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Abstract: A rescheduling algorithm for trains on a single-track railway was developed in case of
disturbances that would cause conflicts between trains. This algorithm is based on mixed integer
linear programming (MILP) with speed-up routines. The model considers station capacities explicitly
(i.e., the number of available tracks for meeting and overtaking operations). Because the model is
too hard for the solvers (CPLEX in this study) to tackle, three speed-up routines were devised when
rescheduling trains. These routines are a greedy heuristic to reduce the solution space, using the lazy
constraint attribute of the solver and a multiobjective approach to find a good initial feasible solution
that conforms to actual railway operation. The algorithm was tested on a hypothetical rail line for
different sizes of timetable instances with disturbed trains in a maximum two-hour time horizon. It
managed to solve the hardest instances within a three-minute time limit thus minimizing the total
weighted delay of rescheduled trains. The optimality gap metric is used to show the effectiveness
and efficiencies of the speed-up heuristics developed.

Keywords: transportation; rail transport; train scheduling; train rescheduling; optimization; integer
programming; speed-up heuristics

1. Introduction

Among the realities of 21st-century transport are continuously increasing environ-
mental and sustainability concerns. Rail transport, being among the most sustainable and
environmentally friendly modes of transport, has been gaining importance every day. A
modal shift from road and air to rail in both passenger and freight transport would be
an efficient step towards sustainability. However, this shift is not very easy to achieve.
Users prioritize their own satisfaction with the provided level of service over sustainability.
Thus, such a modal shift can be achieved only if a satisfactory level of service is provided
to users. Service quality parameters, from the user perspective for rail transport, include
speed, ticket (or transport) price, reliability, punctuality and frequency. A perceivable
increase in these parameters’ values would certainly encourage more passengers, freight
forwarders and logistics companies to choose rail transport. These facts have pushed
researchers towards seeking efficient ways to improve these level-of-service parameters.
Unquestionably, the most effective method of improvement is to make new rail infras-
tructure investments to increase capacity, remove bottlenecks and reduce the number of
potential intertrain conflicts. However, more often than not, this would be impossible due
to a number of factors, such as lack of sufficient finance, land unavailability, opposition
from environmentalist groups, etc. When infrastructure investment is not an option, the
only remaining way is to better utilize the existing infrastructure through better operational
practices. Railway operation is a very wide concept with many components, and train
scheduling is one of the crucial components. Train scheduling is a rather generic term, as it
includes preparation of the running timetables of the trains and real-time rescheduling for
the trains in case of disturbances to train traffic. At this point, it would be useful to define
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the concept of rescheduling in more detail. Railways may or may not be operated with a
timetable. If there exists a timetable and, in daily operation, all trains move according to
the timetable, then no problems in the operation will arise. However, some trains may get
delayed. Depending on the delay value, the timetable may become invalid. Delayed trains
create new intertrain conflicts and, in turn, cause additional delays to be spread to other
trains, and the delayed trains’ delays may increase due to such new conflicts. These newly
formed delays are called “secondary delays” or “knock-on delays”. Thus, in case of delays,
even if there is a timetable, it may become infeasible to follow it. In this case, a new schedule
must be prepared to restore the feasibility of the train movements’ schedule. The activity
of preparing a new feasible running timetable in case of real-time disruption is called
rescheduling. The quality of the reschedule may be defined by its success in reducing the
delays as much as possible. In practice, rescheduling is generally performed manually by
human experts (called dispatchers), and the limited computational capacity of the human
brain usually leads to suboptimal rescheduling decisions. The computational power of a
modern computer would certainly help make better decisions. Thus, it is no surprise that
computer-based decision support systems for improving rescheduling decisions has been
a very popular research topic, and this study is also focused on that. The main purpose
and scope of this study is rescheduling the train traffic on a single-track railway line by
detecting and solving conflicts.

The most challenging fact about rescheduling is the necessity of performing the duty
in a very short duration. This is because of the dynamic environment of railway operations.
Trains are not static entities; they move. They can also gain new delays and make the
newly constructed schedule invalid. This may necessitate more than one or even many
rescheduling processes to be performed throughout the operational day. This is another
indicator of the urgency of rescheduling decisions.

Train rescheduling, like almost all scheduling problems, is an NP-complete problem [1].
Even the most powerful computers of today cannot solve these kinds of problems using a
brute-force approach or a pure mathematical programming approach within a reasonable
duration. Some cleverer algorithms are always required. This is where the contribution
of this study lies. We developed a mixed integer linear programming model to formulate
the process of preparing a conflict-free schedule. Our model also explicitly considers the
number of secondary lines in each station. The set of station capacity constraints used
in the mathematical model, which are defined using special binary variables, is unique
to this study. The tendency of studies in the literature is to relax or neglect the station
capacity constraints because they increase the model size dramatically. In our model, they
are explicitly considered. Such a mathematical programming approach is extremely hard to
tackle for even the most powerful computers and today’s most state-of-the-art solvers. We,
therefore, developed three routines for speeding the solution up: a solution space reduction
algorithm based on a greedy heuristic, usage of the lazy constraint attribute of the solver
and utilization of a multiobjective approach to find a good initial feasible solution. To the
best of our knowledge, this is a unique combination of the specially developed routines to
solve the hard train rescheduling mathematical model.

The remaining parts of the paper are structured as follows. Related work is presented
next, followed by the detailed description of the mathematical model. We then introduce
the speed-up routines to be able to solve the model within specified time limits. The
description of the problem instances and the numerical test are given next with their results.
The paper is concluded with the discussion and conclusion section.

2. Related Works

A very large number of studies about train scheduling and rescheduling have been
published for decades. This may be attributed to continuously increasing railway traffic
volumes and failure to improve their infrastructures through investment to cope with
this situation. When it is not possible to have higher-capacity infrastructure, the natural
response is to seek ways to utilize the existing infrastructure more efficiently. Generating



Appl. Sci. 2023, 13, 696 3 of 27

more efficient timetables (called timetabling or scheduling) and improving dispatching
decisions in case of disturbances (called rescheduling) is an applicable strategy to achieve
this, hence the wide interest towards these topics [1].

In the literature, there are a variety of topics considered under the generic concept of
train scheduling. These include timetable optimization, energy-efficient timetable gener-
ation, rolling stock planning, crew planning, etc. This study is focused on rescheduling;
hence, we limited the literature review with studies on or closely related to train reschedul-
ing. In addition, because this study is intended for conventional single-track intercity
railway lines, studies related to high-speed lines and urban transit lines are not included in
the review.

Train rescheduling is an NP-complete (nondeterministic polynomial-time complete)
problem [1]. In this kind of problem, the major concern is computational workload because
it exhibits a huge boost as the problem size (i.e., number of trains, number of stations,
number of tracks, etc.) enlarges. Computational workload becomes even more crucial
when the problem has to be solved in a very short period of time. This is the principal focus
of this paper, which can be considered “a still open problem” in the literature because the
approaches to the solution based on mathematical programming still need improvements
in terms of computational efficiency.

For train rescheduling, as any other NP-complete problem, it is no surprise that
researchers attack the problem with three main solution types: exact solutions (mostly
optimizing over some criteria with a mixed integer linear programming model), metaheuris-
tic solutions (like genetic algorithms, tabu search, simulated annealing, etc.) and other
heuristics (either tailor-made or problem-specific heuristics or standard heuristics such as
relaxations or branch-and-bound techniques) and simulation-based solutions. There are
also a number of hybrid solution approaches, which make use of a combination of two or
three of the above solution types. This will form the basis for classification in the literature
review part. We will focus on the studies about rescheduling trains over the main lines.

Exact Methods: Andersson et al. [2] developed a mixed integer linear programming
(MILP) model to improve the robustness of a timetable to reduce delay propagation in
case of disturbances. They optimized the buffer times. Veelenturf et al. [3] developed a
MILP model for rescheduling in case of disruptions with some additional binary variables
that introduce the options of cancelling or rerouting some of the trains. They concluded
that these options are required for switching between the original timetable and the newly
constructed schedule. Sels et al. [4] aimed to minimize the expected total travel time of
passengers (rather than trains) in practice with a MILP model. Their MILP also includes a
lot of constraints and valid inequalities to speed up the solution process. Taslimi et al. [5]
focused on the train scheduling problem to estimate the arrival (or travel) times of freight
trains. Their proposed model is basically a MILP model for the train rescheduling problem.
Similar to our study, this study also makes use of the lazy constraint attribute to speed up
the run.

Metaheuristics: Samà et al. [6] solved the train rescheduling and rerouting problem.
They developed an ant colony optimization model for this purpose. Šemrov et al. [6]
utilized a reinforced learning approach, Q-learning, for rescheduling a single-track line
in case of large disruptions. They used several datasets to train the agent and then finally
tested it with a real single-track line in Slovenia.

