with nonsingular band crossings located
at high-symmetry points and lines of the bulk BZ. Finally,
we also observe a broadening of the various conductance
features. As a consequence of the broadening and of the strong
coupling between the layers, the quasiflat bands exhibit a large
minimal conductance at the Dirac-point energy exceeding
the value of single-layer and Bernal-stacked bilayer graphene
considerably. We have further studied the continuous evolu-
tion of VHSs corresponding to different commensurate twist
angles by tuning the interlayer coupling, which could experi-
mentally be realized by applying pressure.

VHSs play a prominent role in the exotic phenomena of
magic-angle twisted bilayer graphene by amplifying elec-
tronic correlation effects. Our results indicate that the VHSs
strongly influence also the transport properties of this system,
but we find that there are additional factors affecting them.
Moreover, our calculations provide an estimate on the sample
sizes required to resolve signatures of the flat-band VHSs
in the conductance. Specifically, we have considered bilayer
samples of size 50 nm × 250 nm. Even though our study ne-

FIG. 6. Evolution of Fermi surfaces around band crossings in the
Brillouin zone: (a) Band crossing at M; (b) band crossing along �M.
For each case, we show the Fermi surfaces at energies slightly below
the crossing, at the crossing, and slightly above the crossing (from
left to right). The dashed red line indicates the corresponding moiré
Brillouin zone.

glects interaction effects, our results are also directly relevant
experimentally: In a transport-measurement setup the appear-
ance of correlated phases could be avoided, for instance, by
tuning the Fermi level away from the quasiflat energy bands
and by using voltages to probe energies within the flat bands
or by operating at temperatures above the critical temperatures
of the correlated phases. In the case of extremely accurate
low-temperature transport experiments the interactions could
also be screened [53,54]. We have neglected the effects of
disorder as they are expected to be unimportant for the system
sizes considered. We have further disregarded lattice relax-
ation effects, which may play a role for twist angles �1◦ due
to the possible formation of alternating AB and AA stacking
domains instead of the moiré pattern [72].

As an interesting future research direction, we propose the
investigation of TBLG devices for use as compact solid-state
frequency multipliers, frequency mixers, parametric ampli-
fiers, and detectors operating at THz frequencies. The high
sensitivity of the conductance to external parameters suggests
that TBLG devices could be utilized also in various types of
sensitive detectors.

The data shown in the figures is available at Ref. [73].

ACKNOWLEDGMENTS

The research was partially supported by the Foundation
for Polish Science through the IRA Programme co-financed
by EU within SG OP. T.H. acknowledges the computa-
tional resources provided by the Aalto Science-IT project
and the financial support from the Academy of Finland
Project No. 331094. A.L. acknowledges support from a
Marie Skłodowska-Curie Individual Fellowship under Grant
MagTopCSL (ID No. 101029345). J.T. received founding
from the National Science Centre, Poland, within the Quan-
tERA II Programme that has received funding from the
European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 101017733, Project

043145-8



TRANSPORT SIGNATURES OF VAN HOVE … PHYSICAL REVIEW RESEARCH 4, 043145 (2022)

−0.6 −0.3 0.0 0.3 0.6
E[meV]

0

5

10

15

20

G
12

[2
e2 /

h
]

256×51 nm

256×43 nm

128×51 nm

FIG. 7. Effects of system size on conductance: we show the wide
junction conductance G12 as a function of energy E for different
device dimensions Wtop × Wbottom.

Registration No. 2021/03/Y/ST3/00191, acronym TOBITS.
We acknowledge the access to the computing facilities of
the Interdisciplinary Center of Modeling at the University of
Warsaw, Grant No. G86-1064.

APPENDIX A: NONSINGULAR BAND-CROSSING
FEATURES IN THE CONDUCTANCE

In Sec. IV, we identified nonsingular band-crossing points
that approximately coincide in energy with peaks in the wide
junction conductance. Here, we present the evolution of the
Fermi surfaces for some of these crossing points.

Figure 6(a) shows a band-crossing transition at the M point
in the BZ. The corresponding energy of the crossing point is
highlighted by the dashed black line below E = 0 in Fig. 4(a)
of the main text. With increasing energy, the Fermi surface

extends and intersects with itself at the M point. A similar
band-crossing transition takes place above E = 0, where the
Fermi surface intersects with itself at the M point (not shown).
We find the same band-crossing transitions at the M point also
in Figs. 4(b)–4(d).

In Figs. 4(c) and 4(d), we further identified a feature in
the wide junction conductance close to E = 0, which is far
in energy from any VHS. Instead, it is close in energy to a
band-crossing point, whose energetic position is highlighted
by the dashed black line in Fig. 4(c) close to E = 0. The
corresponding evolution of the Fermi surface is illustrated in
Fig. 6(b). With increasing energy, the circular feature along
�M close to the center of the BZ grows, touches another
Fermi line tangentially, and then crosses through it.

APPENDIX B: EFFECTS OF SYSTEM SIZE
ON THE CONDUCTANCE

In this section, we analyze how a change of the device
dimensions affects the conductance. In particular, we indepen-
dently vary the width Wbottom of the long bottom junction and
the width Wtop of the wide top junction of our TBLG device
(see Fig. 1). We focus on the wide junction conductance G12

and discuss, as an example, a device with a twist angle of
θ = 1.02◦ and interlayer hopping V 0

ppσ = 390 meV [compare
to Fig. 4(c)].

We show our results in Fig. 7. We find that decreasing the
wide junction width Wtop suppresses the conductance overall,
which is due to the reduced DOS in the top leads. All the
conductance features are still visible. Nevertheless, there is no
effect on the energetic position and width of the conductance
features. On the contrary, a change of the long-junction width
Wbottom affects the broadening and also the energetic position
of the peaks. As Wbottom gets smaller, the features become
flatter and more smeared out. In particular, we observe that the
kinklike features close to the edges of the flat band disappear
for a slightly narrower system.
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