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Synthesis of a magnetic 
polystyrene‑supported 
Cu(II)‑containing heterocyclic 
complex as a magnetically 
separable and reusable 
catalyst for the preparation 
of N‑sulfonyl‑N‑aryl tetrazoles
Mahmoud Nasrollahzadeh 1*, Narjes Motahharifar 1, Khatereh Pakzad 1, Zahra Khorsandi 1,5, 
Talat Baran 3, Jinghan Wang 4, Benjamin Kruppke 2 & Hossein Ali Khonakdar 2,5

In this work, a cost‑effective, environmentally friendly, and convenient method for synthesizing 
a novel heterogeneous catalyst via modification of polystyrene using tetrazole‑copper magnetic 
complex [Ps@Tet‑Cu(II)@Fe3O4] has been successfully developed. The synthesized complex was 
analyzed using TEM (transmission electron microscopy), HRTEM (high resolution‑transmission 
electron microscopy), STEM (scanning transmission electron microscopy), FFT (Fast Fourier 
transform), XRD (X‑ray diffraction), FT‑IR (Fourier transform‑infrared spectroscopy), TG/DTG 
(Thermogravimetry and differential thermogravimetry), ICP‑OES (Inductively coupled plasma‑optical 
emission spectrometry), Vibrating sample magnetometer (VSM), EDS (energy dispersive X‑ray 
spectroscopy), and elemental mapping. N‑Sulfonyl‑N‑aryl tetrazoles were synthesized in high yields 
from N‑sulfonyl‑N‑aryl cyanamides and sodium azide using Ps@Tet‑Cu(II)@Fe3O4 nanocatalyst. The 
Ps@Tet‑Cu(II)@Fe3O4 complex can be recycled and reused easily multiple times using an external 
magnet without significant loss of catalytic activity.

Catalysts have been used widely for chemical transformations; especially organic reactions. However, the effective 
separation of homogeneous catalysts is a remarkable scientific and engineering challenge. The use of hetero-
geneous catalysts is an efficient method to solve this problem. Heterogeneous catalysts have many advantages 
such as easy recovery and recyclability from the reaction media using centrifugation, filtration, and magnetic 
 alteration1–10. Heterogeneous catalysts can be immobilized on various supports such as graphene, polymers, 
magnetic nanoparticles, zeolite, carbon, mesoporous silica, and silica sol–gels11–26. In recent decades, polymer-
based supports have been studied extensively due to their several specifications, well-controlled structure, and 
ease of  functionalization15–21. For example, polystyrene (PS) is one of the extensively used polymers. The intro-
duction of various functions to PS produces effective nanocomposite supports for heterogeneous  catalysts17,20,21.

Nanomaterials are one of the most important types of compounds, which can be applied in different  fields27–37. 
Metal nanoparticles (MNPs) are the most important  nanomaterials38–45. MNPs have most of the particular 
features of an appropriate catalyst, including low price, great activity, high surface area, low toxicity, significant 
thermal stability, simple recoverability, and excellent  recyclability46–56. From this perspective, MNPs-supported 
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catalysts are associated with green chemistry and  sustainability57–65. Among various MNPs, copper-based catalysts 
represent considerable catalytic activities. Copper has received wide attention as an effective transition metal 
owing to its remarkable advantages such as numerous sources, low cost, diversity, low environmental hazards, 
and extensive  applications66–72. In recent years, scientists have tried to decrease the costs of organic reactions by 
replacing palladium with cheap metals such as  copper73–75.

Today, researchers are paying a lot of attention to the field of  catalysis76–82. Recently, magnetic NPs have been 
widely used as catalyst supports for different organic  transformations13,18,20,57. The most important features of 
magnetic nanocatalysts include their high surface-to-volume ratio, which leads to high catalytic activities, high 
dispersion, and excellent stability. Moreover, these catalysts contain the green advantage of suitable and efficient 
recyclability, owing to their simplicity of separation using a magnet. Catalysts supported on super magnetic NPs 
have successfully catalyzed various organic  reactions58,59. Among heterogeneous catalysts, magnetite/polymer 
nanocomposite is one of the most effective nanocomposites.  Fe3O4 NPs dispersed on polymer surfaces are 
superparamagnetic catalysts in various chemical  reactions17.