Other or problem-specific heuristics: Liu and Dessouky [7] studied a complex railway
line that serves both passenger and freight traffic. They combined group-based decompo-
sition (decomposing the traffic into passenger trains and freight trains) and train-based
decomposition (treating each freight train separately to generate the feasible schedule).
Ait-Ali et al. [8] studied the Lagrangian dual problem of the train timetabling problem.
They claimed that this kind of dual problem traditionally had been solved using an aggre-
gate approach in which all train requests had been involved in the dual problem. However,
in this study, the dual information from all requested train paths were treated individu-
ally, which was called by the authors “disaggregate bundling”. Josyula et al. [9] explored
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the potential of parallel programming applications to train scheduling and succeeded in
applying it. They developed tree-based depth-first search heuristics to be implemented
in parallel in a multicore computer. Gao and Niu [10] worked on the scheduling problem
for a mixed-traffic high-speed rail line where overtaking is allowed. They sought ways
to extend the typically short time windows found in the train scheduling literature. In
order to overcome the computational complexity generated by this problem while working
on Lagrangian-based decomposition algorithms, they proposed an improved alternating
direction method of multipliers. Sinha et al. [11] focused on generating feasible scheduling
solutions with less computational time and workload. The authors considered a railway
network without central control. They also worked on a two-level control approach in
which low-level controllers prepare solutions for their area of responsibility and their
high-level supervisors evaluate the solutions. Authors proposed greedy heuristics to im-
prove this implementation. Bettinelli et al. [12] developed greedy heuristics to solve the
conflicts that arise from a distorted timetable. They scheduled the trains one at a time,
thus resolving the conflicts arising on the run. Their algorithm is also suitable for parallel
computing. Şahin [13] developed two heuristic methods for the single-line rescheduling
problem. One was a greedy heuristic method imitating the decision behavior of train
dispatchers in the Turkish State Railways network. The other one was a heuristic with a
look-ahead component to give improved results. Filcek et al. [14] studied the rescheduling
problem in case of closed tracks for maintenance tasks. They developed a hierarchical
heuristic algorithm that treats line closures and train runs together and reconstructs a
feasible schedule within a short duration. Tiong et al. [15] studied improving dispatching
decisions related to overtakes in double-track sections. They demonstrated the use of an
“odds ratio” as an aiding tool to dispatchers.

Hybrid Methods: Martin-Iradi and Hopke [16] considered the periodic and symmetric
train timetabling problems and utilized a time–space graph formulation to solve them.
They aimed to minimize the total travel times of passengers rather than trains. They
named their solution method the “dive-and-cut-and-price” method, and it made use of
different heuristics, such as neighborhood search, Bender’s cuts and column generation.
Högdahl et al. [17] used a multiobjective approach because timetable robustness and mini-
mization of the planned running times in the timetable are indeed contradictory objectives.
They proposed a timetable model for a single unidirectional track and applied some en-
hancement procedures based on a microscopic simulation fed and calibrated with random
delay data. Sparing and Goverde [18] considered a periodic timetable for a network with
unidirectional lines. Their MILP model determines the order of the trains so that the
minimum possible cycle period is minimized, and it then generates a feasible timetable
for that order. They employed several heuristics to reduce the search space so solvers can
tackle the resulting large-scale MILP. Cavone et al. [19] employed a three-step solution
algorithm for train rescheduling. Once a disturbance occurs and the original timetable
becomes infeasible, they construct and solve a MILP for a predetermined and relatively
short time horizon. Second, they apply a problem-specific heuristic to incorporate the trains
included in the first timetable into the timetable of currently unaffected trains. Third, they
apply an offline cross-efficiency fuzzy data envelopment analysis to the resulting timetables
and real-time operations. Li and Ni [20] solved the train timetabling problem with a multi-
agent simulation for constraint satisfaction. They stated that the train timetabling problem
creates a large combinatorial space, and thus, they utilized an agent actor–critic algorithm
to decompose this space into multiple spaces that are independent from each other. This
algorithm is neural network-based. Samà et al. [21] proposed a MILP model based on the
alternative graph formulation that this team generally uses. After a problem instance was
solved, they classified the efficiency of the optimum solution generated with data envelop-
ment analysis. This was made to improve the formulation rather than the solution itself.
Altazin et al. [22] used two approaches at the same time: multiobjective optimization and
macroscopic simulation. The optimization model was used to make decisions including
adding stops, canceling stops, terminating trains early and canceling trains. Macroscopic
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simulation was then used to evaluate the performance of these decisions. Törnquist and
Persson [23], Acuna-Agost et al. [24] and Törnquist Krasemann [25] used the same MILP
formulation as the basis for their solutions, which were developed for a line with flexible
number of parallel tracks, each being able to handle trains in both directions. These models,
coupled with a number of other properties, generate too many binary variables to tackle
within a reasonable duration. Thus, all teams employed different heuristics of their own.
The first team [23] classified the conflict resolution measures into change of track, order
swap and both. They then set a heuristically determined upper bound on the number of
measures with respect to the original timetable and pathing. Acuna-Agost et al. [24] used
three approaches to obtain suboptimal but good-enough solutions: right-shift rescheduling,
a MILP-based local search method and an iterative MILP-based local search method. Note
that all approaches require an initial timetable with all choices of lines and platforms, and
thus they are not applicable to single-track railways where there is no timetable, such as
in the US freight railways case. Törnquist Krasemann [25] utilized a greedy algorithm to
solve the problem.

We believe that MILP methods should gain more attention in solving the rescheduling
problem. Their state-of-the-art commercial software are getting more powerful. They can
also cooperate with tailor-made heuristics, simulation-based approaches and other innova-
tive methods like constraint programming. Therefore, they exhibit quite-high potential for
the future.

3. Model and Methods
3.1. The Mathematical Model

We developed a MILP (Mixed Integer Linear Programming) model, which is adapted
from [1]; most of the model components are explained in much greater detail there for the
interested reader. In this section, we explain the essential features of the mathematical
model. The model has some resemblance to job–shop scheduling, and it contains the
standard constraints required for scheduling trains over a single-track railway line. These
standard constraints include the minimum possible departure times, minimum running
times between adjacent stations, minimum dwell times and/or train continuities within
the stations and minimum headways between trains in the same direction and between
trains in the opposite direction. In addition to those standard constraints and constraints
that define meetings, followings and overtakes, there are some other constraints to consider
regarding station and siding capacities (i.e., number of parallel tracks within stations and
sidings available for meeting and overtaking operations) for realistic modeling. If a station
or siding has n parallel tracks and at least n + 1 trains try to occupy the tracks in overlapping
time periods, then the station’s capacity will be exceeded. Thus, to get a comprehensive
model of station capacities, we enumerated all cases where the numbers of eastbound
and westbound trains add up to n + 1. In this study, we focused on stations having
one secondary track and two secondary tracks, which covers most practical situations.
Traditionally, the meeting of two particular trains in a particular station is defined by one
binary variable. If this station has only one secondary line, then this is also sufficient
for modeling the station capacity. However, in our model, to correctly model the station
capacities of stations having two secondary lines, meetings were defined with two binary
variables per train couple. This will be explained shortly.

For modeling followings and overtakes, a special definition is not needed at all. The
definitions in the model proposed by Jovanovic in his dissertation in 1989 will suffice [1].

Formal Mathematical Model for Scheduling Train Movements on a Single-Track
Railway Line

Before presenting the model, it is necessary to state some definitions and assumptions.
The model was developed for a hypothetical line, and all trains were assumed to traverse
the entire line. Two opposite directions were nominated as “eastbound” and “westbound”.
In the indexing scheme, stations were numbered from 1 to the total number of stations,
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and the station numbers increased in the eastbound direction. The number of tracks in
the eastbound and westbound termini were assumed to be infinite. In the notations, if
a symbol denotes a vector, then it is written in bold. The model was coded in AIMMS
software using the latest version of CPLEX as the solver. The sets, indices, parameters,
continuous decision variables and binary decision variables used in the model are defined
in Tables 1–5, respectively.

Table 1. Sets.

Symbol Definition

S Set of stations
S1 Set of stations with one secondary track.
S2 Set of stations with two secondary tracks.
E Set of eastbound trains
W Set of eastbound trains

Table 2. Indices and other symbols.

Symbol Definition

e, f, g, h Eastbound train indices
w, x, v, z Westbound train indices
s, t Station indices
sF The first station (western terminus) of the modeled railway line.
sL The last station (eastern terminus) of the modeled railway line.

Table 3. Parameters and objective function.

Symbol Definition

δe Entrance time of eastbound train e into the system. Train e cannot depart the western terminus before this time.

δ̂w : Entrance time of westbound train w into the system. Train w cannot depart the eastern terminus before this time.

Te Vector of minimum travel times of eastbound train e between adjacent stations.

Tw Vector of minimum travel times of westbound train w between adjacent stations.

σs
e

Minimum dwell time of eastbound train e at station s as required by timetable (equal to 0 if train e has no
scheduled stop at station s or there is no timetable at all). ∀ e ∈ E, ∀ s ∈ S\{sF, sL}

σ̂s
w

Minimum dwell time of westbound train w at station s as required by timetable (equal to 0 if train w has no
scheduled stop at station s or there is no timetable at all). ∀ w ∈W, ∀ s ∈ S\{sF, sL}

ηs
e, f

Minimum arrive–arrive headway between eastbound train e and eastbound train f at station s. ∀ e, f ∈ E, e 6= f, ∀
s ∈ S\{sF}

η̂s
w,x

Minimum arrive–arrive headway between westbound train w and westbound train x at station s. ∀ w, x ∈W, w
6= x, ∀ s ∈ S\{sL}

βs
e, f

Minimum depart–depart headway between eastbound train e and eastbound train f at station s. ∀ e, f ∈ E, e < f,
∀ s ∈ S\{sL}

β̂s
w,x

Minimum depart–depart headway between westbound train w and westbound train x at station s. ∀ w, x ∈W, w
< x,∀ s ∈ S\{sF}

ρs
e,w

Minimum arrive–depart headway when eastbound train e is to depart from station s after arrival of westbound
train w. ∀ e ∈ E, w ∈W, ∀ s ∈ S\{sL}

ρ̂s
e,w

Minimum arrive–depart headway if westbound train w is to depart from station s after arrival of eastbound
train e. ∀ e ∈ E, w ∈W, ∀ s ∈ S\{sF}

M A large enough positive integer.
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Table 3. Cont.

Symbol Definition

αe
Scheduled arrival time of eastbound train e at station sL in the timetable. In case of nontimetabled operation,
minimum possible arrival time may be used.

α̂w
Scheduled arrival time of westbound train w at station sF in the timetable. In case of nontimetabled operation,
minimum possible arrival time may be used.

