
Juha Lilja

QUANTUM COMPUTING FOR AUTOMATED

VEHICLE TRAJECTORY PLANNING

Bachelor’s thesis

Faculty of Information Technology and Communication Sciences

Examiner: Taneli Riihonen

January 2023

i

ABSTRACT

Juha Lilja: Quantum Computing for Automated Vehicle Trajectory Planning
Bachelor’s thesis
Tampere University
Bachelor’s Programme in Computing and Electrical Engineering
January 2023

This work presents an algorithm for solving trajectory planning problem with quantum comput-
ing. Trajectory planning is an important problem in the field of automated vehicles, as it makes it
possible for the vehicle to traverse in new environments without a preplanned route. It is a compu-
tationally expensive task, especially in dynamic environments with lots of moving objects, which is
why using quantum computing for the problem is examined in this work. The presented algorithm
is designed to scale for arbitrarily complex trajectory planning problems. The algorithm is imple-
mented and tested with a quantum computing simulator and a quantum computer. However, due
to limitations in currently available quantum hardware and the high computational cost of quantum
computing simulation, the algorithm can only be tested with a simplified version of the problem.
Simulation tests show promising results as the algorithm can solve the simplified problem as de-
signed in varying test cases. Tests with a quantum computer show that major improvements in
quantum hardware are needed to be able to use the algorithm for real-world applications.

Keywords: trajectory planning, quantum computing, automated vehicles

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Juha Lilja: Kvanttilaskenta autonomisten ajoneuvojen trajektorin laskennassa
Kandidaatintyö
Tampereen yliopisto
Tieto- ja sähkötekniikan kandidaattiohjelma
Tammikuu 2023

Tämä työ esittää kvanttilaskentaa käyttävän algoritmin trajektorin laskentaan. Trajektorin las-
kenta on keskeinen ongelma autonomisten ajoneuvojen suunnittelussa, sillä se mahdollistaa ajo-
neuvon liikkumisen muuttuvassa ympäristössä ilman etukäteen laskettua reittiä. Ongelma on las-
kennallisesti vaativa, etenkin kun ympäristössä on paljon liikkuvia esteitä, jotka tekevät ympä-
ristöstä muuttuvan. Tämän takia tässä työssä tarkastellaan kvanttilaskennan hyödyntämistä on-
gelman ratkaisemisessa. Työssä esitetty algoritmi on suunniteltu skaalautumaan ongelman rat-
kaisemiseen trajektorin laskennan haastavuuden kasvaessa. Algoritmi toteutetaan ja toteutusta
testataan kvanttitietokonesimulaattorilla sekä kvanttitietokoneella. Tällä hetkellä saatavilla olevien
kvanttitietokoneiden rajoittuneisuuden sekä kvanttitietokoneen simuloinnin raskauden takia tes-
tausta voidaan kuitenkin tehdä ainoastaan yksinkertaistetulla ongelmalla. Simulaatiotestien tu-
lokset ovat lupaavia, sillä algoritmi ratkaisee yksinkertaistetun ongelman suunnitellusti erilaisissa
testitilanteissa. Kvanttitietokoneella tehdyt testit osoittavat, että huomattavia parannuksia kvantti-
tietokoneisiin tarvitaan, jotta algoritmia pystytään hyödyntämään.

Avainsanat: trajektorin laskenta, kvanttilaskenta, autonomiset ajoneuvot

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This thesis has received funding from VTT Technical Research Centre of Finland. I want

to thank my colleagues in VTT Automated Vehicles research team for sharing their knowl-

edge. I also want to thank my supervisor Taneli Riihonen for giving valuable feedback

throughout the writing process.

Tampere, 19th January 2023

Juha Lilja

iv

CONTENTS

1. Introduction . 1

2. Quantum Computing . 2

2.1 Quantum States and Information 2

2.2 Quantum Gates and Circuits 4

2.3 Grover’s Algorithm . 8

2.4 Quantum Error Correction . 10

2.5 State-of-the-Art Quantum Computers 12

3. Automated Vehicle Trajectory Planning 14

3.1 Decoupled Approach . 14

3.2 Direct Approach Using State Lattices 16

4. Quantum Computing Algorithm for Trajectory Planning 19

4.1 Designing the Oracle . 19

4.2 Details of Running the Algorithm. 22

5. Implementation of the Algorithm. 24

5.1 Circuit Implementation of the Algorithm 25

5.2 Test Results . 26

6. Conclusion . 29

References . 30

Appendix A: Code for Implementing the Quantum Circuit With Qiskit 34

v

LIST OF SYMBOLS AND ABBREVIATIONS

AV automated vehicle

C-space configuration-space in trajectory planning

CNOT controlled NOT quantum gate

D diffuser in Grover’s algorithm

MCNOT multi-controlled NOT quantum gate

NISQ noisy intermediate-scale quantum

O oracle in Grover’s algorithm

QC quantum computing

QEC quantum error correction

RRT rapidly-exploring random tree

1

1. INTRODUCTION

Trajectory planning is a major research topic within the field of automated vehicles (AV).

It is a problem of finding a trajectory for the vehicle to traverse in its environment without

colliding with obstacles. When the environment is complex with lots of static and mov-

ing obstacles, it is a computationally expensive task. However, trajectories should be

computed fast in real-time as the environment might be constantly changing with time.

Quantum computing (QC) uses quantum phenomena to perform computations. The idea

of QC was suggested by Feynman in 1982 when he stated that a quantum computer could

be more efficient in simulating quantum mechanical systems than a classical computer

[1]. Simulating quantum systems is one application where QC is expected to bring an ad-

vantage over classical computers. Other applications include optimization problems and

cryptography. Currently, many companies around the world are investing in QC research

and are developing quantum computers. Some companies are also offering cloud access

to their quantum computers for developers to test and run their quantum programs. This

has increased interest in the research on the topic.

This work presents a QC algorithm for AV trajectory planning. The algorithm is designed

to scale for arbitrarily complex trajectory planning problems. Currently, the algorithm is

greatly limited by the available quantum hardware. The algorithm is tested in this work

with a QC simulator and quantum computer. Due to limitations in current quantum hard-

ware and the high computational cost of QC simulation, testing can be performed only for

a simplified case of the problem. Simulation tests in different simplified test cases show

promising results, as the algorithm can solve the problem as designed. Tests on a quan-

tum computer show, that even a simple version of the problem is too complex to solve

with this algorithm on the quantum computer used. It is evident that major advancements

in quantum hardware are needed in order to use this algorithm in real-world applications.

This thesis is structured as follows. Chapter 2 introduces QC and its principles and

presents the current state of QC. In chapter 3 the problem of AV trajectory planning is

introduced and current classical implementations are presented. In chapter 4 the algo-

rithm proposed in this work is explained. In chapter 5 the algorithm is implemented and

applied to a simplified version of the problem and the algorithm is tested on an IBM quan-

tum computer and QC simulator. Chapter 6 gives a conclusion of the thesis.

2

2. QUANTUM COMPUTING

Quantum computers are expected to bring an advantage over classical computers in

various different problems. These problems can be for example simulation of quantum

systems, cryptography, and optimization problems [2][3][4]. Ideal quantum computer can

perform any computation a classical computer can [5]. However, quantum computers

are not expected to fully replace classical computers, but to bring advantage on specific

problems, which are hard for classical computers to solve.

2.1 Quantum States and Information

A quantum computer is a quantum system and its state can be represented by quantum

states. When a quantum system is measured, it can only exist in a certain finite number

of states which can be called basis states. However, between measurements, the system

can be in a state called superposition which has probabilities for the basis states the

system can collapse into when measured. In QC, qubits are the basic unit of information

and qubits can exist in quantum states. Vectors in a complex vector space can be used

to represent a quantum state. However, to make working with quantum states more

convenient, a bra-ket notation can be used. The bra-ket notation, sometimes also called

Dirac notation, was introduced by Paul Dirac in 1939 [6]. In bra-ket notation, a ket |a⟩
denotes a vector a, which defines a quantum state in a complex vector space. A bra ⟨a|
is a complex conjugate of |a⟩ so

|a⟩ =


a1

a2
...

an

 =
(︂
a∗1 a∗2 . . . a∗n

)︂†
= ⟨a|† , (1)

where a† denotes conjugate transpose of vector a, a∗i denotes complex conjugate of ai
and [a1, . . . , an] ∈ C.

3

Operation

⟨a||b⟩ = ⟨a|b⟩ =
(︂
a∗0 a∗1

)︂b0
b1

 = a∗0b0 + a∗1b1 (2)

is an inner product of |a⟩ and |b⟩. Operation

|a⟩ ⟨b| =

a0
a1

(︂
b∗0 b∗1

)︂
=

a0b∗0 a0b
∗
1

a1b
∗
0 a1b

∗
1

 (3)

is an outer product of |a⟩ and |b⟩. Operation

|a⟩ |b⟩ = |ab⟩ = |a⟩ ⊗ |b⟩ =


a0

b0
b1


a1

b0
b1



 =


a0b0

a0b1

a1b0

a1b1

 (4)

is a tensor product of |a⟩ and |b⟩.

As stated above, qubits are the basic unit of information in QC, and the state of a qubit

can be described as a quantum state. Any quantum state can be represented as a linear

combination of two basis states, that is vectors of a vector space. These basis vectors

can be chosen arbitrarily as long as they form an orthonormal basis. In the case of qubits,

states

|0⟩ =

1

0

 (5)

and

|1⟩ =

0

1

 (6)

are typically used as basis states and this is called computational basis. These states |0⟩
and |1⟩ correspond to states 0 and 1 in classical bits. A qubit can also be in a superpo-

sition between the basis states. A general state of a qubit can be described as a vector

being a linear combination of basis vectors and having a unit length. The general state

|v⟩ of a qubit can therefore be expressed as

|v⟩ = c0 |0⟩+ c1 |1⟩ =

c0
c1

 , (7)

where [c0, c1] ∈ C and |c0|2 + |c1|2 = 1.