Tetrazole is an important synthetic compound with wide applications in various fields such as pharmacology, 
biochemistry, medicinal chemistry, photography, and imaging chemicals. In fact, various tetrazoles; especially 
5-substituted 1H-tetrazoles and aminotetrazoles have been applied to synthesize biologically active compounds 
in recent  years13,83–85. The [2 + 3] cycloaddition reaction is a conventional method for the synthesis of tetrazoles. 
Given the medicinal applications of tetrazoles, different synthetic methodologies have been widely developed 
for their synthesis.13,66,67,85.

Among tetrazoles, aminotetrazoles have received much attention because of their wide-ranging applica-
tions. However, the lack of convenient methods for the synthesis of these compounds or their derivatives such 
as N-sulfonyl-N-aryl tetrazoles strongly restricts their potential medical  applications66,67,85. Thus, it is desirable 
to develop a convenient and efficient method for the synthesis of N-sulfonyl-N-aryl tetrazoles.

Following our research on the progress of modern catalytic systems, in this study, copper NPs immobilized 
on magnetic tetrazole‐functionalized polystyrene [Ps@Tet-Cu(II)@Fe3O4] have been investigated as a highly 
effective catalyst (Scheme 1). After the characterization of the synthesized complex by various techniques, the 
catalytic activity of the complex in the synthesis of N-sulfonyl-N-aryl tetrazoles was studied (Scheme 2).

Experimental
Instruments and reagents. TEM, STEM, and NMR spectra were recorded on JEM-F200 JEOL, JEM-
F200-TFEG-JEOL Ltd, and Bruker Avance DRX 600  MHz instruments, respectively. The FT-IR spectra and 
XRD patterns of the samples were obtained using a Perkin Elmer 100 spectrophotometer and a Philips model 
PW 1373 diffractometer, respectively. The elemental compositions of the synthesized nanoparticle were deter-
mined by EDS coupled with Map. STA 1500 Rheometric-Scientific conducted TGA measurements under  N2 
flow. VSM analysis was performed using a magnetometer at 298 K (LBKFB).

Synthesis of Ps@Tet‑Cu(II)@Fe3O4. In a 250 mL beaker, a solution of 5-amino-1H-tetrazole (5 mmol), 
TMOS [(3-chloropropyl)trimethoxysilane)] (5 mmol) in DMF (60 mL) solvent was stirred for 24 h at 90 ℃. 
Chloromethylated polystyrene (2 g) and potassium carbonate (5 mmol) were then added to the reaction media, 
which was stirred for another 24 h at 120 ℃. After cooling the reaction mixture, the obtained Ps@Tet was fil-
trated, washed with DMF, and dried at 70 °C. Afterward, 1 g of Ps@Tet, 1.5 g of  Fe3O4 NPs, and 50 mL of toluene 
were mixed vigorously under reflux conditions for 24 h. The synthesized Ps@Tet@Fe3O4 was then separated 
using an external magnet, washed with toluene, and dried at 70 °C. In the next step, 1 g of the obtained Ps@
Tet@Fe3O4 and 0.5 g of  CuCl2.6H2O were mixed constantly in 50 mL of ethanol solvent at 85 °C for one day. 
Upon completion of the reaction, the synthesized magnetic complex Ps@Tet-Cu(II)@Fe3O4 was separated using 
a magnet, washed with EtOH, and dried at 70 °C (Scheme 1).

General process for the synthesis of N‑sulfonyl‑N‑aryl tetrazoles. In a 50 mL beaker, N-sulfonyl-
N-aryl cyanamide (1 mmol),  NaN3 (1.5 mmol), and Ps@Tet-Cu(II)@Fe3O4 (0.05 g) catalyst were continuously 
mixed in DMF (10 mL) solvent at 120 ℃. The progress of the reaction was followed by TLC. After completion of 
the reaction, the magnetic catalyst was separated by an external magnet. Afterward, 25 mL of hydrochloric acid 
(2 N) and 25 mL of ethyl acetate were added to the reaction mixture, which was then stirred vigorously. After the 
separation of the organic phase, the aqueous phase was extracted by ethyl acetate (25 mL) three times and the 
organic layer was concentrated. The product was then purified by recrystallization from ethanol. All products 
were identified by NMR and FT-IR  spectroscopy66,67,85.

