
 

 

  

  

  

  

  

 

  

  

  

  

  

  

 

  

  

 

 

 

 

 

 

 

 

 

BENEMÉRITA UNIVERSIDAD  

AUTÓNOMA DE PUEBLA 
  

     
  
  

  

     

INFORMACIÓN CUÁNTICA CON 

VARIABLES CONTINUAS 
 

TESIS 

 

PRESENTADA AL 

POSGRADO EN FÍSICA APLICADA 

 

COMO REQUISITO PARCIAL PARA LA 

OBTENCIÓN DEL GRADO DE 

 

DOCTOR EN CIENCIAS (FÍSICA APLICADA) 

 

PRESENTA 

JULIO ABRAHAM MENDOZA FIERRO 

 

ASESOR 

DR. LUIS MANUEL ARÉVALO AGUILAR 

 

 

 

 

 

FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS 

PUEBLA, PUE. JULIO DE 2022. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
INFORMACIÓN CUÁNTICA CON VARIABLES CONTINUAS 

 
Julio Abraham Mendoza Fierro 

 

COMITÉ 

_____________________ 

Dra. Marcela Maribel Méndez Otero 

Presidente 

 

_______________________________ 

Dr. Wuiyebaldo Fermín Guerrero Sánchez 

Secretario 

 

___________________________________ 

Dr. Carlos Ignacio Robledo Sánchez Vocal 

Vocal 

 

___________________________________ 

Dr. Jorge Gustavo Hirsch 

Vocal 

___________________________________ 

Dr. Víctor Manuel Velázquez Aguilar 

Vocal 

 

___________________________________ 

Dr. Rodolfo Palomino Merino 

Suplente 

 

____________________________ 

Dr. Luis Manuel Arévalo Aguilar 

Asesor 



 

 

 

 

 

 

 

 



BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA
FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

PHD THESIS

QUANTUM INFORMATION WITH
CONTINUOUS VARIABLES

A thesis submitted by Julio Abraham Mendoza Fierro as partial
requirement for the degree of Doctor en Ciencias.

Supervised by:
Luis Manuel Arévalo Aguilar



6



C O N T E N T S

1 Continuous variable systems 17
1.1 Continuous variable non-interacting bosonic systems 17
1.2 Phase-space representation 21
1.3 Gaussian states 24

1.3.1 General description and definition 24
1.3.2 Gaussian unitaries and symplectic group 25
1.3.3 Symplectic eigenvalues and the Williamson theo-

rem 26
1.3.4 Purity of Gaussian states 27
1.3.5 Entanglement of pure Gaussian states 29

1.3.5.1 Qualification 30
1.3.5.2 The PPT criterion 32
1.3.5.3 Quantification of entanglement in two-

mode Gaussian states 33
1.4 Pure three-mode Gaussian states 36

1.4.1 General properties 37
1.4.2 Classification 39
1.4.3 Examples of three-mode Gaussian states 41

1.4.3.1 Continuous variable Greenberger–Horne–Zeilinger
(GHZ) states 41

1.4.3.2 Continuous variable Einstein–Podolsky–Rosen
(EPR) states 46

1.4.4 Entanglement measures 48
1.4.4.1 The Coffman-Kundu-Wootters (CKW)

inequality 48
1.4.4.2 The minimum residual Gaussian contan-

gle 49
1.4.4.3 The residual tripartite Rényi-2 entropy 53

2 The Arthurs-Kelly simultaneous measurement process 57
2.1 Theoretical background 57

2.1.1 The standard model of quantum measurement 57

7



8 contents

2.1.2 Retrodictive and predictive aspects of accuracy
59

2.1.3 Unbiased measurements 65
2.1.4 Interaction Hamiltonian 67

2.1.4.1 Possible implementations of the Arthurs-
Kelly interaction Hamiltonian 68

2.1.5 The state of the detectors 70
2.2 Derivation of the results of Arthurs and Kelly 73
2.3 Accuracy in the simultaneous measurement process 76

2.3.1 Retrodictive aspect 77
2.3.2 Predictive aspect 78

2.4 The simultaneous measurement process as a quantum
· · · 79
2.4.1 Genuine tripartite entanglement 79
2.4.2 Measurement configuration 80
2.4.3 Problem statement 83
2.4.4 Separability properties 84
2.4.5 Qualitative properties 87
2.4.6 Quantitative properties 88

3 The full dynamical Arthurs-Kelly measurement process 97
3.1 Justification 97
3.2 Dynamics 98
3.3 Accuracy in the full dynamical measurement process 102

3.3.1 Retrodictive aspect 103
3.3.2 Predictive aspect 107

3.4 The role of the free evolution in the accuracy of the mea-
surement 110

3.5 Generation of quantum entanglement 115
3.5.1 Separability properties 117
3.5.2 Qualitative properties 121
3.5.3 Quantitative properties 122

4 Summary and conclusions 129
4.1 Scope and proposals of this thesis work concerning with

the Arthurs-Kelly measurement process as a continuous-
variable scheme for quantum information processing 129



contents 9

4.2 Conclusions about the accuracy in the full dynamical
simultaneous measurement process of position and mo-
mentum observables of a Gaussian system 132

4.3 Conclusions about the entanglement generated in the si-
multaneous measurement process in the regime of strong
coupling 133

4.4 Conclusions about the entanglement generated in the si-
multaneous measurement process in the completely dy-
namical model 137

5 Appendices 143
5.1 Derivation of the Arthurs-Kelly dynamics through the

time evolution operator method 143
5.2 Mathematical formulation of the joint unbiasedness con-

dition 145
5.3 Prove for expression given by Eq. (1.4.5) 146
5.4 Factorization of the time evolution operator 147
5.5 Time-dependent coefficients of the wave function describ-

ing the full dynamics of the simultaneous measurement
process 150

5.6 Application of the fully dynamical time evolution operator
to the initial wave function 151

5.7 Definition of the block matrices for the covariance matrices
given in Eqs. (3.5.4) to (3.5.6) 159

5.8 Block components of the covariances matrices of Eqs.
(2.4.19) to (2.4.21) 160

5.9 Mathematical equivalence between the frames of Schrödinger
and free-propagator in the method of Green’s functions
for the case of a free particle 161



10 contents



A C K N O W L E D G E M E N T S

For those who sincerely supported me for the development of this work.

I thank my family: My mother who taught me not to give up. My
brother, for supporting me and tolerating my follies. My father, for
various advices.

I thank my professors from the Facultad de Ciencias Físico matemáti-
cas of the Benemérita Universidad Autónoma de Puebla: Luis Arévalo,
for believing in me and teaching me the discipline of being self-taught.
Wuiyebaldo Guerrero, who bring me the skills for using computational
software. Marcela Méndez, for her patient and support in the weekly
seminars. Maximino Arroyo for motivating me to prepare well for my
seminar presentations. Carlos Robledo, for his interesting questions in
each thesis evaluation. Also I thank to Blas Rodríguez from Tecnológico
de Monterrey, for constantly motivating me to grow as a researcher.

I thank my friends from postgraduate school: to the memory of Roberto
García, for his academic, career, and life guidance; I will never forget your
advice to live fully. Ceciibeth Mendoza, Josue Rodríguez, Rafa Zaca,
Edwin Herrera, Eusebio Vázquez, Fernando Calderon, Victor López,
Oscar Vazquez, Andrea Montiel, Yessica Espinosa, Laura Díaz, Nohely
Camacho, Patricia Sánchez, Alan Hernandez; thanks for all the good
moments making bearable the hard way of postgraduate school.

I will be eternally grateful to the family Kosegarten López. In particular,
with Alma López, who became our adoptive mother in Puebla, her advice
and true friendship gave us strength at difficult times. We never forget
the coffee afternoons with pleasant talks. Thanks for offer us a sweet
home for those years.

I thank all staff of Centro Cultural Delicias from Delicias, Chihuahua,
for providing me a space to work through this period of the pandemic, in

11



12 ACKNOWLEDGEMENTS

particular, for facilitating the workspace of the public library installations.

I thank all those people I met outside the academic field in Puebla city
because, indirectly form, they provided me with strengths and support
far away from home. In particular, I thank my friends Diego Maqueda
and Teodoro Maqueda for their support and valuable friendship. Also, I
thank Karla Alejandra Ontiveros Levario because it would be unfair not
to recognize the support she gave me over all these years.



A B S T R A C T

This thesis identifies the model of simultaneous measurement of the
position and momentum observables seminally posed by Arthurs and
Kelly as a system described entirely by observables with continuous eigen-
spectrum; in particular, we treat the model in the regime of Gaussian
states by assuming a minimum uncertainty state as the system under
measurement. Under this consideration, the mathematical framework
used to describe these states in quantum information processing tasks
finds applicability. First, we consider the free energies of each quantum
system defining the measurement setting in the measurement dynam-
ics; then, we study how this consideration affects the retrodictive and
predictive aspects of accuracy for the simultaneous measurement of the
position and momentum observables of the system under examination.
We find that the accuracy of the simultaneous measurement is affected
by the degree of coupling between the detectors of the measurement
apparatus and the system under observation.

On the other hand, we identify the measurement process as an en-
tanglement generator in the particular regime of the Gaussian states.
We study this aspect in both the completely dynamical and the strong
coupling regime raised originally by Arthurs and Kelly. In particular, we
research the qualitative entanglement properties of the system, catego-
rizing it as a function of its separability properties; then, we establish
the presence of genuine tripartite entanglement in the measurement
setup by proving the non-separability of each mode bipartition of the
system. Besides, we investigate the quantitative entanglement properties
developed in the system; then, we study the amount and structure of
the tripartite entanglement by two measures defined for three-mode
Gaussian states; that is, the minimum residual Gaussian contangle and
the residual tripartite Rényi-2 entanglement.
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In this paper, we demonstrate the generation of genuine tripartite
entanglement in the completely dynamical Arthurs-Kelly measurement
process; therefore, we include the free energy operator of each mea-
surement component in the dynamics of the measurement process. In
particular, we consider a squeezed vacuum state as the system under
measurement. We find that the entanglement properties are not affected
by the degree of coupling between the measurement apparatus and the
Gaussian system under observation. Moreover, we establish the quanti-
tative entanglement properties of the system, finding that the degree of
coupling between the measurement device and the Gaussian system has
a role in the amount of entanglement in the system.



1

C O N T I N U O U S VA R I A B L E S Y S T E M S

“[· · · ] I don’t feel frightened not
knowing things, by being lost in a
mysterious universe without any
purpose, which is the way it really
is as far as I can tell.”

Richard Feynman

1.1 continuous variable non-interacting bosonic sys-
tems

We refer to a continuous-variable (CV) quantum system when it is defined
on an infinite-dimensional Hilbert space. Besides, the proper observables
of the system have continuous eigenspectra [1]. A particular example
is an electromagnetic field composed of N non-interacting quantum
harmonic oscillators, each one with a frequency ωk; then, every single
oscillator is termed as a mode. This system has associated a Hilbert
space given by a tensor product of the form: H⊗N = ⊗N

k=1Hk, where to
each mode corresponds a Hilbert space Hk. This system is associated
with N pairs of annihilation and creation operators

{
âk, â†

k

}N
k=1

, which
satisfy the following bosonic commutation relations[

âk, â†
l

]
= δkl, [âk, âl] =

[
â†
k, â

†
l

]
= 0. (1.1.1)

Adopting units of h̄ = 1, we define the so-called quadrature phase
operators for each k-mode as

q̂k = 2−1
2
(
âk+ â†

k

)
, p̂k = i2−1

2
(
â†
k − âk

)
. (1.1.2)

17



18 continuous variable systems

The quadrature field operators represent canonical observables for each
mode and act similarly to the position and momentum operators of a
quantum harmonic oscillator; besides, they are observables with continu-
ous eigenspectra; therefore, they have improper eigenstates1 |q⟩ and |p⟩
such that they satisfy the following eigenvalue equations

q̂k |q⟩k = qk |q⟩k , p̂k |p⟩k = pk |p⟩k , (1.1.3)

with the continuous-variable eigenvalues qk,pk ∈ R. The two sets {|q⟩k}
and {|p⟩k} constitute two bases for Hk and are connected by a Fourier
transform

|q⟩k =
1√
2π

∫ +∞

−∞
dp e−iqp |p⟩ , (1.1.4)

|p⟩k =
1√
2π

∫ +∞

−∞
dq eiqp |q⟩k . (1.1.5)

On the other hand, we can array the quadrature operators of the N -mode
system in a vectorial operator just as

R̂ = (q̂1, p̂1, . . . q̂N , p̂N )T , (1.1.6)

whose entries satisfy the commutation relations
[
R̂j,R̂k

]
= iΩjk, (i,j = 1, . . . ,2N), (1.1.7)

where R̂j is the j-component of vector R̂ and Ωij is the generic element
of the 2N × 2N matrix Ω, which is given by

Ω=
N⊕
k=1

w =


w

. . .
w

 , with w =

 0 1
−1 0

 , (1.1.8)

known as the symplectic form. The Hilbert space of this system is sepa-
rable and infinite dimensional since a single Hilbert space Hk is spanned
by a countable basis {|n⟩}∞

n=0, called number state basis, composed of
the eigenstates of the number operator n̂= â†â, that is

â |n⟩ =
√
n |n− 1⟩ (for n≥ 1), (1.1.9)

1 Are improper eigenstates since are non-normalizable; consequently, they live outside the Hilbert space
of the system. See [2], Pg. 100-104.

Usuario
Resaltar

Usuario
Nota
Cómo es posible a partir de una base no, normalizable construir un estado normalizable.



1.1 continuous variable non-interacting bosonic systems 19

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (for n≥ 0). (1.1.10)

The Hamiltonian of the whole system is

Ĥ =
N∑
k=1

Ĥk, Ĥk = h̄wk
(
â†
kâk+ 1/2

)
, (1.1.11)

where each Ĥk refers to the Hamiltonian of the kth mode of the complete
set. The Hamiltonian of each mode is bounded from bellow ensuring the
stability of the system [3]; then, for each mode k there exists a vacuum
state |0⟩k such that

âk |0⟩k = 0. (1.1.12)

The vacuum state of the whole N -mode system is denoted by |0⟩ =
⊗k |0⟩k, that is, a tensor product of the vacuum states of each mode.
An alternative and overcomplete basis for each Ĥk is provided by the
coherent states, which are right-eigenstates of the annihilation operator
âk. Tensor products of coherent states for the N -mode system are
obtained by applying the N -mode Weyl operator:

D̂(ξ) = exp
(
iR̂T

Ω̂ξ
)

, (1.1.13)

to the global vacuum state, that is |ξ⟩ = D̂(ξ) |0⟩; where the vector

ξ = (ξ1,ξ
′
1, · · ·ξk,ξ

′
k)
T (1.1.14)

belongs to the real 2N -dimensional space Γ = (R2N ,Ω̂) called phase
space, which is equipped with a symplectic form Ω̂.

Usuario
Resaltar



20 continuous variable systems

Example.

For N = 1:

Ω̂=

 0 1
−1 0

 , ξ =
(
ξ1,ξ

′
1

)T
=
(
ξ,ξ ′

)T
, x̂T = (q̂1, p̂1) = (q̂, p̂) ,

(1.1.15)
where, we have suppressed the subscript in order to simplify the
notation (this is possible because we are dealing with only one
mode); then

exp
(
ix̂TΩ̂ξ

)
= exp

(
i
[
ξ

′
q̂− ξp̂

])
, (1.1.16)

by using Eqs. (1.1.2), we have

exp
(
i
[
ξ

′
q̂− ξp̂

])
=exp

a†
k

ξ+ iξ
′

√
2

− ak

ξ− iξ
′

√
2


=exp

(
a†
kα− akα

∗
)

=D̂k(α), (1.1.17)

where we have take the coherent amplitude α=
(
ξ+ iξ

′)
/

√
2, so,

we recover the usual expression for a single-mode displacement
operator. In this manner, Dk(α) |0⟩k = |α⟩k ■.

From the last example we can obtain the explicit definition for a
single-mode coherent state by disentangling the displacement operator
through the theorem ([4], pag. 49):

eÂ+B̂ =e−1
2 [Â,B̂]eÂeB̂

=e
1
2 [Â,B̂]eB̂eÂ, (1.1.18)

valid for the conditions
[
Â,B̂

]
, 0,

[
Â,

[
Â,B̂

]]
=
[
B̂,

[
Â,B̂

]]
= 0; (1.1.19)

then, identifying Â= αâ†
k and B̂ = −α∗âk and using

[
Â,B̂

]
= |α|2, then

D̂k(α) = e−1
2 |α|2eαâ

†
ke−α∗âk . (1.1.20)
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Now, applying the first exponential operator to the vacuum

e−α∗âk |0⟩k =
∞∑
n=0

(−α∗)n

n!
ânk |0⟩k = |0⟩k = |0⟩k , (1.1.21)

where we have used Eq. (1.1.9) and the fact that ânk |0⟩k = |0⟩k except for
n= 0, besides, we have developed the exponential operator in McLaurin
series. Applying the second and third operator exponential operators of
Eq. (1.1.20), then

e−1
2 |α|2eαâ

†
k |0⟩k = e−1

2 |α|2
∞∑
n=0

(α)n

n!

(
â†
k

)n
|0⟩k = e−1

2 |α|2
∞∑
n=0

(α)n√
n!

|n⟩k ,

(1.1.22)
where we have used Eq. (1.1.10) recursively to verify that (â†

k)
n |0⟩k =√

n! |n⟩; hence

D̂(α) |0⟩k = e−1
2 |α|2

∞∑
n=0

(α)n√
n!

|n⟩k . (1.1.23)

The coherent states belong to the particular class of CV quantum states
called Gaussian states; we will review their main characteristics in Sec.
1.3. The coherent states are usually referred to as the most classical-
quantum states since the mean value of the quantum electromagnetic
field in these states has a classical expression. Besides, the fluctuations
of the field (quantified by an adequate measure of dispersion) equals
those of the vacuum; hence, they saturate the Heisenberg uncertainty
relation; therefore, they are minimum uncertainty states ([4], pag. 45).