Measurement of a qubit can be done with respect to any orthonormal basis. If a qubit is in

4

superposition with respect to the basis used in measurement, the qubit’s state collapses

into one of the basis states [7]. This means that the superposition of a system cannot be

measured without affecting the state of the system. The probability that a quantum state

|v⟩ will collapse to state |u⟩ when measured is |⟨u|v⟩|2. So if a qubit in the general state

is measured with respect to computational basis, the probability of it collapsing to state

|0⟩ is

|⟨0|v⟩|2 =

⃓⃓⃓⃓
⃓⃓(︂1 0

)︂c0
c1

⃓⃓⃓⃓
⃓⃓
2

= |c0|2 (8)

and similarly probability of it collapsing to state |1⟩ is |c1|2.

A quantum register is a system consisting of multiple qubits. The basis of a vector space

of a quantum register is a tensor product of the basis states of individual qubits. Thus it

can be written as

{|00 . . . 00⟩ , |00 . . . 01⟩ , . . . , |11 . . . 10⟩ , |11 . . . 11⟩} (9)

or

{|0⟩ , |1⟩ , . . . , |2n − 2⟩ , |2n − 1⟩}, (10)

where n is the number of qubits in the register. A general state of an n-qubit quantum

register is

c0 |00 . . . 00⟩+ c1 |00 . . . 01⟩+ · · ·+ c2n−2 |11 . . . 10⟩+ c2n−1 |11 . . . 11⟩ , (11)

where [c0, . . . , c2n−1] ∈ C and |c0|2 + · · · + |c2n−1|2 = 1. Similarly, as with a one-qubit

system, the probability that a multi-qubit system will end up in state |i⟩ when measured is

|ci|2. This is why coefficient ci is also called probability amplitude. So for example a state

of a two-qubit system consisting of qubits |a⟩ and |b⟩ can be written as

|a⟩ |b⟩ = |ab⟩ = c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩ =


c00

c01

c10

c11

 , (12)

where [c00, c01, c10, c11] ∈ C and |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1.

2.2 Quantum Gates and Circuits

The state of a qubit or a multi-qubit system can be changed with quantum gates, which

are operations to quantum states. A quantum gate can be defined by a unitary matrix [8].

5

Matrix A is unitary when its conjugate transpose A† is the inverse of A so that AA† = I .

This requirement means that the quantum gates are always reversible. The operation

of gate A is applied to a quantum state |v⟩ by matrix multiplication |v′⟩ = A |v⟩. This

operation can then be reversed by computing |v⟩ = A† |v′⟩ to obtain the original state.

As an example, one frequently used quantum gate operating on a single qubit is the

Hadamard gate H . It is defined by a matrix

1√
2

1 1

1 −1

 =

 1√
2

1√
2

1√
2
− 1√

2

 . (13)

The effect of this to qubits in states |0⟩ and |1⟩ are

H |0⟩ =

 1√
2

1√
2

1√
2
− 1√

2

1

0

 =

 1√
2

1√
2

 =
1√
2
|0⟩+ 1√

2
|1⟩ (14)

and

H |1⟩ =

 1√
2

1√
2

1√
2
− 1√

2

0

1

 =

 1√
2

− 1√
2

 =
1√
2
|0⟩ − 1√

2
|1⟩ . (15)

From these equations, it can be seen that the Hadamard gate changes the state of both of

these qubits into a superposition where the possibilities of the qubits collapsing to either

state |0⟩ or state |1⟩ is 1
2
. However, it must be noted that, although the probabilities are

the same, the states H |0⟩ and H |1⟩ are different states. Because H = H†, applying H

twice will result HH |0⟩ = |0⟩ and HH |1⟩ = |1⟩. States H |0⟩ and H |1⟩ are often also

denoted as |+⟩ and |−⟩ respectively.

Quantum gates can also operate on more than one qubit. One frequently used gate

operating on two qubits is a controlled NOT or CNOT gate. A CNOT gate is defined

by matrix 
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (16)

The two qubits the gate operates on are called as control qubit and target qubit. The

target qubit is flipped if the control qubit is in state |1⟩. If input qubits are only allowed to

be in states {|0⟩ , |1⟩}, the operation of the CNOT gate is the same as classical XOR

gate if the target qubit is considered as the output.

A similar gate to CNOT with more than one control qubits can be designed and in

that case, the gate is called multi-controlled CNOT and it is referred to in this work

6

as MCNOT . The basic MCNOT gate flips the target qubit if each of the control qubits

is in state |1⟩. However, in this work, an arbitrary basis state for the control register can

be chosen to be the state which flips the target qubit, as this can easily be implemented

by flipping control qubits in state |0⟩ before and after the basic MCNOT gate.

Now, a two-qubit system is considered. System is initialized as |00⟩. Next, a Hadamard

gate is applied to the first qubit. As a result, the system is in state
1√
2

0

1√
2

0

 . (17)

After that, a CNOT gate is applied to the system. This will result in the system being in

a state 
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1√
2

0

1√
2

0

 =


1√
2

0

0

1√
2

 =
1√
2
|00⟩+ 1√

2
|11⟩ . (18)

When measuring the system, it has a probability of 1
2

to be collapsed into state |00⟩ and

a probability of 1
2

to be collapsed into state |11⟩. The probabilities of the measurement

resulting in |01⟩ or |10⟩ are both 0. Thus there is a correlation between the two qubits in

the system. This correlation is called entanglement.

A group of qubits are said to be entangled when the state of the system they form cannot

be described as a product of states of the individual qubits in the system [9]. In the case

of the above example, it can be seen that there are no numbers a0, a1, b0, b1 which satisfy

(a0 |0⟩+ a1 |1⟩)⊗ (b0 |0⟩+ b1 |1⟩) = a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩

=
1√
2
|00⟩+ 1√

2
|11⟩ , (19)

because if a0b1 = 0, then a0 = 0∨ b1 = 0 but if a0 = 0, then a0b0 = 0 ̸= 1√
2

and similarly

if b1 = 0, then a1b1 = 0 ̸= 1√
2
. An example of an unentangled two-qubit state would be

1

2
|00⟩+ 1

2
|01⟩+ 1

2
|10⟩+ 1

2
|11⟩ , (20)

7

because it could be written as

(
1√
2
|0⟩+ 1√

2
|1⟩)⊗ (

1√
2
|0⟩+ 1√

2
|1⟩), (21)

hence described as a product of the states of the individual qubits.

If two qubits are entangled, measurement on other qubit will immediately collapse the

state of the other qubit also. This can be observed even if the entangled qubits are

separated physically far away from each other and both qubits are measured so precisely

at the same time, that there is not enough time for even light to travel between the qubits

between the measurements [10].

To make meaningful computations, quantum gates are applied in sequence to create

quantum circuits. Quantum circuits start with initializing all qubits, usually to |0⟩ state.

After that, a series of quantum gates are applied to create a desired computation, and

finally, the qubits are measured to read out the result.

Previously in this section, a simple quantum circuit was used to create entanglement.

This circuit consists of two quantum gates, H and CNOT . This circuit can be drawn as

a circuit diagram as shown in figure 2.1. The first step is to initialize both qubits to |0⟩.
Next, a Hadamard gate is applied to qubit q0 which is drawn as a box with the gate name

inside. In the third step, a CNOT gate is applied, q0 as a control qubit and q1 as a target

qubit. Finally, both qubits are measured.

q0 |0⟩ H

q1 |0⟩

Figure 2.1. Circuit diagram for entanglement circuit.

A common way of drawing circuits is to denote the initial state of the qubits after the name

of the qubit as shown in figure 2.2. A general operation on multiple qubits is drawn with a

box across the qubit signals it operates on as is done with U in figure 2.2. An MCNOT

gate is drawn so that the target qubit marked with symbol ⊕ is flipped when each control

qubit marked with a black dot is in state |1⟩ and each control qubit marked with a white

dot is in state |0⟩. So for example in figure 2.2 the target qubit q2 is flipped if and only if

|q1q0⟩ = |01⟩ after U .

q0 : |0⟩
U

q1 : |+⟩
q2 : |0⟩

Figure 2.2. Quantum circuit.

8

2.3 Grover’s Algorithm

This section introduces Grover’s algorithm as an example of a useful quantum algorithm.

It is also used in the trajectory planning algorithm of this work. Grover’s algorithm is a

quantum algorithm for unstructured search designed by Lov Grover in 1996 [11]. Grover’s

algorithm finds an item that satisfies a predefined condition from an unstructured list of

N items. With one item as a solution, solving the problem on a classical computer would

take O(N) steps, while Grover’s algorithm can find the solution in O(
√
N) steps [11].

This means that when the number of items N grows, the computation time grows linearly

in classical computers, while with Grover’s algorithm, the computation time grows only

quadratically with respect to N . Grover’s algorithm can also be generalized to problems

with M solutions and it then takes O(
√︁
N/M) steps to find a solution [5]. Grover’s

algorithm is optimal for the problem, no other quantum algorithm can solve this problem

faster [12].

Implementation of Grover’s algorithm starts by initializing all qubits at the n-qubit input

register x to state |+⟩ so that the system is initially at state

N∑︂
i=0

1√
N
|i⟩ (22)

which is a uniform superposition of all possible basis states. The size of the input register

is n and thus there are N = 2n basis states from which M states are solutions for

the problem. The goal is to find one item that is a solution. When a quantum gate

is applied to this uniform superposition state, it will compute the result for all possible

basis states simultaneously in one computation. However, this state cannot be measured

without affecting the superposition of the system and there is an equal probability for

each basis state to be measured. This is why in Grover’s algorithm the next step is

amplitude amplification. This amplifies amplitudes of solution states and thus increases

the probability of measuring a solution state. Amplitude amplification is performed by

applying oracle O and diffuser D operations.