F Total weighted delay (tardiness) function.

Table 4. Continuous decision variables.

Symbol Definition

as
e

Arrival time of eastbound train e at station s. Not defined for s = sF, where train e enters the system. Arrival time
of train e at sF is a parameter, not a decision variable.

ds
e Departure time of eastbound train e from station s. Not defined for station s = sL

âs
w

Arrival time of westbound train w at station s. Not defined for station s = sL, where train w enters the system.
Arrival time of train w at station sL is a parameter, not a decision variable.

d̂s
w Departure time of westbound train w from station s. Not defined for station sF

τe Delay (tardiness) of eastbound train e in the eastern terminus.

τ̂w Delay (tardiness) of westbound train w in the western terminus.

Table 5. Binary decision variables.

Symbol Definition

bs
e, f

1, if eastbound train e departs from station s before eastbound train f and 0 otherwise. Defined for s 6= sL and
e < f.

b̂s
w,x

1, if westbound train w departs from station s before westbound train x and 0 otherwise. Defined for s 6= sF
and w < x.

cs
e,w 1, if eastbound train e and westbound train w meet at station s (s ∈ S1) and 0 otherwise.

ce,w
s

1, if eastbound train e and westbound train w meet at station s (s ∈ S2 + {sF}) AND train e enters the station
before train w and 0 otherwise.

ĉe,w
s

1, if eastbound train e and westbound train w meet at station s (s ∈ S2 + {sL}) AND train w enters the station
before train e and 0 otherwise.

Safety is paramount in rail operations. In practice, safety against intertrain collisions
is provided by the signaling system. The signaling system ensures sufficient separation
between trains so that they do not undergo any risk of collision. Constraints and headway
concepts in the mathematical model are defined in such a way that any unsafe movement
which would be prevented by the signaling system will lead to an infeasible solution by
violation of the related constraints.

The model itself is given below.
Objective Function:

Min ∑
e∈E

F(τe)+ ∑
w∈W

F(τ̂w) (1)

The Objective Function (1) is a linear combination of delays of each (eastbound and
westbound) train. This is a fairly standard objective function found in most studies in the
literature. The verbal expression of it is “Minimization of the Total Weighted Delay”. This
kind of objective function was selected because it reflects the overall punctuality of the
rescheduling process. The delay of each train causes the objective value to increase. A
weighted delay provides a more realistic model of railway operations than an unweighted
total delay or a simple sum of delays. From the train operating company’s point of view,
not every train is of equal importance. Some trains are more important than others and
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are thus assigned a higher priority by the company. This is reflected in the weights. The
higher the train’s priority is, the higher the weight of that train (and contribution of a delay
unit of that train to the objective value) is. Note that the weighted delays of the trains are
being summed up, not the passengers or the payloads. It is possible to sum up the delays
of passengers rather than trains, but this would be appropriate for studies mostly on urban
rail lines rather than an intercity line, which is our focus here. Intercity railway lines are
typically used by both passenger and freight trains. Future work may include a change in
objective function, such as minimizing total weighted knock-on delay time.
Minimum Departure and Arrival Time Constraints:

dsF
e ≥ δe∀ e ∈ E (2)

d̂sL
w ≥ δ̂w∀ w ∈W (3)

Constraints (2) and (3) prevent any train from departing from the related terminus
before it actually enters the system.
Delay Definition Constraints:

τe ≥asL
e − αe, ∀ e ∈ E (4)

τ̂w ≥âsF
w − α̂w, ∀ w ∈W (5)

Because the variables found in the respective left-hand sides of Constraints (4) and (5)
define the delay and are nonnegative, if any train arrives earlier than its scheduled arrival
time, then delay takes the value zero. By this definition, early arrivals are allowed, but they
do not improve the objective value.
Minimum Running Time Constraints:

as+1
e ≥ ds

e + Ts
e∀ e ∈ E, s ∈ S\sL (6)

âs
w ≥ d̂s+1

w + T̂s
w∀ w ∈W, s ∈ S\sL (7)

Constraints (6) and (7) enforce the minimum running times between the adjacent stations.
Minimum Dwell Time Constraints:

ds
e ≥ as

e + σs
e∀ e ∈ E, s ∈ S\{sF, sL} (8)

d̂s
w ≥ âs

w + σ̂s
w∀ w ∈W, s ∈ S\{sF, sL} (9)

Constraints (8) and (9) enforce the minimum dwell times of the trains as required by
the timetable. In case of either a nontimetabled operation or no scheduled stops at station s,
these enforce the train continuities.
Following and Overtaking Constraints for Eastbound Trains:

ds
e ≥ ds

f+βs
e, f−M∗bs

e, f ∀ e, f ∈ E, e < f , s ∈ S\sL (10)

ds
f ≥ ds

e+βs
f ,e−M∗(1− bs

e, f )∀ e, f ∈ E, e < f , s ∈ S\sL (11)

as+1
e ≥ as+1

f +ηs+1
e, f −M∗bs

e, f ∀ e, f ∈ E, e < f , s ∈ S\sL (12)

as+1
f ≥ as+1

e +ηs+1
f ,e −M∗(1− bs

e, f )∀ e, f ∈ E, e < f , s ∈ S\sL (13)

Constraints (10) and (12) are active if eastbound train f departs station s before
eastbound train e. Constraint (10) ensures that there is sufficient headway between the
two trains in departure. Constraint (12) ensures that train e does not overtake train f in the
mainline track section and also that there is sufficient headway between them upon arrival
at the next station. Constraints (11) and (13) are active if eastbound train e departs station
s + 1 before eastbound train f. Constraint (11) ensures that there is sufficient headway
between the two trains in departure. Constraint (13) ensures that train f does not overtake



Appl. Sci. 2023, 13, 696 9 of 27

train e in the mainline track section and also there is sufficient headway between them
upon arrival at the next station.
Following and Overtaking Constraints for Westbound Trains:

d̂s
w ≥ d̂s

x+β̂s
w,x−M∗b̂s

w,x∀ w, x ∈ W, w < x, s ∈ S\sF (14)

d̂s
x ≥ d̂s

w+β̂s
x,w−M∗(1− b̂s

w,x)∀ w, x ∈ W, w < x, s ∈ S\sF (15)

âs
w ≥ âs

x+η̂s
w,x−M∗b̂s+1

w,x ∀ w, x ∈ W, w < x, s ∈ S\sF (16)

âs
x ≥ âs

w+η̂s
x,w−M∗(1− b̂s+1

w,x )∀ w, x ∈ W, w < x, s ∈ S\sF (17)

Constraints (14)–(17) work exactly the same as Constraints (10)–(13). The only differ-
ence is in the index orders in the respective direction of travel.
Preventing a Slow Train from Overtaking a Fast Train:

∀ e, f ∈ E, s ∈ S\sL | e < f & δe ≤ δ f (18)

b̂s
w,x = 1∀ w, x ∈ W, s ∈ S\sF | w < x & δ̂w ≤ δ̂x (19)

In general practice, slow trains are not allowed to overtake faster trains. We utilized
this fact to reduce the size of the solution space. In the model, it is assumed that trains
are indexed according to their speeds and that these indices get larger as trains go slower.
Constraints (18) and (19) tell that if a faster train enters the line before a slower train, then it
will always precede the slower train.
Preventing Alternate Overtakes:

bs+1
e, f ≥ bs

e, f ∀e, f ∈ E, s ∈ S\sL | e < f & δe > δ f (20)

b̂s
w,x ≥ b̂s+1

w,x ∀w, x ∈ W, s ∈ S\sF | w < x & δ̂w > δ̂x (21)

This follows the same principle as preventing a slow train from overtaking a fast train
(Constraints (20) and (21)): this time, if a fast train overtakes a slower train, then it will
always precede the slower train afterwards.
Forcing Meeting Constraints:

∑
s∈s1

cs
e,w + ∑

s∈S2+{sF}
cs

e,w + ∑
s∈S2+{sL}

ĉs
e,w = 1∀ e ∈ E, w ∈ W (22)

Constraint (22) ensures that each train couple will meet once and only once.
Meeting at sF:

dsF
e ≥ âsF

w + ρsF
e,w −M ∗ (1− csF

e,w)∀ e ∈ E, w ∈ W (23)

Meeting at sL:
d̂|S|w ≥ asL

e + ρ̂sL
e,w −M ∗ (1− ĉsL

e,w)∀ e ∈ E, w ∈ W (24)

Constraints (23) and (24) are active if trains e and w meet at a terminus of the line. In
that case, the waiting train at the terminus is allowed to depart the terminus only after the
train it meets arrives at the terminus.
Meeting Constraints for Intermediate Stations with One Secondary Line-1:

ds
e ≥ âs

w + ρs
e,w −M ∗ (1− cs

e,w)∀ e ∈ E, w ∈ W, s ∈ S1 (25)

Constraint (25) is active if eastbound train e and westbound train w meet at intermedi-
ate station s with one secondary line. It then forces train e to depart at least the length of
the arrive–depart headway later than the arrival time of train w.
Meeting constraints for intermediate stations with one secondary line-2:

d̂s
w ≥ as

e + ρ̂s
e,w −M ∗ (1− cs

e,w)∀ e ∈ E, w ∈ W, s ∈ S1 (26)
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Constraint (26) is active if eastbound train e and westbound train w meet at intermedi-
ate station s, with one secondary line. It then forces train w to depart at least the length of
the arrive–depart headway later than the arrival time of train e.

ds
e ≥ âs

w + ρs
e,w −M ∗ [1− (cs

e,w + ĉs
e,w)]∀ e ∈ E, w ∈ W, s ∈ S2 (27)

Constraint (27) is active if eastbound train e and westbound train w meet at interme-
diate station s with two sidings. It then forces train e to depart at least the length of the
arrive–depart headway later than the arrival time of train w. Constraint (22) ensures that at
most one of the binary variables can be equal to one.

d̂s
w ≥ as

e + ρ̂s
e,w −M ∗ [1− (cs

e,w + ĉs
e,w)]∀ e ∈ E, w ∈ W, s ∈ S2 (28)

Constraint (28) is active if eastbound train e and westbound train w meet at interme-
diate station s with two sidings. It then forces train w to depart at least the length of the
arrive–depart headway later than the arrival time of train e. Constraint (22) ensures that at
most one of the binary variables can be equal to one.