1.2 phase-space representation

The fundamental postulate of quantum representation establishes that
the entire physical information about a quantum system is contained in
its quantum representation [5]; the most general form is achieved through
a density operator ρ̂, which is trace-one positive operator acting on the
corresponding Hilbert space. Any density operator has an equivalent
representation in terms of a s-ordered characteristic function of the form
[3]

χsρ̂(ξ) = Tr
[
ρ̂D̂(ξ)

]
es||ξ||2/2, (1.2.1)

where ||·| | stands for the euclidean norm on R2N , and ξ ∈ Γ = (R2N ,Ω),
as defined in previous section. In this representation, the tensor product

Usuario
Resaltar



22 continuous variable systems

structure of the Hilbert space is replaced by a direct sum structure so that
the N -mode phase space decomposes as Γ = ⊕kΓk, where Γk = (R2,w)
is the local phase space associated with the mode k. The family of
characteristic functions is related, via complex a Fourier transform, to
real quasi-probability distributions W s

ρ̂ (ξ)

W s
ρ̂ (ξ) =

∫
R2N

d2Nξ

(π)2N exp
(
iR̂

T
Ω̂ξ

)
χsρ̂(ξ). (1.2.2)

These distributions are usually called “quasi-probability” functions be-
cause they do not behave like a classical probability distribution, that is,
there exist quantum states for which W s

ρ̂ (ξ) is not a regular probability
distribution in the sense that can, for example, assume negative values or
be singular at determined points of the phase space. The case for s= −1
corresponds to the Husimi “Q-function”, which constitutes the only case
for which a regular behaviour arises; then, the Husimi function becomes
non-negative and well behaved in the phase space. The situation for
s= 1 corresponds to the P-representation, which represent the expansion
of the density operator in the over-complete basis of coherent states.
On the other hand, we only consider the case for which s = 0, thus,
χs=0
ρ̂ (ξ) and W s=0

ρ̂ corresponds to the so-called “Wigner representation”
representation [3], [1], which we simply denote by Wρ̂ and χρ̂(ξ). For an
operator Â= f(âk, â†

k) given by a symmetrically ordered function of the
kth bosonic field operator (with k = 1, · · · ,2N), we have for its expected
value

Tr
[
ρ̂Â

]
=
∫

R2N
W 0

ρ̂ (ξ)f̃(ξ) d
2Nξ, (1.2.3)

where f(ξk+ iξk+1, ξk − iξk+1); hence Eq. (1.2.3) entails the following
properties for the trace of the density operator

Tr [ρ̂] =
∫

R2N
W 0

ρ̂ (ξ) d
2Nξ = χ0

ρ̂(0), (1.2.4)

and the purity

µρ̂ = Tr
[
ρ̂2]= (2π)N

∫
R2N

[
W 0

ρ̂ (ξ)
]2
d2Nξ =

∫
R2N

∣∣∣χ0
ρ̂(ξ)

∣∣∣2 d2Nξ. (1.2.5)

Hence the Wigner function can be written in terms of the non-normalized
eigenvectors |q⟩ = ⊗N

k=1 |q⟩k of the quadrature operators (such that
q̂j |q⟩ = qj |q⟩ , j = 1, · · · ,N) as

Wρ̂(q,p) = 1
πN

∫
R2N

⟨q + x| ρ̂ |q − x⟩e2ix·p dNx, {q,p} ∈ RN . (1.2.6)
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The marginal integral of the Wigner function over the set
{p1, · · · ,pN ,q1, · · · ,qN−1}, that is,∫

R2N−1Wρ̂ (q,p) dp1 · · ·dpNdq1 · · ·dqN−1 = ⟨qN | ρ̂ |qN⟩ , (1.2.7)

gives the probability distribution for the quadrature qN . The most rel-
evant quantities that characterize the quasi-probability distributions
are the statistical moments [1]. The first moment is given by the dis-
placement vector R (it must be noted the absence of the hat ˆ ), whose
components Rj are the mean values of the quadrature field operator, Eq.
(1.1.6), of the N -mode system, that is,

Rj =
〈
R̂
〉
j
. (1.2.8)

The first moments for arbitrary CV N-mode systems can be adjusted
by local unitary operations, as instances, rotations, or displacements
in phase space; therefore, leaving properties as correlations, entropy or
entanglement measures invariant [3].

The second moment is built up by the covariance matrix V, whose
arbitrary element Vij is defined by

Vij = Tr
[
ρ̂
{
∆R̂i,∆R̂j

}]
, (1.2.9)

where ∆R̂i = R̂i −
〈
R̂i

〉
, and {·} denotes the anticommutator. It is

important to note that the expression Eq. (1.2.9) is defined for h̄= 1,
other definitions can vary by the unit convention for h̄. The diagonal
elements of expression, Eq. (1.2.9), represent the double variance of the
quadrature operators R̂i, that is,

Vii = 2
(〈
R̂2
i

〉
−
〈
R̂i

〉2) . (1.2.10)

The covariance matrix is a 2N × 2N real, symmetric, and positive
definite matrix which must satisfy the Robertson–Schrödinger uncertainty
relation:

V+ iΩ ≥ 0, (1.2.11)
so that the continuous variable system represent a physical state. The
Ineq. (1.2.11) comes from the semi-positive definiteness of the density
operator ρ̂ and the canonical commutation relations, Eq. (1.1.7). In
section 1.3, we will review that these two moments are sufficient to
describe all properties of the archetypical system of continuous variables,
that is, the Gaussian states.

Usuario
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24 continuous variable systems

1.3 gaussian states

The paradigm of a continuous-variable system is entirely played by the
so-called Gaussian states. They are the most familiar system appear-
ing in many theoretical models for physical systems; the ground state
of a quantized harmonic oscillator, thermal radiation coming from a
black body source, the light emitted by a laser, or that emerging from
non-linear optical processes as the parametric down-conversion, vibra-
tional modes of solids, ions confined in tramps, etc. The inclination
for Gaussian states in the continuous-variable quantum information sce-
nario lies in its kindly properties in both theoretical and experimental
sense; namely, they constitute the set quickly accessible and manipulable
through current technology mainly from quantum optics laboratories;
therefore, supplying a rapidly way for creating entanglement [6, 7, 8],
which is an elemental ingredient to do non-classical tasks, for commu-
nication protocols as quantum teleportation or quantum cryptography.
On the other hand, the mathematical description of Gaussian states
becomes relatively simple since it is relegated only with the first and
second statistical moments, being the last aspect that only intervenes
in the characterization of quantum entanglement [9]. Therefore, despite
living in an infinitely dimensional Hilbert space, Gaussian states can be
described by only two finite parameters. Then, for that reasons, they
have been played a prominent role in several informational protocols
such as quantum communication, and quantum teleportation [7, 10,
11, 12, 13, 14], quantum key distribution and quantum cryptography
[6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
Further, they have constituted the test field to study fundamental aspects
as non-separability and entanglement sharing in the most general case
of the multipartite scenario, giving rise to theoretical advances to test
and quantify the presence of quantum entanglement [9, 34, 35, 36, 37].

1.3.1 General description and definition

A Gaussian system is defined as that whose characteristic function, Eq.
(1.2.1), and quasi-probability distributions, Eq. (1.2.2), have a Gaussian
mathematical structure [3, 9, 23]; hence when the state has a Gaussian
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shape in the phase space [38]. In this manner, a generic multivariate
Gaussian function has the form

f(r) =Ne−1
2rT Mr+CT r, (1.3.1)

whereN stands as an adequate normalization constant, C = (c1,c2, . . . cn)T
is a constant vector with real or complex components as necessary, and
M is a n×n dimensional matrix which must be positive definite. As said
before, a Gaussian state is completely defined through its first and sec-
ond moments, this means that its characteristic and quasi-probabilistic
distributions, Eqs. (1.2.1) and (1.2.2), can be expressed in terms of such
moments, hence we have

χρ̂(ξ) = exp
[
−1

4ξTΩV ΩTξ − i(ΩR)Tξ

]
, (1.3.2)

Wρ̂ (X) =
(
πN

√
det(V )

)−1
exp

[
− (X − R)T

V −1 (X − R)
]
, (1.3.3)

where ξ,X ∈ R2N , and V is the positive definite covariance matrix of the
Gaussian state which must obey the uncertainty relation, Eq. (1.2.11).
It is instructive to say that for an arbitrary Gaussian state with density
operator ρ̂ and first moments equal to zero, the trace of the covariance
matrix is related with the average energy of each mode, therefore with
the mean energy of the non-interacting Hamiltonian, Eq (1.1.11); hence

nk =
〈
â†
kâk

〉
=

1
4 [Tr [V ]− 2] . (1.3.4)

On the other hand, we recall that pure Gaussian states are the only one
continuous variable systems with positive Wigner distribution in phase
space [39].

1.3.2 Gaussian unitaries and symplectic group

Unitary transformations in Hilbert space that preserves the trace of the
density operator are equivalent to symplectic transformations of the first
and second moments of a Gaussian state in phase space, that is,

Û ρ̂Û −→

R′ = Sd

V ′ = SV ST,
(1.3.5)
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where S is a symplectic matrix belonging to the symplectic group
Sp (2N ,R). The set of real symplectic matrices are defined according to

SΩST =Ω, (1.3.6)

where Ω is the symplectic form defined in Eq. (1.1.8). Hence Eq.
(1.3.6) implies that symplectic operations preserve the commutation
relations given by the matrix Ω; consequently, they do not modify the
kinematics of the system. We recall that all symplectic matrices are
always (2 × 2)-dimensional invertible matrices that satisfy det [S] =
1. Symplectic transformations that preserve the Gaussian nature of
Gaussian states are known as Gaussian unitaries [23]; they are generated
via Û = e∝Ĥ from Hamiltonians Ĥ of second-order polynomials in the
bosonic field operators. Quantum information with Gaussian states is
built on symplectic transformations; however, for this work, we do not
delve into such matters; the interested reader can see the reference [40].

1.3.3 Symplectic eigenvalues and the Williamson theorem

Williamson showed [41] that any positive-definite matrix can be expressed
in diagonal form through a symplectic transformation; then, we introduce
the so-called Williamson theorem:

Theorem 1. Given a 2N×2N positive definite matrix V ,
there exists a symplectic matrix S ∈ Sp (2N ,R) which
diagonalize V according to:

V = S
N⊕
k=1

 νk 0
0 νk

ST. (1.3.7)

a proof for this theorem can be found in [42]. In Eq. (1.3.7) the νk
are called the symplectic eigenvalues of the matrix V ; hence we define
a diagonal matrix ν = diag (ν1, · · · ,νn) which is called the symplectic
spectrum of V ; for a physical state it must be satisfied νk ≥ 1 ∀ k [35],
which, is in principle equivalent to the uncertainty relation given by Eq.
(1.2.11). A much more convenient manner to find the spectrum ν is from
[3]

ν = Eig+ (iΩV ) , (1.3.8)
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where Eig+ (A) represent the diagonal matrix of positive eigenvalues of
the matrix A; therefore, the Eq. (1.3.8) implies that the N symplectic
eigenvalues can be obtained by solving the characteristic polynomial of
the matrix |iΩV | [43]. Knowing the symplectic eigenvalues is a powerful
tool to compute several informational measures as the purity which we
will review in the following section.

1.3.4 Purity of Gaussian states

Let us assume a physical system which is prepared through a known
procedure; if we want to learn a physical property about it, the laws
of quantum mechanics dictate that before a measurement, we cannot
predict with complete certitude the result of the test; instead, all that is
at our disposal is the set of probabilities pk associated with the possible
outputs (see [2], pag. 253). The quantity of information we gain on
average about the observable of the system after the measurement is
carried out is in a complementary relationship with the certainty that we
have about it before the test [44], page. 500; besides, such uncertainty
goes hand in hand with our knowledge about the composition of the
system. In general, the quantity of information available from a quantum
state (inside any interpretation) will depend on its preparation procedure
and the set of probabilities pk related to the observable we want to
know. As an instance, take the case of the Stern-Gerlach experiment.
When the particle interacts with the inhomogeneous magnetic field, its
associated quantum state splits into a couple of entangled components
according to the two projection numbers for s= 1/2 [45, 46]. If we block
one of them, we prepare the representation of the particle either the up
or dawn component; hence we have the maximal knowledge about the
preparation of the system in the eigenbasis of the measured observable,
any subsequent measurement of the same observable gives no more new
information about the physical property in that system. In opposition,
there is the case for a statistical ensemble or mixed state, where the exact
composition for the spin components is unknown; then, each possible spin
polarization has a probability of preparation of p= 1/2; then, for any
unbiased measurement of spin, we have a fifty-fifty likelihood to get both
components and the gained information about the physical property of
the system is maximal for each measurement. For pure quantum states,
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the correspondent density matrix is represented by a projector such a
way ρ̂2 = ρ̂, while for mixed states, the density matrix is proportional
to the identity ρ= IN/N . Then, the purity (or degree of mixedness) µ
is a measure of information that can quantify the degree of knowledge
about the composition of a quantum state or the quantity of information
available for the inspection of an observable before the measurement or
the certainty about her after the test; where each interpretation of the
concept will depend on the nature of the problem [47].

There exists several ways to quantify the purity of a quantum state;
the first approximation is given by the trace of the correspondent density
operator of the system according to

Tr
[
ρ̂2]= 1, for pure states,

Tr
[
ρ̂2]< 1, for mixed states.

The purity of quantum states living in Hilbert spaces with dim[H] =N
varies in the range

1
N

≤ µ≤ 1, (1.3.9)

taking its minimum value for totally mixed states. Effectively, the abso-
lute minimum is reached for continuous variable systems where N −→ ∞.

Concerning Gaussian states, there are several measures to characterize
the purity. One of them is given by the symplectic rank ℵ of the covari-
ance matrix V of the system. The symplectic rank corresponds to the
number of symplectic eigenvalues of V different from 1; this corresponds
to the number of normal modes which are not in the vacuum state [48].

Also, we can define pure and mixed Gaussian states according to the
determinant of the covariance matrix

det(V ) = 1, for pure states, (1.3.10)

det(V ) > 1, for mixed states. (1.3.11)
In general, the purity of a N -mode Gaussian state is related with the
trace of its density operator by the formula

µ= Tr
[
ρ̂2]= 1√

detV
=

n∏
k=1

( 1
νk

)
, (1.3.12)
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where {νk} is the set of symplectic eigenvalues of the covariance matrix
V . Here we remark that the saturation of the uncertainty principle, Eq.
(1.2.11), is achieved by N -mode Gaussian states for which νk = 1,∀k ∈N .
The conjugate quantity SL = 1 − Tr[ρ̂2] is the so-called linear entropy,
ranging from 0 for pure states to 1 for maximally mixed states.

Another proper way to quantify the purity of a Gaussian state is the
Von Neumann entropy SV , which is defined in terms of the set {νk} of
symplectic eigenvalues according to

SV =
N∑
k=1

f (νk) , (1.3.13)

where

f (x) =
x+ 1

2 ln
(
x+ 1

2

)
− x− 1

2 ln
(
x− 1

2

)
. (1.3.14)

Since the symplectic eigenvalues are invariants under symplectic transfor-
mations, the Von Neumann entropy of Gaussian states also is invariant
under these operations. To get a step-by-step derivation of Eq. (1.3.14),
see the reference [38].

On the other hand, the purity, or the lack of information about the
constitution of a quantum state also can be measured by generalized
entropic measures, as the Bastiaans-Tsallis entropies [49, 50, 51] Sp =
(1 − Tr [ρ̂p])/ (p− 1) which reduce to the linear entropy SL for the power
p= 2 and the Rényi entropies [52] SRp = (logTr [ρ̂p])/ (1 − p). Besides,
both entropies are related through [53]

lim
p−→1+

Sp = lim
p−→1+

SRp = SV , (1.3.15)

hence, the Shannon-Von Neumann entropy can be defined in terms of
generalized entropies.

1.3.5 Entanglement of pure Gaussian states

Quantum entanglement represents one of the most characteristic features
of quantum theory; in a general conception, it constitutes the lack of
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individuality for each of the subsystems which make up a composite
system, to give way to a holistic description for the whole system. Since
its first conceptions recognized by Einstein, Podolsky, Rosen (EPR),
and Schrödinger [54, 55], the entanglement concept has evolved from
a striking spooky feature of quantum formalism to a helpful resource
to do tangible tasks, giving rise to the advent of quantum information
technologies and the relatively new research area of quantum information
[44, 56]. Then, because of its resource character, finding new ways to
generate and study the quantum entanglement of Gaussian states offers
the direct possibility to exploit fundamental and practical applications
in quantum information processing. In the following, we review tools
to determine the quantitative and qualitative entanglement properties
of two and three-mode Gaussian systems; this will be helpful to study
the characteristics of the entanglement in the model of simultaneous
measurement of position and momentum observables for a Gaussian
state as the system under measurement. Also, we will review a general
mathematical mechanism to detect quantum entanglement in general
(1+N)-mode Gaussian states. This helpful tool allows to directly verify
genuine tripartite entanglement in Gaussian states composed of three
modes.

1.3.5.1 Qualification

First, let us consider the simpler case of entanglement, that is, the
bipartite case. A quantum pure state composed by two systems is called
separable, factorizable or non-entangled if it can not be written as tensor
product of the individual states; for example, for two states |a⟩ and |b⟩
we mean |a⟩⊗|b⟩. In the regime of mixed states, we have a little different
situation. A bipartite mixed state is separable if it can be represented
as a convex sum of pure products, that is,

ρ̂=
∑
i

pi |a⟩⟨a| ⊗ |b⟩⟨b| , (1.3.16)

where ∑ipi = 1. It must be noted that the Eq. (1.3.16) is straightforward
reduced to the pure condition with pi = 1. The condition, Eq. (1.3.16),
can be arbitrarily generalized for n subsystems, that is, to the Werner
condition [57]:
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Let ρ̂ the density operator describing a composite CV
system consisting of n subsystems. The state is called
non-entangled or separable through its subsystems if
the density operator can be written as the convex sum:

ρ̂=
∑
i

piρ̂
i
1 ⊗ ·· · ⊗ ρ̂in. (1.3.17)

The above condition defined for mixed states is again reduced for the
pure case by taking pi = 1, resulting in the separability of the system if
it is described by a tensor product of the individual states [58].