The oracle O needs to be designed specifically for each problem. It can be constructed

for any boolean function f(x) : {0, 1}n → {0, 1}, that takes as an input a value with n

bits. The value of f(x) should be 1 for each x that is a solution and 0 for every other x.

As a simple example f(x) could be a function that takes a 3-bit value as an input and

outputs 1 if x ≥ 5. This can be implemented with two MCNOT gates as shown in figure

2.3. The creation of quantum circuits that implement more complex oracles can however

be a challenging task, but there are some proposed solutions to automate the task [13]. If

the target qubit is set to state |−⟩ and x is in some general quantum state as in equation

11, the effect is that each coefficient ci, where f(i) = 1, will become −ci.

9

|x0⟩ |x0⟩
|x1⟩ |x1⟩
|x2⟩ |x2⟩
|0⟩ |f(x)⟩

Figure 2.3. Circuit of f(x).

The effect of the oracle can be represented geometrically. Let the superposition of all

solution states be |t⟩ and the superposition of all other states be |f⟩. Vectors |t⟩ and

|f⟩ are orthogonal and they span a plane in a vector space. All states the system can

be in can be expressed as a linear combination of |t⟩ and |f⟩. The initial state of the

system can be seen in figure 2.4a, where |ψ⟩ denotes the initial state before amplitude

amplification. Applying O reflects the system state about the |f⟩. The effect can be seen

in figure 2.4a.

|f⟩

|t⟩

θ
θ

|ψ⟩

O |ψ⟩

(a) State of the system after applying O.

|f⟩

|t⟩

|ψ⟩3θ

O |ψ⟩

DO |ψ⟩

(b) State of the system after applying D.

Figure 2.4. Grover’s algorithm geometrical representation.

Diffuser D is an operation that reflects the state O |ψ⟩ about the original state |ψ⟩. The

geometric effect of D is shown in figure 2.4b. The diffuser can be constructed as shown

in figure 2.5. This same construction can be used regardless of the problem, only the

number of qubits the D operates on changes depending on the problem.

...
...

...
O |ψ⟩

H H

H H

H H

|−⟩

Figure 2.5. Circuit of a diffuser operation.

10

As a result, the new state DO |ψ⟩ is now closer to the superposition of all solution states

|t⟩. The effect of this is that, when a measurement is made to the system, the result will be

a solution state with a higher probability than initially. Applying O and D can be repeated

multiple times before measurement to move the system state closer to |t⟩. However,

iterating too many times results in decreasing probability of measuring a solution state as

the system state starts to get farther from |t⟩. Equation

T =

⌊︄
π

4

√︃
N

M

⌋︄
(23)

defines an optimal number of iterations of applying O and D to maximize the probability

of measuring a solution state [12][5].

2.4 Quantum Error Correction

Physical quantum systems are very sensitive to any interruptions from the surrounding

environment, which affects and disturbs the state of the quantum system very easily. This

is why quantum computers need to be well isolated from the surrounding environment.

However, perfect isolation cannot be achieved in practice, and also there needs to be

always a way to interact with the quantum computer. This interaction is needed to alter

the qubit states and to read results. These are why some errors always happen and that

is why quantum error correction (QEC) is needed to counter these errors.

Error correction is done by encoding additional redundant information to the system so

that the correct result can be decoded even after errors have happened during the compu-

tation. In classical computing, a simple way to add redundancy would be to replace each

bit with three bits corresponding to the original bit. So mapping 1 → 111 and 0 → 000.

This way, the original bit can still be recovered even if one bit is flipped by perceiving 101

as 1 for example because it is more probable that there has been an error in only one bit

rather than in two or more bits.

In QC, to recover from bit flips, a three qubit bit flip code can be used. This error-correction

code is implemented so that basis states are encoded as |0⟩ → |000⟩ and |1⟩ → |111⟩.
This can be done with two CNOT gates. These resulting 3-qubit states are referred to

as logical qubits. A general state of one logical qubit is then c0 |000⟩ + c1 |111⟩. Bit flip

errors can then be detected with two additional qubits which are called ancilla qubits. A

circuit for this is shown in figure 2.6. In the circuit, the top three qubits are the data qubits

representing one logical qubit. The bottom two qubits are ancilla qubits. First, all of the

data qubits are coupled to the same state with two CNOT gates. Gate E represents

an error which flips 1 or 0 data qubits. Ancilla qubits are then coupled with data qubits

so that ancilla0 is coupled with data0 and data1 and ancilla1 is coupled with data1 and

data2. From this it follows that ancilla0 is flipped if either data0 or data1 was flipped (but

11

not both) and similarly with ancilla1, data1 and data2. Thus by measuring ancilla qubits

it can be detected which data qubit was flipped if any. Possible outcomes are listed in

table 2.1. Based on this information, the detected error can then be corrected by applying

NOT gate to the erroneous qubit. If two or more qubits are flipped, this error code is not

sufficient to correct that.

|ψ⟩

E

data0

|0⟩ data1

|0⟩ data2

|00⟩
ancilla0

ancilla1

Figure 2.6. Circuit implementation of a three qubit bit flip code.

Table 2.1. Error based on the state of the ancilla bits.

ancilla error

|00⟩ no error

|01⟩ data0 flipped

|10⟩ data2 flipped

|11⟩ data1 flipped

This type of error coding only corrects bit flip errors, but any other types of errors to qubits

are not corrected. For correcting arbitrary errors on a single qubit the Shor code can be

used [14]. The Shor code encodes each qubit to nine qubits as

|0⟩ → 1

2
√
2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩) (24)

and

|1⟩ → 1

2
√
2
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩). (25)

A quantum circuit implementing this encoding is presented in figure 2.7. Bit flip errors can

be corrected as shown previously by comparing qubits inside three qubit groups. Similarly,

phase errors can be detected and corrected by comparing phases between three qubit

groups. Thus any error that is a combination of these errors can be corrected with this

method as long as an error occurs in only one qubit. 7-qubit and 5-qubit codes have also

been found [15][16].

In addition to error correction codes, a fault-tolerant gate design is used to reduce the

propagating effects of errors. As a simple example of fault-tolerant gate design a CNOT

gate operating on data encoded by the three qubit code is shown in figure 2.8. In figure

12

|ψ⟩ H

|0⟩

|0⟩

|0⟩ H

|0⟩

|0⟩

|0⟩ H

|0⟩

|0⟩

Figure 2.7. The Shor code circuit. [5]

2.8a is a non-fault-tolerant CNOT gate and in figure 2.8b is a fault-tolerant CNOT gate.

Both are getting as input an erroneous state |001⟩ which should be |000⟩ but a bit flip error

has happened to one qubit. As can be seen in 2.8a, the non-fault-tolerant gate cascades

the one qubit error to three qubits while the fault-tolerant gate in 2.8b carries the error to

only one additional qubit so that the original state can still be recovered.

|1⟩ |1⟩
|0⟩ |0⟩
|0⟩ |0⟩

|0⟩ |1⟩
|0⟩ |1⟩
|0⟩ |1⟩

(a) A non-fault-tolerant CNOT gate.

|1⟩ |1⟩
|0⟩ |0⟩
|0⟩ |0⟩

|0⟩ |1⟩
|0⟩ |0⟩
|0⟩ |0⟩

(b) A fault-tolerant CNOT gate.

Figure 2.8. Fault-tolerant gate design.

As can be noted, QEC techniques multiply the number of qubits and gates needed for

logical qubits. This is one reason why current quantum computers are generally not

implementing QEC because the already limited number of qubits would become even

more limited and the complexity of the circuits grow. An effect of this is that quantum

computers with far more qubits are needed to make fault-tolerant quantum computers.

2.5 State-of-the-Art Quantum Computers

Quantum computers are currently in the era of noisy intermediate-scale quantum (NISQ)

computers. The term NISQ is used for quantum computers operating in order of 100

13

qubits which are affected by noise and are not error corrected. However, many revolu-

tionary quantum algorithms would require millions of qubits with error correction. Current

NISQ devices do not present an advantage for practical problems over classical com-

puters but it is under active research to create more algorithms for NISQ computers in

various different problems.[4]

Two of the most promising technologies to build a quantum computer are trapped ion and

superconducting technologies. However, it is not straightforward to scale these technolo-

gies and it is still not clear if these can be used to build error-tolerant quantum computers

with millions of qubits. Major development for both quantum error correction techniques

and hardware is needed to build implementations of such quantum computers.[17]

A trapped ion technology uses ions as qubits. A ground state and an excited state of an

ion can be mapped to be the two basis states of a qubit. This approach is implemented

by forming a linear crystal of ions by trapping them with electromagnetic traps and laser

cooling them to near absolute zero temperature in a vacuum [18]. The state of the individ-

ual ions can then be manipulated by interacting with them by laser beams [19]. To scale

this approach, multiple small ion traps and communication between those can be used

[20]. Using microwaves to control the ions instead of lasers is also proposed to make

scaling easier [21].

In superconducting technology, materials that become superconductors at low tempera-

tures are used to create superconducting circuits. Components called Josephson junc-

tions are then used in these circuits to create qubits. Three different types of qubits can be

created in this way and the qubits can be controlled by adjusting voltage, current or mag-

netic flux depending on the qubit type [22]. The operation temperature for these circuits

needs to be in the order of 10 mK [23].

14

3. AUTOMATED VEHICLE TRAJECTORY PLANNING

Trajectory planning in robotics refers to a problem of finding a trajectory from a starting

point to some target point, which a robot can follow while avoiding collisions. The tra-

jectory is a path combined with timing information, that is speeds at which the trajectory

should be performed. Trajectory planning is an important issue in designing AVs because

it provides a way for the vehicle to navigate in an unknown and changing environment.