Characterization data of new product. 4‑Bromo‑N‑(3‑bromophenyl)‑N‑(1H‑tetrazol‑5‑yl)benzenesul‑
fonamide. FT-IR (KBr,  cm−1) 3445, 3137, 1632, 1576, 1468, 1398, 1364, 1232, 1171, 966, 813, 818, 747, 690, 
608, 577, 548, 502; 1H NMR (600 MHz, DMSO-d6) δH = 7.83 (d, J = 8.6 Hz, 2H), 7.73 (d, J = 8.6 Hz, 2H), 7.50 (d, 
J = 8.0 Hz, 1H), 7.36 (s, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H); 13C NMR (150 MHz, DMSO-d6) 
δC = 159.2, 140.5, 137.1, 132.1, 131.0, 130.6, 130.1, 129.8, 127.7, 126.2, 121.2; Anal. Calcd for  C13H9Br2N5O2S: C, 
34.01; H, 1.98; N, 15.25. Found: C, 34.13; H, 2.12; N, 15.37.

Result and discussion
Characterization of Ps@Tet‑Cu(II)@Fe3O4. The XRD patterns of the synthesized Ps@Tet@Fe3O4 and 
Ps@Tet-Cu(II)@Fe3O4 complex are illustrated in Fig. 1. The XRD patterns demonstrate the presence of  Fe3O4 
NPs with diffraction angles of 30.2°, 35.8°, 43.5°, 53.7°, 57.2°, and 62.8°, which are assigned to the crystal planes 
of (220), (311), (400), (511), (440), and (533),  respectively67.
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FT-IR analysis was applied to confirm the presence of functional groups in complex interactions. The FT-IR 
spectra of the synthesized Ps@Tet, Ps@Tet@Fe3O4 and Ps@Tet-Cu(II)@Fe3O4 complex are illustrated in Fig. 2. 
The peaks at around 1153  cm-1, 1492  cm-1, 1650  cm-1, and 2922  cm-1 correspond to Si–O, N=N, C=N, and C–H 
 (sp3) stretching vibrations, respectively. In addition, the peaks at 550  cm−1 and 3300–3450  cm-1 are due to the 
Fe–O bond stretching and O–H functional groups of  Fe3O4,  respectively67.

The TEM analysis of Ps@Tet, Ps@Tet@Fe3O4 and Ps@Tet-Cu(II)@Fe3O4 was applied to confirm the forma-
tion of Cu NPs on the surface of Ps@Tet@Fe3O4 (Figs. 3, 4, 5). As observed in Figs. 3, 4, 5, Cu NPs have been 

Scheme 1.  Synthesis of Ps@Tet-Cu(II)@Fe3O4.
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Scheme 2.  Synthesis of N-sulfonyl-N-aryl tetrazoles.

Figure 1.  XRD powder pattern of Ps@Tet@Fe3O4 (A) and Ps@Tet-Cu(II)@Fe3O4 (B).
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successfully loaded on the Ps@Tet@Fe3O4. The TEM and HRTEM images illustrate the fine dispersion of Cu NPs 
with the size of 8–10 nm on the Ps@Tet@Fe3O4 surface, accumulated in sites corresponding to iron oxide NPs. 
The HRTEM and FFT images of the Ps@Tet-Cu(II)@Fe3O4 show that the nanoparticles are highly crystalline. 
The STEM image confirms a homogeneously assembled nanostructured catalyst (Figs. 4 and 5).

The EDS spectroscopy was used to determine the composition of Ps@Tet@Fe3O4 and Ps@Tet-Cu(II)@Fe3O4 
complex (Fig. 6). The EDS analysis shows the presence of desired elements in their chemical structure. Figure 6 
confirms that C, O, Si, and Fe are the main components present in both Ps@Tet@Fe3O4 and Ps@Tet-Cu(II)@Fe3O4 
along with Cu and Cl elements, which are present only in the Ps@Tet-Cu(II)@Fe3O4 complex, further reaffirm-
ing the formation of the final catalyst. The amount of Cu incorporated into the Ps@Tet-Cu(II)@Fe3O4 complex 
was found to be 19.7 w%, as measured by EDS. According to ICP-OES analysis, the amount of Cu is 7.6 wt.%.