Notably, in multipartite systems, it is possible to obtain other classes
of separability by considering the different k-splits for the subsystems
composing the global state [59]; in this case, each of the parts resulting
from the split is considered as a system in its own right. Therefore, we
can have a non-separable state for one determined k-split but entangled
for another k-split. Therefore, we need to consider all possible splits
for all possible k to obtain a complete classification. According to this
scheme, a N -partite state is genuinely N -partite entangled if it is not
separable respect to any split [59]. However, in general, there are states
which can be written as a convex sum of k-separable states which are
not separable for any split.

In particular, three parties labelled by the indexes 1, 2, and 3 are
genuinely tripartite entangled if the corresponding density operator for
such system cannot be written as

ρ̂= P1
∑
i

piρ̂
i
1ρ̂
i
23 +P2

∑
j

pjρ̂
j
2ρ̂
j
13 +P3

∑
k

pkρ̂
k
3ρ̂

k
12; (1.3.18)

this is the so-called biseparability condition [59, 60, 61], which we will
use in Section 3.5.1. In Eq. (1.3.18) we have ∑3

m=1Pm = 1 and ∑
npn = 1.

Besides, ρ̂ij represents the quantum density operator for the single-mode
system j, while ρ̂ikl is the quantum density operator which encompasses
the modes k and l (with j,k, l ∈ {1,2,3}, j , k , l) as a system in its own
right. Each single product ρ̂ijρ̂ikl in Eq. (1.3.18) implies that the modes
k and l are entangled, but there no exists any entanglement relation
between j with k, or j with l; therefore, this individual pure state implies
its separability respect to a mode split j|kl which groups together the
modes k and l in single subsystem but consider apart the mode j.
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Then, for pure Gaussian states, we can give a qualification, i.e., a
classification of the entanglement properties of the system according to
the separability of all its bipartitions. For example, using this line of
thinking, in reference [9] is given a complete classification for three-mode
Gaussian states in five distinct categories according to the separability
of each of its (1 vs n)-mode bipartitions. Notably, there is a helpful
resource for testing the separability of all (1 vs n)-mode bipartitions in
generic pure 1+n-mode Gaussian states; this tool is called the positivity
of partial transposition criterion. We review this statute in the following
subsection.

1.3.5.2 The PPT criterion

Let us consider a general Gaussian state consisting of N continuous-
variable modes; then, this system is divided into two parties: a subsystem
A consisting of m modes, and a subsystem B composed by n modes.
This system have a 2(m+ n)× 2(m+ n)-dimensional covariance matrix
V . On the other hand, let us recall for any bipartite quantum state ρ̂,
the positivity of the partially transposed density matrix ˆ̃ρ is a necessary
condition for the separability of the bipartition of the state; this is the
so-called PPT, or Peres-Horodecki criterion [62]. The partial transpose
of a density matrix is equivalent to the transposition of the variables of
only one of the two subsystems on some basis; this action amounts to
a flip in the sign of the moments belonging to the system with respect
is transposing [63]; then, the transposed covariance matrix Ṽ differs
from V by a sign flip in det V . For our (m+ n)-mode system, the
transposition with respect to the partie A amounts to the following
covariance matrix

Ṽ = T V T , where T =
m⊕
1

1 0
0 −1

⊕ I2n, (1.3.19)

where I2n represents the (2n×2n)-dimensional identity matrix. Thus, in
this general bipartition, the separability of the state is only guaranteed
if the partially transposed covariance matrix Ṽ satisfies the uncertainty
relation given by Eq. (1.2.11), that is Ṽ + iΩ ≥ 0. Remarkably, the PPT
is a necessary and sufficient condition for the separability of (1+n)-mode
Gaussian states [63, 64] and, notably, a special class of (m+ n)-mode
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Gaussian states known as bisymmetric. For the aims of this work, the
PPT criterion will be applied for a bipartition “1 vs various” modes,
therefore supplying a powerful tool for detecting quantum entanglement
en these class of particular bipartitions. Notably, the PPT criterion
imposes the following condition on the symplectic eigenvalues {ν̃k} of
the partially transposed covariance matrix Ṽ [35]

ν̃k ≥ 1, ∀ k = 1, · · · ,n. (1.3.20)

Alternatively to the PPT criterion, there exists an operational criterion
which is independent of the PPT criterion; it constitutes a necessary and
sufficient condition of all (m+ n)-mode Gaussian states of any m× n
bipartitions [9].

1.3.5.3 Quantification of entanglement in two-mode Gaussian states

In this subsection, we board the task for quantifying the entanglement of
the simplest continuous variable Gaussian states, that is, those formed by
only two modes. The covariance matrix of this kind of states is written
in terms of the 2 × 2 matrices referred as α, β and γ, that is,

σ =

 α γ
γT β

 . (1.3.21)

By partially transposing the last covariance matrix through the defini-
tion given by Eq. (1.3.19), we can obtain the corresponding partially
transposed symplectic eigenvalues according to the following formula

ν̃± =

√√√√√∆̃(σ)∓
√
∆̃2(σ)− 4 Det σ

2 , (1.3.22)

where
∆(σ) = Det α+Det β + 2Det γ, (1.3.23)

(see (1.4.4) for a generalization for N -modes) and Det σ are invariant
under symplectic operations on the covariance matrix. Hence, since the
act of partially transpose a determined covariance matrix changes the
sign of the moments of the system with respect is transposing (see Section
1.3.5.2), the symplectic invariant given by Eq. (1.3.23) is transformed to

∆̃(σ) = ∆(σ̃) = Det α+Det β − 2Det γ, (1.3.24)
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Thus, the PPT criterion establishes that the symplectic eigenvalue ν̃−
must satisfy the Eq. (1.3.20) to establish separability between the modes
[65]. In the following we will review some entanglement measures for
two-mode Gaussian states.

Negativity

The negativities, first proposed in [66] and later adapted for the continuous-
variable context [67, 68] is a computable entanglement measure for general
Gaussian states which is defined according to

ℵ (ρ̂) =

∣∣∣∣∣∣ ˜̂ρ∣∣∣∣∣∣1 − 1
2 , (1.3.25)

where ˜̂ρ represent the partially transposed density matrix and ||ô| | =
Tr |ô| = Tr

√
ôô† is the trace norm of the hermitian operator ô; this

operation represent the sum of the singular values of the operator ô.
The negativity ℵ (ρ̂) is equal to the modulus of the sum of the negative
eigenvalues of the ˜̂ρ, that is

ℵ (ρ̂) =

∣∣∣∣∣∣
∑
i

λi

∣∣∣∣∣∣ . (1.3.26)

Finally, we emphasize that negativity quantifies the degree to which the
partially transposed density matrix ˜̂ρ fails to be positive.

Logarithmic negativity

Related to ℵ(ρ̂) , there is the so-called logarithmic negativity, defined as

Eℵ(ρ̂) = log
∣∣∣∣∣∣ ˜̂ρ∣∣∣∣∣∣1 ; (1.3.27)

this quantity constitutes an upper bound to the distillable entanglement
of the density operator ρ̂ [69]. Both negativities are monotone under local
operations and classical communications (LOCC)2, one of the principal

2 When we have a quantum system formed by multiple subsystems, one can distribute them to various
parties; each is restricted to act locally on their respective subsystem by doing quantum operation,
for example, quantum measurements. Then, the parties are free to communicate any classical data.
Quantum operations following this line are known as local operations with classical communication
(LOCC) [70, 71].
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characteristics to be a good entanglement measure. Also it is important
to recall, that for any two-mode Gaussian state the lowest symplectic
eigenvalue ν̃− of the partially transposed covariance matrix V , completely
qualifies and quantifies in terms of negativities the entanglement of any
two mode Gaussian state [35]; besides, for ν̃− ≥ 1 the state is separable
(non-entangled); on the other hand, as ν̃− −→ 0, the negativities, and
therefore, the entanglement, diverge.

For a two-mode Gaussian state with associated density matrix both
the negativity and the logarithmic negativity are decreasing functions of
the symplectic eigenvalue ν̃− [67, 72], that is,

∣∣∣∣∣∣ ˜̂ρ∣∣∣∣∣∣1 = 1
ν̃−

⇒ ℵ(ρ̂) = max
[
0, 1 − ν̃−

2ν̃−

]
, (1.3.28)

Eℵ(ρ̂) = max [0,− ln ν̃−] . (1.3.29)

where max[a,b] =
a, if a≥ b

b if a < b
. The expressions given by Eqs. (1.3.28)

and (1.3.29) quantify the amount by which the PPT condition (expresed
by Eq. (1.3.20) is violated). Therefore the symplectic eigenvalue ν̃−
qualifies and quantifies in terms of negativities the amount of entangle-
ment in two-mode Gaussian states. Besides, in the limit of ν̃− → 0, both
negativities grow to infinity.

Entanglement of formation

Let us recall that any pure state is symmetric; therefore µ= 1 (see Eq.
(1.3.12)). Hence in the case of symmetric two-mode Gaussian states, the
entanglement of formation (EoF) constitute another valid entanglement
measure. Let us recover the definition of EoF of an arbitrary state with
associated density operator ρ̂, this is,

EoF(ρ̂) = min
pi,|ψi⟩

∑
i

piE(|ψ⟩), (1.3.30)

where the minimum is taken over all the pure states realizations of ρ̂:

ρ̂=
∑
i

pi |ψi⟩⟨ψi| . (1.3.31)
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the absolute minimum in the Eq. (1.3.30) is given within the set of pure
two-mode Gaussian states according to

EF = max [0,f(ν̃−)] , (1.3.32)

where

f(x) =
(1+ x)2

4x log
(1+ x)2

4x

− (1 −x)2

4x log
(1 −x)2

4x

 . (1.3.33)

Therefore, this quantity is a monotonically decreasing function of ν−. The
EoF is an entanglement measure equivalent to the negativities defined
in the last two subsections.

Gaussian convex-roof extended versions

It is possible to define entanglement measures for exclusively Gaussian
states by using the formalism of Gaussian entanglement measures pro-
posed in reference [73]. The general formalism presented in that reference
allows defining generic Gaussian entanglement measures through the
convex roof formalism applied over pure Gaussian decompositions to
any valid measure of bipartite entanglement for Gaussian states. Then,
this formalism has been used in reference [65] to compute Gaussian
entanglement measures for other relevant classes of two-mode Gaussian
states which are non-symmetric; these states present extremal (maximal
and minimal) negativity as characteristic. We do not delve into this
signature; the interested reader can review the cited references. Hence, in
the following section, we walk to the first step for a pure Gaussian multi-
partite system, that is, those formed by three subsystems; these relevant
classes of states can be associated with the Arthurs-Kelly measurement
process when the system under observation is also a pure Gaussian state.

1.4 pure three-mode gaussian states

In this section, we review the main properties of the simplest multipartite
Gaussian continuous variable system: the three-mode (pure) Gaussian
states. The properties here derived are adequate for the study of the
entanglement properties in the CV Gaussian measurement setting of
Arthurs and Kelly. In the subsequent, we will refer to the local symplectic
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quantities and the local covariance matrices of the local modes according
to the label of the single-mode i; in the same manner, for the reduced
two-mode Gaussian states, we will refer to their covariance matrix by
the double subscript labeling the pertinent modes jk.

1.4.1 General properties

Let us define the generic form of the CM of a three-mode pure Gaussian
state, expressed in block form

V
(p)
N=3 =


σ1 ε1,2 ε1,3
εT1,2 σ2 ε2,3
εT1,3 εT2,3 σ3

 , (1.4.1)

where all elements defining this matrix are (2 × 2)-dimensional matrices;
the diagonal components describe the CMs of the reduced one-mode
systems, and the off-diagonal contains the correlations (quantum and
classical) between them. The symplectic eigenvalues ν∓ of a reduced
two-mode covariance matrix σij are recovered according to the formula
given by Eq. (1.3.22). The general purity condition, Eq. (1.3.12) requires

Det V
(p)
N=3 = 1. (1.4.2)

Besides, we have
∆1,2,3 = 3, (1.4.3)

where ∆1,··· ,N is an invariant under symplectic transformations for any
number N of modes defined as [43]:

∆1,··· ,N ≡
N∑
j=1

Det V j + 2
∑
j<k

Det ϵjk; (1.4.4)

besides, the conditions, Eqs. (1.4.2) and (1.4.3), imply that the local
purities of any (1 vs 2)-mode bipartitions are equal [35]

Det V ij = Det V k, i , j , k; (1.4.5)

then, combining Eqs. (1.4.2), (1.4.3) and (1.4.5), it can be proved that
(see Appendix 5.3)

(∆12 − Det V 12) + (∆13 − Det V 13) + (∆23 − Det V 23) = 3, (1.4.6)
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where we recall that the V ij and ∆ij stands as the reduced CMs and
the local symplectic invariants given by Eq. (1.4.4), for the reduced
two-mode states comprising the modes i and j, the Eq. (1.4.6) implies
that

∆ij = Det V ij + 1, ∀ i,j : i , j. (1.4.7)

Invoking the saturation of the uncertainty relation for two-mode Gaussian
states [35]:

∆ij − Det V ij ≤ 1, (1.4.8)

we conclude that any reduced two-mode state of a pure three-mode
Gaussian state saturates the partial uncertainty relation. The states
which saturate the partial uncertainty relation are states with minimal
negativity for given global and local purities [72, 74].

Another important fact emerging from Eq. (1.4.5) is that the entan-
glement between any pair of modes belonging to a three-mode pure
Gaussian state is fully determined by the local symplectic invariants:
Det V i, i = 1,2,3, for any adequate entanglement measure. Besides,
the entanglement of any i|jk-mode bipartition of a pure three-mode
state can be established by the entropy of any of the reduced states,
hence again by Det V i. Thus, for a pure Gaussian three-mode state, al l
entanglement properties are determined by the local symplectic invariants
Det V i [35], hence (by virtue of Eq. (1.3.12)) by the local single-mode
purities of the system. Then, defining

ai ≡
√

Det σi, i= 1,2,3, (1.4.9)

the local single-mode purities are

µi =
1
ai

. (1.4.10)

It has been proved that the ai are restricted to vary according to the
triangular inequality [35]

|aj − ak|+ 1 ≤ ai ≤ aj + ak − 1, (1.4.11)

for any permutation of the indexes {i,j,k} = {1,2,3}, in order to the
CM V

(p)
N=3 represent a physical state. Then, the inequality, Eq. (1.4.11)

fully characterizes the local single-mode symplectic eigenvalues ai, hence
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providing a full characterization of entanglement in three-mode pure
Gaussian states [35]. Besides, it is important to say that the quantities
given by Eq. (1.4.9) represent the local symplectic eigenvalues of the
reduced single-mode covariance matrices.

In general, the CM of any Gaussian state can be simplified through local
unitary symplectic operations on the individual modes; such operations
do not change the informational properties of the system. These simpler
forms are called standard forms. For future convenience, let us write the
standard form of the CM for a pure three-mode Gaussian state

V
(p)
sf =



a1 0 b+12 0 b+13 0
0 a1 0 b−

12 0 b−
13

b+12 0 a2 0 b+23 0
0 b−

12 0 a2 0 b−
23

b+13 0 b+23 0 a3 0
0 b−

13 0 b−
23 0 a3


, (1.4.12)

with

b±
ij ≡ 1

4√
aiaj

{√[
(ai − aj)

2 − (ak − 1)2] [(ai − aj)
2 − (ak+ 1)2]

±
√[
(ai+ aj)

2 − (ak − 1)2] [(ai+ aj)
2 − (ak+ 1)2]} .

(1.4.13)

We recall that for the compute of all entanglement properties in a
three-mode Gaussian state, we only need the symplectic quantities ai
composing the main diagonal of the matrix given by Eq. (1.4.12).

1.4.2 Classification

When we consider a N -partite system, we can classify the qualitative
entanglement properties of the system according to the different groupings
for the subsystems composing the entangled state. Based on this fact,
in [75] it has been considered a pure 3-qubit state (A,B,C for each
subsystem) and its entanglement properties based on its separability for
different qubits bipartitions. Hence such scheme considers all possibilities
to group the N parties in m≤N subsets: that is, the groupings in which
AB, AC, BC are together (entangled) and, C, B and A being separate
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(non-entangled), respectively. It must be noted that these cases are
described by the three i|jk-mode bipartitions of the tripartite system.
By taking the CV Gaussian analogous, the entanglement properties also
can be determined according to all i|jk-mode bipartitions of the system,
since the PPT criterion is a necessary and sufficient condition for the
separability of all (1 vs N−1)-mode Gaussian states as we established in
subsection 1.3.5.1. According to these facts, in [9], is given a classification
of five categories for pure three-mode Gaussian states according to the
separability of their three i|jk-mode bipartitions:

(C1) Fully inseparable states, which are inseparable
through any bipartition.
(C2) One-mode biseparable states, being separable un-
der only one bipartition.
(C3) Two-mode biseparable states, being separable
through two bipartitions.
(C4) Three-mode biseparable states, also called bound
entangled states, resulting separable in all three biparti-
tions, but impossible to write in the form of a convex
sum of pure states.
(C5) Fully separable states, which are separable in the
three bipartitions and can be written as the convex sum
given by Eq. (1.3.17).

Examples belonging to class (C1 ) are the well-known continuous-
variable Greenberger-Horne-Zeilinger (GHZ) states [10, 76] (see section
1.4.3.1), and the tripartie version of the continuous-variable Einstein-
Podolsky-Rosen (EPR) states (see Section 1.4.3.2), generated in [77,
78]. For class (C2 ), we have two-mode squeezed states and a single
vacuum in the third mode. The above classification will be helpful to
define the qualitative entanglement properties for the Arthurs-Kelly
simultaneous measurement process for position and momentum in a
Gaussian configuration.
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1.4.3 Examples of three-mode Gaussian states

1.4.3.1 Continuous variable Greenberger–Horne–Zeilinger (GHZ) states

We start with the generating configuration of the GHZ states [60], this
is a simple combination of three squeezed vacuum states and two optical
beam splitters; see figure 1 and reference [60].

First, we have two orthogonal squeezed vacuum states combined on
a first beam splitter BS1. This process generates a couple of entangled
modes at the outputs; the entanglement for this two-mode system is the
continuous-variable version of the Einstein-Podolsky-Rosen argument for
the completion of quantum mechanics [54]. Then, one of the arms is the
mode A with associated quadratures vector R̂a. Now, the second arm of
the beam splitter BS1 is interfered with another vacuum squeezed state
into a second beam splitter BS2. The squeeze parameters rj, j = 1,2,3
of each vacuum state are equal; then, we have |r1| = |r2| = |r3|. Besides,
it is important to note that, in all the above, we are considering the ideal
case of only pure states.