âs
w ≥ as

e + 1−M ∗ (1− cs
e,w)∀ e ∈ E, w ∈ W, s ∈ S2 (29)

as
e ≥ âs

w −M ∗ (1− ĉs
e,w)∀ e ∈ E, w ∈ W, s ∈ S2 (30)

Constraints (29) and (30) introduce the definition of binary meeting variables for the
stations with two secondary lines. Constraint (29) is active when cs

e,w = 1, which is when
eastbound train e arrives at station s before westbound train w. Constraint (30) is active
when ĉs

e,w = 1, which is when westbound train w arrives at station s before eastbound train
e. In case of simultaneous arrival, the model will treat the situation as if the westbound
train arrived first. The station or siding capacity constraints will be given as follows, first
for the stations with one secondary line and then for the stations with two secondary lines.
These constraints are based on the enumeration of the possible situations such that the
station or siding capacity is exceeded.

∑
f∈E|e< f

(bs
e, f−bs−1

e, f ) ≤ 1∀ e ∈ E, s ∈ S1 (31)

Constraint (31) dictates that no eastbound train can overtake more than one eastbound
train at station s, which has one secondary line.

∑
w,x∈W|w<x

(
b̂s

w,x − b̂s+1
w,x

)
≤ 1∀ w ∈ W, s ∈ S1 (32)

Constraint (32) is the same as Constraint (31), but for westbound trains.(
bs

e, f − bs+1
e, f

)
+ cs

e,w ≤ 1∀ e, f ∈ E | e < f , w ∈ W, s ∈ S1 (33)

Constraint (33) dictates that an eastbound train cannot overtake an eastbound train
and meet with a westbound train at station s, which has one secondary line.(

b̂s
w,x − b̂s+1

w,x

)
+ cs

e,w ≤ 1∀ e ∈ E, w, x ∈ W | w < x, s ∈ S1 (34)

Constraint (34) is the same as Constraint (31), but for two westbound trains and one
eastbound train.

as
f ≥ ds

e + ηs
e, f −M ∗ (1− bs−1

e, f )∀ e, f ∈ E | e < f , s ∈ S1 (35)
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Constraint (35) is active when eastbound train f (slower than e) enters station s (with
one secondary line) after eastbound train e, and it then dictates that train f can enter the
station only after train e clears the station.

âs
x ≥ d̂s

w + η̂s
e, f −M ∗ (1− b̂s+1

w,x )∀ w, x ∈ W | w < x, s ∈ S1 (36)

Constraint (36) is the same as Constraint (35), but for two westbound trains.

as
e ≥ ds

f + ηs
e, f −M ∗ (bs

e, f + bs−1
e, f )∀ e, f ∈ E | e < f , s ∈ S1 (37)

Constraint (37) is active if eastbound train e enters station s (with one secondary line)
after (slower) eastbound train f and will not overtake eastbound train f at station s. It then
dictates that eastbound train e can enter station s only after eastbound train f departs.

âs
w ≥ d̂s

x + η̂s
w,x −M ∗ (b̂s

w,x + b̂s+1
w,x )∀ w, x ∈ W | w < x, s ∈ S1 (38)

Constraint (38) is the same as Constraint (37), but for two westbound trains.

∑
f∈E|e< f

(bs
e, f−bs−1

e, f ) ≤ 2∀ e ∈ E, s ∈ S2 (39)

Capacity Constraints for Stations with Two Secondary Lines-2:

∑
w,x∈W|w<x

(
b̂s

w,x − b̂s+1
w,x

)
≤ 2∀ w ∈ W, s ∈ S2 (40)

Constraints (39) and (40) prevent any train from overtaking more than two trains at
station s, which has two secondary lines.
Capacity Constraints for Stations with Two Secondary Lines-3:

ĉs
e,w + ĉs

e,x + ĉs
e,y ≤ 2∀ e ∈ E, w, x, y ∈ W | w < x < y (41)

Constraint (41) prevents more than two westbound trains from “giving way to” the
same eastbound train at station s, which has two secondary lines.

cs
e,w + cs

f ,w + cs
g,w ≤ 2, ∀ w ∈ W, e, f , g ∈ E | e < f < g (42)

Constraint (42) is the same as Constraint (41), but for more than two eastbound trains
and one westbound train.

as
g ≥ ds

e + ηs
e,g −M ∗ [1− (bs

e, f + bs
e,g + bs

f ,g)/3]∀ e, f , g ∈ E | e < f < g (43)

as
f ≥ ds

e + ηs
e, f −M ∗ [1− (bs−1

e, f + bs−1
e,g − bs−1

f ,g + bs
e, f + bs

e,g)/4]∀ e, f , g ∈ E | e < f < g (44)

as
f ≥ ds

g + ηs
f ,g −M ∗ [1− (bs−1

e, f − bs−1
e,g − bs−1

f ,g + bs
e, f − bs

f ,g)/2]∀ e, f , g ∈ E | e < f < g (45)

as
f ≥ ds

e + ηs
e, f −M ∗ [1− (bs−1

e, f − bs−1
e,g − bs−1

f ,g + bs
e, f + bs

e,g)/3]∀ e, f , g ∈ E | e < f < g (46)

as
g ≥ ds

e + ηs
e,g −M ∗ [1− (bs−1

e,g − bs−1
e, f + bs−1

f ,g + bs
e, f + bs

e,g + bs
f ,g)/5]∀ e, f , g ∈ E | e < f < g (47)

as
g ≥ ds

f + ηs
f ,g −M ∗ [1− (bs−1

e,g − bs−1
e, f + bs−1

f ,g − bs
e, f + bs

e,g + bs
f ,g)/4]∀ e, f , g ∈ E | e < f < g (48)

as
e ≥ ds

f + ηs
e, f −M ∗ [1− (bs−1

f ,g − bs−1
e,g − bs−1

e, f + bs
f ,g − bs

e, f )/2]∀ e, f , g ∈ E | e < f < g (49)
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as
e ≥ ds

g + ηs
e,g −M ∗ (bs−1

e, f + bs−1
e,g + bs−1

f ,g + bs
e,g + bs

f ,g)∀ e, f , g ∈ E | e < f < g (50)

as
e ≥ ds

f + ηs
e, f −M ∗ [1− (bs

f ,g − bs
e, f − bs−1

f ,g − bs−1
e,g − bs−1

e, f )]∀ e, f , g ∈ E | e < f < g (51)

Constraints (43)–(51) are active only when the summation within the bracket divided
by the respective integer number gives either zero or one, depending on the case. Then,
the constraints enforce that the last train to enter the station must enter later than the first
departing train’s departure. This prevents the station’s capacity from being exceeded.
Capacity Constraints for Stations with Two Secondary Lines 14–22:

âs
y ≥ d̂s

w + η̂s
w,y −M ∗ [1− (b̂s

w,x + b̂s
w,y + b̂s

x,y)/3]∀ w, x, y ∈ W | w < x < y (52)

âs
x ≥ d̂s

w + η̂s
w,x −M ∗ [1− (b̂s+1

w,x + b̂s+1
w,y − b̂s−1

x,y + b̂s
w,x + b̂s

w,y)/4]∀ w, x, y ∈ W | w < x < y (53)

âs
x ≥ d̂s

y + η̂s
x,y −M ∗ [1− (b̂s+1

w,x − b̂s+1
w,y − b̂s+1

x,y + b̂s
w,x − b̂s

x,y)/2]∀ w, x, y ∈ W | w < x < y (54)

âs
x ≥ d̂s

w + η̂s
w,x −M ∗ [1− (b̂s+1

w,x − b̂s+1
w,y − b̂s+1

x,y + b̂s
w,x + b̂s

w,y)/3] w, x, y ∈ W | w < x < y (55)

âs
y ≥ d̂s

w + η̂s
w,y −M ∗ [1− (b̂s+1

w,y − b̂s+1
w,x + b̂s+1

x,y + b̂s
w,x + b̂s

w,y + b̂s
x,y)/5]∀ w, x, y ∈ W | w < x < y (56)

âs
y ≥ d̂s

x + η̂s
x,y −M ∗ [1− (b̂s+1

w,y − b̂s+1
w,x + b̂s+1

x,y − b̂s
w,x + b̂s

w,y + b̂s
x,y)/4]∀ w, x, y ∈ W | w < x < y (57)

âs
w ≥ d̂s

x + η̂s
w,x −M ∗ [1− (b̂s+1

x,y − b̂s+1
w,y − b̂s+1

w,x + b̂s
x,y − b̂s

w,x)/2]∀ w, x, y ∈ W | w < x < y (58)

âs
w ≥ d̂s

y + η̂s
w,y −M ∗ (b̂s+1

w,x + b̂s+1
w,y + b̂s+1

x,y + b̂s
w,y + b̂s

x,y)∀ w, x, y ∈ W | w < x < y (59)

âs
w ≥ d̂s

x + η̂s
w,x −M ∗ [1− (b̂s

x,y − b̂s
w,x − b̂s+1

x,y − b̂s+1
w,y − b̂s+1

w,x )]∀ w, x, y ∈ W | w < x < y (60)

Constraints (52)–(60) are exactly the same as Constraints (43)–(51), except they apply
to the symmetrical case.