The space in which the vehicle operates is referred to here as a configuration-space or

C-space. The C-space is a space consisting of all different configurations or states a

vehicle can be in. These configurations can be as simple as just x- and y-coordinates

of the vehicle in a 2-dimensional space. Additional parameters can be included in con-

figurations, which can be steering angle and velocity for example. The dimension of the

C-space depends on the number of parameters chosen for configurations.

To account for obstacles in the vehicle’s operating space, the C-space is further divided

into two subspaces, Cfree and Cobs. Subspace Cfree contains all of the configurations

which are free from obstacles and Cobs is a subspace of C-space that contains all of

the configurations occupied by obstacles. The starting configuration which is the initial

configuration the vehicle is starting from is referred to here as cs. There can exist one or

more target configurations which are configurations the vehicle is trying to achieve. A set

of target configurations is referred to as Ct and a general target configuration belonging

to Ct is ct.

Methods for trajectory planning can be divided into two general categories, decoupled

and direct methods [24]. In the decoupled method, a collision-free path without timing

information is constructed first. After the path is found, the timing information is then

added to transform the path into a trajectory. In the direct approach, these two steps are

combined into one, and trajectory is calculated directly in one step.

3.1 Decoupled Approach

In decoupled approach, the first step is to find an obstacle-free path with no timing in-

formation between cs and ct. This step is also called path planning. There are three

major approaches to path planning, which are potential field based, sampling based, and

15

discrete methods [25].

Potential field based methods are constructing a potential field from the C-space. It is

used for example in [26]. In this approach, a high potential is given to cs and a low

potential is given to ct. All of the configurations in Cobs are assigned to have a high

potential. A vehicle is then moving towards lower potential, which should lead it finally to

ct. However, target configuration is not always reached as there might exist one or more

local minima where the vehicle might end up to. Different potential functions for creating

the potential field can be used to try to avoid local minima to appear.

Sampling based methods take a random sample from the C-space and check connectiv-

ity between the random sample and previously selected samples. One commonly used

method for this is a rapidly-exploring random tree (RRT) algorithm [27]. RRT algorithm

constructs a graphG where vertices are configurations inCfree and edges between those

are paths between configurations. First, the graph G contains only cs as a vertex. New

vertices are added by selecting a random configuration ci from Cfree, finding the nearest

neighbor configuration for it from G vertices, and checking if an obstacle-free path exists

between them. Finding a path between configurations can be done simply by checking

if a straight line between them is free of obstacles, but more sophisticated methods can

also be used. If a path is found, ci is then added as a vertex to the G and it is connected

with an edge to the nearest neighboring vertex. When a sample is found which is close

enough to a target configuration and is connected to G via a path, a complete path can

then be found by traversing back to cs in G.

In the discrete method, the C-space is discretized as illustrated in figure 3.1, where each

cell in a grid is a configuration with x- and y-coordinates as parameters and black cells

are obstacles. A resulting discrete C-space can then be represented as a graph where

configurations are vertices and neighboring vertices are connected by an edge. Any

shortest path graph search algorithm such as A* can then be used to find the shortest

path between cs and ct. This method is used for example in [28].

When an obstacle-free path is found, it then needs to be transformed into a trajectory.

Depending on how the path is initially constructed it might include too tight curves for the

vehicle to follow or even instantaneous changes to heading. Therefore, smoothing might

be needed to make the path driveable. This can be done for example by representing the

path with polynomial curves or Bézier curves which follow the original path as closely as

possible while making sure that no too tight curves are used [29].

After smoothing, a velocity profile needs to be added to the path to transform it into a

trajectory with timing information. The velocity profile can be computed by using an algo-

rithm introduced in [30] and [31]. The algorithm first computes a velocity limit curve for

the path which is done by assigning maximum velocities which can be used at each point

in the path. After that, maximum and minimum accelerations are considered to create a

16

cs

ct

Figure 3.1. Discretized C-space.

velocity profile. The objective is to maximize velocity at each point of the path, so that the

velocity stays below the velocity limit curve and that accelerations do not exceed maxi-

mum and minimum accelerations at any point. As a result, velocity information is added

to the path which makes it a trajectory.

3.2 Direct Approach Using State Lattices

In the direct approach, a trajectory is created directly in one step without a path planning

step. Similar approaches can be used for this as was used in path planning if the C-space

includes velocity. Also other first-order differential parameters may be included in the C-

space or even higher-order derivatives. These derivatives are included to make sure

the resulting trajectory is driveable with the vehicle it is designed for. The disadvantage

of adding more parameters is that each new parameter in configurations increases the

dimensions of the C-space. The increased size of a C-space makes computation more

expensive. That is why the use of QC for this problem is studied in this work.

RRT algorithm can be used for direct trajectory planning as for example in [32]. The

approach for trajectory planning used in the algorithm of this work is like an extension to

the grid based method of path planning and is based on state lattices. This approach is

discussed for example in [33], [34], [35], [36], [37], [38] and described below based on

these.

A state lattice can be viewed as a graph constructed so that each configuration (state)

in a discrete C-space is a vertex of the graph and each configuration is connected to

other configurations close to it with edges that represent trajectories. The trajectories

which are acting as edges in state lattice are predesigned short trajectories, primitives.

17

Primitives are planned so that the vehicle can follow those accurately from one configu-

ration to another. There is a finite number of these primitives and these can be reused

from configuration to configuration to create a regular lattice. A simple example of a state

lattice is presented in figure 3.2, where C-space is a three-dimensional space with x-

and y-coordinates and heading as parameters. In the figure, the heading dimension is

projected to the x-y-plane. The set of primitives is drawn with black lines and all of the

gray lines are copies of these primitives, starting from different configurations. The points

where the primitives connect to each other are the discrete configurations of C-space,

between which the vehicle is traversing using the primitive trajectories.

Figure 3.2. An example of a simple state lattice.

The actual trajectory from cs to ct is constructed from multiple primitive trajectories. From

cs, the vehicle can traverse any of the b primitives which are starting from cs. This will

lead the vehicle to a different configuration from where another primitive can be chosen

to be traversed next and so on. This creates a tree-like structure of possible trajectories.

As a result, there are bd trajectories where b is the number of primitives starting from each

configuration and d is the depth of the tree or the number of primitives the trajectory is

constructed of. The task is then to find a valid trajectory from cs to ct, which does not

collide with any obstacles, from all of the bd possibilities. To check the collisions, primi-

tives include information about which positions the vehicle collides with when traversing

the trajectory. Classically, a graph search algorithm like A* can be used to find a valid

trajectory from the tree graph. A QC algorithm for finding a valid trajectory is presented in

chapter 4 of this work.

In the case of AVs, the environment the vehicle operates in usually includes moving ob-

18

stacles such as other vehicles and pedestrians. This makes the environment dynamic so

that it is changing over time. To be able to work in dynamic environments, a spatiotem-

poral state lattice needs to be created by adding time dimension to the C-space [37]. For

moving obstacles, predictions need to be made where they can move next, to be able to

represent the obstacles in the spatiotemporal state lattice. These predictions of move-

ments need to be constantly updated while new information about the dynamic obstacles’

states is obtained.

Also, when considering AVs, the environment of the vehicle is usually not entirely known.

Obstacles in the environment are detected by vehicles’ sensors such as LiDARs, radars,

and cameras. These sensors have limited range and visibility, and the information from

the sensors is continuously updating. To address these uncertainties and the dynamic

environment, trajectories must be recalculated frequently. This is why the computation

of trajectory planning must be fast so that the vehicle has enough time to react to the

changing and updating environment.

19

4. QUANTUM COMPUTING ALGORITHM FOR

TRAJECTORY PLANNING

In this chapter, a quantum algorithm for trajectory planning is presented. This algorithm

uses short primitive trajectories which are creating a state lattice as presented in section

3.2. From all of the possible trajectories constructed by d primitives, Grover’s algorithm is

used to find a valid trajectory from starting configuration cs to target configuration ct.

4.1 Designing the Oracle

To be able to apply Grover’s algorithm to this problem, an oracle needs to be designed

for this particular problem. The construction of an oracle uses ideas introduced in [39].

An algorithm presented for path planning in [40] is combined with state lattices to be

able to apply it in direct trajectory planning and needed modifications for this are made.

The main improvements are to make the algorithm less dependent on the choice of the

exact number of primitives the trajectory consists of and collision checking is implemented

differently for it to suit the trajectory planning problem.

First, the state lattice needs to be created as described in section 3.2. This defines the

configuration-space in which the vehicle is operating and the primitive trajectories that are

used to traverse between configurations. The trajectory is constructed by applying prim-

itives one after another. This creates bd possible trajectories starting from cs, where b is

the number of primitives starting from one configuration and d is the number of primitives

that trajectories are constructed of.

The oracle for this problem is constructed from two main operations or gates which are

named here as P and C operations. The P operation computes a configuration which

is achieved when starting from an input configuration and traversing a primitive. The P

operation also performs collision checking. The C operation checks if the input config-

uration is a target configuration and if the whole trajectory leading to it is collision-free.

In addition to these, the oracle also needs inverse operations P † and C† of P and C.

High-level circuit representations of P and C are presented in figure 4.1.

A P operation applies a new primitive to the end of a trajectory and checks if it collides

with an obstacle. It operates on 3 logical input registers and 2 logical output registers. As

20

n n

m m

n n

cin

P

cin

oin oin

p p

|0⟩ cout

|0⟩ oout

(a) P operation.

n n
c

C

c

o o

|0⟩ t

(b) C operation.

Figure 4.1. High-level circuit representations of P and C operations.

every quantum operation must be reversible, the number of input and output qubits must

be equal and each possible input must map to unique output, from where an original

input must be deducible. To ensure this, the logical output registers are initialized as |0⟩
and fed as an input to P . Logical input registers come as an output from P unchanged.