Now, let us going more quantitatively across the diagram presented in
figure 1. First, each squeezed vacuum state is represented according to
[79]

|0,Vj⟩p = (πVj)
−1

4
∫
dxj e

−x2
j /2Vj |xj⟩ , j = 1,2,3, (1.4.14)

where in the following, the labels j = 1,2,3 denote the first, the two, and
the third inputs states. The associated variance of the state given by Eq.
(1.4.14) is σ2

qs
= Vs/2. Through a Fourier transform we obtain the state

in momentum representation; then, it is trivial to verify the variance
σ2
ps
= 2/Vs. For the states given by Eq. (1.4.14) we have the saturation

of the Heisenberg uncertainty relation σ2
qs
σ2
ps
= 1 (units free h̄ = 2).

Therefore, if σ2
qs
< 1, we have squeezing in the variance of the position

quadrature; however, if σ2
ps
< 1, we have squeezing in the variance of the

momentum quadrature. Then, for the
first input of figure 1 we have σ2

x1 < 1, while for the second input we
have σ2

p2 < 1.
The production of squeezed vacuum states can be carried out by the

spontaneous parametric down conversion method in the degenerated
regime [80]. In this process a powerful laser is irradiated on a second-

Usuario
Resaltar



42 continuous variable systems

Figure 1: Scheme sketching the generation of the (finite squeezing) continuous variable
GHZ states. In the diagram, BS1 and BS2 represent two (phase-free) beam
splitters with reflectivities R1 = 2/3 (T1 = 1/3) and R2 = 1/2 (T2 = 1/2).
We have orthogonal quadrature-phase amplitudes (x̂j , p̂j) for each optical
mode, which are given by Eqs. (1.4.19) and (1.4.20). The x− p axis and the
ellipses depict the orientation of squeezing.
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order nonlinear optical medium; then, single photon of frequency 2ω may
split into pairs of photons with frequency ω, which are indistinguishable
in frequency, direction and polarization. The quantum state representing
the photon pairs exhibits squeezing. The corresponding Gaussian unitary
to this process is the one-mode squeezing operator, which is

S(r) = exp
{[
â2 −

(
â†)2]

/2
}

, (1.4.15)

being r ∈ R the squeezing factor, governing the degree of squeezing of the
state, in the Heisenberg picture the annihilation and creation operators,
â and â† of a single-mode, are transformed according to

â′ −→ (coshr) â− (sinhr) â† (1.4.16)

â′† −→ (coshr) â† − (sinhr) â. (1.4.17)
Besides, arranging the quadrature operators x̂ and p̂ of an arbitrary
quantum state in the quadratures vector R̂ = (x̂, p̂)T , the transformation
carried out by the unitary operator, Eq. (1.4.15), on R̂ is given by
S(r)R̂, where

S(r) =

e−r 0
0 er

 . (1.4.18)

Therefore, we have the quadratures

x̂j = e−rj x̂j0, (1.4.19)

p̂j = e+rj p̂j0, (1.4.20)
with j = 1,2,3, for the squeezed vacuum states given in Eq. (1.4.14).
Besides, x̂j0 and p̂j0 represent the initial position and momentum quadra-
tures of the vacuum state |0⟩. Taking the variance σ2

Â
=
〈
Â2

〉
−
〈
Â
〉2 of

the observable Â, we verify the variances

σ2
x̂j
= e−2rjσ2

x̂
j
0
, (1.4.21)

σ2
p̂j
= e+2rjσ2

p̂j
0
. (1.4.22)

On the other hand, we recall the Gaussian unitary associated with
the beam splitter transformation [23]; the operator associated with this
simple interferometer is

B(θ) = exp
[
θ
(
â†b̂− âb̂†)] , (1.4.23)
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where â and b̂ are the annihilation operators of the two input modes.
Besides, θ is related with the transmittance of the beam splitter: T =
cos2 θ ∈ [0,1], and with the reflectance according to R = sin2 θ ∈ [0,1].
Then, in the Heisenberg picture, the annihilation operators are trans-
formed via the following unitary transformationâ′

b̂′

 →
√

1 − T
√

T
−

√
T

√
1 − T

â
b̂

 , (1.4.24)

besides, the quadrature operator R̂ = (q̂a, p̂a, q̂b, p̂b)T is transformed via

R̂
′
= B̂(T )R̂, with B̂(T ) =

√
1 − T Î

√
T Î

−
√

T Î
√

1 − T Î

 ; (1.4.25)

then, following the diagram depicted by Fig. 1, we associate a pair of
orthogonal quadrature operators x̂1, p̂1 and x̂2, p̂2 to the inputs 1 and 2
respectively; these pairs are given by means of Eqs. (1.4.19) and (1.4.20)
with the squeezing factors r1 and r2 adjusted according to the diagram
of figure 1. Then, we have the quadratures vector R = (x̂1, p̂1, x̂2, p̂2)

T .
Hence, following the linear transformation, Eq. (1.4.25), we have the
quadrature operators x̂′

1, p̂1
′ and x̂′

a, p̂a′ for the outputs 1 and 2 as

x̂′
1 =

√
1 − T1x̂1 +

√
T1x̂2, (1.4.26)

p̂′
1 =

√
1 − T1p̂1 +

√
T1p̂2, (1.4.27)

x̂′
a =

√
1 − T1x̂2 −

√
T1x̂1, (1.4.28)

p̂′
a =

√
1 − T1p̂2 −

√
T1p̂1. (1.4.29)

Now, we take the output 1 of the first beam splitter and we combine it
with another vacuum squeezed state with associated quadratures x̂3, p̂3;
the orientation of squeezing is equal to the presented by input 2. Then,
we have the following quadratures for the outputs 3 and 4 respectively as

x̂b =
√

1 − T2x̂3 −
√

T2
(√

1 − T1x̂1 +
√

T1x̂2
)
, (1.4.30)

p̂b =
√

1 − T2p̂3 −
√

T2
(√

1 − T1p̂1 +
√

T1p̂2
)
, (1.4.31)

x̂c =
√

1 − T2
(√

1 − T1x̂1 +
√

T1x̂2
)
+

√
T2x̂3, (1.4.32)

p̂c =
√

1 − T2
(√

1 − T1p̂1 +
√

T1p̂2
)
+

√
T2p̂3, (1.4.33)
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where we have left the explicit dependency in the T1 and T2 parameters.
We recall that the initial quadratures x̂j and p̂j of each squeezed vacuum
state, are given by Eqs. (1.4.19) and (1.4.20) with the squeezing factors
rj properly adjusted. In the limit of infinite squeezing: rj −→ ∞, the
GHZ-states have the non-normalizable representation ∫

dxi |x1⟩ |x2⟩ |x3⟩,
which is a simultaneous eigenstate of the total momentum of the system:
p̂1+ p̂2+ p̂3 and a simultaneous eigenstates of all relative positions x̂i− x̂j
with zero eigenvalues. [81].

The GHZ-states are a particular example of three-mode Gaussian
states which are invariant under the exchange of any two modes in the
covariance matrix; that is, they are fully symmetric. Therefore, they are
bisymmetric for any (1 × 2)-mode bipartition, which implies that each
bipartite entanglement is locally equivalent to two-mode entanglement.
In particular, the pure GHZ-states have a covariance matrix of the form

σp
s =


α ε ε
εT α ε
εT εT α

 , (1.4.34)

where the local symplectic quantities α = aI2×2 (with a given by Eq.
(1.4.9)) are the same for all the three modes and we have the limit situa-
tion of infinite squeezing (a−→ ∞). Besides, we have ε = diag{e+,e−},
where

e± =
a2 − 1 ±

√
(a2 − 1)(9a2 − 1)

4a . (1.4.35)

In the finite squeezing situation, the minimum residual Gaussian con-
tangle, quantifying the tripartite entanglement (see Section 1.4.4.2 for
a review of this measure of tripartite entanglement), takes the simpler
form

Gres
τ = arcsinh2

[√
a2 − 1

]
− 1

2 ln2
3a2 − 1 −

√
9a4 − 10a2 + 1
2

 . (1.4.36)

It is interesting to note that the (with finite and infinite squeezing)
pure GHZ-states are completely inseparable for the three 1 × 2-mode
bipartitions; therefore, they exhibit genuine tripartite entanglement
[82, 83, 84]; see Section 1.4.2.

The GHZ states have been created experimentally following the
schematic of Figure 1. The three independent squeezed vacuum states are
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generated through three subthreshold degenerate parametric oscillators.
The detection of tripartite entanglement is made by recurring to the van
Loock-Furusawa inequalities [83] through measurements with homodyne
detection. Even, notably, it is possible to extend the scheme of Figure
1 to create N -mode entanglement for a network of N − 1 beamsplitters
with N input [77].

1.4.3.2 Continuous variable Einstein–Podolsky–Rosen (EPR) states

We review the configuration for the generation of the tripartite version of
the continuous variable (EPR)-type states [60]; this carries a modification
for the one employed by the GHZ-states in Figure 1: in this scheme, the
third input vacuum state is substituted by a coherent state, which we
obtain by displacing the vacuum state by the single-mode displacement
operator, Eq. (1.1.17). Therefore, we have the quadratures for the third
input as

x̂3 = x̂
(3)
0 + x0, (1.4.37)

p̂3 = p̂
(3)
0 + p0, (1.4.38)

being x0 and p0 the centres of the position and momentum variables;
then, it is trivial to verify the mean values ⟨x0⟩ and ⟨p0⟩. It is important
to note that the treatment for the two-beam splitter transformations
explained in Section 1.4.3.1 remains valid in this scheme; therefore, the
general results of Eqs. (1.4.30) to (1.4.33) describe the quadratures of
the outputs for the sketch of Figure 2 with the proper substitution of
Eqs. (1.4.37) and (1.4.38). The entanglement involving N > 3 modes
using these states has been studied in References [77, 78]. Like the GHZ
states, the tripartite version of the EPR states exhibits genuine tripartite
entanglement between the three modes of the system [60].
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Figure 2: Scheme sketching the generation of the continuous variable tripartite version
of the EPR-type states. In the diagram, BS1 and BS2 represent two (phase-
free) beam splitters with reflectivities R1 = 2/3 (T1 = 1/3) and R2 = 1/2
(T2 = 1/2). We have the first two orthogonal quadrature phase amplitudes
(x̂1,2, p̂1,2) for each optical mode, which are given by Eqs. (1.4.19) and
(1.4.20). The x− p axis and the ellipses depict the orientation of squeezing.
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1.4.4 Entanglement measures

Here we review, in particular, two adequate entanglement measures devel-
oped for three-mode Gaussian states: (1) the minimum residual Gaussian
contangle [35] and (2) the residual tripartite Rényi-2 entanglement [3].
These measures derive from the essential constraint of monogamy which
we will specifically review in Section 1.4.4.1. Besides this condition, these
entanglement quantifiers obey the following necessary conditions for a
bona fide entanglement measure [85]:

(i) They are zero if and only if the state is non-entangled.

(ii) They are monotone functions under local operations
and classical communications (LOCC).

(iii) They no increase, on average, under LOCC.

The condition (i) derives from the fact that separable (pure) states
do not contain some degree of entanglement; specifically, they can not
be purified employing LOCC to maximally entangled states [85]. The
condition (ii) comes from the fact that unitary transformations on the
individual subsystems only represent a change of basis, leaving the
existent quantum correlations invariant. The condition (iii) comes from
the reason that any increase in correlations under LOCC should be
classical; hence the entanglement is not increased.

1.4.4.1 The Coffman-Kundu-Wootters (CKW) inequality

Quantum correlations can not be freely distributed among the multiple
parts of a multipartite system. This fact is commonly called monogamy
constraint, and it has first demonstrated by the seminal work of Coffman,
Kundu, and Wooters for the discrete case of three qubits A, B and C
[86]. Through the squared concurrence (tangle) as entanglement measure,
they obtain the inequality:

C2
A|BC ≥ C2

A|B + C2
B|C , (1.4.39)
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which essentially means that the entanglement (quantified by the tangle)
between the qubit A and the system composed by B and C (denoted
as BC) is greater or equal than the sum of the entanglements of the
reduced qubit systems A|B and B|C. This monogamy constraint was
subsequently proved valid for any pure or mixed systems with N -qubits
[87]. Then, we refer to the monogamous inequality or monogamy of an
N partite system in a general context as

Eji|(j1···jN−1) ≥
N−1∑
l=2

Eji|jl, (1.4.40)

where E stands as an adequate entanglement measure for any pure or
mixed, and discrete or continuous variable system; besides, the inequal-
ity, Eq. (1.4.40), is taked for a reference partie ji from the whole set
{j1,jl, · · · ,jN−1}, where each ji contains a single system. The monogamy
constraint given by Eq. (1.4.40) is naturally extended for infinitely di-
mensional continuous variable systems; in particular, the inequality of Eq.
(1.4.40) has been adapted to the CV context of three-mode Gaussian
states [34, 35] sing the analog of the tangle, that is the “contangle”,
defined as the square of the logarithmic negativity, Eq. (1.3.27). Besides,
the generalization to the general case of N -mode CV Gaussian states
has been made based on the symplectic analysis of covariances matrices
and the properties of Gaussian monotones of entanglement [37].

The verification for the monogamy inequality in the continuous vari-
able Gaussian context is vitally important to define correct entanglement
monotones, for example, the definition of minimum residual Gaussian
contangle (see section 1.4.4.2) or the residual tripartite Rényi-2 entangle-
ment (see section 1.4.4.3) for entanglement quantification of three-mode
Gaussian states.

1.4.4.2 The minimum residual Gaussian contangle

Let us define some definitions to put in context the minimum resid-
ual Gaussian contangle as a genuine tripartite entanglement quantifier
measure.

First, let us define the continuous-variable version of the tangle Eτ

for a generic pure state |ψ⟩ composed by (1+N)-mode CV subsystems,
then,

Eτ (ψ) ≡ ln2 ∣∣∣∣∣∣ ˜̂ρ∣∣∣∣∣∣ , ρ̂= |ψ⟩⟨ψ| , (1.4.41)
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hence, it is defined in terms of the squared logarithmic negativity, Eq.
(1.3.27).

For a pure Gaussian state |ψ⟩ with covariance matrix σp, we have

Eτ (σ
p) = arcsin2


√

1 −µ2
1

µ1

 , (1.4.42)

where µ1 = 1/
√

σ1 is the local single purity of the mode 1, which has
associated covariance matrix σ1; see Eq. (1.4.10). The definition, Eq.
(1.4.41), can be extended to mixed states ρ̂ of (n+ 1)-mode CV systems
through the convex-roof formalism [88], as

Eτ (ρ̂) ≡ inf
{pi,ψi}

∑
i

piEτ (ψi), (1.4.43)

where the infimum is taken over all convex decompositions of ρ̂ in terms
of pure states {|ψi⟩}. If the index i is continuous, the sum in q. (1.4.43) is
replaced by an integral, and the probabilities by a probability distribution
ϱ(ψ).

Then, restricting us to the regime of continuous variable Gaussian
states, any mixed Gaussian state with covariance matrix σ, admits a
decomposition in terms of pure Gaussian states. Then, the infimum of
the average contangle in all pure Gaussian state decompositions defines
the Gaussian contangle Gτ

Gτ (σ) ≡ inf
{ϱ(dσP ),σP }

∫
ϱ(dσP )Eτ (dσ

P ); (1.4.44)

it can be showed that Gτ (σ) is a bipartite entanglement monotone
under Gaussian local operations and classical communications (GLOCC)
[65, 73]. Notably, all three-mode Gaussian states satisfy the CKW
inequality (see Section 1.4.4.1) with the Gaussian contangle as a quantifier
entanglement measure [34, 35].

Then, the CKW constraint gives place to the definition of residial
contangle as a quantifier of genuine tripartite entanglement of continuous-
variable three-mode Gaussian states. This measure is dependent on
the chosen bipartition according to the reference mode, except for fully
symmetric states. Now, a bona fide entanglement measure for continu-
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ous variable tripartite entanglement is given by the minimum residual
contangle [34], which is defined as

Ei|j|k
τ ≡ min

(i,j,k)

[
Ei|jk
τ −Ei|j

τ −Ei|k
τ

]
, (1.4.45)

where the symbol (i,j,k) represents all the permutations of the three-
mode indexes i,j,k ∈ {1,2,3}. This condition ensuring that Ei|j|k

τ is
invariant under all permutations of the modes. The quantity Ei|jk

τ

represents the contangle characterizing the global bipartition i|jk, while
Ei|k
τ is the contangle associated with the reduced bipartition comprising

the modes i and j.
Adapting the above definition for continuous variable Gaussian states

[35], we have the minimum residual Gaussian contangle according to

Gmin
τ ≡Gi|j|k

τ ≡ min
(i,j,k)

[
Gi|jk
τ −Gi|j

τ −Gi|k
τ

]
, (1.4.46)

where Gi|jk
τ represents the Gaussian contangle characterizing the global

bipartition i|jk, while Gi|k
τ is the Gaussian contangle associated with the

reduced bipartition comprising the modes i and j. See Figure 2 of [35] for
a pictorial representation of Eq. (1.4.46). It must be worthy to note that
the minimum in Eqs. (1.4.45) and (1.4.45) is a necessary requirement
for the bona fide condition as entanglement measures: if one choose a
reference bipartition for which the minimum is not fulfilled, the resulting
quantifier is not monotone under LOCC (GLOCC); therefore, it is not a
valid entanglement measure [35]. The minimum residual contangle, Eq.
(1.4.45), as well as its Gaussian version, Eq. (1.4.46), have been proved
monotone under LOCC and GLOCC; besides, they are non-increasing
under probabilistic operations [35]. Therefore, both quantifiers represent
trusty tripartite entanglement measures.

The main problem tackled through this thesis work involves only pure
three-mode Gaussian states; therefore, we will focus in recover the recipe
to determine the quantitative entanglement properties in these classes
of systems; hence, we recover the step by step application procedure
presented in Reference [35] for the compute of the minimum residual
Gaussian contangle:

(1) Determine the local purities. The state is globally pure, then
it satisfy Eq. (1.4.2); therefore, we only need the three local
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purities given by Eq. (1.4.10), hence we only use the three reduced
covariance matrices σi, i= 1,2,3.

