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ABSTRACT

Parthasaarathy Sudarsanam: Dataset and Deep Neural Network Based Approach to Audio Ques-
tion Answering
Master of Science Thesis
Tampere University
Master’s Degree Program in Machine Learning
January 2023

Audio question answering (AQA) is a multimodal task in which a system analyzes an audio
signal and a question in natural language, to produce a desirable answer in natural language. In
this thesis, a new dataset for audio question answering, Clotho-AQA, consisting of 1991 audio
files each between 15 to 30 seconds in duration is presented. For each audio file in the dataset,
six different questions and their corresponding answers were crowdsourced using Amazon Me-
chanical Turk (AMT). The questions and their corresponding answers were created by different
annotators. Out of the six questions for each audio, two questions each were designed to have
‘yes’ and ‘no’ as answers respectively, while the remaining two questions have other single-word
answers. For every question, answers from three independent annotators were collected. In this
thesis, two baseline experiments are presented to portray the usage of the Clotho-AQA dataset -
a multimodal binary classifier for ‘yes’ or ‘no’ answers and a multimodal multi-class classifier for
single-word answers both based on long short-term memory (LSTM) layers. The binary classifier
achieved an accuracy of 62.7% and the multi-class classifier achieved a top-1 accuracy of 54.2%
and a top-5 accuracy of 93.7%. Further, an attention-based model was proposed, which increased
the binary classifier accuracy to 66.2% and the top-1 and top-5 multiclass classifier accuracy to
57.5% and 99.8% respectively. Some drawbacks of the Clotho-AQA dataset such as the pres-
ence of the same answer words in different tenses, singular-plural forms, etc., that are considered
as different classes for the classification problem were addressed and a refined version called
Clotho-AQA_v2 is also presented. The multimodal baseline model achieved a top-1 and top-5
accuracy of 59.8% and 96.6% respectively while the attention-based model achieved a top-1 and
top-5 accuracy of 61.3% and 99.6% respectively on this refined dataset. The Clotho-AQA dataset
is available online here.

Keywords: Clotho-AQA, audio question answering, attention models, dataset.
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1. INTRODUCTION

Question answering (QA) is the task of producing answers in natural language when

questions are posed in natural language. Often, these questions are accompanied by a

naturally occurring signal such as an image or audio and the questions posed are about

the contents of these signals. If the auxiliary input is an image, the task is referred to as

visual question answering (VQA) and if it is an audio signal, it is called audio question

answering (AQA). Although the question answering framework is well studied for image

and textual modalities, audio question answering is comparatively less explored.

Audio question answering opens the gate for new possibilities in areas such as monitor-

ing and surveillance, machine listening, human-technology interaction, acoustical scene

understanding, etc. An audio question answering system is shown in Figure 1.1. The

benefit of using natural language lies in its ability to represent complex high-level informa-

tion about the input signal. For example, in audio inputs, the order of events, repetition or

count of events, the temporal relationship between events, etc., can be easily represented

using natural language description.

The motivation for AQA comes from the widely common audio captioning task. In au-

dio captioning, for a given input audio, the contents of the audio signal are described in

natural language. There are a few drawbacks to any audio captioning system. Firstly,

an audio signal can be described in multiple ways based on what the annotator chooses

to focus on. Secondly, standard captioning evaluation metrics such as BLEU scores are

based on n-gram equivalences. This affects the evaluation process as the system may

output a new correct caption that may not be present in the ground truth or have a dif-

ferent sentence format. AQA is a starting point to make a system focus on a particular

piece of information in audio depending on the natural language question posed to it. To

AQA system
What is making the
chirping sound?

Bird

Figure 1.1. Block diagram of an audio question answering system.
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achieve this, along with extracting interesting features from the audio, the system must

also understand the textual input and find associated relationships between the audio

features based on the input question to generate a natural language answer. It is hence,

a very important challenge for the machine learning community in both acoustic analysis

and natural language understanding.

Most QA datasets currently available are for other modalities such as textual question

answering [1], [2], visual question answering [3]–[7], and video question answering [8]–

[11] tasks. Most of these datasets have real-world auxiliary data. Therefore, questions

and answers are annotated manually using crowdsourcing tools like Amazon Mechanical

Turk (AMT). CLEAR [12] and DAQA [13] are the two popular datasets created for the

AQA task. The CLEAR dataset has fixed-length audio signals of 10 different musical

notes. On the other hand, DAQA contains variable-length audio signals of generic sound

events. For these datasets, the audio scenes are produced synthetically by concatenating

a few elementary sounds and the questions and answers are generated programmatically.

While the data is generated in a constrained setup, the generated data has insufficient

diversities and difficulties compared to real data. In many QA datasets, questions and

answers are collected from the same annotators in the crowdsourcing framework [4],

[7], [8], [10]. Some datasets such as [5], [11], use different annotators for questions

and answers. Using different annotators for questions and answers ensures that only the

audio signal and generic knowledge were used while answering the questions.

In this work, a new dataset called Clotho-AQA for audio question answering is introduced

and machine learning models were developed to tackle this task. The dataset contains

1991 audio files chosen randomly from the Clotho dataset [14]. For each audio, six ques-

tions were collected and for each question, three answers were collected from indepen-

dent annotators using AMT. Hence, each audio file is associated with 18 question-answer

pairs. Developing a multimodal audio and natural language system that understands

a natural language question and retrieves relevant information from the audio signal is

quite challenging. Recent developments in deep learning made it an appropriate op-

tion to tackle this task. Long short-term memory (LSTM) [15] based baseline models

and attention [16] based models were developed to address this task on the Clotho-AQA

dataset. Please note that a part of this work including the dataset and baseline models

was presented to the European conference on signal processing (EUSIPCO), 2022, with

the title Clotho-AQA: A Crowdsourced Dataset for Audio Question Answering[17].

The remainder of this thesis is organized as follows. In Chapter 2, theoretical concepts re-

lated to signal processing and deep learning techniques used in this work are discussed.

Chapter 3 focuses on related works in this field. Chapter 4 describes the data collection

and data cleaning process in detail. Chapter 5 presents the baseline experiments, eval-

uation, and results. Finally, Chapter 6 states the conclusion of this study and possible

future works.
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2. THEORETICAL BACKGROUND

In this chapter, the theoretical concepts in audio signal processing, natural language pro-

cessing (NLP), and deep learning used in this thesis work are described in detail. In

Section 2.1 the audio signal processing concepts are discussed while in Section 2.2 and

Section 2.3 natural language processing and machine learning concepts are explained

respectively.

2.1 Audio Signal Processing

In this work, audio signal processing algorithms were utilized in the pre-processing stage.

Specifically, mel-spectrogram audio features were extracted from input audio signals. It is

essential to understand the concepts of discrete Fourier transform described in Section

2.1.1, short-time Fourier transform (STFT) explained in Section 2.1.2 and mel scale pre-

sented in Section 2.1.3 to fully understand mel-spectrogram described in Section 2.1.4.

2.1.1 Discrete Fourier Transform

A digital audio signal represented in time domain x(n) describes the amplitude of the

audio at each discrete time index n. All audio signals can be represented as the sum of

single-frequency sine waves. The Fourier transform decomposes any given signal into

its constituent single-frequency sine waves and their amplitudes i.e., it converts the time

domain signal into a frequency domain signal. This frequency domain representation

X(k) is commonly known as the spectrum of the signal. Figure 2.1 illustrates a 10-Hz

sine wave in time domain and Figure 2.2 its corresponding spectrum. The mathematical

formula of the discrete Fourier transform to convert a time domain signal into its frequency

domain representation is

X(k) =
N−1∑︂
n=0

x(n)e−j2πnk/N , k = 0, 1, ..., N − 1, (2.1)

where N is the total number of samples in the audio signal, and j is the unit imaginary

number. The fast Fourier transform (FFT) algorithm is widely used in digital signal pro-

cessing to efficiently compute the discrete Fourier transform.
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Figure 2.1. A sine wave of frequency 10 Hz in time domain with sampling frequency 8
kHz.
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Figure 2.2. Magnitude spectrum of the sine wave shown in Figure 2.1 having a peak at
10 Hz.
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2.1.2 Short-Time Fourier Transform

Most real-life audio signals like speech, music, etc, are non-stationary in nature. Calcu-

lating the discrete Fourier transform for the entire signal results in completely losing the

time information in which different frequencies occurred in the time-domain signal. For

example, consider the sine waves shown in Figure 2.3. The magnitude spectrum for both

the signals as shown in Figure 2.4 is similar looking even though the frequencies clearly

occur at different times in the time domain signals.
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Figure 2.3. (Left) Two sine waves with frequencies 5 Hz and 50 Hz added together.
(Right) A sine wave with frequency 5 Hz from 0-0.5 s and 50 Hz from 0.5-1 s.