Logically, three topmost registers of P shown in figure 4.1a are considered as inputs and

two registers at the bottom are considered as outputs. Input registers are configuration

cin represented in n qubits, qubit oin which includes information if a trajectory is free

of obstacles before this operation, and a primitive p represented in m qubits. As an

output from the P operation, comes the resulting configuration cout and a qubit oout which

includes information if a trajectory is free of obstacles after this operation. Configuration

cout is computed based on cin and p, so that when starting from the input configuration

cin and traversing the primitive p, the resulting configuration is cout. Operation P also

checks if traversing the primitive p from cin collides with any obstacles and based on that

it sets |oout⟩ = |0⟩ if the primitive does not collide or |oout⟩ = |1⟩ if the primitive collides.

If |oin⟩ = |1⟩ it means that the trajectory has collided before traversing this new primitive

and in that case oout is set to |1⟩ regardless of if the trajectory collided with the new

primitive.

The inputs of P can also be in a superposition. The effect of that is, that the P operation

computes simultaneously all primitives p is in superposition of, from all configurations ci is

in superposition of. The outputs co and oo are then in a superposition of all configurations

that can be reached based on the inputs.

A C operation checks if a target configuration ct is reached without colliding with any ob-

stacles. It takes as an input a configuration c and a qubit o, which includes the information

if a trajectory is free of obstacles. These are the two topmost registers in figure 4.1b. As

an output, C operation gives t which is set to |1⟩ if c ∈ Ct and |o⟩ = |0⟩, meaning that

the trajectory leading to configuration c is free of obstacles. Otherwise t is set to |0⟩.

An oracle O is then created from P and C operations and their inverse operations P † and

C†. Figure 4.2 shows the circuit of an oracle in a simple case of d = 2, that is, trajectories

are created of two primitives. All of the registers ci and oi as well as t are initialized

21

n

m

n

m

n

c0 : |cs⟩

P P †

o0 : |0⟩

p0 : |+⟩⊗m

c1 : |0⟩

P P †

o1 : |0⟩

p1 : |+⟩⊗m

c2 : |0⟩

C C†o2 : |0⟩

t : |0⟩

|−⟩

Figure 4.2. Circuit of an oracle.

to state |0⟩, except c0 which is set to the initial starting configuration cs. All primitive

registers pi are initialized to an equal superposition of all computational basis states of a

quantum register of width m, which is denoted in the figure as |+⟩⊗m. With these inputs,

the first P operation thus computes every possible resulting configuration a vehicle can

be in when starting from cs and traversing any of the primitives and checks if resulting

trajectories collide. These outputs from the first P operation are then given as an input to

another P operation with a new quantum register p1 for primitives, which is in an equal

superposition of all primitives. The second P operation then outputs a superposition

of all possible configurations after two primitives together with collision information in c2
and o2. More P operations can be added to the circuit in a similar way to create longer

trajectories.

The output of a last P operation, in this case c2 and o2, is then given as an input to C

operation. The C operation sets |t⟩ = |1⟩ for each input configuration that is a target

configuration and that has |o2⟩ = |0⟩. After the C operation, a CNOT gate with target

qubit in state |−⟩ is applied. The effect of this is, that coefficients for states where |t⟩ = |1⟩
are set as negative as explained in section 2.3. To expand this effect to every other qubit,

the inverse operations C† and P † of C and P are applied. The result of this is, that

primitive registers pi are in an equal superposition of all primitives, but combinations of

primitives that are leading to a target configuration without colliding are marked with a

negative coefficient.

22

n

m

n

m

n

m

n

c0

O

o0

p0

D

c1

o1

p1

...
...

cd−1

od−1

pd−1

cd

od

t

|−⟩

Figure 4.3. Oracle and diffuser.

4.2 Details of Running the Algorithm

After the oracle, a diffuser D, which is constructed as explained in section 2.3, is applied

to the primitive registers pi as shown in figure 4.3. Based on bd and the number v of

valid obstacle-free trajectories to a target configuration, the operation of applying O and

D is then ideally repeated T =
⌊︂
π
4

√︁
bd/v

⌋︂
times based on equation 23 [12][5]. However,

although the total number of trajectories bd is known, the number v of valid obstacle-free

trajectories to ct is usually not known. Because of this, the exact value for T cannot be

calculated. The algorithm should therefore be run as described in [41] and below.

1. Set m = 1 and 1 < λ < 4
3
.

2. While m ≤
√
N repeat steps (i) - (iii).

(i) Choose an integer 0 < k ≤ m uniformly at random.

(ii) Use k as a number of iterations and run the algorithm.

(iii) If the output is a valid solution, terminate, otherwise set m← λm.

The time complexity still stays as O(
√︁
N/M) [41].

The number of P operations used, defines the maximum length of trajectories. If too few

P operations are used, it might be that no valid trajectory that reaches ct exists. How-

ever, using too many P operations increases the cost of computation and may lead to

unnecessarily long trajectories. Thus, finding the exact number of primitives a trajectory

should consist of to reach a target is a problem that needs to be considered. The num-

23

ber of primitives needed could be estimated in an obstacle-free space by calculating the

distance between cs and ct configurations. However, obstacles in the environment are

affecting this estimate, since going around obstacles increases the number of primitives

needed. Some way of calculating an estimate for the number of P operations to apply

based on information about target configurations and obstacles is therefore needed, but

determining how this should be calculated is left out of the scope of this work. However,

one possible solution is to first choose a relatively small number of P operations and if

the resulting trajectory from running the algorithm is invalid, the number of P operations

could then be increased when running the algorithm again so that there is then a higher

probability for a valid trajectory to exist.

It should be noted, that the set of primitives should also include a null primitive, which

is a primitive that does not change the configuration if it is an input to a P operation.

Null primitives are needed because the algorithm with d P operations gives as a result

only trajectories with exactly d primitives. The ct however, may be reached also with

less than d primitives. If a null primitive is included in a resulting trajectory, it should

be dismissed. This ensures that resulting trajectories can consist of less than d non-

null primitives. One consequence of this is, that the algorithm is actually more likely to

return trajectories with many null primitives. This is because the position of null primitives

within the trajectory does not change the actual trajectory followed by a vehicle because

null primitives are discarded. If a trajectory consisting of d primitives includes one null

primitive, there exists d other trajectories consisting of the same sequence of primitives,

except with the null primitive at a different position within the trajectory. Therefore, there is

a greater probability that a trajectory including many null primitives is coming as a result,

than that a trajectory with no null primitives becomes as a result. This effect might actually

be preferred because fewer non-null primitives suggest a more optimal trajectory. It is,

however, not guaranteed, that fewer non-null primitives equal a more optimal trajectory.

So far, this algorithm does not provide any guarantee about the optimality of the result-

ing trajectory, although null primitives explained previously may somewhat improve the

optimality. The result of the algorithm is a random valid trajectory with equal probability

for all valid trajectories. The optimality of the result can be increased by running the al-

gorithm multiple times as presented in [42]. After the first valid solution is found, a cost

is calculated for it. A cost could be, for example, a distance or time it takes to traverse

the trajectory. This cost is then used as a baseline and C operation is altered so, that

it compares costs for all solution trajectories to this baseline and only marks trajectories

that have lower costs than the baseline. The algorithm is then run again with this modi-

fied C operation and the same inputs as in first time. This time, the result will be a valid

trajectory with a smaller cost than what the original result had if one exists. This can then

be repeated again, using the cost of the most recent result trajectory as a baseline. This

way, a more optimal solution could be found.

24

5. IMPLEMENTATION OF THE ALGORITHM

In this chapter, the circuit implementation of P and C operations from chapter 4 is ex-

plained. The algorithm is also implemented using Qiskit, which is an open-source frame-

work for constructing and working on quantum circuits with Python [43]. The algorithm is

then tested with a matrix product state simulator and IBM Falcon quantum processor.

Because simulating a quantum computer on a classical computer is expensive and be-

cause the Falcon processors cannot perform very complicated computations, the problem

needs to be simplified for testing. The C-spaces for two test cases are presented in fig-

ure 5.1. The C-space is a 4 by 4 grid with x- and y-coordinates as parameters, both

represented with two bits as shown in figure 5.1. The configurations are written so that

the two most significant bits represent the x-coordinate and the two least significant bits

represent the y-coordinate so that for example the target configuration ct in test case 1 is

0110. Configurations filled with black are obstacles.

00 01 10 11

00

01

10

11

cs

ct

(a) C-space of test case 1.

00 01 10 11

00

01

10

11

cs

ct

(b) C-space of test case 2.

Figure 5.1. C-spaces of simulation test cases.

Primitives are represented with two bits and are shown in figure 5.2 as when starting from

the highlighted configuration marked with black borders, primitive is written to the resulting

configuration. Primitives are chosen to be so that 00 is null primitive, 01 is moving left, 10

is moving right and 11 is moving up. There is no down primitive as only 4 primitives could

be represented with two bits and the null primitive was chosen to be included in the set

of primitives. As a result, in the figure 5.1a, the configuration filled with gray cannot be

achieved when starting from cs in the figure.

25

0001 10

11

Figure 5.2. Primitives of a simplified problem.

The simplicity of a resulting quantum circuit is further enhanced by omitting the checking

of movements, that are going outside the C-space. To account for this, obstacles are

placed in each configuration where x- or y-coordinate is 11, as shown in figure 5.1. This

prevents moving from the edge of the C-space to the opposite edge with one primitive.

This simplified version of the problem becomes a path planning problem as no velocities

are considered. It is the same problem as in [40]. However, there are some differences

in the implementation, most notably a difference in how collision checking is implemented

and a different set of primitives is used.

5.1 Circuit Implementation of the Algorithm

The circuit implementation of a P operation is shown in figure 5.5. The circuit is divided

into sections in the figure so that the first four sections are for applying the four primitives

and the last section is for collision checking. Quantum registers are mapped so that the

least significant qubit is at the top. The circuit is designed using MCNOT gates as

presented in [44] stage 1.