Elemental mapping of Ps@Tet, Ps@Tet@Fe3O4, and Ps@Tet-Cu(II)@Fe3O4 are presented in Figs. 7, 8, 9. 
Elemental mapping was performed to determine the distribution of the elements on Ps@Tet-Cu(II)@Fe3O4 
complex surface. Figures 7, 8, 9 confirm that C, O, Si, and N are main components present in Ps@Tet, Ps@Tet@
Fe3O4, and Ps@Tet-Cu(II)@Fe3O4, along with Fe element, which was present only in the Ps@Tet@Fe3O4 and 
Ps@Tet-Cu(II)@Fe3O4 (Figs. 8 and 9). Additionally, the presence of Cl and Cu was determined using elemental 
mapping (Fig. 9); which indicated the uniform dispersion of Cu on the Ps@Tet@Fe3O4 surface.

The magnetic properties of the synthesized Ps@Tet-Cu(II)@Fe3O4 complex were studied using VSM, as shown 
in Fig. 10. The specific saturation magnetization values (Ms) were calculated to be 60 and 20 emu/g for  Fe3O4 
NPs and Ps@Tet-Cu(II)@Fe3O4 complex, respectively, indicating that the modification of the surface and the 
addition of portions have led to decreased saturation magnetizations. Therefore, this complex has superpara-
magnetic characteristics and high magnetization values, enabling its separation by an external magnet from the 
reaction mixture.

Figure 2.  FT‐IR spectra of Ps@Tet (A), Ps@Tet@Fe3O4 (B) and Ps@Tet-Cu(II)@Fe3O4 (C).

Figure 3.  TEM images of Ps@Tet.
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The TG/DTG analysis is a great technique to measure thermal stability. Therefore, the thermal stability of 
the synthesized complex was checked over a temperature range of 30–700 ℃ (Fig. 11). The polymer-supported 
Cu(II) complex is stable up to 300 ℃. The first step of degradation (up to 300 ℃) is due to the removal of water 
and organic solvents. The second mass reduction is related to the degradation of organic groups such as 5-amino-
1H-tetrazole in the temperature range of 300–410 ℃. The final degradation stage corresponds to the complete 

Figure 4.  TEM, HRTEM, FFT and STEM images of Ps@Tet@Fe3O4.

Figure 5.  TEM, HRTEM, FFT and STEM images of Ps@Tet-Cu(II)@Fe3O4.
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decomposition of functional groups of the catalyst. This degradation occurs when the temperature increases 
from 500 to 600 ℃.

Synthesis of N‑sulfonyl‑N‑aryl tetrazoles. The catalytic performance of Ps@Tet-Cu(II)@Fe3O4 was 
investigated in the [2 + 3] cycloaddition reaction. The synthesis of N-sulfonyl-N-aryl tetrazoles by the reaction of 
N-sulfonyl-N-aryl cyanamide and  NaN3 as a model reaction in the presence of Ps@Tet-Cu(II)@Fe3O4 complex 
as a novel catalyst was studied for this purpose.

In the first step, the optimization of the reaction conditions was performed using N-(4-chlorophenyl)-N-cy-
ano-4-methylbenzenesulfonamide (1 mmol) as a model substrate,  NaN3 (1.5 mmol), Ps@Tet-Cu(II)@Fe3O4 
complex and DMF solvent at 120 ℃. The results of the optimization reactions are shown in Table 1. As observed, 
the reaction does not proceed in the absence of the catalyst.

After the optimization of the reaction, the efficiency of Ps@Tet-Cu(II)@Fe3O4 complex for the synthesis of 
various derivatives of N-sulfonyl-N-aryl tetrazole using various types of N-sulfonyl-N-aryl cyanamides contain-
ing electron-withdrawing as well as electron-donating groups was investigated (Table 2). Both groups on the 
aromatic ring of N-sulfonyl-N-aryl cyanamides favor the formation of the resulting target tetrazoles in high 
yields and short reaction times.

The proposed mechanism for the synthesis of tetrazoles using Ps@Tet-Cu(II)@Fe3O4 complex is presented in 
Scheme 3. According to the reaction procedure, initially, an interaction occurs between the CN group of N-sul-
fonyl-N-aryl cyanamides in the presence of Ps@Tet-Cu(II)@Fe3O4 complex. Next,  N3

- addition to the activated 
CN group gives the intermediate (A). Finally, the intramolecular cyclization of (A) leads to the desired product. 
This method has merits including high yields, short reaction time, and lack of production of  HN3 toxic  gas85.