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
m

pl
itu

de

Figure 2.4. Magnitude Spectrum of the sine waves shown in Figure 2.3 having two peaks
at 5 Hz and 50 Hz.
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To overcome this problem, STFT is used. In STFT, a signal is split into shorter segments

denoted by index m, each of length N . Then, FFT is applied to each of these segments.

To eliminate incorrect high-frequency detections due to the abrupt splitting of segments,

window filters w(n) such as Hamming window or Hann window are applied to each seg-

ment before calculating the FFT. There is also overlap between each segment and the

amount of overlap is determined by the hop size h. This transformation of computing

the Fourier transform for overlapping windowed segments is called the short-time Fourier

transform and the result X(k,m) is called a spectrogram. The mathematical formula to

calculate the STFT of a signal is

X(k,m) =
N−1∑︂
n=0

x(mh+ n)w(n)e−j2πnk/N , k = 0, 1, ..., N − 1, (2.2)

The ability of STFT to represent both frequency and the time in which they appear in the

signal is depicted clearly in Figure 2.5.

Figure 2.5. (Left) Time domain signal and STFT of a sine wave with frequency 0.5 kHz
from 0-0.5 s and 5 kHz from 0.5-1 s. (Right) Time domain signal and STFT of two sine
waves with frequencies 0.5 kHz and 2 kHz added together.
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2.1.3 Mel Scale

It has been shown that humans do not perceive all frequencies linearly. The human ear

can detect smaller changes in lower frequencies than in higher frequencies. For exam-

ple, we can easily perceive the difference between 1000 Hz and 1500 Hz, but it is hard

to perceive the difference between 10000 Hz and 10500 Hz, even though the frequency

difference remains the same. The pitch is perceived linearly at lower frequencies and be-

comes logarithmic at higher frequencies. Hence, a perceptual scale of pitches such that

equal distance in pitch is equally distant from one another was proposed. The mel fre-

quency scale is shown in Figure 2.6. When the mel frequency scale is used, the frequency

bands are dense at lower frequencies and spread widely at higher frequencies. Thus, a

precise description of the signal is obtained with respect to human auditory perception.

The conversion of frequency from the Hertz scale to the mel scale can be calculated as

m = 1127 loge(1 + f/700), (2.3)

where f is the frequency in Hz and m is its corresponding mel frequency.
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500
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Figure 2.6. Frequency in Hz scale along x-axis and the corresponding mel frequency
along y-axis.
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2.1.4 Mel Spectrogram

The mel spectrogram of any audio signal is obtained by calculating the power spectro-

gram and then converting the frequencies in the resulting power spectrogram to the mel

frequency scale. Firstly, mel filter bank is generated by dividing the entire frequency

range into a fixed number of mel frequency bins denoted by nmels (typically nmels = 64

or 128). These frequency bins are evenly spaced based on the mel scale. The power

spectrogram is obtained by calculating the absolute value of the STFT and squaring it.

This power spectrogram is passed through the mel filter bank and the output from each

mel filter is summed and combined to obtain the mel spectrogram of the audio. The mel

spectrogram of a speech signal is shown in Figure 2.7.

Figure 2.7. Mel spectrogram of a sample Matlab speech audio counting from 1 to 10.

2.2 Natural Language Processing

The question answering datasets contain questions and answers presented in natural lan-

guage. It is important to represent these words as vectors so that they can be processed

by machine learning models. In this section, the processes to generate these word vec-

tors is discussed. In section 2.2.1, the concept of word vectors and one-hot vectors are

described and in section 2.2.2, the continuous bag of words (CBOW) algorithm used in

this work to generate the word vectors is explained in brief.

2.2.1 Word Vectors

The simplest way to represent words as vectors is to use one-hot encoding. If each

word in the vocabulary is given a unique index, then in one-hot encoding, each word is

represented by a unique binary vector whose values are 0 at all indices except at the

index of the word.
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There are two major drawbacks of this representation. Firstly, the size of each vector is

equal to the size of the vocabulary. For example, there are millions of words contained

in the English language. If one-hot encoding is utilized, each word is represented by

million dimensional vectors. Another drawback is that all these vectors are orthogonal

to each other. Hence, their similarity is always zero. These vectors do not carry any

meaning about the words they encode or their semantic relationships with the other words

in the vocabulary. For example, the cosine similarity between one-hot encoded word

vector pairs of ‘Jungle’, ‘Lion’ and ‘Jungle’, ‘Umbrella’ are the same, zero. If the one-hot

representations are

‘Jungle’ = [1, 0, 0, ..., 0]

‘Lion’ = [0, 1, 0, ..., 0]

‘Umbrella’ = [0, 0, 1, ..., 0], then

Cosine similarity (‘Jungle’, ‘Lion’) = Cosine similarity (‘Jungle’, ‘Umbrella’) = 0

2.2.2 Continuous Bag Of Words

Word2Vec is the most common technique used in NLP to generate meaningful word em-

beddings. It ensures that similar words or words closely related to each other have sim-

ilar representations in higher dimensional space such that their cosine similarity is high.

Continuous bag of words [18] and skip-gram [19] are the commonly used algorithms in

Word2Vec to represent word vectors. In both these algorithms, a vector representation

for each word in the vocabulary is learned as the weights of the hidden layer in a neural

network.

In the CBOW task, a neural network is trained to predict a target word given its context

words. The context words are the words that appear to the left and right of the target

words. A’ context window’ parameter determines the number of context words to consider

on each side of the target word. For example, in the sentence ‘The capital of Finland is

Helsinki.’, if the target word is ‘Finland’, the context words, ‘capital’, ‘of’, ‘is, ‘Helsinki’ are

fed to the model, and it is trained to predict the word ‘Finland’ in this case. This is shown

in Figure 2.8. The context window in this case is two. If the target word is xt, then two

words each appearing before the target word xt−2, xt−1 and after the target word xt+1,

xt+2 are chosen as the context. The input representation of these words are one-hot

encoded vectors, and the output word is predicted using a classification task.

Once the word vectors are obtained using these word2vec algorithms, it has been found

that they encode semantic relationships with other words in the vocabulary in a mean-

ingful way. For example, the word vector representation of ‘Helsinki’ is very similar to

the word vectors of other cities like ‘Stockholm’, ‘Paris’, etc, resulting in a high cosine

similarity score.
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Figure 2.8. Continuous Bag of Words algorithm to generate word vectors.

2.3 Machine Learning Concepts

In this section, the most important machine learning and deep learning algorithms used in

this thesis work are discussed. Firstly, in Section 2.3.1, the concept of supervised learning

used to train neural networks is explained. A key building block of neural networks, the

activation functions are described in section 2.3.2. In Section 2.3.3, the basic building

block of a recurrent neural network (RNN), the vanilla RNN cell is described. In Section

2.3.4, a sophisticated component of an RNN, the LSTM cell used in this thesis work is

explained briefly. Further, in Section 2.3.5, the working mechanism of an attention layer

used in this work to build neural networks is discussed.

2.3.1 Supervised Learning

Machine learning systems can be trained using several algorithms such as supervised

learning, semi-supervised learning, unsupervised learning, self-supervised learning, etc,

depending on the properties of the dataset and the nature of the problem to be solved. In

this section, the supervised learning algorithm used in this work is explained.