The circuit for applying primitives is presented in the four first sections of figure 5.5. As an

example, applying primitive 01, which is the second section in the figure, is explained here.

Qubits of output configuration register cout are target qubits and are controlled by qubits of

input configuration cin and primitive p registers. Register cout is always initialized to state

|0⟩ before P operation. For each MCNOT gate in the second section, primitive qubits

activate controls when in state |01⟩. As primitive 01 does not change the y-coordinate,

qubits cout0 and cout1 are set to the same state as cin0 and cin1 correspondingly. Qubit

cout2 is set to inverse of state cin2. Qubit cout3 is set to |1⟩ if |cin2⟩ = |cin3⟩.

After the output configuration is calculated, the collision checking is done as shown in

the last section of figure 5.5. First oout is set to |1⟩ if |oin⟩ = |1⟩. For each obstacle

one MCNOT gate is then applied where controls are set based on the obstacle’s x-

and y-coordinates. For example, the second gate in the collision checking section is for

checking if the output configuration is 0100. The circuit in figure 5.5 is constructed based

on obstacles in test case 1 shown in figure 5.1a.

The C operations for both test cases are shown in figure 5.3. Because in this case there

is only one target configuration, the C operation consists of only one MCNOT gate.

26

Therefore, there is no need for an additional CNOT gate as is presented in figure 4.2.

The same effect on input qubits is achieved with just the C operation when t qubit is

initialized to |−⟩.

c0

c1

c2

c3

o

t

(a) Test case 1 C operation.

c0

c1

c2

c3

o

t

(b) Test case 2 C operation.

Figure 5.3. Circuits of C operations.

Diffuser D is implemented as shown in figure 2.5 with 2d control qubits as all the primitive

qubits are fed as an input. The circuit of P † is constructed by applying the gates from

P in inverted order. With these operations implemented, the complete circuit can be

constructed as shown in figure 4.2.

5.2 Test Results

The algorithm for the simplified problem was implemented with Qiskit and the code is

shown in appendix A. The algorithm was run on a matrix product state simulator [45] and

IBM Falcon quantum processor. The simulator simulated an ideal quantum computer with

no noise. The test results are presented in this section.

Simulation test case 1 is presented in figure 5.1a. Starting configuration cs = 0000,

ct = 0110, Cobs = {0100, 0011, 0111, 1011, 1111, 1110, 1101, 1100} and number of used

primitives for each path (number of P operations) d = 3. The number of iterations t

of how many times O and D were applied was adjusted to see the effect it has on the

performance of the algorithm. With each value of t, the algorithm was run 10 000 times.

Results of how many times the algorithm returned a valid obstacle-free path to ct can

be seen in figure 5.4. As there are two valid obstacle-free paths from cs to ct with three

primitives and the number of all different sets of primitives is 43, the optimal number for t

based on equation 23 is
⌊︂
π
4

√︁
43/2

⌋︂
= 4. As can be seen from the figure 5.4, when using

the optimal number of iterations t = 4, only 4 of the resulting paths were invalid. With

t = 3 and t = 5, the result was still a valid path in over 85 % of runs. When t = 2 or

t = 6, the percentage of valid results decreased to under 60 %.

The C-space in simulation test case 2 is shown in figure 5.1b. In this case cs = 0000,

ct = 0101 and Cobs = {0001, 0011, 0111, 1011, 1111, 1110, 1101, 1100}. The number of

primitives for paths was set to d = 4. There are 4 valid paths with length 4 and 1 valid

path with length 2. As the path with length 2 must include two null primitives when using

27

2 3 4 5 6
0

2 000

4 000

6 000

8 000

10 000

5 988

8 991
9 996

8 589

5 438

t

Va
lid

ob
st

ac
le

-fr
ee

pa
th

s

Figure 5.4. Simulation test case 1 results.

a total of four primitives, there are 6 unique sequences of primitives, which result in this

path. Therefore, there should be a greater probability of the result having length 2, than

length 4. The number of iterations used was t =
⌊︂
π
4

√︁
44/10

⌋︂
= 3. The algorithm was

run 10 000 times and result counts can be seen in table 5.1, where n is the number of

times the primitive sequence came as a result. From table 5.1a it can be seen, that each

valid set of primitives was a result with roughly equal probability. Therefore, the resulting

path had length 2 with greater probability than length 4, as can be seen from table 5.1b.

Table 5.1. Simulation test case 2 results.

(a) Valid sets of primitives.

primitives n

10, 10, 01, 11 952

10, 01, 10, 11 971

10, 10, 11, 01 946

10, 11, 10, 01 961

00, 00, 10, 11 1 024

primitives n

00, 10, 00, 11 992

10, 00, 00, 11 995

00, 10, 11, 00 955

10, 00, 11, 00 985

10, 11, 00, 00 926

(b) Valid paths by length.

path length n

2 5 877

4 3 830

any 9 707

The algorithm was also tested on a quantum computer. The processor used in tests

was ibm_algiers, which is one of IBM Falcon processors. It was possible to run only the

simplest form of the problem with cs = 0000, ct = 0001, d = 1, t = 1, and no obstacles.

Measurement results were completely random and the correct path was not coming as a

result any more than any other result, so even this simplest form of a problem turned out

to be too complex. This is probably due to the circuit containing too many gates so that

the computation takes too long. The quantum state of the system is therefore affected by

random noise at the time it takes for the computation to finish, which destroys the desired

quantum state.

28

c i
n
0

c i
n
1

c i
n
2

c i
n
3

o i
n p 0 p 1

c o
u
t0

c o
u
t1

c o
u
t2

c o
u
t3

o o
u
t

P
rim

iti
ve

00
P

rim
iti

ve
01

P
rim

iti
ve

10
P

rim
iti

ve
11

C
ol

lis
io

n
ch

ec
ki

ng

Fi
gu

re
5.

5.
C

irc
ui

to
fa
P

op
er

at
io

n.

29

6. CONCLUSION

This work presented an algorithm for solving trajectory planning problem with quantum

computing. The algorithm was implemented for a simplified problem and tested with a

QC simulator and with quantum computer.

Simulation tests showed promising results. The algorithm was able to solve the simplified

problem as designed in different test cases. However, as QC simulation is a costly task

for classical computers, it was not possible to evaluate how the algorithm would perform

when the complexity increases.

Tests on real quantum hardware showed not that good results. It was not possible to

solve even a simple problem with the designed algorithm. This was probably because

the resulting quantum circuit was too complex so the computation took too much time

and the quantum computer used for testing was not able to sustain the quantum state

uninterrupted for this long. There need to be major advancements in QC hardware be-

fore the algorithm has the possibility to be useful in real-world applications. When the

QC hardware improves, further tests could be carried out to see how the algorithm is

performing.

Further work could be done for optimizing the construction of a quantum circuit the algo-

rithm produces. This would improve the performance of the algorithm, especially when

the complexity of the problem increases. This work did not discuss about how to design

and choose the primitive trajectories used for creating a state lattice. This would also be

a topic for further research, as the choice of primitives has a major impact on the resulting

trajectories.

30

REFERENCES

[1] Richard P. Feynman. “Simulating Physics with Computers”. In: International journal

of theoretical physics 21.6-7 (1982), pp. 467–488. ISSN: 0020-7748. DOI: 10.1007/

BF02650179.

[2] Seth Lloyd. “Universal Quantum Simulators”. In: Science 273.5278 (Aug. 1996),

p. 1073. ISSN: 00368075.

[3] R. Horodecki, S. Ya. Kilin, and J. Kowalik. Quantum Cryptography and Computing:

Theory and Implementation. IOS Press, Incorporated, 2010. ISBN: 978-1-60750-

547-1.

[4] Kishor Bharti et al. “Noisy Intermediate-Scale Quantum Algorithms”. In: Reviews of

Modern Physics 94.1 (Feb. 2022), p. 015004. ISSN: 0034-6861, 1539-0756. DOI:

10.1103/RevModPhys.94.015004.

[5] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information. Cambridge ; New York: Cambridge University Press, 2000. ISBN: 978-

0-521-63235-5 978-0-521-63503-5.

[6] P. a. M. Dirac. “A New Notation for Quantum Mechanics”. In: Mathematical Pro-

ceedings of the Cambridge Philosophical Society 35.3 (July 1939), pp. 416–418.

ISSN: 1469-8064, 0305-0041. DOI: 10.1017/S0305004100021162.

[7] Eleanor G. Rieffel et al. Quantum Computing: A Gentle Introduction. Cambridge,

UNITED STATES: MIT Press, 2011. ISBN: 978-0-262-29539-0.

[8] Mika Hirvensalo, Th. Bäck, and A. E. Eiben. Quantum Computing. Berlin, Heidel-

berg, GERMANY: Springer Berlin / Heidelberg, 2001. ISBN: 978-3-662-04461-2.

[9] Ryszard Horodecki et al. “Quantum Entanglement”. In: Reviews of Modern Physics

81.2 (June 2009), pp. 865–942. DOI: 10.1103/RevModPhys.81.865.

[10] Juan Yin et al. “Bounding the Speed of ‘spooky Action at a Distance’”. In: Physical

Review Letters 110.26 (June 2013), p. 260407. ISSN: 0031-9007, 1079-7114. DOI:

10.1103/PhysRevLett.110.260407. arXiv: 1303.0614 [quant-ph].

[11] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:

arXiv.org (Nov. 1996).

[12] Christof Zalka. “Grover’s Quantum Searching Algorithm Is Optimal”. In: Physical

Review A 60.4 (Oct. 1999), pp. 2746–2751. ISSN: 1050-2947, 1094-1622. DOI: 10.

1103/PhysRevA.60.2746. arXiv: quant-ph/9711070.

[13] Raphael Seidel et al. Automatic Generation of Grover Quantum Oracles for Arbi-

trary Data Structures. Oct. 2021. DOI: 10.48550/arXiv.2110.07545. arXiv: 2110.