(2) Find the minimum. The minimum in Eq. (1.4.46) is attained
in the bipartition whose single-mode has the smallest reciprocal
local single-mode purity, that is, the smallest quantity given by Eq.
(1.4.9).

(3) Verify range and compute. Once determined the smallest recipro-
cal local single-mode purity; say, for example amin = al; we need to
compute the following parameters

s=
a2 + a3

2 , (1.4.47)

d=
a2 − a3

2 ; (1.4.48)

if amin = 1, then mode 1 is uncorrelated from the others and we
have Gres

τ = 0. Instead, if amin > 1 then we have the minimum
residual Gaussian contangle as

Gres
τ = arcsin2 [√amin2−1

]
−Q(amin,s,d). (1.4.49)

The first term on the right hand side of Eq. (1.4.49) represent
the Gaussian contangle Gl|jk

τ of the l|jk-mode bipartition and
the quantity Q(amin,s,d) = Gl|j

τ +Gl|k
τ represent the sum of the

Gaussian contangles of the l|j and l|k reduced mode bipartitions;
such term is defined by

Q(amin,s,d) = arcsinh2
[√
η2(amin,s,d)− 1

]
+ arcsinh2

[√
η2(amin,s,−d)− 1

]
,

(1.4.50)

being η = η+ if D > 0 and η = η− if D ≤ 0 (η+ = η− if D = 0),
where

η+ =

√
2
[
2a2

min(1+ 2s2 + 2d2)− (4s2 − 1)(4d2 − 1)− a4
min −

√
δ
]

4(s− d)
,

(1.4.51)
η− =

|k−|
(s− d)2 − 1, (1.4.52)
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D = 2(s− d)−
√

2 [k2
− + 2k+ + |k−| (k2

− + 8k+)1/2]/k+, (1.4.53)

k± = a2
min ± (s+ d)2, (1.4.54)

and

δ =(amin − 2d− 1)(amin − 2d+ 1)(amin + 2d− 1)(amin + 2d+ 1)
(amin − 2s− 1)(amin − 2s+ 1)(amin + 2s− 1)(amin + 2s+ 1).

(1.4.55)

Each quantity of the left hand side of Eqs. (1.4.51) to (1.4.55) has
been omitted the dependence on the parameters amin,s and d for
brevity. Be aware that the second term in the right hand side of
Eq. (1.4.50) must be calculated replacing d by −d in each quantity
of Eqs. (1.4.51) to (1.4.54).

In section 3.5.3, we will recover the definitions for the minimum residual
contangle to quantify the tripartite quantum entanglement generated in
a full dynamical scheme of the Arthurs-Kelly measurement process of
position ad momentum observables.

1.4.4.3 The residual tripartite Rényi-2 entropy

In this section, we review the residual tripartite Rényi-2 entropy, which
is a bona fide measure of entanglement for three-mode Gaussian states.
First, we will briefly take some basic concepts which will be helpful to
understand the basis of this entanglement quantifier. We follow the
approach given in Reference [3].

In quantum information, the degree of purity, i.e., the amount of
information at our disposal about a quantum state ρ̂ is often measured
through the von Neumann entropy, that is,

S(ρ̂) = −Tr (ρ̂ log [ρ̂]) , (1.4.56)

in fact, entanglement in pure bipartite states is commonly measured by
the von Neumann entropy of the reduced density matrix of any of the
two subsystems

S(ρ̂A:B) = S(ρ̂A) = S(ρ̂B), (1.4.57)

being ρ̂A,B = TrB,A [ρ̂A:B] the reduced density matrix of the system
A,B; however, there exist other entropic measures which can help us to
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measure the information about a quantum system. In specific, we have
the family of Rényi-α entropies [52] which satisfy the strong subadditivity
inequality [89, 90, 91]. Entropic measures quantify, in general, the degree
of ignorance about the preparation of a quantum state. In particular,
the Rényi-α entropies are defined as

Sα(ρ̂) =
1

1 −α
log [Tr(ρ̂α)] , (1.4.58)

and reproduce the von Neumann entropy in the limit α−→ 1. Focusing
on the continuous-variable regime, the Rényi entropies can be evaluated
for a generic N -mode Gaussian state with a density matrix ρ̂ in terms of
its covariance matrix σ [72] according to

Sα(ρ̂) =
∑N
k=1 ln [gα(νk)]

1 −α
, (1.4.59)

where {νk} represent the set of symplectic eigenvalues of σ, and

gα(x) =
2α

(x+ 1)α − (x− 1)α . (1.4.60)

Notably, in Reference [36], it has been proved that the particular case of
α = 2 represents a natural measure of information for any multimode
Gaussian state. Therefore, using Eq. (1.4.58) we have

Sα(ρ̂) = − log
[
Tr(ρ̂2)

]
=

1
2 ln (det σ) , (1.4.61)

where in the last term of the above equation we have made use of the
definition for purity of a N -mode Gaussian state, Eq. (1.3.12). Then,
the Rényi-2 entropy is directly related to the purity of the Gaussian state.
Notably, in the Gaussian scenario (and only here), the Rényi-2 entropy
satisfies the strong subadditivity inequality for all tripartite Gaussian
states ρ̂ABC whose subsystems encompass an arbitrary number of modes;
see Reference [3] for a proof.

We can establish a measure of bipartite entanglement E2 for Gaussian
states based on the Rényi-2 entropy for mixed states through the convex
roof formalism [3]. In the particular scenario of pure states, we have for
a bipartite Gaussian state with covariance matrix σpure

A:B
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E2(σ
pure
A:B ) = S2(σA) =

1
2 ln(det σA), (1.4.62)

where σA is the reduced covariance matrix of the subsystem A. This
expression will be useful for future computations.

It must be noted that not all entanglement measures which satisfy
the monotonicity condition can obey the monogamy constraint of Eq.
(1.4.40) [3]. Notably, the Rényi-2 entropy for all N -mode Gaussian
states are monogamous [36], which is a crucial property to define trusty
entanglement measures in this class of states; therefore, for a N -mode
Gaussian state ρ̂A1,A2···An we have

E (A1|A2···An)
2 −

N−1∑
j=2

E (A1|Aj)
2 ≥ 0, (1.4.63)

where E2(ρ̂A1|A2···An
) is the Rényi-2 entropy characterizing the entangle-

ment of the global bipartition of A1 vs the set (A2 · · ·An), while E2(ρ̂A1|Aj
)

characterizes the entanglement of the reduced bipartition A1|Aj. Each
partie Aj comprises one mode only.

Now, focusing on three-mode Gaussian states, we recall that their
covariance matrix σA1A2A3 can be putted in the standard form of the
Eq. (1.4.12), with the local symplectic quantities ai given by Eq. (1.4.9)
constraint to vary according to the inequality Eq. (1.4.11). Then,
we recover the definition for the residual tripartite Rényi-2 entropy,
E(

Ai|Aj |Ak)
2 , with respect to the focus mode Ai, as [3]

E(
Ai|Aj |Ak)

2 = E(
Ai|AjAk)

2 − E(
Ai|Aj)

2 − E (Ai|Ak)
2

=
1
2 ln

 a2
i

gjgk

 , i,j,k ∈ {1,2,3} , i , j , k,
(1.4.64)

where
E(

Ai|Aj)
2 =

1
2 lngk, (1.4.65)

with

gk =



1, if ak ≥
√
a2
i + a2

j − 1,
β

8a2
k
, if αk < ak <

√
a2
i + a2

j − 1,(
a2

i −a2
j

a2
k−1

)2
, if ak ≤ αk;

(1.4.66)
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besides, we have the quantities

αk =

√√√√√√2
(
a2
i + a2

j

)
+
(
a2
i − a2

j

)2
+
∣∣∣a2
i − a2

j

∣∣∣√(a2
i − a2

j

)2
+ 8

(
a2
i + a2

j

)
2
(
a2
i + a2

j

) ,

(1.4.67)

β =2a2
1 + 2a2

2 + 2a2
3 + 2a2

1a
2
2 + 2a2

1a
2
3 + 2a2

2a
2
3

− a4
1 − a4

2 − a4
3 −

√
δ− 1,

and

δ =
[
(a1 + a2 + a3)

2 − 1
] [
(a1 − a2 + a3)

2 − 1
]

×
[
(a1 + a2 − a3)

2 − 1
] [
(a1 − a2 − a3)

2 − 1
]
.

(1.4.68)

Besides, using Eq. (1.4.62) and the condition, (1.4.5), for three-mode
Gaussian states, we have the Rényi-2 entropy for the bipartitions (Ai|AjAk)
as

E (Ai|AjAk)
2 =

1
2 ln [det(σi)]

=
1
2 ln [det(σjk)] ,

(1.4.69)

being σi and σjk the reduced covariance matrices associated with the
systems comprising the single-mode i and the two-mode jk, which can
be obtaining by removing the entries of the excluded modes.

In general, the expression Eq. (1.4.64) is dependent on the choice
for the mode playing as focus; this is a good characteristic that can
throw light on the entanglement structure of a tripartite system. We
will take advantage of this characteristic in Section 2.4 to study the
features of the tripartite entanglement in the strong coupling regime of
the Arthurs-Kelly measurement process.
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T H E A RT H U R S - K E L LY S I M U LTA N E O U S
M E A S U R E M E N T P R O C E S S

“[· · · ] Then what will happen
tomorrow? Nobody knows.”

Yuval Noah Harari

2.1 theoretical background

2.1.1 The standard model of quantum measurement

In quantum mechanics, there exists a model of quantum measurement
that has been played a crucial role in understanding and develop funda-
mental aspects of the theory; such a model is usually called the standard
model of the quantum measurement [92]. In this mechanism, a quan-
tum observable (which we pretend to know) enters in interaction with a
pointer observable (also called prove) through an interaction Hamiltonian
to create quantum correlations among them; later, the proof is read (i.e.
measured), and the output carries information about the original ob-
servable of the system. The first mathematically rigorous and physically
oriented mechanism of this model was proposed by von Neumann in
the last three pages of his book: Mathematical foundations of quantum
mechanics [93]; in that, he defines an interaction Hamiltonian between
the position q̂ of an observed system and the momentum p̂ of a probe
according to

Ĥ = q̂⊗ p̂, (2.1.1)

it is important to note that von Neumann assumes the masses of the
systems are big enough to discard their free energies. Hence is the

57
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interaction energy part is the only which plays a decisive aspect for the
measurement creating strong correlations between the observables of the
prove and the system. In this sense, the time dependent Schrödinger
equations becomes

i h̄
∂

∂t
Ψt (q,r) = −i h̄q∂Ψt (q,r)

∂r
, (2.1.2)

where we use p̂= −i h̄ ∂
∂r . In this manner, we have

(
∂

∂t
+ q

∂

∂r

)
Ψt (q,r) , (2.1.3)

with the solution
Ψt (q,r) = f(q, r− tq), (2.1.4)

this result can be verified more simply by recurring to the time evolution
operator method [94]: Ψt (q,r) = e−itĤ/ h̄ f(q,r), with f0(q,r) the initial
wave function describing the probe and the system; then we have

Ψt (q,r) = e−itĤ/ h̄ f(q,r)
= e−tq ∂

∂rf(q,r)
= f(q, r− tq). (2.1.5)

In particular, if the initial wave function of the system and the prove is
a product, i. e., f(q,r) = ϕ(q)ξ(r), we have

Ψt (q,r) = ϕ(q)ξ(r− qt); (2.1.6)

therefore, by projectively measuring the position of the probe at time t= 1
1 we will find that statistically (i.e. in a large number of experimental
measurements made on identically prepared systems) the probability
distribution of the outputs will be centered at the position value q of the
observed system. For seeing a more complete description of the standard
model of measurement, the reader can see [95], pages 59-61.

1 there is nothing special about choosing this measurement time; experimentally speaking we can adjust
the displacement scale of the probe to get at any time a displacement equal to q.
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2.1.2 Retrodictive and predictive aspects of accuracy

Measurements in physics constitute the bridge between the theory and its
predictions. Classically the act of measuring involves the comparison of
certain property of a physical object with another acting as a meter; thus,
the extracted information constitutes the exact result of the measurement.
Nevertheless, quantum-mechanically speaking, this notion of accuracy
does not make sense. The first to beat these classical deterministic
conceptions was Heisenberg with him inaccuracy relation derived through
their famous think experiment of γ-ray microscope [96]. However, the
widely celebrated uncertainty relation appearing in almost all elementary
treaty of quantum mechanics:

δqδp ≥ 1
2, (2.1.7)

was mathematically derived by Kennard [97] from the quantum mechan-
ical formalism. Nowadays, there is a consensus that ineq. (2.1.7) has
nothing to do with the simultaneous measurement of complementary
observables. Instead, the first quantum-mechanically description where a
measuring device interacts with a (pure) system to simultaneously mea-
sure its position and momentum observables was proposed by Arthurs
and Kelly [98]. They conceived their model as a generalization of the
Von Neumann measurement process (see Sec 2.1.1), extending the model
to the non-commuting pair of position and momentum observables. As
we will see in section 2.2, derive the following uncertainty relation

δqδp ≥ 1, (2.1.8)

which has the double value in the lower bound of the Ineq. (2.1.7); there-
fore, they establish a fundamental difference between their associated
measurement process. Instead, the adequate operational interpretation
of the Ineq. (2.1.7) is: take a set of a big number of identically prepared
quantum systems and carry out a single measurement of the position
observable on one-half of the systems; then, takes the independent sin-
gle measurement for the momentum observable on the other half of the
systems. By evaluating the corresponding standard deviations of the asso-
ciated probability distributions of the measurements, one finds that their
product is bounded from below according to Ineq. (2.1.7) [99]. Then, that
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inequality refers to ideal separate single measurements applied to separate
members of the ensemble [100]. On the other hand, the quantities δq and
δp in the Ineq. (2.1.8) denote the standard deviations characterizing the
widths of the probability distributions of the simultaneous measurement
outputs of position and momentum observables carried by independent
systems.Besides, the double value in the lower bound of the Ineq. (2.1.8)
indicate that in a simultaneous measurement process for the canonical
pair, there exists an unavoidable noise that affects the measurement
results. As we will see in the following sections, this fact implies the
well-known statute that we cannot simultaneously measure both the
position and momentum observables with arbitrary accuracy; however,
even though the Ineq. (2.1.7) certainly provides knowledge about the
accuracy of the simultaneous measurement, it only refers to one aspect of
the accuracy; besides, the Ineq. (2.1.7) does not quantify operationally
the error concept, which is a key to understanding the accuracy of the
simultaneous measurement process. Hence, to evaluate the straiten as-
pects of accuracy of that model, we define the corresponding concepts
based on the theory developed by Appleby [101, 102, 103].

Let us consider a quantum system in the position or momentum
representation |ψ1(ξ1)⟩ such that the variable ξ1 label any of these
representations, that is ξ1 ∈ {x1,p1}. From this state, we pretend to
know its position and momentum observables (x̂1 and p̂1) (which only
is possible in a statistical sense in the quantum mechanical regime) .
Besides, let us take a measuring device with two commuting and inde-
pendent degrees of freedom acting as pointers (also called probes), each
represented also by (independent) one-dimensional continuous-variable
states |ψ2(ξ2)⟩ and |ψ3(ξ3)⟩. The global state (the quantum system plus
the pointers) is defined as the tensor product of the individual states
|ψ⟩ = |ψ1(ξ1)⟩ |ψ2(ξ2)⟩ |ψ3(ξ3)⟩ on a tensor Hilbert space H = ⊗3

i=1Hi.
Then, at the time t, the position and momentum observables of the quan-
tum system are linked with the observables ξ̂2 ∈ {x̂2, p̂2} and ξ̂3 ∈ {x̂3, p̂3}
of the pointers through a coupling Û (the measurement interaction),
which of course is an unitary: Û †Û = Î and a self-adjoint operator:
Û † = Û . After a time of interaction ∆t, local simultaneous projective
measurements are made on the pointers to know their observables x̂1
and x̂2. Then, the measurement outputs are recorded (without affecting
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it in any way) by the measuring apparatus; in a statistical sense, such
measurement outputs should have information about the canonical pair
of the system as a direct consequence of the unitary coupling governing
the dynamics.

For that process, we define the concept of accuracy in the simultaneous
measurement of our (maybe oversimplified) measurement model based on
the definitions of Ozawa [104] for the measurement of a single observable:

Theorem 1. The measuring apparatus precisely measures the position
or momentum observable of the quantum system if, independently,
the recorded probability distribution of each pointer output exactly
matches the probability distribution of their corresponding linked
canonical observable of the quantum system; this means, rigorously:

P (x′
i ∈ ∆) = ⟨ψ|Eξ1(∆) |ψ⟩ , (2.1.9)

where P (x′
i ∈ ∆) with i= 2,3, represents the probability distribution

for the record value x′
i of the pointer i in an interval ∆, and E ξ̂i(∆)

stands as the spectral projection of the canonical observable ξ̂1 ∈ {x̂1, p̂1}
in the same interval ∆. As we will soon see, the canonical probability
distribution against which the distribution of the pointer record is com-
pared, can refer to before or after the measurement process indicating
two distinct aspects of accuracy in the simultaneous measurement of the
canonical pair.

Therefore, to quantify the accuracy in a simultaneous measurement
process, we recover the so-called error observables [101, 102, 103]. We first
switch the Heisenberg picture, and we define the “final” observables as
those what evolve under the dynamics associated with the measurement
interaction

X̂ ′ = Û †X̂Û . (2.1.10)

Therefore, we recover the so-called retrodictive error observables

ε̂Rx̂1 = ξ̂′
2 − x̂1, (2.1.11)

ε̂Rp̂1 = ξ̂′
3 − p̂1. (2.1.12)
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Then, the observables εRx̂1,p̂1, are defined as the difference between the
final pointers observables and the initial position and momentum observ-
ables of the system; then, through a measure of dispersion, they give a
notion about the degree of match between the probability distributions
of the registered pointer outputs and the canonical observables of the
system before the measurement, i.e., they give a notion of the retrodictive
accuracy of the simultaneous measurement, according to the definition
established by the Theorem 1.