The supervised learning algorithm is used to train a machine learning model when the

dataset contains inputs and its corresponding ground truth outputs. In a supervised learn-

ing setup, the goal of a machine learning model is to learn a mapping function that best

approximates the relationship between inputs and outputs present in the dataset.

In a supervised learning setting, the dataset contains input-output pairs (x1, y1), (x2, y2),

(x3, y3), ..., (xn, yn) where xi represents the input and yi represents its corresponding

output for i = 1, 2, ..., n and n is the number of data points. For example, in an image

classification task, the inputs are the images and outputs represent the image classes
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like cat, dog, bicycle, etc. The major limitation of supervised learning is the availability of

such labeled datasets on a large scale suitable for training machine learning models.

Machine learning
model

Input data

Ground
truth

Predicted
output

Loss
function

Update model parameters

Figure 2.9. Block diagram of a supervised learning algorithm

Figure 2.9 shows the steps involved in supervised learning. When a neural network model

is trained with a supervised learning algorithm, the parameters of a model are initialized

with random weights and an input xi is passed to the model. The input is processed by all

the layers of the model and it predicts an output ŷi. This is known as forward propagation.

Then, a loss function is used to evaluate the error between the predicted output ŷi and

the ground truth yi.

The overall goal of the training process is to find suitable values for the parameters of the

model such that the error between the predicted output and the ground truth is minimal.

The error value calculated using the loss function is used to adjust the values of the

parameters of the neural network using gradient descent algorithms. This is known as

backpropagation.

These steps are repeated for all the input-output pairs and for multiple epochs until the

error value is minimum. An epoch is defined as the total number of iterations in which

all the training data is used once to train the machine learning model. The values of the

parameters for which the error is minimum are saved and used to evaluate on unseen

data which does not have any ground truth labels.
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2.3.2 Activation Functions

Deep learning models generally work by extracting features from inputs and using those

features to accomplish a given task. The feature extraction layers in neural networks such

as convolution layers are linear operations. Hence, to stack multiple feature extraction

layers to create a deep neural network, it is necessary to have non-linear operations in

neural networks. Activation functions are the non-linear elements in neural networks that

non-linearly scale the outputs from one layer and pass it to the next layer.

In this section, the activation functions used in the thesis work for developing neural net-

works are discussed. Specifically, sigmoid, rectified linear unit (ReLU), and softmax acti-

vations are explained in detail.

Sigmoid Activation

Figure 2.10. Sigmoid activation function

The sigmoid activation squashes the input between 0 and 1 values as shown in Figure

2.10. The sigmoid function can be expressed as

f(x) =
1

(1 + e−x)
x ∈ R (2.4)

The disadvantage of sigmoid activation is that it can give rise to a vanishing gradient

problem. The output of the sigmoid gate saturates for large positive or negative numbers

to 1 and 0, respectively. The gradient in these saturation regions is close to zero. During

backpropagation, this local gradient is multiplied by the incoming gradient of this gate’s

output. If the local gradient is close to zero, the overall gradient becomes small and the

network will not learn. This is known as the vanishing gradient problem. It is the commonly

used activation function at the end of binary classifiers to produce values between 0 and

1 which can be interpreted as the probability of classes.
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Rectified Linear Unit

Figure 2.11. ReLU activation function

Rectified linear unit or ReLU shown in Figure 2.11 is the most commonly used activation

function. The mathematical expression for the ReLU activation function is

f(x) =

⎧⎨⎩x x > 0

0 otherwise.
(2.5)

In other words, the output is the same as the input when it is positive, otherwise, the

output of ReLU is 0. The output values of ReLU are not bounded for the positive values

and hence it does not have the vanishing gradient problems.

Softmax Activation

The Softmax activation function takes an input vector [x1, x2, x3, ..., xn] of N real numbers

and normalizes it into a probability distribution. The output vector contains N values

between (0, 1) summing up to 1, proportional to the input values. Each value in the

output vector computed using the softmax activation can be expressed as

f(xi) =
exi∑︁N
j=1 e

xj

xi ∈ R. (2.6)

It is commonly used at the end of multi-class classifiers to scale all the values of the

classification layer to produce a probability distribution of the predicted classes. The

index of the highest probability value after softmax is chosen as the index of the predicted

class.
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2.3.3 Recurrent Neural Networks

tanh

ℎ𝑡ℎ𝑡 − 1

𝑦𝑡

𝑥𝑡

Figure 2.12. A simple RNN cell at time step t.

To model sequential data like text and audio, recurrent neural networks (RNNs) [20] are

widely used. RNN layers process data in sequential order and they learn long-term de-

pendencies. For example, in a task of predicting the last word of the sentence ‘The capital

of Finland is Helsinki’, by sequentially processing the words, an RNN remembers infor-

mation such as ‘capital’ and ‘Finland’ and correctly produces the word ‘Helsinki’ as the

output. The components inside a simple RNN cell are shown in Figure 2.12. Each time

step of the RNN can be represented as

ht = tanh(W

⎡⎢⎣ht−1

xt

⎤⎥⎦+ b), (2.7)

where the hidden state vector from the previous time step of the RNN cell ht−1 is passed

to the next time step and its contents are changed based on the current input word vector

xt to produce the new hidden state vector ht. Here W and b are the weight matrix and

bias vector in the RNN layer. The W and b values are learned while training the RNN

using the backpropagation through time algorithm. In this algorithm, the RNN processes

all the time steps sequentially and accumulates the error at each time step. After the

final time step, the cumulative error for all time steps is calculated and backpropagation

is performed to update the weight and bias values.

Although simple RNNs can remember contexts in smaller sentences, it is difficult to han-

dle if the word to be predicted depends on contexts from words that appeared long before.

To overcome this shortcoming, two varieties of RNN cells are commonly used, long short-
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term memory (LSTM) [15] and gated recurrent unit (GRU) [21]. In this work, LSTM is used

for processing the sequential data.

2.3.4 Long Short-Term Memory

In vanilla RNNs, the repeating cell module has a simple tanh layer. To make LSTMs

better at modeling long-term dependencies, the LSTM cell has a different cell module,

but it also has a repeating chain-like structure. An LSTM cell is shown in Figure 2.13.

𝑥𝑡

𝑦𝑡

ℎ𝑡ℎ𝑡 − 1

σ tanhσ

X

X

+

X

σ

tanh

𝑐𝑡𝑐𝑡 − 1

𝑓𝑡
𝑖𝑡

𝑞𝑡

𝑜𝑡

Figure 2.13. An LSTM cell at time step t.

The memory element in an LSTM is the cell state vector c. The cell state is passed

on from one time step to another carrying information from past and present inputs. As

shown in Figure, ct−1 is the input cell state vector to an LSTM coming from the previous

time step. Inside an LSTM layer, the information present in the cell state ct−1 is updated

using the various gates.

From left to right in Figure 2.13, the first gate is called forget gate. The functionality of

the forget gate is to decide how much information present in the input cell state ct−1 is

to be kept or removed. The sigmoid function takes the current input word vector xt and

the previous hidden state vector ht−1 and produces an output vector ft, which has values

between 0 and 1. This ft is point-wise multiplied with the cell state ct−1. This means if ft
has a value of 0, then all the corresponding information in the cell state vector is forgotten

and if ft is 1, all the information is retained.

The next gate is the input gate. This gate is responsible for the new information that is to

be added to the cell state. It has two parts, a sigmoid function and a tanh function that

determines which values are to be updated and by how much. The output of this gate is

also added to the cell state to produce the new cell state ct as
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ct = ft ∗ ct−1 + it ∗ qt, (2.8)

where ∗ represents the element-wise multiplication operator. Finally, each time step of the

LSTM produces an output. This is controlled by the output gate. It also has two parts, a

sigmoid gate to decide which parts are to be produced at the output and a tanh layer with

the updated cell state ct as input to scale the values. The output gate can be expressed

as

ht = ot ∗ tanh(ct), (2.9)

This output is also the hidden state passed to the next time step of the LSTM. Hence,

using the different gate mechanisms, an LSTM is capable of modeling long-term depen-

dencies compared to a vanilla RNN cell.