07545 [quant-ph].

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.110.260407
https://arxiv.org/abs/1303.0614
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.1103/PhysRevA.60.2746
https://arxiv.org/abs/quant-ph/9711070
https://doi.org/10.48550/arXiv.2110.07545
https://arxiv.org/abs/2110.07545
https://arxiv.org/abs/2110.07545

31

[14] P. W. Shor. “Scheme for Reducing Decoherence in Quantum Computer Memory”.

In: Physical review. A, Atomic, molecular, and optical physics 52.4 (1995), R2493–

R2496. ISSN: 1050-2947. DOI: 10.1103/PhysRevA.52.R2493.

[15] Andrew Steane. “Multiple Particle Interference and Quantum Error Correction”. In:

arXiv.org (May 1996). DOI: 10.1098/rspa.1996.0136.

[16] E. Knill et al. “Benchmarking Quantum Computers: The Five-Qubit Error Correcting

Code”. In: Physical Review Letters 86.25 (June 2001), pp. 5811–5814. DOI: 10 .

1103/PhysRevLett.86.5811.

[17] Mark Horowitz and Emily Grumbling. Quantum Computing: Progress and Prospects.

Washington, D.C., UNITED STATES: National Academies Press, 2019. ISBN: 978-

0-309-47970-7.

[18] C. Monroe and J. Kim. “Scaling the Ion Trap Quantum Processor”. In: Science

339.6124 (Mar. 2013), pp. 1164–1169. DOI: 10.1126/science.1231298.

[19] J. I. Cirac and P. Zoller. “Quantum Computations with Cold Trapped Ions”. In: Phys-

ical Review Letters 74.20 (May 1995), pp. 4091–4094. DOI: 10.1103/PhysRevLett.

74.4091.

[20] D. Kielpinski, C. Monroe, and D. J. Wineland. “Architecture for a Large-Scale Ion-

Trap Quantum Computer”. In: Nature 417.6890 (June 2002), pp. 709–711. ISSN:

0028-0836, 1476-4687. DOI: 10.1038/nature00784.

[21] Bjoern Lekitsch et al. “Blueprint for a Microwave Trapped Ion Quantum Computer”.

In: Science Advances 3.2 (Feb. 2017), e1601540. DOI: 10.1126/sciadv.1601540.

[22] He-Liang Huang et al. Superconducting Quantum Computing: A Review. Nov. 2020.

DOI: 10.48550/arXiv.2006.10433. arXiv: 2006.10433 [quant-ph].

[23] Anton Frisk Kockum and Franco Nori. “Quantum Bits with Josephson Junctions”.

In: Fundamentals and Frontiers of the Josephson Effect. Ed. by Francesco Tafuri.

Springer Series in Materials Science. Cham: Springer International Publishing,

2019, pp. 703–741. ISBN: 978-3-030-20726-7. DOI: 10.1007/978-3-030-20726-

7_17.

[24] Howie Choset et al. Principles of Robot Motion: Theory, Algorithms, and Implemen-

tations. Cambridge, UNITED STATES: MIT Press, 2005. ISBN: 978-0-262-25591-2.

[25] Eugene Kagan. Autonomous Mobile Robots and Multi-Robot Systems: Motion-

Planning, Communication and Swarming. 1st edition. Hoboken, New Jersey ; Wiley,

2020. ISBN: 978-1-119-21316-1.

[26] Yadollah Rasekhipour et al. “A Potential Field-Based Model Predictive Path-Planning

Controller for Autonomous Road Vehicles”. In: IEEE Transactions on Intelligent

Transportation Systems 18.5 (May 2017), pp. 1255–1267. ISSN: 1558-0016. DOI:

10.1109/TITS.2016.2604240.

[27] Steven M. LaValle. “Rapidly-Exploring Random Trees: A New Tool for Path Plan-

ning”. In: (1998).

https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevLett.86.5811
https://doi.org/10.1103/PhysRevLett.86.5811
https://doi.org/10.1126/science.1231298
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1038/nature00784
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.48550/arXiv.2006.10433
https://arxiv.org/abs/2006.10433
https://doi.org/10.1007/978-3-030-20726-7_17
https://doi.org/10.1007/978-3-030-20726-7_17
https://doi.org/10.1109/TITS.2016.2604240

32

[28] Mansoor Davoodi et al. “Multi-Objective Path Planning in Discrete Space”. In: Ap-

plied Soft Computing 13.1 (Jan. 2013), pp. 709–720. ISSN: 1568-4946. DOI: 10 .

1016/j.asoc.2012.07.023.

[29] David González et al. “A Review of Motion Planning Techniques for Automated

Vehicles”. In: IEEE Transactions on Intelligent Transportation Systems 17.4 (Apr.

2016), pp. 1135–1145. ISSN: 1558-0016. DOI: 10.1109/TITS.2015.2498841.

[30] Zvi Shiller and Hsueh-Hen Lu. “Computation of Path Constrained Time Optimal

Motions With Dynamic Singularities”. In: Journal of Dynamic Systems, Measure-

ment, and Control 114.1 (Mar. 1992), pp. 34–40. ISSN: 0022-0434. DOI: 10.1115/1.

2896505.

[31] J.-J. E. Slotine and H. S. Yang. “Improving the Efficiency of Time-Optimal Path-

Following Algorithms”. In: 1988 American Control Conference. June 1988, pp. 2129–

2134. DOI: 10.23919/ACC.1988.4790076.

[32] Steven M. LaValle and James J. Kuffner. “Randomized Kinodynamic Planning”. In:

The International Journal of Robotics Research 20.5 (May 2001), pp. 378–400.

ISSN: 0278-3649. DOI: 10.1177/02783640122067453.

[33] Maxim Likhachev and Dave Ferguson. “Planning Long Dynamically Feasible Ma-

neuvers for Autonomous Vehicles”. In: The International journal of robotics research

28.8 (2009), pp. 933–945. ISSN: 0278-3649. DOI: 10.1177/0278364909340445.

[34] Mihail Pivtoraiko and Alonzo Kelly. “Efficient Constrained Path Planning via Search

in State Lattices”. In: International Symposium on Artificial Intelligence, Robotics,

and Automation in Space. Munich Germany, 2005, pp. 1–7.

[35] Thomas M. Howard et al. “State Space Sampling of Feasible Motions for High-

Performance Mobile Robot Navigation in Complex Environments”. In: Journal of

Field Robotics 25.6-7 (2008), pp. 325–345. ISSN: 1556-4967. DOI: 10.1002/rob.

20244.

[36] Matthew McNaughton et al. “Motion Planning for Autonomous Driving with a Con-

formal Spatiotemporal Lattice”. In: 2011 IEEE International Conference on Robotics

and Automation. May 2011, pp. 4889–4895. DOI: 10.1109/ICRA.2011.5980223.

[37] Julius Ziegler and Christoph Stiller. “Spatiotemporal State Lattices for Fast Trajec-

tory Planning in Dynamic On-Road Driving Scenarios”. In: 2009 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems. Oct. 2009, pp. 1879–1884.

DOI: 10.1109/IROS.2009.5354448.

[38] Aleksandr Kushleyev and Maxim Likhachev. “Time-Bounded Lattice for Efficient

Planning in Dynamic Environments”. In: 2009 IEEE International Conference on

Robotics and Automation. May 2009, pp. 1662–1668. DOI: 10.1109/ROBOT.2009.

5152860.

[39] Luís Tarrataca and Andreas Wichert. “Problem-Solving and Quantum Computa-

tion”. In: Cognitive Computation 3.4 (Dec. 2011), pp. 510–524. ISSN: 1866-9964.

DOI: 10.1007/s12559-011-9103-6.

https://doi.org/10.1016/j.asoc.2012.07.023
https://doi.org/10.1016/j.asoc.2012.07.023
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1115/1.2896505
https://doi.org/10.1115/1.2896505
https://doi.org/10.23919/ACC.1988.4790076
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/0278364909340445
https://doi.org/10.1002/rob.20244
https://doi.org/10.1002/rob.20244
https://doi.org/10.1109/ICRA.2011.5980223
https://doi.org/10.1109/IROS.2009.5354448
https://doi.org/10.1109/ROBOT.2009.5152860
https://doi.org/10.1109/ROBOT.2009.5152860
https://doi.org/10.1007/s12559-011-9103-6

33

[40] Antonio Chella et al. “A Quantum Planner for Robot Motion”. In: Mathematics (Basel)

10.14 (2022), pp. 2475–. ISSN: 2227-7390. DOI: 10.3390/math10142475.

[41] Michel Boyer et al. “Tight Bounds on Quantum Searching”. In: Fortschritte der

Physik 46.4-5 (1998), pp. 493–505. ISSN: 0015-8208. DOI: 10.1002/(SICI)1521-

3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.

[42] W. P. Baritompa, D. W. Bulger, and G. R. Wood. “Grover’s Quantum Algorithm Ap-

plied to Global Optimization”. In: SIAM Journal on Optimization 15.4 (2005), p. 15.

ISSN: 10526234. DOI: 10.1137/040605072.

[43] A-tA-v et al. Qiskit: An Open-Source Framework for Quantum Computing. 2021.

DOI: 10.5281/zenodo.2573505.

[44] Ahmed Younes and Julian Miller. Automated Method for Building CNOT Based

Quantum Circuits for Boolean Functions. Apr. 2003. DOI: 10.48550/arXiv.quant-

ph/0304099. arXiv: quant-ph/0304099.