cs
e,w + cs

e,x + cs
f ,w + cs

f ,x + (bs
w,x − bs+1

w,x ) ≤ 4, ∀ e, f ∈ E, w, x ∈ W | e < f & w < x (61)

âs
w ≥ d̂s

x + η̂s
w,x −M ∗ [1− (cs

e,w + cs
e,x + cs

f ,w + cs
f ,x − b̂s+1

w,x )/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (62)

âs
x ≥ d̂s

w + η̂s
w,x −M ∗ [1− (cs

e,w + cs
e,x + cs

f ,w + cs
f ,x + b̂s+1

w,x )/5]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (63)

(cs
e,w + cs

e,x + cs
f ,w + ĉs

f ,x − b̂s+1
w,x ) ≤ 4∀ e, f ∈ E, w, x ∈ W | e < f & w < x (64)

âs
w ≥ d̂s

x + η̂s
w,x −M ∗ [1− (cs

e,w + cs
e,x + cs

f ,w + ĉs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (65)

âs
x ≥ d̂s

w + η̂s
w,x −M ∗ [1− (cs

e,w + cs
e,x + ĉs

f ,w + cs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (66)

as
f ≥ ds

e + ηs
e, f −M ∗ [1− (cs

e,w + cs
e,x + ĉs

f ,w + ĉs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (67)

cs
e,w + ĉs

e,x + cs
f ,w + ĉs

f ,x − b̂s+1
w,x ≤ 4∀ e, f ∈ E, w, x ∈ W | e < f & w < x (68)
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âs
w ≥ d̂s

x + η̂s
w,x −M ∗ [1− (cs

e,w + ĉs
e,x + cs

f ,w + cs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (69)

cs
e,w + ĉs

e,x + cs
f ,w + ĉs

f ,x − (b̂s
w,x − b̂s+1

w,x ) ≤ 4∀ e, f ∈ E, w, x ∈ W | e < f & w < x (70)

âs
w ≥ d̂s

x + η̂s
w,x −M ∗ [1− (cs

e,w + ĉs
e,x + cs

f ,w + ĉs
f ,x − b̂s+1

w,x )/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (71)

as
f ≥ ds

e + ηs
e, f −M ∗ [1− (cs

e,w + ĉs
e,x + ĉs

f ,w + ĉs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (72)

âs
x ≥ d̂s

w + η̂s
w,x −M ∗ [1− (ĉs

e,w + cs
e,x + cs

f ,w + cs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (73)

âs
x ≥ d̂s

w + η̂s
w,x −M ∗ [1− (ĉs

e,w + cs
e,x + ĉs

f ,w + cs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (74)

as
f ≥ ds

e + ηs
e, f −M ∗ [1− (ĉs

e,w + cs
e,x + ĉs

f ,w + ĉs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (75)

ĉs
e,w + ĉs

e,x + cs
f ,w + cs

f ,x + (bs
e, f − bs−1

e, f ) ≤ 4∀ e, f ∈ E, w, x ∈ W | e < f & w < x (76)

as
e ≥ ds

f + ηs
e, f −M ∗ [1− (ĉs

e,w + ĉs
e,x + ĉs

f ,w + ĉs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (77)

ĉs
e,w + ĉs

e,x + cs
f ,w + ĉs

f ,x + (bs
e, f − bs−1

e, f ) ≤ 4∀ e, f ∈ E, w, x ∈ W | e < f & w < x (78)

as
e ≥ ds

f + ηs
e, f −M ∗ [1− (ĉs

e,w + ĉs
e,x + cs

f ,w + ĉs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (79)

ĉs
e,w + ĉs

e,x + ĉs
f ,w + cs

f ,x + (bs
e, f − bs−1

e, f ) ≤ 4∀ e, f ∈ E, w, x ∈ W | e < f & w < x (80)

as
e ≥ ds

f + ηs
e, f −M ∗ [1− (ĉs

e,w + ĉs
e,x + ĉs

f ,w + cs
f ,x)/4]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (81)

as
f ≥ ds

e + ηs
e, f −M ∗ [1− (ĉs

e,w + ĉs
e,x + ĉs

f ,w + ĉs
f ,x + bs−1

e, f )/5]∀ e, f ∈ E, w, x ∈ W | e < f & w < x (82)

ĉs
e,w + ĉs

e,x + ĉs
f ,w + ĉs

f ,x + (bs
e, f − bs−1

e, f ) ≤ 4∀ e, f ∈ E, w, x ∈ W | e < f & w < x (83)

as
e ≥ ds

f + ηs
e, f −M ∗ [1− (ĉs

e,w + ĉs
e,x + ĉs

f ,w + ĉs
f ,x − bs−1

e, f )/4] e, f ∈ E, w, x ∈ W| e < f & w < x (84)

Constraints (61)–(84) generally enforce the following rule: “If two westbound trains
and two eastbound trains will meet each other at station s, which has two secondary lines,
then the last train to arrive at station s should postpone its arrival into station s until the
departure of the first train in the same direction”. The values of binary variables determine
which train is the last to enter station s and which train, in the direction of the last arriving
train, leaves the station first. Constraints (31)–(84) also serve to prevent deadlocks. In
Figure 1, a typical deadlock situation is shown. In this situation, Train 1 will not be allowed
to overtake Train 3 because, if it did, it would not be allowed to meet with Train 2 at this
station because of Constraints (34)–(35). Thus, it will have to wait until the departure of
Train 3 from the station. Meeting constraints dictate that the departure of Train 3 from the
station requires Train 4 to be held at the adjacent station (i.e., immediately preceding station
in the itinerary of Train 4); thus, a situation like that in the Figure 1 will never arise.
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Constraints (61)–(84) generally enforce the following rule: “If two westbound trains 
and two eastbound trains will meet each other at station s, which has two secondary lines, 
then the last train to arrive at station s should postpone its arrival into station s until the 
departure of the first train in the same direction”. The values of binary variables determine 
which train is the last to enter station s and which train, in the direction of the last arriving 
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3.2. Speed-Up Routines

The mathematical model represents the train movements on a single-track railway
line quite accurately, but it also has some serious drawbacks. For instance, it models the
meetings at stations with two secondary lines with two binary variables per train couple
per station. This causes a significant increase in the number of binary variables. In addition,
complete enumeration of all situations in which station or siding capacities are exceeded
causes the number of constraints to boom. Even the most powerful computers of today
will be helpless against the problem if the problem has no external interference. The good
news is that a minority of these constraints will actually be binding in the optimal solution.
In Figure 2, an example optimal solution produced with the model is depicted. In this
hypothetical railway line, stations 4, 6, 8, 11 and 14 have one secondary line, whereas the
others have two secondary lines. At least three and four trains are needed, respectively, to
exceed the capacity of a station with one secondary line and a station with two secondary
lines. In Figure 2, it can be seen that only three of the stations with one secondary line (4,
6, 8) were “under threat” of siding capacity violation, each from only one trio of trains.
Similarly, only two of the stations with two secondary lines (9, 10) were “under threat” of
capacity violation, each from only one quartet of trains. This clearly indicates that only a
handful of these constraints were binding. The others were just there to make the model
unnecessarily complicated and intractable. Indeed, there is one more fact that makes most
of these constraints actually unnecessary: any trio or quartet of trains, unless they are all
traveling in the same direction, cannot impose a threat of exceeding the capacity of more
than one station. This is due to the nature of train traffic. Two trains moving in opposite
directions cannot meet more than once.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 28 
 

3.2. Speed-Up Routines 
The mathematical model represents the train movements on a single-track railway 

line quite accurately, but it also has some serious drawbacks. For instance, it models the 
meetings at stations with two secondary lines with two binary variables per train couple 
per station. This causes a significant increase in the number of binary variables. In addi-
tion, complete enumeration of all situations in which station or siding capacities are ex-
ceeded causes the number of constraints to boom. Even the most powerful computers of 
today will be helpless against the problem if the problem has no external interference. The 
good news is that a minority of these constraints will actually be binding in the optimal 
solution. In Figure 2, an example optimal solution produced with the model is depicted. 
In this hypothetical railway line, stations 4, 6, 8, 11 and 14 have one secondary line, 
whereas the others have two secondary lines. At least three and four trains are needed, 
respectively, to exceed the capacity of a station with one secondary line and a station with 
two secondary lines. In Figure 2, it can be seen that only three of the stations with one 
secondary line (4, 6, 8) were “under threat” of siding capacity violation, each from only 
one trio of trains. Similarly, only two of the stations with two secondary lines (9, 10) were 
“under threat” of capacity violation, each from only one quartet of trains. This clearly in-
dicates that only a handful of these constraints were binding. The others were just there 
to make the model unnecessarily complicated and intractable. Indeed, there is one more 
fact that makes most of these constraints actually unnecessary: any trio or quartet of trains, 
unless they are all traveling in the same direction, cannot impose a threat of exceeding the 
capacity of more than one station. This is due to the nature of train traffic. Two trains 
moving in opposite directions cannot meet more than once. 

 
Figure 2. Optimal schedule of an example instance. 

3.2.1. Lazy Constraint Attribute 
In AIMMS, the user is allowed to label constraints as “lazy”. When the solver recog-

nizes lazy constraints, it does not directly include them in the model. Instead, it solves a 
“relaxed” model with these lazy constraints omitted. Each time it finds a feasible solution 
of this “relaxed” model, it checks the solution against the lazy constraints. If it detects 
violation of a lazy constraint, it then forms a new “relaxed” model by adding the violated 
lazy constraint and resolves the model. In the model, all of the station and siding capacity 
constraints except the ones involving only binary variables were defined as lazy con-
straints. 