2.3.5 Attention Mechanism

The attention mechanism [22] allows a neural network model to attend to specific regions

in the input while generating an output. Attention architectures have achieved state-of-

the-art performances in various tasks ranging from natural language processing [16], to

image classification [23], sound event detection [24], and sound event localization and

detection [25] etc. In the case of audio question answering, it may be useful for the model

to focus on specific regions of the audio signal based on the input question to produce

an answer. Hence attention mechanism is very useful when designing neural network

architectures for this task. Figure 2.14 shows the mechanism of an attention layer. An

attention layer can be mathematically represented as

V′ = softmax(QKT)V, (2.10)

where the inputs are the three feature matrices - query Q, key K, and value V. The

query matrix is multiplied by the key matrix to determine the similarity between the query

and the key. A high correspondence gives rise to a higher value and vice versa. Then

the product is passed through a softmax operator explained in Section 2.3.2 to squeeze

the attention scores between 0 and 1 to get an attention map W . The attention map is

multiplied with the value matrix to finally produce the attention feature V′.
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Similarity

Softmax

Weighted sum

𝐐 𝐊 𝐕

𝐖

𝐕′

Figure 2.14. Attention layer with inputs Query Q, Keys K and Values V and output V′.
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3. RELATED WORKS

In this chapter, previous literature closely related to this thesis work is briefly described.

Section 3.1 and Section 3.2 review the existing CLEAR and DAQA datasets for audio

question answering task, respectively. Section 3.3 introduces Clotho dataset which was

used in the creation of the Clotho-AQA dataset used in this thesis work. Finally, Section

3.4 describes ideas and concepts used in the visual question answering domain which

was used for the AQA task as well.

3.1 CLEAR Dataset

The first dataset introduced for the AQA task was the CLEAR [12] dataset in late 2018.

The CLEAR dataset is described as a dataset for compositional language and elementary

acoustic reasoning for the AQA tasks.

In the CLEAR dataset, the acoustic scenes are generated from a fixed bank of elementary

sounds, similar to the CLEVR [26] data creation model used for VQA. The elementary

sounds used are real recordings of musical notes from five different musical instruments

namely, cello, clarinet, flute, trumpet, and violin. These recordings are obtained from

the Good-Sounds database. An acoustic scene in the CLEAR dataset is created from a

sequence of these elementary sounds.

The acoustic scenes of fixed length are each generated by combining 10 different ele-

mentary sounds sampled at 48 kHz. Then silent portions in the generated audio are

removed by energy thresholding using a 100 ms window. To create more realistic scenes,

a white uncorrelated uniform noise is added to the clean acoustic scenes.

The questions and answers are generated programmatically in the CLEAR dataset. To

achieve this, each sound in an acoustic scene is indexed with the following eight attributes

during the scene synthesis: instrument family, brightness, loudness, musical note,

absolute position, relative position, global position, and duration. Questions are

structured in a logical tree similar to CLEVR framework. Questions that have the same

meaning are also included in the structure to increase language diversity and reduce bias.

The questions are framed using the question templates where the variable part of each

question is decided based on the attributes of the scene.
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For example, a question related to instrument family attribute is ’What instrument plays a

dark quiet sound at the end of the scene?’ and the list of unique answer words for this

question includes ’cello’, ’clarinet’, ’flute’, ’trumpet’, and ’violin’. Similarly, questions are

framed targeting different attributes related to the acoustic scene and there are 47 unique

single-word answers in total. The CLEAR dataset was created with varying sizes such

as 1000, 10000, and 50000 acoustic scenes, and 20 to 40 question answer pairs were

generated for each scene.

3.2 DAQA Dataset

In 2019, the Diagnostic Audio Question Answering (DAQA) [13] dataset was released to

study various aspects of temporal reasoning in the AQA framework. It contains audio

sequences generated from 20 different natural sound events such as crowd applauding,

dog barking, door slamming, etc. Each sound event has a source and action. For example

in dog barking sounds, the source of sound is the dog and the action is barking. Out of the

20 sound events, five belong to the discrete category while the remaining are classified as

continuous. If two events of the same type appear consecutively, then the listener would

be able to identify them as separate events if they belong to the discrete category (for

example, door slamming), while they are identified as a single event in case of continuous

category (crowd applauding).

Acoustic scenes of variable length are generated by randomly concatenating 5 to 12

sound events. The length of the scenes varies from 10.5 s to 178.2 s which helps to

evaluate the temporal reasoning capabilities. The audio scenes are only allowed to have

consecutive occurrences of the same event if they belong to the discrete category. The

sound events in an acoustic scene may also overlap by up to 500 ms. Once the clean

acoustic scenes are generated, normally distributed background noise is added to 50%

of the audio scenes.

Once, the audio scenes are generated, questions and answers are created programmat-

ically. Similar to CLEAR dataset, the audio scenes are annotated with the order, identity,

duration, and loudness of their individual sound events. 54 question templates are used

to programmatically generate various temporal reasoning questions. Each template con-

tains placeholders which are filled to generate the questions based on the annotations of

an acoustic scene.

An example of a question template is ’What did you hear <preposition> the <Source of

event> <Action of event> ?’ An example question for this template can be ’What did

you hear before the dog barking?’. Each question template also has several equivalent

question phrases with the same meaning to maximize language diversity. Table 3.1 shows

an example of various questions and answers that are programmatically generated.
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Questions Answers

What was the shortest sound? Door slamming

Were the first and fourth sound events the same? No

How many times did you hear a vehicle passing by? One

Was the first sound louder than crowd babbling? Yes

Table 3.1. Examples of programmatically generated questions and answers in DAQA
dataset.

There are 36 possible unique answer words in the DAQA dataset: yes, no, the 20 event

types, nothing, and integers 0 to 12. Overall, the DAQA dataset contains 100000 audio

clips with 80%-10%-10% splits in training, validation, and test respectively.

3.3 Clotho Dataset

The Clotho dataset [27] is an audio captioning dataset released in 2019. It contains 4981

audio files which are 15-30 s in duration. For each audio file, five captions of varying

lengths between 8-20 words are collected using crowdsourcing with Amazon’s mechani-

cal turk (AMT) platform.

The audio signals along with the metadata used in the Clotho dataset were sourced from

Freesound. These audio signals were selected based on the following criteria: The se-

lected audios should have lossless file type, audio quality with a sampling frequency of at

least 44.1kHz, and duration between 10 s and 300 s. The audio events were also filtered

based on the tags. Audio signals with tags related to speech or music were not consid-

ered. The 10 most common tags in the Clotho dataset are ambient, water, nature, birds,

noise, rain, city, wind, metal, and people. The selected audio events were then normal-

ized to [-1, 1], the silence portion was trimmed and all the audio signals were resampled

to 44.1 kHz.

The captions to the audio signals were collected by crowdsourcing using AMT. Five cap-

tions to each audio file were collected from independent annotators. Then the dataset

was divided into 60% train, 20% validation, and 20% test splits based on the audio files.

Although Clotho is an audio captioning dataset, it is relevant to this thesis work, since

the audio files in the newly created AQA dataset are selected from the Clotho dataset.

The data splits of the AQA dataset were also created using a similar strategy used in the

Clotho dataset.
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3.4 Visual Question Answering

Visual question answering (VQA) is the task of providing accurate natural language an-

swers given an input image and a natural language question about the image. There

are a few popular datasets developed for the VQA task such as DAQUAR [3], Visual7W

[4], COCO-QA [28], the VQA dataset VQA, Visual Genome [29] etc. With the exception

of DAQUAR, all the VQA data sets contain images from the Microsoft Common Objects

in Context (MS-COCO) [30] dataset which has 328,000 images from 91 object classes.

These VQA datasets also include images from other sources such as Flickr100M data

set, synthetically generated images, etc. The common approach used in these datasets

to collect questions and answers is to use crowdsourcing platforms such as AMT.