Figure 6.  EDS spectra of Ps@Tet@Fe3O4 (A) and Ps@Tet-Cu(II)@Fe3O4 (B).
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Summary and discussion. N-Sulfonyl-N-aryl tetrazole derivatives are very new compounds synthesized 
and reported by our research groups in recent years. In two previous publications, the synthesis of these novel 
derivatives through different reaction conditions have been reported. For example, for the first time, the syn-
thesis of N-sulfonyl-N-aryl tetrazole derivatives was carried out in the presence of  NaN3,  ZnBr2, and  H2O under 
reflux conditions for 24  h85. Although the product yields were relatively good, the reaction time was very long. 
In another study, the synthesis of these derivatives using Cu NPs@Fe3O4-chitosan catalyst,  NaN3, and  H2O under 
reflux conditions was  investigated66. The drawback of the latter synthesis procedure was still the long reac-
tion time (22 h). In addition, in our recent study, the synthesis of N-sulfonyl-N-aryl tetrazole derivatives using 
magnetic chitosan functionalized trichlorotriazine-5-amino-1H-tetrazole copper(II) complex catalyst and DMF 
solvent under reflux conditions has been  reported67. The reaction suffered from long reaction time (40 min). 
Nevertheless, in the present work, N-sulfonyl-N-aryl tetrazole derivatives have been synthesized with high effi-
ciency (82–86%) and in very short reaction times (25–35 min).

Figure 7.  Elemental mapping of Ps@Tet.
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Catalyst recyclability. Reusability of heterogeneous catalysts is the most important advantage for practical 
purposes; especially for industrial applications. After completing the reaction, this magnetic complex was sepa-
rated easily from the reaction media by an external magnet, washed with ethanol, dried, and reused for the same 
reaction without any significant reduction in the desired yields. Ps@Tet-Cu(II)@Fe3O4 exhibited a high activity 
over five runs, which confirms the catalyst stability. After the last run, the characterization of the recovered cata-
lyst by TEM analysis (Fig. 12) showed a stable morphology and relatively dispersed NPs even after five runs as 
well as the stable structure of the recycled catalyst. To check the heterogeneity of Ps@Tet-Cu(II)@Fe3O4 catalyst, 
the filtrate of each cycle was analyzed by ICP-OES analysis. It was shown that less than 0.1% of the total amount 
of the original copper species was lost in the solution during a reaction.

Conclusions
A novel, easily recoverable, and suitable heterogeneous catalyst has been developed for the synthesis of N-sul-
fonyl-N-aryl tetrazole derivatives. The significant advantages of Ps@Tet-Cu(II)@Fe3O4 complex as a magnetic 
nanocatalyst are its high surface area, simple separation, and outstanding stability. Afterward, the morphology 
and structure of the synthesized complex were investigated using TEM, HRTEM, STEM, FFT, XRD, FT-IR, 
TG/DTG, VSM, EDS, and elemental mapping. The catalytic activity of the obtained complex for the synthesis 
of N-sulfonyl-N-aryl tetrazole derivatives was checked. The advantages of the method include easy work-up, 
high yields, and avoidance of the use of harmful and hazardous hydrazoic acid. The magnetic nanocatalyst is 
environmentally friendly and commercial because it can be recovered using an external magnet and reused in 
the same reaction without considerable loss of catalytic activity.

Figure 8.  Elemental mapping of Ps@Tet@Fe3O4.
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Figure 9.  Elemental mapping of Ps@Tet-Cu(II)@Fe3O4.
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Figure 10.  VSM analysis of Ps@Tet-Cu(II)@Fe3O4.

Figure 11.  TG/DTG analysis of Ps@Tet-Cu(II)@Fe3O4.
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Table 1.  Optimization of reaction  conditionsa. a  Reaction conditions: N-(4-chlorophenyl)-N-cyano-4-
methylbenzenesulfonamide (1 mmol),  NaN3 (1.5 mmol), Ps@Tet-Cu(II)@Fe3O4, DMF (10 mL), 120 ℃. b  Isolated yield.
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Table 2.  Synthesis of tetrazoles using Ps@Tet-Cu(II)@Fe3O4 complex.a a Reaction conditions: N-sulfonyl-N-aryl 
cyanamide (1 mmol),  NaN3 (1.5 mmol), Ps@Tet-Cu(II)@Fe3O4 (0.05 g), DMF (10 mL), 120 ℃. b  Isolated yield.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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