Now we recover the so-called predictive error observables

ε̂Px̂′
1
= ξ̂′

2 − x̂′
1, (2.1.13)

ε̂Pp̂′
1
= ξ̂′

3 − p̂′
1. (2.1.14)

The observables εPx̂′
1,p̂′

1
are defined as the difference between the final

pointers observables and the final position and momentum observables
of the system, hence through a measure of dispersion they gives a notion
about the degree of match between the probability distributions of the
registered pointer outputs and the canonical observables of the system
just after the simultaneous measurement.

The necessity for the distinction of two aspects of accuracy in any
quantum measurement process has been pointed out by several authors,
emphasizing the preparative (predictive) and a determinative (retro-
dictive) nature of a quantum measurement [105, 106, 107, 108]. The
distinction for these two aspects has been materialized in the error ob-
servables by Appleby [101, 102, 103], appealing to the need to quantify
the recoil effects on the measured system due to the measurement process;
in fact, the definitions given by Eqs. (2.1.11) to (2.1.14) allows defining
disturbance observables to quantify the degree of perturbation on the
system due to the measurement process, that is,

δDx̂1 = ε̂Rx̂ − ε̂Px̂′ = x̂′
1 − x̂1, (2.1.15)

δDp̂1 = ε̂Rp̂ − ε̂Pp̂′
1
= p̂′

1 − p̂1, (2.1.16)

which through a measure of dispersion they give a notion about the degree
of change in the statistic of the observables of position and momentum
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due to the unitary dynamics of the measurement process. It must be
note that the root-mean-square of the retrodictive error observables, that
is, the Eqs. (2.1.11) and (2.1.11), and the disturbance observables, that
is, the Eqs. (2.1.15) and (2.1.16), exactly coincide with the noise and
disturbance observables given by Ozawa [104]. Hence the operational
formulation (in units of h̄ = 1) about the well-known statute that it
is impossible to simultaneous measure the position and momentum
observables with arbitrary accuracy for the retrodictive and predictive
aspects can be captured by the uncertainty relation [101, 102, 103]:

σ2
ε̂X

x̂
σ2
ε̂X

p̂
≥ 1

4, (2.1.17)

where this time the superscript X refers to any of the superscripts R or
P to refer to any of the retrodictive or predictive error operators and

σε̂X
x̂,p̂

=
√

⟨ψ|
(
ε̂Xx̂,p̂

)2 |ψ⟩ − ⟨ψ|
(
ε̂Xx̂,p̂

)
|ψ⟩, (2.1.18)

stands as the standard deviation of the error observable; of course, the
squared quantity representing the variance. The Ineq. (2.1.17) implies
that the statistic of the recorded measurement outputs of the pointers
never coincides with the (before or after) statistic of the canonical ob-
servables of the system. The reason for this is that the simultaneous
measurement process of the canonical pair carries an intrinsic noise
related to the dynamics of the pointer’s observables at the time of the
measurement. To show this argument, let us go more quantitatively.

First, we compute explicitly the variances for the error retrodictive
observables, therefore, we have

⟨ψ|
(
ε̂Rx̂,p̂

)2 |ψ⟩ = ⟨ψ|
{(
ξ̂′

2,3
)2 − ξ̂′

2,3 × (x̂1, p̂1)− (x̂1, p̂1)× ξ̂′
2,3 + (x̂1, p̂1)

2
}

|ψ⟩ ,
(2.1.19)

and(
⟨ψ| ε̂Rx̂,p̂ |ψ⟩

)2
=
(
⟨ψ| ξ̂′

2,3 |ψ⟩
)2 − 2

(
⟨ψ| ξ̂′

2,3 |ψ⟩
)
(⟨ψ| (x̂1, p̂1) |ψ⟩)

+(⟨ψ| (x̂1, p̂1) |ψ⟩)2 , (2.1.20)

hence we recover the variance

σ2
ε̂R

q̂,p̂
= σ2

ξ̂′
2,3
+ σ2

x̂1,p̂1 − Cov
[
ξ̂′

2,3, (x̂1, p̂1)
]
, (2.1.21)
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where σ2
ξ̂′
2,3

and σ2
x̂1,p̂1 represent the variances of the final pointer outputs

and the initial position and momentum observables, and

Cov
[
ξ̂′

2,3, (x̂1, p̂1)
]
= ⟨ψ| ξ̂′

2,3 × (x̂1, p̂1) + (x̂1, p̂1)× ξ̂′
2,3 |ψ⟩

−2
(
⟨ψ| ξ̂′

2,3 |ψ⟩
)
(⟨ψ| (x̂1, p̂1) |ψ⟩) , (2.1.22)

is the covariance between the observables ξ̂′
2,3 and (x̂1, p̂1). Notably, it

must be noted that Eq. (2.1.21) can be written as

σ2
ε̂R

q̂,p̂
= σ2

x̂1,p̂1 + δRx̂′
1,p̂′

1
, (2.1.23)

where δRx̂′
1,p̂′

1
= σ2

ξ̂′
2,3

− Cov
[
ξ̂′

2,3, (x̂1, p̂1)
]

represents all noise affecting the
retrodictive accuracy in the simultaneous measurement of the position
and momentum observables. From that term we can verify that the
retrodictive inaccuracy affecting the simultaneous measurement depends
directly on the initial fluctuations of the probability distributions of the
pointers observables at the time of the measurement, and the covariance
of that observables with the initial canonical pair under inspection.

By a similar procedure, the variance of the predictive error observable
is

σ2
ε̂P

q̂,p̂
= σ2

ξ̂′
2,3
+ σ2

x̂′
1,p̂′

1
− Cov

[
ξ̂′

2,3, (x̂′
1, p̂′

1)
]
, (2.1.24)

with

Cov
[
ξ̂′

2,3, (x̂′
1, p̂′

1)
]
= ⟨ψ| ξ̂′

2,3 × (x̂′
1, p̂′

1) + (x̂′
1, p̂′

1)× ξ̂′
2,3 |ψ⟩

−2
(
⟨ψ| ξ̂′

2,3 |ψ⟩
)
(⟨ψ| (x̂′

1, p̂′
1) |ψ⟩) ; (2.1.25)

therefore, in an equivalent way to the retrodictive aspect the variance
given by Eq. (2.1.24) can be written as

σ2
ε̂P

q̂,p̂
= σ2

x̂′
1,p̂′

1
+ δPq̂′,p̂′, (2.1.26)

where δPx̂′
1,p̂′

1
= σ2

ξ̂′
2,3

− Cov
[
ξ̂′

2,3, (x̂′
1, p̂′

1)
]

represents all noise affecting the
predictive accuracy in the simultaneous measurement of the position
and momentum observables. Therefore, as in the retrodictive case, the
fluctuations of the probability distributions of the pointers observables
at the time of the measurement play a role in the inaccuracy for the
predictive aspect of the simultaneous measurement, together with the
covariance of those observables with the canonical pair just after the
measurement.
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2.1.3 Unbiased measurements

In the context of a unbiased condition as was assumed by Arthurs and
Kelly (see Sec. 5.2), there are not systematic error of retrodiction:

⟨ψ| ε̂Rx̂,p̂ |ψ⟩ = 0; (2.1.27)

besides, it is natural to accept the unbiased predictive condition of the
measurement

⟨ψ| ε̂Px̂,p̂ |ψ⟩ = 0. (2.1.28)
We recall that in the Heisenberg picture, the state |ψ⟩ refers to the
tensor product of the individual states of the pointers and system under
measurement; this together the Eqs. (2.1.27) and (2.1.28) implies that
the variance of the error observable are simplified to

σ2
ε̂R,P

x̂,p̂
= ⟨ψ|

(
ε̂R,P
x̂,p̂

)2
|ψ⟩ . (2.1.29)

Now, if |ψ′⟩ = (x̂1, p̂1) |ψ⟩ and the simultaneous measurement is retrodic-
tively unbiased, it can be proved that (see appendix of [101, 102, 103] or
preposition 2.4.3 of [109]):

⟨ψ| (x̂, p̂)×
(
ε̂R,P
x̂,p̂

)
|ψ⟩ = ⟨ψ|

(
ε̂R,P
x̂,p̂

)
× (x̂, p̂) |ψ⟩ = 0, (2.1.30)

with this condition, it is straightforward to verify the following conditions

⟨ψ| ξ̂′
2x̂1 |ψ⟩ = ⟨ψ| x̂1ξ̂

′
2 |ψ⟩ = ⟨ψ| x̂2

1 |ψ⟩ , (2.1.31)

⟨ψ| ξ̂′
2p̂1 |ψ⟩ = ⟨ψ| x̂1p̂1 |ψ⟩ , (2.1.32)

⟨ψ| p̂1ξ̂
′
2 |ψ⟩ = |ψ⟩ p̂1x̂1 |ψ⟩ , (2.1.33)

⟨ψ| ξ̂′
3x̂1 |ψ⟩ = ⟨ψ| p̂1x̂1 |ψ⟩ , (2.1.34)

⟨ψ| x̂1ξ̂
′
3 |ψ⟩ = ⟨ψ| x̂1p̂1 |ψ⟩ , (2.1.35)

⟨ψ| ξ̂′
3p̂1 |ψ⟩ = ⟨ψ| p̂1ξ̂

′
3 |ψ⟩ = ⟨ψ| p̂2

1 |ψ⟩ , (2.1.36)
from which is easy to verify the following commutation relations

⟨ψ|
[
x̂1, ξ̂′

2
]
|ψ⟩ = 0, (2.1.37)

⟨ψ|
[
ξ̂′

2, p̂1
]
|ψ⟩ = i h̄, (2.1.38)
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⟨ψ|
[
x̂1, ξ̂′

3
]
|ψ⟩ = i h̄, (2.1.39)

⟨ψ|
[
ξ̂′

3, p̂1
]
|ψ⟩ = 0. (2.1.40)

Let us take the expected value of the commutator between the retrodictive
error observables, Eqs. (2.1.11) and (2.1.12); then,

[
εRx̂1,ε

R
p̂1

]
= ⟨ψ|

(
ξ̂′

2 − x̂1
)(
ξ̂′

3 − p̂1
)

−
(
ξ̂′

3 − p̂1
)(
ξ̂′

2 − x̂1
)
|ψ⟩

= ⟨ψ|
([
ξ̂′

2, ξ̂′
3
]
+
[
ξ̂′

3, x̂1
]
+
[
p̂1, ξ̂′

2
]
+ [x̂1, p̂1]

)
|ψ⟩

= −i h̄, (2.1.41)

where we have used
[
ξ̂′

2, ξ̂′
3
]
= 0 (i.e., the pointer obervables commute

even through the measurement process), [x̂1, p̂′
1] = i h̄, and Eqs. (2.1.38)

and (2.1.39). Therefore, given the above commutator, we have in units
h̄= 1:

σ2
ε̂R

x̂1
σ2
ε̂R

p̂1
≥
∣∣∣〈[ε̂Rx̂ , ε̂Rp̂

]〉∣∣∣2
4 =

1
4. (2.1.42)

Hence we can derive Eq. (2.1.17) for the retrodictive aspect of accuracy
under the basis of the unbiased nature of the joint measurement.

The proof for the uncertainty relation of the predictive aspect is
straightforward:

Taking commutator
[
εPx̂1,ε

P
p̂1

]
= ⟨ψ|

(
ξ̂′

2 − x̂′
1
)(
ξ̂′

3 − p̂′
1
)

−
(
ξ̂′

3 − p̂′
1
)(
ξ̂′

2 − x̂′
1
)
|ψ⟩

= ⟨ψ|
([
ξ̂′

2, ξ̂′
3
]
+
[
ξ̂′

3, x̂′
1
]
+
[
p̂1, ξ̂′

2
]
+ [x̂1, p̂′

1]
)
|ψ⟩

= i h̄, (2.1.43)

therefore, in units of h̄= 1

σ2
ε̂P

x̂1
σ2
ε̂P

p̂1
≥
∣∣∣〈[ε̂Px̂ , ε̂Pp̂

]〉∣∣∣2
4 =

1
4. (2.1.44)

It must be note that we made no use of the unbiased condition of the
measurement, which means that the predictive uncertainty relation holds
generally.
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2.1.4 Interaction Hamiltonian

In 1965 was published on the now extinct Bell system technical journal
a paper whose title reads “On the Simultaneous Measurement of a
Pair of Conjugate Ohservables” signed by E. Arthurs and J.L Kelly Jr
[98]. In that work, they proposed a direct extension of the standard
model of measurement of a single observable raised by von Neumann to
a simultaneous measurement process for the conjugate observables of
position and momentum of a quantum system; therefore, they allow the
interaction of this quantum system with a measuring device equipped
with two independent degrees of freedom; that is, the pointers from
which is extracted the information about the position and momentum;
then, they allow a coupling between these variables according to the
following interaction Hamiltonian

Ĥint = κ1x̂3p̂1 + κ2p̂3p̂2, (2.1.45)

where the x̂3 and p̂3 quantities correspond to the conjugate observables
’position’ and ’momentum’ of the system; they can represent, for example,
the field amplitude oscillating out of phase by ϕ= π/2 of an electromag-
netic field, or the position and momentum of a free and heavy particle,
or the position and momentum of a mechanically resonant bar antenna.
The observables p̂1 and p̂2 correspond to the momentum operators of
the first and second pointer of the measuring device, respectively; then,
in the sense of the Hamiltonian Eq. (2.1.1), the interaction Eq. (2.1.45)
will cause a correlation of the position and momentum of the system
with the momentum of the first and second probe of the measuring
device respectively. The κ1,2 are positive constants that represent the
strength of coupling between these observables; then, in a mathematical
sense, they represent the degree to which the positions of the pointers are
displaced by the canonical observables of the system. It must be noted
that in the interaction Hamiltonian of Eq. (2.1.45) Arthurs and Kelly
invoke (based on the essence of the von Neumann measurement process)
the fact of discarding the free energies in the Hamiltonian governing the
measurement process, arguing that the interaction is stronger enough to
discarding the contributions of that terms. In the following, we discuss
one possible physical meaning of the Interaction Eq. (2.1.45) from a
perspective of quantum optics, as well as its implications.
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2.1.4.1 Possible implementations of the Arthurs-Kelly interaction Hamil-
tonian

As we said before, the role of canonical pair in the quantum optics regime
could be played by the quadratures of one mode of the electromagnetic
field, which can be mathematically defined from the bosonic creation
and annihilation operators as stated by Eq. (1.1.2). For this optical
regime, we follow the interpretation given by Stenholm [110], in which
the Hamiltonian interaction Eq. (2.1.45) is carried out into a non-linear
region where directly enters another two signals acting as the probes,
i.e., the detectors of the measuring device. The realization of this
scheme, without any involvement with the spread of the wave functions
characterizing the individual measurement components due to the free
energies, can be achieved, for example, with the use of ultrashort optical
signals (whose temporal lapse is of the order of pico or femtoseconds)
within the rotating wave approximation. Such optical implementations
are relegated to the so-called mode-locking technique [111]. Besides, to
avoid mixing the prove signals, we need to supply a strong field to pump
the non-linear interaction region. According to Stenholm, the dynamics
of such interaction is given by the following Hamiltonian

Ĥint =
i

2
[
â†

3

(
â†

1 + iâ†
2

)
b̂2 − â3

(
â†

1 − iâ†
2

)(
b̂†)2

+ â3

(
â†

1 − iâ†
2

)
b̂†b̂− â3

(
â†

1 − iâ†
2

)
b̂†b̂

]
, (2.1.46)

where the subscript 1,2,3 refers to the first and second probe, and the
system under investigation respectively, and b̂ being the annihilation
operator of the pumped field, which if it is strong enough, we can replace
it by a real number β; then, by grouping terms in the above expression
we get

Ĥint = β2


(
â3 + â†

3

)
√

2

(
â1 − â†

1

)
i
√

2
+

(
â3 − â†

3

)
i
√

2

(
â3 − â†

3

)
i
√

2


= β2 (x̂3p̂1 + p̂3p̂2) . (2.1.47)

Therefore choosing κ= κ1 = κ2 in Eq. (2.1.45), it is apparent that the
coupling constant κ is related with the field amplitude of the pumped
signal, i.e., the average photon number in the field (see page 46 of [4]).
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Another scheme for the interaction Hamiltonian, Eq. (2.1.45), is
theoretically proposed by Power et. al. [112]; in that, a free traveling
atom in its electronic ground state is subject to two cavity fields prepared
in coherent states by monochromatic laser fields of equal frequency, one
by a standing-wave laser field and the other by a traveling-wave laser field,
both propagating along the same direction but polarized orthogonally.
The interaction with the atom causes changes in the phase of the fields,
which can be measured using some phase measurement techniques such
as a balanced homodyne or a heterodyne detection scheme. In the
rotating wave approximation and within the considerations of a very
large atom-field detuning, a large period of the standing-wave field, and
in the Raman-Nath regime of short interaction (allowing discard the free
evolution of the system), the authors get an interaction Hamiltonian of
the form

Ĥint = − h̄
(
λ1x̂â

†â+ λ2p̂b̂
†b̂
)
, (2.1.48)

where x̂ and p̂ are the position and momentum operators of the atom and
â†â and b̂†b̂ represent the photon number operators of the standing and
traveling cavity fields respectively; then, the role of coupling constants is
played by the λ1 and λ2 constants, which are

λ1 =
q̃κ̃

δ
, λ2 = − qκ2

Mδ2 , (2.1.49)

where, δ is the atom-field detuning, M the mass of the atom, q̃ and q are
the wavenumbers of the travelling and standing cavity fields respectively
and κ̃ and κ their coupling parameters given by κ= d/ h̄ and κ̃= κ

√
2,

where d represent the dipole matrix element, as is usually found in
atom-field interactions [4], pag. 75-76. In the Arthurs-Kelly interaction
Hamiltonian, the momentum operators of the pointers act as displacement
operators in the position of the pointers in proportion to the position
and momentum of the investigated system. Instead, in Power’s proposal,
the canonical pair of the atom is coupled with the number operators
of two modes of the field; then, these operators act as phase shifts in
the two-cavity fields, which can be measured to infer the position and
momentum of the atom. Then, In the context of the proposal of Power,
the coupling terms directly depend on the atomic dipole matrix element
of the atom and the wavenumbers of the two fields; also, it depends
inversely proportional to the atom field detuning.
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Another more physical idea in perspective, is analyzed by Törmä et.
al. [113] where they tackle a scheme of the simultaneous measurement
from the perspective of interferometry using non-classical light; in their
work, the system under inspection is given by a simple boson mode
represented by a creation operator â†; besides, there are two independent
meter signals, each described by creation operators â1 and â2; in the
rotating wave approximation the coupling between the three systems is

Ĥ = λ
[
â
(
â†

1 + â†
2

)
+ â† (â1 + â2)

]
. (2.1.50)

Where such interaction describes photon transfer from the investigated
system into two meter channels, and the coupling constant λ is in
frequency units. According to the authors, the implementation of the
interaction, Eq. (2.1.50), is possible through boson coupling in optical
fibers.