The most popular among these is the VQA dataset [5]. It contains 614,163 questions

and 7,984,119 answers provided by annotators for 204,721 images from the MS COCO

dataset and another 150,000 questions and 1,950,000 answers for 50,000 abstract image

scenes. The best-performing neural network model presented in this work was ’deeper

LSTM Q + norm I’ model which used a VGG net [31] to encode the images and a two-

layer LSTM to encode questions. The encoded representations are fused by point-wise

multiplication and then the natural language answer is obtained by passing through fully

connected layers and softmax to obtain a distribution over the possible answer classes.

This model produced an accuracy of 57.75% for open-ended questions and 62.70% for

multiple-choice questions on the VQA dataset.
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4. DATA COLLECTION

For any AQA system, the data consists of three parts. The audio signal, natural language

questions, and the corresponding natural language answers. As the first step towards the

task of audio question answering, a new dataset called Clotho-AQA comprising real audio

signals and crowdsourced questions and answers was collected. It must be noted that

this dataset was presented to the European conference on signal processing (EUSIPCO),

2022, under the title Clotho-AQA: A Crowdsourced Dataset for Audio Question An-

swering [17].

In this chapter, the data collection, cleaning process, and dataset statistics are discussed

in detail. In Section 4.1 the selection of audio files is described and in section 4.2 the

strategy used to crowdsource questions and answers is explained in detail. Further, in

sections 4.3, 4.4 and 4.5, the techniques used for data cleaning, the algorithm for data

splitting, and the dataset analysis are presented respectively.

4.1 Audio Files

As audio files for the Clotho-AQA dataset, 1991 audio files were randomly selected from

the Clotho audio captioning dataset. The characteristics of the audio files present in the

Clotho dataset were described in detail in section 3.3.

4.2 Questions And Answers

The questions and corresponding answers to each audio file were collected by crowd-

sourcing using Amazon Mechanical Turk (AMT) platform. To ensure the quality and

grammatical correctness of the questions and answers, turkers with at least 3000 ap-

proved tasks and an approval rating of 95% and above were only selected. The turkers

were also selected only from English-speaking areas (for example USA, UK). The ques-

tion annotators were also put through a custom qualification task an example of which

used to filter the turkers is shown in Figure 4.1. It checks their English grammatical skills

and includes a multiple-choice question that has to be answered based on the instruc-

tions for the question annotation task shown in Figure 4.2. For example, The questions

should not contain the answer word within itself ( Is the car moving fast or slow?). The
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questions should not be addressed specifically to anyone (‘Do you like this bird chirping

sound?’) and so on.

Figure 4.1. Sample qualification test to evaluate task understanding and English gram-
mar proficiency of turkers.

After selecting the turkers, the questions were collected in two cycles. In the first cycle,

the annotators were given access only to the audio file. No supporting information such

as file names or tags associated with the audio was given. Then, three questions were

collected for each audio file such that, one question should be answerable with ‘yes’, one

question with ‘no’, and one question with any other single-word answer. In the second

cycle, the annotators were given the audio files and the questions collected in the first

cycle to avoid repetitions. Three more questions with the same ‘yes’, ‘no’ and single-word

answer criteria were collected in this cycle as well. After the two question annotation

cycles, there are 6 questions associated with each of the 1991 audio files.

The questions are then put through a quality check process. First, the type of questions

is validated (i.e., ‘yes’ and ‘no’ questions are not single-word answer questions and vice-

versa). Secondly, the contents of the questions are also checked so that they are as per

the instructions given to the question annotators in Figure 4.2.

Once the questions were gathered, the next step was collecting answers to these ques-

tions. Another cycle of crowdsourcing with AMT was carried out to collect the answers.

In this regard, the turkers were given the audio track and one corresponding question.

For every question, answers were collected from 3 independent annotators. In addition

to the answers, a confidence score was also collected from the annotators. For this, the

annotators are asked “Do you feel confident that you were able to answer correctly?” and

were given 3 choices ‘yes’, ‘no’, and ‘maybe’. Figure 4.3 shows an example of the in-

structions and answer collection window in AMT provided to the turkers for ‘yes’ or ‘no’

type questions while Figure 4.4 shows the same for single word answer type questions.
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Figure 4.2. Detailed instructions to question annotators on dos and don’ts.

Note that the answers for ‘yes’ or ‘no’ questions were collected using radio buttons while

in the case of single-word answers, the annotators can enter any single-word answers in

the text box provided without any limitations. Hence there is no predefined vocabulary of

answers in this dataset at the data collection stage.

After the answer collection cycle, the dataset contains 1991 audio files, 6 questions per

audio file, and 3 answers each per question resulting in 18 question answer pairs for each

audio file. An example of the questions and answers collected for an audio file is shown

in Table 4.1.

Questions Answers

how many birds are making noise? two

how many birds are making noise? two

how many birds are making noise? several

what species of animal can be heard? seagull

what species of animal can be heard? bird

what species of animal can be heard? bird

is it a dog making the noise? no

is one bird close and one bird far away? yes

is there a person screaming? no

is this outside? yes

Table 4.1. Sample questions and answers collected for a bird chirping audio. Note that
for each question answers from 3 independent annotators were collected. This table does
not show all the entries.
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Figure 4.3. Detailed instructions and ‘yes’ or ‘no’ type questions answer collection win-
dow.
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Figure 4.4. Detailed instructions and single-word answer collection window.
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4.3 Data Cleaning

Once the answers to all questions were collected, there was a need for data cleaning

so that the dataset can be used effectively to train neural networks. Two phases of data

cleaning were performed. In the collected raw dataset, there were a few single-word

answers that were specific to one audio file. Since the dataset is split based on the audio

files, these words would appear only in one of the training, validation, or test splits. This

would lead to sub-optimal training since the model will be trained with answer words that

will never appear during validation or inference time or the model will never be trained with

an answer word, but the answer word appears during validation or testing. To avoid this,

the answer words that appear only once are replaced with other closely related answer

words that are already present in the dataset. Typographical errors were also fixed in

phase I of data cleaning. At the completion of this phase, the dataset only contained

answers with a count of more than or equal to two. The number of unique answer words

in the dataset after cleaning phase I is 830. In this thesis, this version of the dataset is

referred to as Clotho-AQA_v1.

After the completion of cleaning phase I, the dataset still contained some issues relating

to specificity, tense, singular and plural words, etc. Since the annotators were provided

with a text box to enter their single-word answers with no restrictions on the words to use,

this property crept into the dataset. Here is an example of a specificity issue from the

dataset. To the question ‘Which animal is chirping?’, a few annotators simply gave ‘bird’

as their answer while a few were very specific about the species of the bird giving ‘seagull’

or ‘pigeon’ as their answers. This leads to confusion while training a neural network

model for multiclass classification, as both of these answers can be considered correct.

Examples of tense issues in the dataset include answer words like ‘play - playing’, ‘run

- running’ etc. These words are considered completely different answers by the model.

Similar issues occur with singular and plural answer words such as ‘dog – dogs’, ‘key –

keys’, etc, as these are considered different from each other.

In phase II of data cleaning, these three issues were fixed. Table 4.2 shows a few ex-

amples of questions, original answers, and corrected answers. In general, the specificity

issue was resolved by converting all the specific answers to their parent class. An answer

class is considered specific if the dataset also contains the parent class based on the

hierarchy described in wordnet. For example, ‘seagull’ was converted to ‘bird’. All the

answer tenses were converted to present tense and all plural words were converted to

singular. Although some of these cleaned answers do not grammatically match the ques-

tion structure, it does not affect the model performance since the model considers the

answer words as only classes and does not learn any language models based on them.

After cleaning phase II, the dataset contained 652 unique answer words coming down

from 830 after cleaning phase I. This dataset after cleaning phase II is referred to as
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Question Original answer Corrected answer

What species of animal can be heard? seagull bird

What is making the chirping sound? parakeet bird

What does the person do? welding weld

How is the weather? rainy rain

What instrument can be heard? bells bell

Table 4.2. Examples of original and corrected answers in phase II of data cleaning

Clotho-AQA_v2 in this thesis. Table 4.3 shows the overall dataset size after the data

collection and data cleaning.