3.2.2. Solution Space Restriction Algorithm for Reducing the Number of Binary Variables 
and Constraints 

As mentioned before, the model hosts a very large number of constraints. However, 
very few of the constraints for conflict resolution will actually be binding. Moreover, most 

Figure 2. Optimal schedule of an example instance.



Appl. Sci. 2023, 13, 696 15 of 27

3.2.1. Lazy Constraint Attribute

In AIMMS, the user is allowed to label constraints as “lazy”. When the solver recog-
nizes lazy constraints, it does not directly include them in the model. Instead, it solves a
“relaxed” model with these lazy constraints omitted. Each time it finds a feasible solution
of this “relaxed” model, it checks the solution against the lazy constraints. If it detects
violation of a lazy constraint, it then forms a new “relaxed” model by adding the violated
lazy constraint and resolves the model. In the model, all of the station and siding capacity
constraints except the ones involving only binary variables were defined as lazy constraints.

3.2.2. Solution Space Restriction Algorithm for Reducing the Number of Binary Variables
and Constraints

As mentioned before, the model hosts a very large number of constraints. However,
very few of the constraints for conflict resolution will actually be binding. Moreover, most
of the binary variables defined for meetings will simply be zero. Therefore, if we can
eliminate the constraints that are very unlikely to be binding and the binary variables
which are very likely to be zero in the optimal solution, then a significant reduction in
problem size and thus computation time may be achieved. Such progress was already
made by defining the station or siding capacity constraints as “lazy constraints”. Hence, a
heuristic solution space restriction algorithm has been developed to aid the solver in the
solution procedure. It involves implementing a greedy heuristic that does not consider
station capacity constraints to see what a solution may actually “look like”. Then, the
actual solution will be restricted to being “properly similar” to the outcome of this greedy
heuristic. The greedy heuristic is quite simple: starting from scratch, it finds all the conflicts
and resolves them one by one. Finally, it arrives at a feasible solution. The heuristic tackles
the constraints in “time order”: it finds the first conflict with respect to time, resolves it, then
finds the next conflict and resolves it, repeating until there are no conflicts left. The decision
logic of the heuristic is very simple and myopic, hence making it a greedy heuristic. When
it detects the conflict, it first resolves the conflict by delaying one of the two conflicting
trains. It then computes the total weighted unrecoverable delay of two trains in conflict
after this local resolution. Then, it reverses the solution and resolves the conflict by delaying
the other conflicting train. After that, it again computes the total weighted unrecoverable
delay of two trains in conflict after local resolution. The alternative that gives the lower
total weighted unrecoverable delay of two trains will be selected. The heuristic will then
update the departure and arrival times of the delayed train and find the next conflict. The
heuristic’s steps of execution are as follows:

Step 1. For all trains, compute the departure times from and arrival times at all stations
as if all trains can move on a dedicated track with no conflicts.

Step 2 Find all of the (meeting, headway, overtaking, etc.) conflicts in the system. If
there are no conflicts left, terminate and report the final solution (all departure and arrival
times for all trains plus the locations of meetings and overtakes). If there is at least one
remaining conflict, go to Step 3.

Step 3: Determine the possible occurrence times of the conflicts by calculating the
intersection points of the train paths.

Step 4: Find the earliest conflict and resolve it.
Step 5: Update the departure and arrival times of the train to be delayed in the

immediate conflict resolution, as done in Step 1, and go to Step 2.
This algorithm is guaranteed to give a feasible solution for the relaxed problem where

all stations are assumed to have infinite capacity.

Restriction of the Solution Space for Meetings

Several trial runs were made in which it was experienced that, for the places where
meetings between trains take place, the differences between the outcomes of the heuristi-
cally solved relaxed problem and the original problem solved to optimality were small, if
any. This constitutes the rule of thumb for the solution space restriction, in that meetings
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between an eastbound and a westbound train were restricted to happen in one of the
five stations only: the station in which the meeting occurs in the relaxed problem and
two neighboring stations away from this meeting station in each direction. Note that
meeting constraints (22)–(30) are defined in such a way that feasibility is always guaran-
teed. Constraint (22) forces the meeting to happen in one of the stations where meeting
variables are defined. The other constraints guarantee satisfaction of the arrive–depart
headway constraints in that station and also prevent meeting on the mainline track section.
Thus, upon finding the restricted region for meetings, all of the remaining constraints and
binary variables that allowed meetings between these two trains in other stations were
kicked out of the model. The heuristic was coded in AIMMS. Afterwards, through proper
index domain definitions of the variables and constraints, the model with the unnecessary
constraints eliminated was automatically generated with AIMMS.

Restriction of the Solution Space for Followings and Overtakes

The case with followings and overtakes is not simple as in the meeting case. In this
case, radical differences may arise between the heuristic outcome and the actual optimal
solution. We cannot know where the fast train will “catch” the slow one (or if it will ever
catch it) without actually getting the optimal solution because this depends on the solution
itself. If the fast train is delayed in conflict resolutions before catching the slow train, then
the distance between them will increase. On the other hand, if the slow train is delayed
in conflict resolutions before the fast train catches up, then the distance between them
will decrease. Therefore, the model cannot be easily reduced as much as it was for the
meeting case. However, some improvements can still be made. Indeed, the fast train can
catch up to the slow train in the earliest possible place if the fast train is never stopped in
conflicts before catching up to the slow train, whereas the slow train is stopped and forced
to wait in all conflicts before the fast train catches up. Such a case can be simulated by
temporarily assigning a very high weight on the fast train’s delay (e.g., 5000 min/min) and
very low weight on the slow train’s delay (i.e., 0.0001 min/min). Optionally, the fast train
can be introduced into the line with a large amount of already experienced unrecoverable
delay, whereas the slow train would have a long recovery time. In these cases, the heuristic
will always give priority to the fast train and never give priority to the slow train in their
respective conflicts. Thus, it will be possible to determine the earliest place that the fast
train can catch and overtake the slow train. For all of the train couples moving in the
same direction, for which the slow one enters the system before the fast one, such extreme
values were set and the heuristic was run once. Then, it was assumed that the overtake
can happen in one of the four stations upstream (in the involved trains’ direction) of the
heuristic outcome or later. All binary variables for the stations upstream of this earliest
possible station were fixed (not eliminated to be on the safe side for modeling station and
siding capacities). If any fast train entered the line earlier than a slow train in the same
direction by enough of a margin, then we assumed that the fast train would get further
away and that these two trains would never interact, thus all related binary variables and
constraints were then eliminated.

Use of a “Min–Max” Problem for the Initial Feasible Solution

We observed that if the objective function were formulated as the maximum (weighted)
delay, the solver then found the optimal solution quicker than the formulation with total
(weighted) delay as the objective function. Solvers can accept initial feasible solutions and
use these solutions to expedite the solution procedure by providing good upper bounds.
In all of these problems, before solving the actual problem with total weighted delay, a
problem with the maximum weighted delay objective was solved as coupled with the
heuristic problem reduction algorithm mentioned above. The optimal solution of this
problem was then fed as the initial feasible solution. At that stage, a new constraint was
added to the model that prevents the maximum delay value from being higher than the
optimal value of the min-max problem. This procedure proved to be quite effective in
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reducing running time. It also provided the opportunity to obtain better-quality solutions
(from a railway operation perspective, which prefers to distribute the delay among multiple
trains over delaying a single train excessively). This is illustrated in Table 6. Among the
two alternative solutions given in the table, if the objective is to minimize total delay, then
the algorithm would choose Solution 2. However, from a railway operation perspective,
Solution 1 is more preferable. Thus, a multiobjective optimization approach was adopted.
The final objective is still to minimize total weighted delay, but the maximum weighted
delay will be constrained not to be higher than the maximum weighted delay obtained in
the initial feasible solution with the maximum weighted delay objective.

Table 6. An example of an unfavorable solution by total delay approach.

Delays in Solution 1 (min) Delays in Solution 2 (min)

Train 1 5 29
Train 2 5 0
Train 3 5 0
Train 4 5 0
Train 5 5 0
Train 6 5 0

Before presenting the numerical tests and results, as a summary, the entire algorithm
works in the following execution order: gathering all parameter values, running the solution
space restriction algorithm for meetings, running the solution space restriction algorithm
for followings and overtakes, construction of the model, identification of lazy constraints,
solving the model with the maximum weighted delay objective and solving the model with
the total weighted delay objective.

4. Numerical Tests and Results

In this section, we present the numerical tests and the results of the solved instances.

4.1. Railway Line

The model was implemented on a hypothetical railway line. Its topology was based
on the historical topology of the Arifiye–Çukurhisar section of Turkey’s İstanbul–Ankara
conventional railway line. The entire section is single-track, and Arifiye and Çukurhisar are
the western and eastern termini, respectively. In the trial runs, only the topology (names of
the stations and sidings and numbers of secondary tracks in the stations and sidings) was
real. The minimum running times and train types (which will be presented below) were all
hypothetical. In this section, instead of station names, only station numbers, which increase
in the eastbound direction, will be used. In the line, stations 5, 8, 11, 13 and 15 have one
secondary line and the others, except for the two termini with assumed infinite capacities,
have two secondary lines. This information is again from the historical topology of the line.

4.2. Trains

We assumed that three different types of trains operate over the line: fast, semi-fast
and slow. All types of trains have their respective minimum running times defined in
each mainline track segment. We assigned odd numbers to the eastbound trains and even
numbers to the westbound trains. Trains were numbered with respect to speed categories;
fast (and higher priority) trains were assigned the smaller numbers. Among trains of
the same type, the one entering the line first got the smaller number (hence the higher
priority). Because we solved a weighted delay problem, every train had to be assigned a
weight. Unsurprisingly, faster trains had higher weights. Thus, their delays worsened the
objective function more than the slower trains’ delays. Trains in the problem instances are
summarized in Table 7.
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Table 7. Trains in the problem instances.