2.1.5 The state of the detectors

In the original proposal of Arthurs and Kelly, they define particular
states to represent the proves of the measuring device, in particular, they
choice the following Gaussian states

ϕ1(x1) =
( 2
πb

)1
4
e−x2/b, (2.1.51)

ϕ2(x2) =
(2b
π

)1
4
e−by2, (2.1.52)

being b the so called balance parameter which is apparently related
with the variances of the probability distributions of the functions, Eqs.
(2.1.51) and (2.1.52). In fact, with the handling of this parameter, it
is possible to manipulate the accuracy in the measurement of position
or momentum in the simultaneous measurement. However, the wave
function of the detectors should be narrow enough such that their possible
positions are distinguishable, avoiding overlaps among them; besides,
the width of the wave packet neither should be narrow than necessary
to prevent the excess of dispersion in the measurement process due to
the uncertainty principle [95] pag. 59-61.
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To show this argument in more quantitative terms, take into account
that the dynamics of the measurement process induce by itself a spread
in the position observable of the proves, which, of course, will affect
the result of the measurement. The free evolution is governed by the
Hamiltonian Ĥ = p̂2 (0)/2m, where p(0) is the initial momentum of the
prove after a preparation procedure; hence in the Heisenberg picture we
get the temporal evolution of the position of the prove, according to

x̂(t) = eitĤ/hx̂(0)e−itĤ/h; (2.1.53)

then, using the relation
(
efi(ζ)X̂ Ŷ e−fi(ζ)X̂

)
= Ŷ + fi

[
X̂, Ŷ

]
+
f 2
i

2!

[
X̂,

[
X̂, Ŷ

]]
+ · · · , (2.1.54)

and the commutator [p̂2, x̂] = −2i h̄p̂, we obtain

x̂(t) = x̂(0) + p̂(0)t/m; (2.1.55)

therefore, the variance of that position observable at time t is

(∆x)2 (t) =(∆x̂)2 (0) +
(
t

m

)2
(∆p̂)2 (0)

+
(
t

m

)
(⟨x̂(0)p̂(0) + p̂(0)x̂(0)⟩ − 2⟨x̂(0)⟩⟨p̂(0)⟩) . (2.1.56)

It is important to note that for the minimum uncertainty Gaussian states
of Eqs. (2.1.51) and (2.1.52), the covariance term of Eq. (2.1.56) is zero.
Then, using the saturation of the Heisenberg uncertainty relation:

(∆p̂)2 (0) = h̄2

4 (∆x̂)2 (0)
, (2.1.57)

in Eq. (2.1.56), we have

(∆x)2 (t) = (∆x̂)2 (0) + 1
(∆x̂)2 (0)

(
h̄t

2m

)2
. (2.1.58)

The above expression takes the possible minimum value for the value

∆x (0) =
√√√√ h̄t

2m , (2.1.59)
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which gives the well-known standard quantum limit (SQL)

∆x (t)SQL =

√√√√ h̄t

m
. (2.1.60)

The above equation governs the spreading of a free wave packet. And
this result states that in two successive measurements of the position of
a free mass, the result of the second measurement cannot be predicted
with less uncertainty than the SQL [114]. However, it must be noted that
this result is partially correct. Yuen [115] has shown that the correlation
term in Eq. (2.1.56) can be negative, therefore allowing variances smaller
than the SQL for certain contractive states that can be obtained after
the first measurement. Notably, as can be graphically verified, for values
∆x (0) <

√
ht
2m , the Eq. (2.1.58) rapidly increases, however, for values

∆x (0) >
√

ht
2m it increases slowly, therefore the initial width of the wave

packet should acquire values according to ∆x (0) ≥
√

ht
2m in order to avoid

excess of spreading in the wave packet.
Interestingly, the states, Eqs. (2.1.51) and (2.1.52) can be summarized

by the following expression

ϕi(xi) =

√
Si

π
1
4

exp
[
− (xiSi)

2 /2
]
, i= 1,2, (2.1.61)

where the variances of the probability distributions associated with the
wave functions, Eq. (2.1.51) and (2.1.52), are given by σ2

i = (Si)
−2 /2,

with S1 = (2/b)
1
2 , S2 = (2b)

1
2 . However, for the minimum uncertainty

Gaussian states given by Eqs. (2.1.51) and (2.1.52) we can rest assure
that the SQL holds be true implying that (units of h̄= 1)

1
2S2

i

≥ t

2m , (2.1.62)

implying that the balance parameter should be bounded as

2t
m

≤ b≤ m

2t , (2.1.63)

in order to avoid noise excess due to the free evolution. Notably, the
wave function given by Eq. (2.1.61) represent a particular class of
minimum uncertainty states known as squeezed vacuum states with
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squeezing factor Si [80]; as we will see, these states contribute their
noises to the measurement process, hence affecting statistically speaking
the measurement outputs.

2.2 derivation of the results of arthurs and kelly

In this section, we derive directly the results given by Arthurs and Kelly.
Besides, we analyze the dynamics through the time evolution operator
method instead of solving the Schrödinger equation as in their original
work. The temporal evolution of the system is obtained as

Ψ (x1,x2,x3, t) = exp
[
−iĤt

]
ψ(x1,x2,x3, t= 0), (2.2.1)

where the initial wave function ψ(x1,x2,x3, t= 0) is given as a product
of pure states according to

ψ(x1,x2,x3, t= 0) = ϕ1(x1)ϕ2(x2)ϕ3(x3), (2.2.2)
where the states ϕ1,2 (x1,2) are the wave functions of the proves of the
measuring device, given by Eqs. (2.1.51) and (2.1.52) and the state
ϕ3(x3) represent the wave function of the system to be measured, which
is assumed arbitrary. The resulting dynamics for the system plus the
proves is (see Sec. 5.1 for a derivation step-by-step)

Ψ (x1,x2,x3, t) = (2π)−1
2
∫
ϕ1(p1)ϕ2

(
x2 −α2p3 − α1α2p1

2

)
×ϕ3(p3 +α1p1)e

−ix1p1 dp1. (2.2.3)
which is presented by Arthurs and Kelly and other authors [110, 116].
That state describes the temporal evolution of the whole system while
the measurement is in progress and its principal feature lies in the entan-
glement among the three position variables of the proves and the system.
The nature of the entanglement in the complete model that includes the
free energies is analyzed in chapter 3.

Taking the change of variable ℓ= p3 +α1p1, the Eq. (2.2.3) is trans-
formed to

Ψ (x1,x2,x3, t) =
(
α1

√
2π
)−1 ∫

ϕ1

(
ℓ− p3

α1

)
ϕ2

(
x2 − α

2 [p3 + ℓ]
)
ϕ3(ℓ)

× e
−ix1

(
ℓ−p3
α1

)
dℓ, (2.2.4)



74 the arthurs-kelly simultaneous measurement process

taking the squared modulus, the whole probability distribution is

|Ψ (x1,x2,x3, t)|2 =
(
2πα2

1
)−1 ∫

ϕ1

(
ℓ− p3

α1

)
ϕ1∗

ℓ′ − p3

α1


×ϕ2

(
x2 − α

2 [p3 + ℓ]
)
ϕ∗

2

(
x2 − α

2 [p3 + ℓ′]
)
f (ℓ)f ∗ (ℓ′)e

−ix1
(

ℓ−ℓ′
α1

)
, (2.2.5)

Integrating the above expression in x1 variable and using the integral for-
mulation of the delta function: ∫ e−ix1([ℓ−ℓ′]/α1) (α1)

−1
dx1 = 2πδ (ℓ− ℓ′),

we obtain the probability distribution P (x2,p3, t)

P (x2,p3, t) = (α1)
−1
∫ ∣∣∣∣∣ϕ1

(
ℓ− p3

α1

)
ϕ2

(
x2 − α

2 [p3 + ℓ]
)
ϕ3(ℓ)

∣∣∣∣∣
2
; (2.2.6)

then, by simple integration, we compute the expected values ⟨x2⟩ (t) and
⟨x2

2⟩ (t) which are

⟨x2⟩ (t) =
∫
x2P (x2,p3, t) dx2dp3 = α2 ⟨p3⟩ , (2.2.7)

〈
x2

2
〉
(t) =

∫
(x2)

2
P (x2,p3, t) dx2dp3 =

(1+α2
1α

2
2)

4b +(α2)
2 〈
p2

3
〉
. (2.2.8)

Where we recall that the time dependence of the expected values is
contained in the αi quantities. By expressing the position representation
for the wave function of the measured system, and expressing the wave
function of the second prove through a Fourier transform, and using the
factorization given by Eq. (5.1.4) we obtain the expected values ⟨x1⟩ (t)
and ⟨x2

1⟩ (t) according to

⟨x1⟩ (t) = α1 ⟨x3⟩ , (2.2.9)

〈
x2

1
〉
(t) =

b

4
(
1+α2

1α
2
2
)
+ (α1)

2 〈
x2

3
〉
. (2.2.10)

Hence the expected values, Eqs. (2.2.7) and (2.2.9), indicate that the
mean value of the measurement outputs at time t proportionally match
the initial mean values (i.e. at time t= 0) of position and momentum
observables for any inspected system; this argument goes under the
name of joint unbiasedness condition [104]; see Appendix sec. 5.2, and
Subsection 2.1.3.
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With the help of Eqs. (2.2.7) to (2.2.10), the time-dependent variances
of the probability distributions of the position proves are respectively

σ2
1(t) =

〈
x2

1
〉

− ⟨x1⟩2 =
b

4
(
1+α2

1α
2
2
)
+α2

1σ
2
x3, (2.2.11)

σ2
2(t) =

〈
x2

2
〉

− ⟨x2⟩2 =
1
4b

(
1+α2

1α
2
2
)
+α2

1σ
2
p3, (2.2.12)

with σx3 = ⟨x2
3⟩ − ⟨x3⟩2 and σp3 = ⟨p2

3⟩ − ⟨p3⟩2 the initial variances of
the probability distributions of the position and momentum observables
of the system under measurement. Taking the product between the
variances (2.2.11) and (2.2.12) and minimizing it respect to b, we find
the ideal value for the balance parameter which comes as

b=
α1σx3

α2σp3
. (2.2.13)

Assuming that the system under measurement saturates the Heisenberg
uncertainty relation (which implies that the system is a minimum un-
certainty state), that is σ2

x3σ
2
p3 = 1/4, and using together the balance

parameter established by Eq. (2.2.13), we obtain the lower bound for
the product of Eqs. (2.2.11) and (2.2.12)

(
σ2

1(t)σ
2
2(t)

)
min =

(α1α2)
2

4 +
α1α2 (1+α2

1α
2
2)

4 +
(1+α2

1α
2
2)

2

16 , (2.2.14)

consequently

σ2
1(t)σ

2
2(t) ≥ (α1α2)

2

4 +
α1α2 (1+α2

1α
2
2)

4 +
(1+α2

1α
2
2)

2

16 . (2.2.15)

It is important to note that the above inequality represents the uncer-
tainty relation associated with the proves positions at time t; that is,
while the measurement interaction is in progress. At the time t= τ , we
carry out projective measurements on the proves to extract the informa-
tion about the conjugate pair of the investigated system; in this specific
time, the inequality Eq. (2.2.15) constitute the uncertainty relation for
the simultaneous measurement.

Now, the measurement process of Arthurs and Kelly is constructed
on the joint unbiasedness condition (see Appendix 5.2 and subsection
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2.1.3), which implies that the mean values of the outputs of the detectors
match on average the theoretical values of the system under inspection,
this condition implies that we need αi = 1, i= 1,2 in Eqs. (2.2.7) and
(2.2.9), implying the following two physical conditions:

(i) Setting α1 = α2 = 1, implying that the coupling constants
κi, i = 1,2 must be equal; therefore, the time of the joint
measurement is τ = 1

κ . Hence the positions of the pointers
are just displaced by the canonical pair of the system.

(ii) Setting one time of the measurement τ = 1
κi

implying that
the coupling constants κi, i = 1,2 are different; then, it is
necessary to adjust the measurement of the pointer j at the
rate κj

κi
.

At time τ for any of the two previous situations, the Ineq. (2.2.15) is
reduced to the uncertainty relation obtained by Arthurs and Kelly:

σ1(τ )σ2(τ ) ≥ 1. (2.2.16)

2.3 accuracy in the simultaneous measurement pro-
cess

In this section, we employ the full artillery developed in Sec. 2.1.2 to
characterize the retrodictive and predictive aspects of accuracy in the
simultaneous measurement process raised by Arthurs and Kelly.

To start the analysis, we recall that the labels {1,2,3} refers to the
first and second detectors, and to the system under measurement. Then,
let us switch the Heisenberg scenario to compute the dynamics of the
measurement process under the interaction Hamiltonian, Eq. (2.1.45).
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Hence, by using the Baker-Campbell-Hausdorf factorization, Eqs. (5.1.3)
and (5.1.4) we have

x̂′
1 =x̂1 +α1x̂3 +

α1α2

2 p̂2,

x̂′
2 =x̂2 +α2p̂3 − α1α2

2 p̂1,

x̂′
3 =x̂3 +α2p̂2,
p̂′

1 =p̂1,
p̂′

2 =p̂2,
p̂′

3 =p̂3 −α1p̂1.

(2.3.1)

In the subsequent, we choose the κ1 = κ2 = 1, which implies α1 =
α2 = 1 as in the original Arthurs-Kelly proposal.

2.3.1 Retrodictive aspect

Using the definitions for the detector proves, Eqs. (2.1.51) and (2.1.52),
and the definitions for the retrodictive error operators, Eqs. (2.1.11) and
(2.1.12), together the dynamics (2.3.1), we obtain for the retrodictive
error observables

ε̂Rx̂3 = x̂′
1 − x̂3 = x̂1 +

p̂2

2 , (2.3.2)

ε̂Rp̂3 = x̂′
2 − p̂3 = x̂2 − p̂1

2 , (2.3.3)

from which is straightforward verify the completion of Eq. (2.1.42), since[
ε̂Rx̂3, ε̂

R
p̂3

]
= −i h̄. Then, by computing the variances of Eqs. (2.3.2) and

(2.3.3) by means of the initial state, Eq. (2.2.2), we have

σ2
ε̂R

x̂3
= σ2

x̂1 +
σ2
p̂2

4 =
b

2, (2.3.4)

σ2
ε̂R

p̂3
= σ2

x̂2 +
σ2
p̂1

4 =
1
2b , (2.3.5)

where we have used σ2
x̂1 = (b/4),σ2

p̂1 = (1/b), σ2
x̂2 = (4b)−1 and σ2

p̂2 =
b directly verifiable from the definitions Eqs. (2.1.51) and (2.1.52).
Therefore, the variances, Eqs. (2.3.4) and (2.3.5), shows that the noise
directly affecting the the retrodictive accuracy of the joint measurement of
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the canonical pair, comes from the noise of the detectors itself. Evidently,
one can manipulate the balance parameter in the scheme preparation of
the state proves, of course, before the measurement process, to improve
the retrodictive accuracy in the measurement of any of the two canonical
observables; however, it must be noted from Eqs. (2.3.8) and (2.4.1) that
a simultaneous measurement of position and momentum observables
never will be precise in the retrodictive aspect, since by improving the
resolution for some of the two conjugate observables, one is necessarily
obliged to increase the error in the corresponding conjugate observable.
The maximum retrodictive accuracy in the simultaneous measurement
of the canonical pair of a quantum system (with independent detector
proves) comes with the saturation of the retrodictive error uncertainty
relation, Eq. (2.1.42).

2.3.2 Predictive aspect

Using the definitions for the detector proves, Eqs. (2.1.11) and (2.1.12),
and the definitions for the predictive error operators, Eqs. (2.1.13) and
(2.1.14), together the dynamics (2.3.1), we obtain for the predictive error
observables the following expressions

ε̂Px̂3 = x̂′
1 − x̂′

3 = x̂1 − p̂2

2 , (2.3.6)

ε̂Pp̂3 = x̂′
2 − p̂3 = x̂2 +

p̂1

2 . (2.3.7)

Then, we also verify the commutator
[
ε̂Px̂3, ε̂

P
p̂3

]
= i h̄, expressed by Eq.

(2.1.43) and consequently the uncertainty relation, Eq. (2.1.44). Then,
by computing the variances of Eqs. (3.2.1) and (3.2.2) by means of the
initial state, Eq. (2.2.2), we have

σ2
ε̂P

x̂3
= σ2

x̂1 +
σ2
p̂2

4 =
b

2, (2.3.8)

σ2
ε̂P

p̂3
= σ2

x̂2 +
σ2
p̂1

4 =
1
2b ; (2.3.9)

hence, we verify directly that the predictive error in the Arthurs-Kelly
scheme for the simultaneous measurement of the canonical pair is exactly
the same that the retrodictive error described in the subsection 2.3.2;
therefore we have the same conclusions explained for that aspect.
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2.4 the simultaneous measurement process as a quan-
tum entanglement generator

2.4.1 Genuine tripartite entanglement

In this section, we pose the original Arthurs-Kelly measurement process
as a multipartite, in particular, tripartite entanglement generator in the
regime of continuous variable Gaussian states. It is a well-known fact that
any quantum measurement process employs the quantum entanglement
as a resource to transfer the information of the physical properties of
interest to the quantum state of a measuring device; we explain with
more details this argument in section 2.4.