Audio files 1991

Total questions 35838

Yes/no type questions 23892

Single-word answer type questions 11946

Unique answers in Clotho-AQA_v1 830

Unique answers in Clotho-AQA_v2 652

Table 4.3. Dataset size of Clotho-AQA after data cleaning.

4.4 Data Splitting

The Clotho-AQA_v1 dataset is divided into non-overlapping training, validation, and test-

ing splits based on the audio files using the ratio 60%- 20%-20%. Each unique answer in

the dataset should appear in the training split and one of the validation or test splits. The

Clotho dataset also used similar criteria for creating the splits. Hence, the same algorithm

was followed here to split the dataset. For each audio file, a set of all unique answers as-

sociated with it is formed. Then these answer sets are used as labels for each audio file

and multi-label stratification is used to create the data splits.

The final data split is performed following two steps. In the first step, 2000 splits of size

60%-40% are created. Then the top 50 splits are selected based on the split criteria,

where each unique word is divided exactly 60% -40% between the two splits. In the

second step, we split each of the 40% splits in step 1 into half to arrive at the final train,

validation, and test splits of size 60% - 20% - 20% respectively. The split that is closest to

the ideal split is taken as the final split. The number of audio files and unique answers in

the dataset after splitting is shown in Table 4.4.
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Clotho-AQA_v1 Clotho-AQA_v2

Train Val Test Train Val Test

Audio files 1174 344 473 1174 344 473

Unique answers 830 512 801 652 428 625

Table 4.4. Train, validation and test splits of Clotho-AQA dataset.

4.5 Dataset Analysis

It is important to quantitatively analyze the data, especially when used for machine learn-

ing applications. The ability of machines to learn largely depends on the quality and

quantity of data used to train them. In this sub-section, various quantitative features of

the dataset are described. Figure 4.5 and 4.6 shows the counts of unique answers in the

Clotho-AQA_v1 and Clotho-AQA_v2 datasets plotted on a logarithmic scale respectively.
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Figure 4.5. Counts of unique answers in each of the splits of Clotho-AQA_v1. Image
Source: S. Lipping, P. Sudarsanam, K. Drossos and T. Virtanen, "Clotho-AQA: A Crowd-
sourced Dataset for Audio Question Answering", EUSIPCO, 2022.

As mentioned in section 4.2, for each question, answers from three independent anno-

tators were collected. It is very useful to analyze if all three annotators gave the same

answers or different answers. These statistics for all the splits of yes/no type questions in

table 4.5 and for single-word answer type questions are shown in Table 4.6. Note that the

yes/no questions and answers are the same in both Clotho-AQA_v1 and Clotho-AQA_v2.

In table 4.5, questions indicate the unique number of yes/no questions and All-agree

means that all three annotators gave the same answer to a question. It is evident from

the table that for approximately 59% of the yes/no type questions, all the annotators have

agreed to the same answer.
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Figure 4.6. Counts of unique answers in each of the splits of Clotho-AQA_v2

Similarly in 4.6, questions indicate the unique number of single-word answer type ques-

tions in the dataset. All-agree means that the same single-word answer is given by all

the answer annotators while Majority agree means that at least 2 out of the three an-

notators have given the same single-word answer. Note that the All-agree criterion is a

subset of Majority agree criterion. For the remaining questions, it is understood that all

the annotators gave different answers.

Train Val Test

Questions 4696 1376 1892

All-agree 2766 (58.9%) 818 (59.4%) 1109 (58.6%)

Table 4.5. Unique yes/no type questions in Clotho-AQA dataset and the number of ques-
tions for which all the annotators gave the same answer.

Clotho-AQA_v1 Clotho-AQA_v2

Train Val Test Train Val Test

Questions 2348 688 946 2348 688 946

All-agree 509 143 203 650 184 259

Majority agree 1485 447 584 1599 480 640

Table 4.6. Unique single-word answer type questions and a number of questions for
which annotators all gave or majority gave to the same answer.

There are also a few characteristics of the Clotho-AQA dataset which are interesting to
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analyze from a machine learning point of view. For example, Table 4.7 shows the number

of unique answer words in the Clotho-AQA training data split that appear less frequently.

This is an important factor because supervised machine learning models require more

occurrences or repetitions of the answer words to learn general patterns from the data.

Clotho-AQA_v1 Clotho-AQA_v2

Unique answers 830 652

Appears once 172 100

Appears twice 178 125

Appears thrice 99 74

Table 4.7. Number of unique answer words with rare appearances in the training split of
Clotho-AQA dataset.

It is also interesting to analyze patterns in question phrases and their corresponding dis-

tribution of answers. Figure 4.7, 4.8, 4.9 shows the distribution of the top 10 answer words

in the dataset when the question contains the word ’Weather’, ’Chirping’ and ’People’ re-

spectively. It is interesting to note that, in cases of ’weather’ and ’Chirping’, there is an

imbalance in the distribution of answers. When the question contains the word ’Weather’,

close to two-thirds of the answers are ’rain’. Similarly, for ’Chirping’, more than half the

answers are ’bird’. These types of distributions may pose challenges to machine learning

systems since they may always output the most common answer that they find during

the training process. For other words like ’people’, the top-3 answer words have a similar

distribution.

158

28
14

4 3 3 3 3 2 2

‘Weather’

Figure 4.7. Distribution of top-10 answer words in Clotho-AQA_v2 when the question
contains ’Weather’
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Figure 4.8. Distribution of top-10 answer words in Clotho-AQA_v2 when the question
contains ’Chirping’
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Figure 4.9. Distribution of top-10 answer words in Clotho-AQA_v2 when the question
contains ’People’
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Finally, it is also useful to know the best possible accuracy that can be achieved with

the dataset. The binary test set contains 1892 unique questions. Out of these, 1109

questions have unanimous answers from all three answer annotators while the remaining

783 have different answers. Hence, an oracle model would achieve maximum accuracy

of 86.2%. In the case of the Clotho-AQA_v1 test split for single-word answers, out of

946 unique questions, 203 questions have the unanimous answers provided by all the

annotators and 381 questions have two out of the three annotators providing the same

answer. This means that the maximum possible top-1 accuracy of the system will be 61%.

Similarly, in the case of the Clotho-AQA_v2 test split for single-word answers, 259 ques-

tions have unanimous answers and 381 questions have two out of the three annotators

providing the same answer leading to a maximum achievable top-1 accuracy of 65%.
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5. EXPERIMENTS AND EVALUATION

In this chapter, the deep learning systems built to solve the task of audio question an-

swering on the Clotho-AQA data described in chapter 4 are explained. As a starting point

for the AQA task, the Clotho-AQA dataset only contains single-word answers. Hence, a

neural network can be trained as a multi-class classifier to achieve this task. The most

common approach to solve multimodal tasks is to have branches in a neural network

where each branch processes an input modality to extract features and then the features

are combined to accomplish the final task. The block diagram of the neural network used

for this task is shown in Figure 5.1. The audio feature extractor network processes the

input audio to extract relevant audio features while the textual feature extractor network

does the same on the natural language question. These features are then combined and

passed through a classification network that predicts a single-word answer from the list of

all possible answer classes. The AQA task can be expressed as follows. If we have an au-

dio signal A, a natural language question related to it Q, then we try to maximize the prob-

ability of producing the correct single-word answer from S, where S = {S1, S2, S3, . . . }
is a set of all unique single-word answers present in the dataset.

Yes

No

Apple

Four

Dog

Rain

Which animal is running?