Train Number Direction Train Type Weight

1 Eastbound Fast 6
2 Westbound Fast 6
3 Eastbound Fast 6
4 Westbound Semi-fast 4
5 Eastbound Semi-fast 4
6 Westbound Semi-fast 4
7 Eastbound Semi-fast 4
8 Westbound Slow 3
9 Eastbound Slow 3
10 Westbound Slow 3
11 Eastbound Slow 3

4.2.1. Orders and Frequency of Trains

The order in which trains entered the line had a great effect on the actual difficulty of
the instance. When a faster (higher priority) train entered the line before a slower (lower
priority) train in the same direction, no overtaking was allowed between those two trains.
Thus, all binary variables related to the following and overtaking of these two trains could
be either fixed or omitted from the model (see Section 3.2.2). Furthermore, because the
distance between these two trains could be safely assumed to grow, virtually all headway
constraints between these two trains would be guaranteed to be nonbinding. Given these
facts, one can indeed easily “cheat” by selecting the problem instances properly, i.e., sending
the faster trains first and then the slower trains. This was not the case for this study. In all
instances, trains entered the line from the slowest to the fastest. In Table 8, the entrance
time orders are given. The order is from the left to the right. Different instances are defined
by the entrance times of the trains plus the entrance delays. However, the entrance time
orders do not differ. All of them follow the same scheme. In the table, “s” stands for “slow”,
“s-f” stands for “semi-fast” and “f” stands for “fast”.

Table 8. Train entrance time orders.

Eastbound 9 (s) 11 (s) 5 (s-f) 7 (s-f) 1 (f) 3 (f)
Westbound 8 (s) 10 (s) 4 (s-f) 6 (s-f) 2 (f) -

Furthermore, the headways between the entrances of the trains would produce an
effect. If the trains are too infrequent, most (if not all) of the following- and overtaking-
related constraints would be nonbinding. Because this will make respective binary variables
useless, a solution space restriction algorithm will fix or eliminate most of them. Table 9
illustrates how the entrance time order can affect problem complexity. Because the solution
space restriction algorithm does not eliminate any continuous variables, no difference in
the number of them would be observed. The reduction is in the number of constraints
and binary variables. It can be clearly seen that, with the same number of trains, it would
be possible to create instances that are much easier to solve. However, we did not adopt
this approach. Instead, in these instances, trains were introduced into the system in small
headways and from the slowest to the fastest. Readers can think our approach as a “worst-
case scenario” approach.

To further demonstrate the effect of train order and frequency on problem difficulty
(or complexity), a special instance with eight eastbound and eight westbound trains was
prepared. In this instance, trains were introduced into the system from the fastest to the
slowest. In addition, the headways between train entrances were each one hour. The
unsolved state (infeasible schedule) of this special instance is given in Figure 3.
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Table 9. Effect of train order and number of eastbound and westbound trains on problem size.

Problem Type # of Trains # of Binary Variables # of Constraints

Fastest to slowest, large intervals 3 + 3 63 662
Fastest to slowest, large intervals 6 + 5 167 3667
Slowest to fastest, small intervals 3 + 3 119 1571
Slowest to fastest, small intervals 6 + 5 462 >41,000
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Even from the unsolved state, one can observe the simplicity of this instance. Because
fast trains entered the line before slow trains, no trailing train could catch up to the train in
front. Even in their smallest form, the headways between two trains in the same direction at
any point were at least 60 min. This implies that no overtaking constraints and no following
constraints were active. Moreover, station capacity constraints will not be active at all.
Lastly, some of the trains moving in opposite directions will never meet within the line.
The problem space restriction algorithm and lazy constraint attribute will recognize such
special structures and make the instance even easier to solve. In Figure 4, the solved state
of this special instance is shown. Unsurprisingly, this special instance was solved within
only 7 s. Therefore, despite having more trains, this special instance was much easier than
the 6 + 5 train instances that will be presented below.

Encouraged by the success in solving the 8 + 8 train special instance, we also tried a
13 + 13 problem formed with the same logic. Even the 13 + 13 train problem was solved in
80 s. This implies that a 13 + 13 instance can be easier than a 6 + 5 instance if it is specially
formed. These findings suggest that the number of trains and stations cannot accurately
define the difficulty of the problem instance. The frequency and entrance time order of the
trains are also required to define the difficulty.

4.2.2. Minimum Running Times of Trains

A single minimum running time scheme was used for all the instances. It is given in
Table 10. In the table, the number in the row of station s corresponds to minimum running
time between stations s and s + 1. Hence, the row of Station 18 is empty.
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Table 10. Minimum running times (minutes).

TRAIN TYPE

Station Number Fast Semi-Fast Slow

1 12 15 18
2 11 14 17
3 9 11 14
4 8 10 12
5 6 8 10
6 7 9 11
7 9 11 14
8 7 9 11
9 10 12 15
10 8 10 12
11 8 10 12
12 9 11 14
13 6 8 10
14 11 14 17
15 11 14 17
16 5 6 8
17 9 11 14
18 - - -

4.2.3. Recovery Times and Entrance Delays of the Trains

Every train enters the line either with some recovery time or unrecoverable delay.
Therefore, the generic model accepts recovery times and initial unrecoverable delays as
inputs, either explicitly or implicitly, hidden within the relation between the scheduled
arrival time and the earliest possible arrival time. The earliest possible arrival time of a
train is simply the sum of all minimum running times and the minimum dwell times of
that train added to the entrance time of that train. Scheduled arrival time is a parameter
described in Table 3.

4.2.4. Entrance Times of the Trains

Trains were introduced into the line at random times. However, the same order given
in Table 4 and regarding the high frequency principle was always respected. The entrance
times are given in Table 11.
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Table 11. Entrance times of the trains into the system, with respect to time zero (minutes).

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9 Train 10 Train 11

Instance 1 79 60 95 39 40 49 59 6 9 23 26
Instance 2 82 57 92 42 43 46 56 9 12 26 23
Instance 3 46 66 56 37 22 56 33 7 2 19 12
Instance 4 67 72 81 34 33 54 51 1 4 16 19
Instance 5 73 70 85 41 43 56 56 9 5 26 25
Instance 6 72 54 88 33 39 44 58 1 9 14 19
Instance 7 76 67 91 37 37 48 57 2 8 18 27
Instance 8 59 69 75 38 31 54 44 9 1 27 19
Instance 9 82 72 100 41 44 53 62 9 1 23 26

Instance 10 67 54 83 28 33 44 53 5 2 16 13

4.2.5. Minimum Headways between Trains

The concept of minimum headway between any successive train’s movements on a
particular track element, which would be enforced by the signaling system to maintain
operational safety, was adopted.

Three different minimum headways were defined: minimum arrive–arrive headway,
minimum depart–depart headway and minimum arrive–depart headway. In reality, their
values may be different for each train couple and each station. However, for simplicity,
they were assumed to be constant in all the instances. Table 12 shows the minimum
headway values.

Table 12. Minimum headways.

Min Arrive–Arrive Headway (min) Min Depart–Depart Headway (min) Arrive–Depart Headway (min)

2 3 2

4.3. Results of the Test Runs

The constructed instances were run on a computer with an Intel Core i5-2400 processor
with 3.1 GHz processor speed and 6.0 GB RAM. In Figure 5, the initial state of Instance 1 is
given. The figure shows trains’ free paths with their minimum running times. Please note
that the instance shown in Figure 5 is much more difficult to solve than that in Figure 3
because of the unfavorable entrance time orders and close entrance times.
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As seen in Figure 6, all conflicts are resolved. In this instance, there was a congested
area between stations 7 and 10. None of the station or siding capacities were violated in the
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final solution. In Figure 7, the congested area in Figure 6 is zoomed in to better visualize the
conflict resolutions and station track occupations. In Figure 7, the numbers of secondary
lines (abbreviated as SL) in the stations are also given. As seen in this figure, no station
capacity was violated in the rescheduling.
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In Figure 6, the final solution generated with the algorithm is presented.
In Table 13, the summary of the solution of Instance 1 is given. The results of all

ten instances (together with Instance 1) are summarized in Table 14. Despite the numbers
of eastbound and westbound trains being the same in every instance, there are slight
differences observed in the number of binary variables created with the solution space
restriction algorithm (described in Section 3.2.2). Once a decision variable is fixed, the
solver treats that variable as a parameter and does not count it in the total number of
variables. Lastly, the number of constraints seem to be relatively high, but very few of these
constraints were actually binding at any iteration of the algorithm. Most of them were lazy
constraints as defined in Section 3.2.1. They were explicitly considered only if they were
violated in the LP relaxation.
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Table 13. Summary of the solution of Instance 1.

Train Number Entrance Time (min) Arrival Time
(min)

Desired Arrival
Time (min)

Arrival Delay
(min) Weight Weighted Delay (min)

1 79 248 225 23 6 138
2 60 232 206 26 6 156
3 95 273 241 32 6 192
4 39 245 222 23 4 92
5 40 240 223 17 4 68
6 49 248 232 16 4 64
7 59 289 242 47 4 188
8 6 287 232 55 3 165
9 9 271 235 36 3 108

10 23 305 249 56 3 168
11 26 305 252 53 3 159

Table 14. Summary of all the final solutions of every instance.