[45] Guifre Vidal. “Efficient Classical Simulation of Slightly Entangled Quantum Compu-

tations”. In: Physical Review Letters 91.14 (Oct. 2003), p. 147902. ISSN: 0031-9007,

1079-7114. DOI: 10.1103/PhysRevLett.91.147902. arXiv: quant-ph/0301063.

https://doi.org/10.3390/math10142475
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1137/040605072
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/arXiv.quant-ph/0304099
https://doi.org/10.48550/arXiv.quant-ph/0304099
https://arxiv.org/abs/quant-ph/0304099
https://doi.org/10.1103/PhysRevLett.91.147902
https://arxiv.org/abs/quant-ph/0301063

34

APPENDIX A: CODE FOR IMPLEMENTING THE

QUANTUM CIRCUIT WITH QISKIT

1 from qiskit import *
2

3 def p_operation(obstacles):
4 """
5 Constructs a circuit of a P operation
6

7 :param obstacles: list[string], list of obstacles as a string
of 0s and 1s

8 :return: QuantumCircuit , P operation circuit
9 """

10

11 p = QuantumCircuit(name=’P’)
12

13 # initial configuration
14 in_configuration = QuantumRegister (4, ’c_in’)
15 # collision in qubit , 1 if trajectory has collided before the

gate , 0 otherwise
16 in_collision = QuantumRegister (1, ’o_in’)
17 # primitive trajectory to apply
18 primitive = QuantumRegister (2, ’p’)
19 # configuration after traversing the primitive
20 out_configuration = QuantumRegister (4, ’c_out’)
21 # collision out qubit , 1 if trajectory has collided after the

gate , 0 otherwise
22 out_collision = QuantumRegister (1, ’o_out’)
23

24 p.add_register(in_configuration)
25 p.add_register(in_collision)
26 p.add_register(primitive)
27 p.add_register(out_configuration)
28 p.add_register(out_collision)
29

30 # primitive 00
31 p.x(primitive)
32 p.mcx([in_configuration [0], primitive [0], primitive [1]],

out_configuration [0])

35

33 p.mcx([in_configuration [1], primitive [0], primitive [1]],
out_configuration [1])

34 p.mcx([in_configuration [2], primitive [0], primitive [1]],
out_configuration [2])

35 p.mcx([in_configuration [3], primitive [0], primitive [1]],
out_configuration [3])

36 p.x(primitive)
37

38 # primitive 01
39 p.x(primitive [1])
40 p.mcx([in_configuration [0], primitive [0], primitive [1]],

out_configuration [0])
41 p.mcx([in_configuration [1], primitive [0], primitive [1]],

out_configuration [1])
42 p.x(in_configuration [2])
43 p.mcx([in_configuration [2], primitive [0], primitive [1]],

out_configuration [2])
44 p.x(in_configuration [2])
45 p.mcx([in_configuration [2], in_configuration [3], primitive [0],

primitive [1]], out_configuration [3])
46 p.x(in_configuration [2])
47 p.x(in_configuration [3])
48 p.mcx([in_configuration [2], in_configuration [3], primitive [0],

primitive [1]], out_configuration [3])
49 p.x(in_configuration [2])
50 p.x(in_configuration [3])
51 p.x(primitive [1])
52

53 # primitive 10
54 p.x(primitive [0])
55 p.mcx([in_configuration [0], primitive [0], primitive [1]],

out_configuration [0])
56 p.mcx([in_configuration [1], primitive [0], primitive [1]],

out_configuration [1])
57 p.x(in_configuration [2])
58 p.mcx([in_configuration [2], primitive [0], primitive [1]],

out_configuration [2])
59 p.mcx([in_configuration [2], in_configuration [3], primitive [0],

primitive [1]], out_configuration [3])
60 p.x([in_configuration [2], in_configuration [3]])
61 p.mcx([in_configuration [2], in_configuration [3], primitive [0],

primitive [1]], out_configuration [3])
62 p.x(in_configuration [3])
63 p.x(primitive [0])
64

65 # primitive 11
66 p.x(in_configuration [0])
67 p.mcx([in_configuration [0], primitive [0], primitive [1]],

36

out_configuration [0])
68 p.mcx([in_configuration [0], in_configuration [1], primitive [0],

primitive [1]], out_configuration [1])
69 p.x([in_configuration [0], in_configuration [1]])
70 p.mcx([in_configuration [0], in_configuration [1], primitive [0],

primitive [1]], out_configuration [1])
71 p.x(in_configuration [1])
72 p.mcx([in_configuration [2], primitive [0], primitive [1]],

out_configuration [2])
73 p.mcx([in_configuration [3], primitive [0], primitive [1]],

out_configuration [3])
74

75 # check collisions
76 p.cx(in_collision , out_collision)
77 p.x(in_collision)
78 for obs in obstacles:
79 for i in range(len(obs)):
80 if obs[-i-1] == ’0’:
81 p.x(out_configuration[i])
82 p.mcx([in_collision , out_configuration [0],

out_configuration [1], out_configuration [2],
out_configuration [3]], out_collision)

83 for i in range(len(obs)):
84 if obs[-i-1] == ’0’:
85 p.x(out_configuration[i])
86 p.x(in_collision)
87

88 return p
89

90 def c_operation(target_configuration):
91 """
92 Constructs a circuit of a C operation
93

94 :param target_configuration: string , target configuration as a
string of 0s and 1s

95 :return: QuantumCircuit , C operation circuit
96 """
97

98 c = QuantumCircuit(name=’C’)
99

100 # configuration
101 configuration = QuantumRegister (4, ’c’)
102 # collision qubit
103 collision = QuantumRegister (1, ’o’)
104 # result = 1 if input configuration equals the target

configuration , 0 otherwise
105 result = QuantumRegister (1, ’t’)
106

37

107 c.add_register(configuration)
108 c.add_register(collision)
109 c.add_register(result)
110

111 # apply NOT to each 0 qubit in target configuration for MCNOT
gate

112 for i in range(len(target_configuration)):
113 if target_configuration[-i-1] == ’0’:
114 c.x(configuration[i])
115

116 # collision qubit is 0 if trajectory has not collided
117 c.x(collision)
118

119 c.mcx([configuration [0], configuration [1], configuration [2],
configuration [3], collision], result)

120

121 c.x(collision)
122

123 # uncompute the first step
124 for i in range(len(target_configuration)):
125 if target_configuration[-i-1] == ’0’:
126 c.x(configuration[i])
127

128 return c
129

130 def diffuser(depth):
131 """
132 Constructs a circuit of a diffuser
133

134 :param depth: int , depth of the tree graph i.e. how many
primitives are applied

135 :return: QuantumCircuit , diffuser circuit
136 """
137

138 d = QuantumCircuit (2* depth + 1, name=’D’)
139

140 d.h(range (2* depth))
141 d.x(range (2* depth))
142 d.mcx(list(range (2* depth)), 2* depth)
143 d.x(range (2* depth))
144 d.h(range (2* depth))
145

146 return d
147

148 def circuit(start_configuration , target_configuration , obstacles ,
depth , iterations):

149 """
150 Constructs the full circuit for the algorithm

38

151

152 :param start_configuration: string , start configuration as a
string of 0s and 1s

153 :param target_configuration: string , target configuration as a
string of 0s and 1s

154 :param obstacles: list[string], list of obstacles as a string
of 0s and 1s

155 :param depth: int , depth of the tree graph i.e. how many
primitives are applied

156 :param iterations: int , number of iterations to apply the
amplitude amplification

157 :return: QuantumCircuit , full circuit
158 """
159

160 qc = QuantumCircuit ()
161

162 # start configuration
163 start_configuration_register = QuantumRegister (4, ’c_0’)
164 qc.add_register(start_configuration_register)
165 # collision in for the first P gate
166 collision_0 = QuantumRegister (1, ’o_0’)
167 qc.add_register(collision_0)
168

169 # other registers for P gates
170 primitive_registers = []
171 for j in range(depth):
172 primitive = QuantumRegister (2, ’p_’ + str(j))
173 primitive_registers.append(primitive)
174 configuration = QuantumRegister (4, ’c_’ + str(j+1))
175 collision = QuantumRegister (1, ’o_’ + str(j+1))
176

177 qc.add_register(primitive)
178 qc.add_register(configuration)
179 qc.add_register(collision)
180

181 # result qubit for C gate
182 result = QuantumRegister (1, ’t’)
183 qc.add_register(result)
184

185 # set initial states according to the start configuration
186 for i in range(len(start_configuration)):
187 if start_configuration[-i-1] == ’1’:
188 qc.x(start_configuration_register[i])
189

190 # apply hadamard gate to primitive qubits
191 for primitive in primitive_registers:
192 qc.h(primitive)
193

39

194 # set initial state to the result qubit
195 qc.x(result)
196 qc.h(result)
197

198 p = p_operation(obstacles).to_gate ()
199 c = c_operation(target_configuration).to_gate ()
200 d = diffuser(depth).to_gate ()
201

202 # construct the circuit
203 for j in range(iterations):
204 # apply P gates
205 for j in range(depth):
206 qc.append(p, range (7*j, 7*j+12))
207

208 # apply C gate
209 qc.append(c, range (7*depth , 7*depth +6))
210

211 # apply inverse P gates
212 for j in range(depth):
213 qc.append(p.inverse (), range (7*(depth -1-j),

7*(depth -1-j)+12))
214

215 # apply diffuser
216 primitive_qubits = []
217 for j in range(depth):
218 primitive_qubits.append (5+j*7)
219 primitive_qubits.append (6+j*7)
220 qc.append(d, primitive_qubits)
221

222 # set result qubit back to 0
223 qc.h(result)
224 qc.x(result)
225

226 return qc

	Introduction
	Quantum Computing
	Quantum States and Information
	Quantum Gates and Circuits
	Grover's Algorithm
	Quantum Error Correction
	State-of-the-Art Quantum Computers

	Automated Vehicle Trajectory Planning
	Decoupled Approach
	Direct Approach Using State Lattices

	Quantum Computing Algorithm for Trajectory Planning
	Designing the Oracle
	Details of Running the Algorithm

	Implementation of the Algorithm
	Circuit Implementation of the Algorithm
	Test Results

	Conclusion
	References
	Code for Implementing the Quantum Circuit With Qiskit