…

Audio feature 
extractor

Textual feature 
extractor

C
la

ss
if

ic
at

io
n

n
et

w
o

rk

Figure 5.1. Generic architecture of an audio question answering system.
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In section 5.1, the baseline model used to evaluate the dataset is described and in section

5.2, modern techniques in deep learning such as attention layers are added to the base-

line architecture to study its impact on the AQA task. It is worth noting that some of these

baseline experiments were presented to the European conference on signal processing

(EUSIPCO) 2022 in the paper titled Clotho-AQA: A Crowdsourced Dataset for Audio

Question Answering [17].

5.1 Baseline Model

Baseline models were designed to show the usability of the Clotho-AQA dataset. Since

two-thirds of the dataset is dominated by ‘yes’ or ‘no’ type questions, and the remaining

one-third by single-word answer type questions, we designed two baseline models to

individually evaluate them. A binary classification model for the ‘yes’ or ‘no’ questions

and a multi-class classification model for the single-word answers in the dataset.

The baseline model architecture used for the AQA task is shown in Figure 5.2. There

are two branches in the baseline architecture, one for processing the input audio signal

and the other for processing the input question posed in natural language. Hence, this

model is denoted as multimodal baseline model. The two branches are responsible

for extracting relevant features from their corresponding inputs and producing fixed-size

representations of the variable-sized inputs. The features extracted from these branches

are concatenated together and passed through dense layers to perform the classification

task. The final classification layer contains two neurons in the case of the binary classifier

and 828 and 650 classes in the case of the multi-class classifier for Clotho-AQA_v1 and

Clotho-AQA_v2 respectively.

The number of audio signals and the textual questions and answers collected in the

Clotho-AQA dataset are relatively small in size to learn a good representation of audio

and text in itself. Hence, pre-trained models were used in the baseline to extract audio

and text representations. Specifically, OpenL3 [32] was used to extract audio features

while Fasttext [33] was utilized to produce pre-trained word vectors for the question text.

The OpenL3 model is based on L3-Net [34] trained on videos from the Audioset [35]

dataset. It is trained for audio-visual correspondence task in a self-supervised setting i.e,

to verify if an audio input and image frames input are coming from the same video or not.

The architecture of OpenL3 is shown in Figure 5.3. There were two pre-trained OpenL3

models, one trained on music videos and another trained on environmental videos. Since

the audio files in the Clotho-AQA dataset contain environmental sounds, we chose the

latter pre-trained model in the baseline. Since only the audio signal representation is

required for the AQA task, only the audio sub-network from the OpenL3 is used.

In the baseline, the input to the OpenL3 model is X ∈ RT×128 mel spectrogram of the
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Figure 5.2. Baseline model architecture. Image Source: S. Lipping, P. Sudarsanam,
K. Drossos and T. Virtanen, "Clotho-AQA: A Crowdsourced Dataset for Audio Question
Answering", EUSIPCO, 2022.
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Figure 5.3. Architecture of OpenL3 model trained for audio-visual correspondence task.
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audio with 128 mel bands and T time frames. The output from the pre-trained model

is the extracted audio features Xemb ∈ RT ′×512, where T ′ is the number of output time

frames from the OpenL3 model and 512 is the audio embedding size. These embeddings

are then passed through a series of bi-directional LSTM layers BiLSTMn with n = 1, 2,

to learn temporal relationships and to convert the audio embeddings into a fixed size

representation. The operation of the bi-directional LSTM is given by

Xn = BiLSTMn(Xn−1), (5.1)

where X0 = Xemb. If h is the number of hidden units in the Bi-LSTM, then Xn ∈ RT ′×2h.

The final time step of the last BiLSTM layer xn ∈ R2h, is chosen as the output to represent

the fixed size audio embedding.

Similarly, for the textual question input, the input words are converted into word vectors

using the pre-trained word vectors from Fasttext. The Fasttext word vectors were com-

puted by training a CBOW Word2Vec model as explained in section 2.2.2 on Wikipedia

2017, UMBC webbase corpus, and statmt.org datasets.

The input to the Fasttext model is the natural language question Q. If the question Q

has K words, then the output word-embeddings for the question is Qemb ∈ RK×300,

where 300 is the size of the word embedding. These output embeddings are also passed

through a series of bi-directional LSTM layers to generate fixed-size representations of

the questions independent of the number of words in the question. If h′ is the size of the

hidden units in the BiLSTM layer, the final time step of the last BiLSTM layer qn ∈ R2h′
,

is considered to represent the question embedding.

In the case of the binary classifier, the hidden size of the bidirectional LSTM layers was

fixed to 128 with a dropout of 0.2 for both the audio and text branches. In the case of the

multiclass classifier, the hidden size was 512 for both branches. These parameters were

tuned based on the performance of the baseline model on the validation split.

The audio and question representations from both the branches were then concatenated

and processed by a series of dense neural network layers Densek with k = 1, 2 with ReLU

non-linearity. A dense layer also called a fully connected layer is a layer in which every

neuron is connected to every other neuron from the previous layer. These dense layers

combine the learned features from both branches which are useful for the classification

task. The dense layers are given by

Dk = Densek(Dk−1), (5.2)

where D0 = [xn;qn]. There are 256 and 128 neurons respectively in the two dense

layers in the binary classifier, while there are 1024 neurons each, in the case of the multi-
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class classifier. The increased size of the dense layers in multi-class classifiers improves

the model’s capacity to capture finer details to classify among a large number of different

answer classes.

The output from the final dense layer is fed to the classification layer, which is another

dense layer with neurons equal to the number of unique answer words. The output of this

classification layer is ŷ ∈ RC , where C is the number of answer classes. The classifi-

cation layer can be considered as a simple logistic regressor in case of the binary ‘yes’

or ‘no’ classification, while it contains 828 and 650 neurons in case of multi-class clas-

sification on Clotho-AQA_v1 and Clotho-AQA_v2 respectively. The classification layer is

followed by a sigmoid activation function in the binary classifier and a softmax activation

in the multi-class classifier to calculate the probabilities of each answer.

5.2 Attention Based Model

Cross-attention layers were introduced in the baseline model architecture to study its

impact on the AQA task. In the baseline architecture, it can be seen that the audio and

textual features are computed independently and they are simply concatenated and fed

to the classifier. The general idea behind the introduction of cross-attention layers is that

they can look for specific features in the audio representation that are closely related to

the natural language words in the question. Thus the joint representation is taken from

the output of the attention layer instead of the simple concatenation used in the baseline.

Hence, this model is denoted as multimodal cross attention model. The architecture

of the attention based model is shown in Figure 5.4.

In the attention based model, the output of the audio Bi-LSTM units is Xn ∈ RT ′×2h,

where h is the number of hidden units in the Bi-LSTM layer and T ′ is the number of output

frames from the OpenL3 model as shown in Equation 2.3.4. Similarly, the output of the

textual branch Bi-LSTM is Qn ∈ RK×2h′
, where h′ is the number of hidden units in the

Bi-LSTM layer and K is the number of words in the natural language question. For each

of these K vectors, attention is applied on the audio features to determine which audio

features are important to each of the question words to decide the answer. Hence, the

output of the textual Bi-LSTM layers is used as the query input while the output from the

audio Bi-LSTM layers is used as key and value inputs to the attention layer as explained

in section 2.3.5. Two layers of cross attention are used with residual connections as

shown in Figure 5.4. Residual connections connect outputs from an earlier layer to a

future layer skipping one or more layers in between to provide an alternate path. In

this architecture, the output of the final text Bi-LSTM layer is added to the output of the

multi-head attention layer using a residual connection. The output of the cross attention

layer is V′ ∈ RK×m, where m is the attention size. In all our experiments, the attention

size is fixed at 1024 with 8 attention heads. In an attention layer with multiple heads,
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Figure 5.4. Attention model architecture

each head computes the attention independently in parallel and all the attention outputs

are concatenated and passed through a linear layer to produce the final output of the

attention layer. This attention layer is also known as multi-head attention layer. To obtain

a fixed size representation, the mean is taken over the words axis of the output of the

multi-head attention layer to produce v′ ∈ Rm. This is then passed through dense layers

for classification similar to the baseline architecture.