Instance
Number

# of Binary
Variables

# of Continuous
Variables # of Constraints Max. Weighted

Delay (min)
Total Weighted

Delay (min) Solution Time (s)

1 457 387 38501 192 1498 84
2 463 387 38462 192 1383 96
3 501 387 38694 198 1562 101
4 445 387 37828 195 1593 87
5 493 387 38694 204 1384 108
6 498 387 39052 198 1496 116
7 461 387 38069 198 1408 119
8 515 387 39049 201 1466 164
9 462 387 38349 192 1453 130

10 467 387 38479 204 1370 105

Experiments on a Small-Sized Problem Instance to Demonstrate the Effects of
Speed-Up Methods

Due the intractable nature of train rescheduling problems, it was not possible to solve
the larger sized instances in a reasonable amount of time without speed-up routines. This
fact makes the observing the effects of the individual speed-up routines impossible in the
largest instances. Hence, to demonstrate the effects, we set up a 4 + 4 train problem instance.
In this instance, the train entrance orders and frequencies follow the same schemes with
the other runs. Minimum running times, weights and minimum headways were also the
same. Train orders and entrance times are given in Tables 15 and 16, respectively.

Table 15. Train orders in the 4 + 4 train instance.

Train Numbers Directions Train Types Weights

1 Eastbound Fast 6
2 Westbound Fast 6
3 Eastbound Semi-fast 6
4 Westbound Semi-fast 4
5 Eastbound Slow 4
6 Westbound Slow 4
7 Eastbound Slow 4
8 Westbound Slow 3

Table 16. Entrance times of the trains into the line in the 4 + 4 train instance with respect to time 0.

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8

Entrance
times (min) 50 70 35 30 5 50 20 30
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The instance was run using the same hardware and software as the previous in-
stances and adopting four different approaches: no speed-up (Base), using only the lazy
constraint attribute (Lazy), using the lazy constraint attribute with the solution space re-
striction algorithm (Lazy + Restr) and finally the multiobjective added onto the top of
them (Lazy + Restr + Multi). At every minute, the optimality gaps were recorded; the
results are shown in Figure 8. Figure 8 clearly displays the performance differences of the
approaches. In Table 17, it can be seen what happens if the solution were not interrupted
until the end (optimal solution). This table also demonstrates the effects of the speed-up
routines on the problem tractability. In addition, for this instance, it can be seen that the
solution restriction algorithm found the optimal solution. Given the development of the
approaches in line with the railway operation practices, we concluded that this algorithm
will find the optimal solution most of the time. In Table 18, the arrival time and delay
data of trains in the final solution are given. The models with and without the solution
space restriction algorithm produced exactly the same solution as each other. The last one
naturally produced a different objective value because it was a multiobjective problem.
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Table 17. Outcomes of the instance with different approaches.

Instance Label # of Binary
Variables

# of Continuous
Variables # of Constraints Total Weighted

Delay (min) Computation Time (s)

Base 634 281 12,164 707 1156
Lazy 634 281 12,164 707 711

Lazy + Restr. 298 281 11,073 707 93
Lazy + Restr + Multi 298 281 11,081 797 3

Table 18. Summary of the optimal solution of the 4 + 4 instance.

Train Number Entrance Time
(min)

Arrival Time
(min)

Desired Arrival
Time (min)

Arrival Delay
(min) Weight Weighted Delay

(min)

1 50 208 188 20 6 120
2 10 228 211 17 6 102
3 35 252 213 39 4 156
4 30 245 231 14 4 56
5 5 248 229 19 3 57
6 50 263 235 28 3 84
7 20 278 245 33 3 99
8 70 266 255 11 3 33

5. Discussion and Conclusions

In this study, we aimed to develop a MILP model for rescheduling train traffic on a
single-track railway line. This model takes into account the station and siding capacity
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constraints by enumeration. The train scheduling problem is an NP-complete problem with
a structure similar to an extremely difficult version of the job–shop scheduling problem.
The combinatorial structure of this problem dominated all of the trial runs. Without any
heuristic improvement, the solver could solve only small instances, e.g., a 3 + 3 train
problem (three eastbound plus three westbound trains). However, all of the heuristic
improvements helped to increase this number to, for now, 6 + 5 trains. The algorithm
could solve a 6 + 5 train problem within a duration of less than three minutes. This is a
considerable improvement. In real operations, rescheduling problems have to be solved in
a very short time because they have to be solved in a dynamic environment. The model
treats the trains as static entities, but in reality, they would be moving. Note that the
instances were chosen carefully to be as difficult as possible. Normally, railway authorities
tend to “speed-fleet” the trains in timetabling. That means trains in the same direction
enter the line segment in the order of decreasing speed, thus minimizing the number of
potential following and overtaking conflicts. However, in our instances, the scheme is
just the opposite. Trains were introduced into the line in the order of increasing speed,
thus maximizing the potential following and overtaking conflicts. Trains were introduced
into the system with headways from 10 to 20 min/train/direction, which is indeed an
unrealistically high train frequency for such a long (18 stations, approximately 160 km)
single-track line. This unrealistically high frequency of trains was, again (like the difficulty
created in choosing the order of trains), chosen for observing some kind of worst-case
performance [1].

The solution space restriction algorithm shortened the solution time of the model
quite radically. Indeed, in its presolve stage, CPLEX applies its own algorithms to eliminate
some of the constraints and variables. However, we can be more aggressive in elimination
because our algorithm is indeed based on a solution of the problem, albeit a relaxed
version (station and siding capacities). Because this algorithm reduces the number of
possible meeting locations, it is not possible to provide formal proof of the optimality of the
solutions. However, based on our own knowledge and experience in railway operations,
we can argue that, in the optimal solution, it is highly unlikely that the meeting will need
to be outside the region defined by this restriction algorithm. In the trials, the length of
this region was five stations. Carrying the meeting point outside of this region creates an
excessive waiting time for one of the trains, and this most probably contradicts with the
maximum weighted delay objective.

The multiobjective approach provided a surprisingly good boost for solution speed.
It provided on the order of 90% improvement in the computation time. In the trial
runs, it was observed that most of the time was consumed by the first problem, the
minimum–maximum weighted delay. After the solution of the first problem, the second
and major problem were indeed very quickly solved in only a few seconds. This was
most probably due to the properties and capabilities of CPLEX. Both problems have the
same feasibility domains, thus any combination of decision variable values that is feasible
for one problem is also feasible for the other. Most probably, CPLEX can improve the
solution with simple time shifts and quickly arrive at the optimal solution. Because the
problem was solved in a heuristically restricted solution space, it is not possible to present
a formal proof of optimality. However, at least the modeling approach was designed
towards obtaining a Pareto-optimal solution because the problem was converted into a
multiobjective one. However, this is not a very typical multiobjective problem. There
is a slight contradiction between the objectives (see Table 2), and additionally, a positive
correlation exists. The positive correlation between two objectives may have also helped
increase the solution speed.

6 + 5 trains may seem to be a small problem instance, but in reality, it is not. Reschedul-
ing algorithms have to be run in dynamic environments. Trains are moving, and they can
always gain additional primary delays. This necessitates the model to be rerun several
times. This puts a practical limit to the time horizon of a rescheduling problem. Time
horizon is a preset limit to the scope of the rescheduling problem. In the literature on
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rescheduling, quite narrow time horizons (e.g., less than one hour) are commonly found.
In this study, the length of the time horizon was, however, more than two hours from
initial departure time of the first train to the resolution of the last conflict (See Figure 6).
Furthermore, as previously stated, we tested our algorithm on instances with relatively
short headways for a single-track railway, averaging between 10–20 min in one direction,
to see the worst-case performance of the algorithm. In addition, in these instances, we
introduced the trains into the system in an order that maximized the number of following
and overtaking conflicts. To the best of our knowledge, no other study analyzes such a
worst-case performance. Thus, 6 + 5 is quite a high number of trains to be rescheduled on
a single-track railway line, given the worst case approach (small headways and order of
the trains specially chosen to maximize the number of intertrain conflicts to be resolved)
used. Lastly, we considered quite a long stretch of a single-track railway, with 17 stations
included. Recent entries in the literature have been generally focused on double-track lines
in which there are no meetings and the number of secondary lines is not a major problem,
often not considered at all. However, there are still single-track railways all over the world.
We consider these facts as the significance and contribution of our study.

Like all studies in this field, our study has some limitations, assumptions and simplifi-
cations. Conflict resolution often brings unplanned stops to some trains, and these increase
minimum running times due to the typically slow acceleration and braking capabilities
of rail vehicles. Our model assumes that minimum running times are independent from
acceleration and braking. Indeed, acceleration and braking effects are partially and implic-
itly reflected in the numerical values of the minimum headways. Moreover, in most cases,
waiting times (due to conflict resolutions) are a lot longer than the running time increases
that acceleration and braking can cause; therefore, we conclude that this limitation would
not be a real performance deficit. We note that, on the other hand, neglecting time losses
due to acceleration and braking is quite a common practice in the literature, as incorpo-
rating them makes the underlying mathematical model nonlinear. Another limitation of
the study is its pure focus on rescheduling. Although we present a generic model that
can be extended to train scheduling at a tactical level (timetabling), this is not the main
purpose of the study. The study was designed with rescheduling in mind. Therefore, no
timetable was prepared in the process, and no timetable quality factors (e.g., meeting the
passenger or freight demand, periodicity, obedience to the desired train timing intervals,
timetable robustness, energy efficiency, etc.) have been considered. We did not consider
other tactical planning issues such as crew scheduling, rolling stock scheduling, etc. One
of the unique features of our study is that we used a two-objective model, i.e., trying to
minimize both the weighted maximum delay and the weighted total delay. Minimizing
delays over such objectives would certainly help avoid losing feasibility in rolling stock
circulation and crew circulation.

Future work on this model will include adopting cleverer decomposition algorithms.
In our mathematical model, we defined meetings in stations with more than one secondary
track by two binary variables per station per train couple. This puts a huge computational
workload onto the model, and it was unnecessary most cases. Such variables are needed
only when siding capacity constraints for more than one eastbound train and more than
one westbound train will be binding at a particular station. Thus, future work will include
such decomposition algorithms that these variables may also be “lazy”.
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