5.3 Evaluation

The baseline and the attention based models were trained and evaluated on both the

Clotho-AQA_v1 and Clotho-AQA_v2 data splits obtained as mentioned in section 4.4. The

datasets contain 18 question and answer pairs for each audio file. The data splits for the
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binary classifier are obtained by selecting the ‘yes’ or ‘no’ questions from the respective

data splits. As a result, the number of audio files is 1174, 344, and 473 for training,

validation, and test splits respectively. Each audio file is associated with 12 ‘yes’ or ‘no’

question-answer pairs. Similarly, the dataset is obtained for the multi-class classification

by selecting the single-word answers from the respective data splits. This resulted in the

same number of audio files as the original splits with each having six question and answer

pairs.

The performance of the binary classifier is analyzed on contradicting answers provided

by different annotators to the same question. In this regard, three cases are considered.

In the first case, all the question-answer pairs are considered valid if they contain contra-

dicting answers. In the second case, only those question-answer pairs for which all three

annotators have responded unanimously are considered valid. In the third case, a ma-

jority voting scheme is used, where for each question, the label is chosen as the answer

provided by at least two out of the three annotators. These three cases are denoted as

unfiltered data, unanimous, and majority votes respectively. These experiments were

performed on both the baseline model as well as the attention based model.

Further, both the binary classifier and the multi-class classifier baseline models were

also analyzed by training with only one of the multimodal inputs, i.e, a model with only

the textual question as input with no auxiliary audio input and a model with only the

audio signal as input. These are called question only baseline model and audio only

baseline model respectively. This is useful to analyze how well the model captures the

information from both the input modalities in predicting the answer word. All the models

were trained for 100 epochs with cross-entropy loss and the model with the best validation

score is used for evaluation on the test set.

5.4 Results

The results of all the experiments on the Clotho-AQA dataset for binary classification

of ‘yes’ or ‘no’ answers are presented in Table 5.1. It can be clearly seen that the model

performs better when the answers are unanimous which may indicate the intelligible pres-

ence of the answers in the audio compared to the case where different annotators pro-

vided different answers. For example, the multimodal baseline model achieves an accu-

racy of 73.1% when the answers are unanimous compared to 62.7% and 63.2% when

the answers are unfiltered and majority votes respectively. As explained in section 4.5,

an oracle model can achieve an accuracy of 86.2% on the unfiltered data due to contra-

dicting answers given by the annotators. In the case of unanimous answers and majority

voting, an oracle model can achieve 100% accuracy.

The results of single-word answer multiclass classifier experiments on Clotho-AQA_v1

and Clotho-AQA_v2 are summarized in Table 5.2 and Table 5.3 respectively. Since the
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Model type Unfiltered Unanimous Majority votes

Audio only baseline 57.5 62.1 58.2

Question only baseline 63.5 71.8 64.4

Multimodal baseline 62.7 73.1 63.2

Multimodal cross attention 66.2 75.4 66.3

Oracle model 86.2 100.0 100.0

Table 5.1. Accuracies (%) of binary ‘yes’ or ‘no’ classifier on Clotho-AQA

number of unique answer classes is large (828 in Clotho-AQA_v1 and 650 in Clotho-

AQA_v2), top-5 and top-10 accuracy scores are also reported.

The multimodal cross-attention model reaches a top-1 accuracy of 57.5% and 61.3% in

the case of Clotho-AQA_v1 and Clotho-AQA_v2 respectively. As discussed in section

4.5, an oracle model can achieve a maximum top-1 accuracy of 61% and 65% on Clotho-

AQA_v1 and Clotho-AQA_v2 datasets respectively. Since answers were collected from

only 3 different annotators, the top-5 and top-10 accuracy of an oracle model can be

100%. It is also clear that after phase II of data cleaning explained in section 4.3, the

models perform better on the Clotho-AQA_v2 dataset compared to the Clotho-AQA_v1

dataset.

Model type Top-1 Top-5 Top-10

Audio only baseline 3.2 13.4 21.1

Question only baseline 55.7 96.8 99.4

Multimodal baseline 54.2 93.7 98.0

Multimodal cross attention 57.5 99.8 99.9

Oracle model 61.0 100.0 100.0

Table 5.2. Accuracies (%) of single-word answers classifier on Clotho-AQA_v1 dataset.

Model type Top-1 Top-5 Top-10

Audio only baseline 4.1 16.8 26.1

Question only baseline 59.1 96.5 99.3

Multimodal baseline 59.8 96.6 99.3

Multimodal cross attention 61.3 99.6 99.9

Oracle model 65.0 100.0 100.0

Table 5.3. Accuracies (%) of single-word answers classifier on Clotho-AQA_v2 dataset.

It is evident from the results that the cross-attention mechanism significantly improves

the evaluation metrics in both the binary classifier and the multi-class classifier compared

to simple feature concatenation used in the baseline model. This supports our initial
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hypothesis that the attention layer helps the model identify useful features in the audio

representation that are closely related to the question posed to give the correct answers.

It is also interesting to note that, in both binary and multi-class classifiers, the uni-modal

question only model performs nearly as well compared to the multimodal model which

takes in both the audio and question as inputs. This behavior is very common in many

VQA tasks such as [36]–[38]. This is due to strong priors that already exists in language

models and imbalanced dataset. For example, for questions which has the word ’animal’

in them, ’dog’ is the most common answer in the dataset. Similarly, for questions with the

word ’chirp’, ’bird’ is the most common answer. The models learn these strong biases

from these imbalanced data and hence ignore the audio inputs while predicting some of

the answers.
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6. CONCLUSION AND FUTURE WORK

Audio question answering is a multimodal translation task in which a system analyses

an audio signal and a natural language question related to it as inputs and provides

a natural language answer as its output. A new dataset called Clotho-AQA with audio

signals, questions, and corresponding answers was created and neural network models

were designed to accomplish the audio question answering task on this dataset.

Clotho-AQA is an audio question answering dataset consisting of 1991 audio files se-

lected from the Clotho dataset. For each audio file, six questions were collected from

annotators living in native English-speaking countries by crowdsourcing using amazon

mechanical turk. The questions were collected such that it is possible to answer each

question with a single word or ‘yes’ or ‘no’. The answers to these questions were also

collected by another round of crowdsourcing using AMT. For each question, the answers

were collected from three different annotators independently. We then post-processed

the collected answers to remove unique words and replace them with commonly occur-

ring suitable answers.

As a baseline model, we trained a binary classifier for ‘yes’ and ‘no’ answers and a multi-

class classifier for single-word answers. The baseline models use pre-trained feature ex-

tractors for both audio and question inputs. The extracted audio and textual features were

concatenated and passed to a classifier to produce the model predictions. The base-

line binary classifier achieved an accuracy of 62.7% on unfiltered data and the baseline

multi-class classifier achieved a top-1 accuracy of 54.2%.

We also proposed attention-based architecture for audio question answering task. Here

the extracted audio and textual features are passed through cross-attention layers to learn

relationships between the two modes. Our results clearly proved that the cross-attention

mechanism helps the model to learn better relationships between the input question and

the audio compared to the baseline. The attention-based model produced an accuracy

of 66.2% for the binary classification task. Similarly, the top-1 accuracy for multi-class

classification increased to 57.5% for the attention model.

Further, we discussed in detail some of the issues present in the Clotho-AQA dataset

called Clotho-AQA_v1 in this work. These include different specificity of answers, singu-

lar and plural forms of the same answer words, and different tenses of the same answer
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words. We fixed these issues and provided a polished version of this dataset denoted

as Clotho-AQA_v2. Our proposed baseline and attention-based models performed com-

paratively better on the new dataset. The baseline multi-class classifier model achieved

a top-1 accuracy of 59.8% and the attention-based model achieved a top-1 accuracy of

61.3% on the Clotho-AQA_v2 dataset.

In the future, we plan to extend the dataset to include variable-length answers. We also

intend to reduce data imbalance and minimize language model biases in the new dataset.

We also plan to build sophisticated model architectures that can take full advantage of the

multimodal inputs for audio question answering tasks.
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