Nowadays, there exists considerable interest in the entanglement of
multipartite systems, that is, those which consider more than two sub-
systems. Its usefulness lies in the potential benefits for the quantum
information processing; for example, the creation of entanglement be-
tween many atoms or ions [117, 118, 119] is useful for fault-tolerant
quantum computing [120, 121, 122], high-precision measurements us-
ing matter-wave interference [123] and the fundamental investigation
of the quantum to classical regime transition [124, 125, 126]. In the
case of many entangled photons [127, 128, 129, 130, 131, 132, 133], it
allows entanglement verification in quantum networks [134], generation
of cluster states [135] and error correction protocols [136, 137, 138]. Also,
we can generate multipartite entanglement in the continuous variable
regime by using modes of the electromagnetic field [76, 77, 139], which
find applicability in teleportation networks [7] and multiuser quantum
channel for telecloning [140].

In particular, the multipartite entanglement in continuous-variable
systems constitutes a valuable resource for fundamental studies and
practical applications. The archetypical paradigm is represented by
the Gaussian states, which are those who present a Gaussian profile
in the quantum phase space. The Gaussian states are referent from
the optical domain, like the coherent, squeezed, thermal, and vacuum
states, however, also living in other physical scenarios as in trapped
ions [141, 142, 143], nanomechanical resonators [144, 145] and optical
cavities [146, 147]. The kind properties of Gaussian states include easy
experimental generation, simple mathematical description, and accessible
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resources for creating quantum entanglement; therefore, they are the
favored systems for CV quantum informational tasks. Besides, the
Gaussian states are the test-bed for fundamental studies in CV systems
as non-separability [9], entanglement sharing [34, 37], and entanglement
and correlation measures [3, 34, 35].

The first case of a multipartite Gaussian entangled system is given
by the three-partie scenario. The establishment of genuine tripartite
entanglement in Gaussian states gives a wide variety of applications
in quantum communication processes, offering the direct possibility to
improve the new wave of quantum technologies which will make up the
second quantum revolution [148]. In this section, we pose the original
Arthurs-Kelly measurement process as a multipartite, in particular,
tripartite entanglement generator in the regime of continuous variable
Gaussian states. It is a well-known fact that any quantum measurement
process employs the quantum entanglement as a resource to transfer the
information of the physical properties of interest to the quantum state
of a measuring device; we explain with more details this argument in
section 2.4. Therefore, in this section, we determine the qualitative and
quantitative entanglement properties develop in the measurement process
in a complete Gaussian measurement configuration. It is important to
note that through this section, we will use units of h̄= 2.

2.4.2 Measurement configuration

The original measurement set-up consider a couple of pointer detectors
which are represented by balanced centred Gaussian states with finite
squeezing; see Section 2.1.5. In particular we establish the relation with
the states presented in Reference [79]; then we define the state of the
detectors, Eqs. (2.1.51) and (2.1.52) in Dirac notation as

|0,Vj⟩p = (πVj)
−1

4
∫
dxj e

−x2
j /2Vj |xj⟩ , j = 1,2, (2.4.1)

with Vj < 1; therefore, being both detectors squeezed in xj direction.
The label x remind us that we define the state in position space through
the superposition of the position quadrature basis {|xj⟩}q∈R

with the
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Gaussian wave packet ϕ (xj) = (πVj)
−1/4

e−x2
j /2Vj , being δ2

x̂j
= Vj/2 its

variance. By a Fourier transform, the representation in position space is

|0,Vj⟩p =
(
Vj
4π

)1
4 ∫

dpj e
−Vjp

2
j /8 |pj⟩ , j = 1,2, (2.4.2)

expanded in the momentum quadrature basis {|pj⟩}pj∈R
and variance

δ2
p̂j
= 2/Vj. Therefore, the quadrature basis of the states, Eqs. (2.4.1)

and (2.4.2), are connected through

|q⟩ = 1
2
√
π

∫
dp e−iqp/2 |p⟩ , (2.4.3)

|p⟩ = 1
2
√
π

∫
dp eiqp/2 |q⟩ . (2.4.4)

For the Arthurs-Kelly pointers we have V1 = b, V2 = 1/b, hence the
states, Eq. (2.4.1) and (2.4.2), are related via V1 = (V2)

−1. Besides, it
is easy to verify the saturation of the Heisenberg uncertainty relation
δ2
x̂j
δ2
p̂j

≥ 1; therefore, they are minimum uncertainty states, which is a
necessary characteristic to reduce the inaccuracy affecting the statistics
of the measurement outputs since the detectors contribute its noises to
the measurement process; see Sections 2.3.1 and 2.3.2.

For the system under measurement, we choose the most general pure
one-mode Gaussian state, that is, a rotated, displaced, and squeezed
vacuum state, |α,θ,r⟩, which is defined in terms of the vacuum state as
[23]

|α,θ,r⟩ = D̂(α)R̂(θ)Ŝ(r) |0⟩ , (2.4.5)

with the unitary operators

D̂(α) ≡ exp
[
αâ† −α∗â

]
, (2.4.6)

Ŝ(r) ≡ exp
[
r
(
â2 − â†2)/2

]
, r ∈ R, (2.4.7)

R̂ (θ) ≡ exp
[
−iθâ†â

]
, 0 ≤ θ ≤ 2π, (2.4.8)

being D̂(α), Ŝ(r) and R̂ (θ) the displacement, the one-mode squeezing,
and the rotation operators respectively. The squared modulus of the
complex amplitude α = (q+ ip/2) is related to the average energy of
the single-mode system, the squeezing parameter r governs its degree of
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squeezing and the angle θ represents a phase displacement with respect
to a local oscillator. Using the operators, Eqs. (2.4.6) to (2.4.8), the
quadratures in the Heisenberg picture for this system are

q̂3 = (q̂+ q)e−r cosθ+ (p̂+ p)er sinθ, (2.4.9)

p̂3 = − (q̂+ q)e−r sinθ+ (p̂+ p)er cosθ, (2.4.10)

where q̂ and p̂ is the initial canonical pair of the vacuum state |0⟩. It is
straightforward verify the mean values

⟨q̂3⟩ = qe−r cosθ+ per sinθ, (2.4.11)

⟨p̂3⟩ = −qe−r sinθ+ per cosθ. (2.4.12)

and the variances

δ2
q̂3 =

(cosθ)2

e2r + e2r (sinθ)2 , (2.4.13)

δ2
p̂3 =

(sinθ)2

e2r + e2r (cosθ)2 . (2.4.14)

Then, within this considerations, the system under measurement does
not necessarily represent a minimum uncertainty state, unless that r = 0
or θ = nπ/2, n= 0,1,2, · · · ; in this case, the system under measurement
is given by a symmetric Gaussian quasi-probability distribution (Wigner
function) in the phase space. Hence we have the initial state of the
measurement setting as the product

|ψ⟩t=0 = |0,V1⟩q,p |0,V2⟩q,p |α,θ,r⟩ , (2.4.15)

where the label q,p in the state of the detectors means that we can
express them in the position or momentum representation. Therefore,
we take each subsystem as a continuous variable mode with a associated
bosonic operator âk, k = 1,2,3 and quadratures q̂k = (âk + âk) and
p̂k = i(â†

k − âk), just as those of a quantum harmonic oscillator or a
single-mode of the quantum electromagnetic field . Therefore, within
this considerations we have an entirely pure continuous variable Gaussian
measurement setting.
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2.4.3 Problem statement

The original proposal raised by Arthurs and Kelly involves three quan-
tum mechanical systems, i.e., the two detectors of the measuring device,
together with the system from which we desire simultaneously to know
its conjugate pair. As we will explain in Section 2.4, it is the measure-
ment process that causes the loss of individuality for each subsystem,
hence creating quantum correlations among the three variables of each
subsystem. To give a more detailed explanation for this argument, let us
analyze the general dynamics of the measurement process given by Eqs.
(2.3.1). These equations suggest the existence of quantum correlations
among the three CV modes constituting the measurement setting. By
inspecting the x̂′

1 and x̂′
3 variables we observe correlations among x̂1, x̂3

and p̂2, and through x̂′
2 and p̂′

3, we observe correlations between p̂1, x̂2
and p̂3; then, both relations implying a tripartite entanglement relation
between three distinct observables of the measurement configuration;
see Fig. 3. In the subsequent we will focus on to prove the existence
of genuine tripartite entanglement in the measurement setting as Eqs.
(2.3.1) suggest.

Figure 3: Tripartite entanglement implied by the Arthurs-Kelly measurement process.
The dynamics (see Eq. (2.3.1)) of x′

1 and x̂′
3 shows an tripartite correlation

among the x̂1, x̂3 and p̂2 variables (dashed lines). The dynamics of x′
2 and

p̂′
3 shows an tripartite correlation among the p̂1, x̂2 and p̂3 variables (dotted

lines). The red circle represents the first detector, the green one the second
detector, and the blue circle constitutes the system under inspection, in this
case a Gaussian state.
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2.4.4 Separability properties

To prove genuine tripartite entanglement in the measurement set-up, we
recur to the biseparability condition expressed by Eq. (1.3.18). Therefore,
focusing on the regime of pure states, the biseparability condition implies
that by neglecting the three possible bipartitions of (1 vs 2)-modes of
the system we certify genuine tripartite entanglement. This statute also
will be employed in Section 3.5.1 to determine the separability properties
of the completely dynamical Arthurs-Kelly measurement process. Since
the PPT criterion is a necessary a sufficient condition to determine the
separability of any (1 vs N)-mode Gaussian system (see Section 1.3.5.2),
we use it to test each of the bipartitions in the measurement set-up.

Using the dynamics exposed by Eqs. (2.3.1), we define the following
three quadrature vectors

R̂1 =
(
Ĉ1, Ĉ2, Ĉ3

)T , (2.4.16)

R̂2 =
(
Ĉ3, Ĉ1, Ĉ2

)T , (2.4.17)

R̂3 =
(
Ĉ2, Ĉ3, Ĉ1

)T , (2.4.18)

with Ĉi = (x̂′
i, p̂′

i). Then, by employing the definition for the generic
element of the covariance matrix (units free h̄ = 2): (1/2)Vij (see Eq.
(1.2.9)), we obtain the following three (6 × 6)-dimensional covariance
matrices in block form

σ1|23 =


σ1 ε1,2 ε1,3
εT1,2 σ2 ε2,3
εT1,3 εT2,3 σ3

 , (2.4.19)

σ3|12 =


σ3 εT1,3 εT2,3
ε1,3 σ1 ε1,2
ε2,3 εT1,2 σ2

 , (2.4.20)

σ2|31 =


σ2 ε2,3 εT1,2
εT2,3 σ3 εT1,3
ε1,2 ε1,3 σ1

 , (2.4.21)

where the σi and εj,k elements are (2 × 2)-dimensional matrices defined
in the Appendix 5.8. The covariance matrices, Eqs. (2.4.19) to (2.4.21),
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are associated with a pure state since they satisfy Eqs. (1.4.2), (1.4.3)
and (1.4.5).

Using the definition, Eq. (1.3.19), through the software Mathematica,
we partially transpose the covariance matrices, Eqs. (2.4.19) to (2.4.21);
then, we compute the symplectic eigenvalues ν̃i|jkl , i,j,k, l = 1,2,3, i ,
j , k, as we explain in Eq. (1.3.8). In particular, Mathematica does not
provide close expressions for the symplectic eigenvalues; instead, these
quantities are given in terms of the roots of a cubic polynomial whose
coefficients are functions of r and θ. Notably, we find

ν̃
(1|23)
i = ν̃

(2|31)
i , i= 1,2,3, (2.4.22)

which is an indicative of certain symmetry arround the mode associated
with the system under measurement; we will analyze this fact in Sec.
2.4.6.

Now, in the following, we will focus on a rectangular window in the
plane r and θ

R = {(r,θ) | − 5 ≤ r ≤ 5, 0 ≤ θ ≤ 2π} , (2.4.23)

in order to explore numerically the maximum and minimum values of the
computed symplectic eigenvalues inside this region; we infer the following
three cases

ν̃
{(1|23),(3|12),(2|31)}
1 > 1, (2.4.24)

ν̃
{(1|23),(3|12),(2|31)}
2 = 1, (2.4.25)

ν̃
{(1|23),(3|12),(2|31)}
3 < 1; (2.4.26)

in particular, we find the following maximum values: max
[
ν̃
(1|23)
3

]
=

max
[
ν̃
(2|31)
3

]
≈ 0.268 and max

[
ν̃
(3|12)
3

]
≈ 0.171, obtained when the Gaus-

sian system under measurement is a minimum uncertainty state. In Fig.
4 we show the plots and density plots for the symplectic eigenvalues,
ν̃
i|jk
3 ∀ r,θ ∈ R, of the three transposed covariance matrices, Eqs. (2.4.19)

to (2.4.21); the existence of values less than 1 for these quantities is
equivalent to the violation of the uncertainty relation, Eq. (1.2.11), for
each partially transposed covariance matrix; hence, this negates all (1
vs 2)-mode bipartitions of the system; see Fig. 5. Therefore, we certify
the generation of genuine tripartite entanglement in the simultaneous
measurement process of Arthurs and Kelly when the system under
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Figure 4: Plots (left figures) and density plots (right figures) for the symplectic eigenval-
ues: a) ν̃{(1|23),(2|31)}

3 and b) ν̃(3|12)
3 as functions of the squeezing parameter r

and the rotation angle θ of the Gaussian system under measurement. Values
less than 1 for these quantities confirm the unphysical validity of the three
partially transposed CMs given in Eqs. (2.4.19) to (2.4.21); hence this ne-
glect the corresponding bipartitions, therefore, this implies genuine tripartite
entanglement in the measurement setting of Arthurs and Kelly when the
system under observation is the most general pure single-mode Gaussian
state, that is, a rotated, displaced, and squeezed vacuum state.
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Figure 5: Sketch for the three i|jk-mode bipartitions in the Arthurs-Kelly measurement
setting. The green rectangle assumes entanglement between the first detector
and the Gaussian system but not from them with the second detector (bipar-
tition 2|31). The brown rectangle implies entanglement between the second
detector and the Gaussian system but not from them with the first detector
(bipartition 1|23). The purple semicircles encompass entanglement among
the two detectors but not with the system under measurement (bipartition
3|12). The three depicted bipartitions are not valid due to the tripartite
entanglement relation (dotted and dashed lines) between the three conjugate
pairs of observables in the whole system.

observation is the most general one-mode Gaussian state, being this fact
independent of the squeezing r and the rotation angle θ of the Gaussian
system under observation.

2.4.5 Qualitative properties

In section 2.4.4, we prove the non-separability of the three (1 vs 2)-mode
bipartitions of the measurement configuration of the Arthurs-Kelly model
when the system under measurement is the most general single-mode
Gaussian state. Notably, this fact is independent of the properties of
the Gaussian system under observation. Therefore, according to these
results, we catalog the generated entanglement in the category (C1 ) of
fully inseparable three-mode Gaussian states (see Section 1.4.2). Placing
the Gaussian tripartite entanglement of the strong coupling regime of
the measurement model of Arthurs and Kelly together the GHZ states
[10, 76] (see section 1.4.3.1), and the tripartite version of the CV Einstein-
Podolsky-Rosen (EPR) states (see Section 1.4.3.2), generated in [77, 78].
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2.4.6 Quantitative properties

In this section, we use the residual tripartite Rényi-2 entanglement as
a quantifier measure to examine the amount of tripartite entanglement
generated in our specific Gaussian measurement set-up; see Section 2.4.2.
The use of this measure will allow us to analyze the entanglement of all
global and reduced mode bipartitions E (Ai|AjAk)

2 and E (Ai|Aj)
2 , allowing us

to explore the nature of the entanglement structure of the system.
We recall that in our tripartite system, A1 represents the partie con-

taining the mode of the first detector, A2 contains the mode of the second
detector and A3 comprises the mode of the Gaussian system under ob-
servation. Then, according to the mathematical requirements of Section
1.4.4.3 and the standard form 1.4.12, we only need the local single-mode
symplectic invariants ai of the covariance matrices, Eqs. (2.4.19) to
(2.4.21); therefore using Eq. (1.4.9) togheter the definitions for the block
matrices of Appendix 5.8, we determine the following quantities for our
Gaussian tripartite system

a1 =

√
2+ 2

√
cosh2(2r)− cos2(2θ) sinh2(2r), (2.4.27)

a2 =

√
2+ 2

√
cosh2(2r)− cos2(2θ) sinh2(2r), (2.4.28)

a3 =

√
5+ 4

√
cosh2(2r)− cos2(2θ) sinh2(2r). (2.4.29)

These quantities have an oscillatory behavior with a period of π/2;
besides, they are increasing functions as the magnitude of the squeeze
parameter also increases. Their maximum values are attained at θ = (2n+
1)π/4, n= 0,1,2, · · · for a determined r , 0. Their absolute minimums
are reached when the Gaussian system under measurement is a minimum
uncertainty state, that is when r = 0 for any θ, or when θ = nπ/2 for any
r. From the above and Eq. (1.4.10), we deduce that the reduced single-
mode systems decrease their purity as the magnitude of the squeezing of
the Gaussian system under measurement grows, which is indicative that
the global tripartite entanglement also increases at increasing |r|. This
is in concordance with the fact (in an optical context) that protocols
using entanglement as a resource (like teleportation) allow carry out the
transfer of information with increasing fidelity as the squeezing of the
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involved optical modes (usually squeezed states) is higher. In all the
following, we omit the r and θ dependence in all pertinent quantities
for simplicity. We begin with the Rényi-2 entanglements E (Ai|Aj)

2 for
the two-mode reduced states to examine the one-to-one entanglement
relations in our Arthurs-Kelly measurement setting. First, we carry
out a numerical minimization for the difference a3 −

√
a2

1 + a2
2 − 1, ∀ r,θ

obtaining 0, which implies a3 ≥
√
a2

1 + a2
2 − 1; therefore, according to Eq.

(1.4.66) we conclude that g3 = 1; then, due to Eq. (1.4.65), the above
means that

E (A1|A2)
2 = 0. (2.4.30)

For the reduced entanglements E (A1|A3)
2 and E (A2|A3)

2 it must be noticed
from Eqs. (2.4.27) and (2.4.28) that a1 = a2 = a; then, from Eq. (1.4.67),
this implies that α1 = α2 = α; hence, from Eq. (1.4.66), this means
g1 = g2 = g; using this values in Eqs. (1.4.65) to (1.4.68) we deduce

EDS2 = E (A1|A3)
2 = E (A2|A3)

2 . (2.4.31)

Where the superscript DS in Eq. (2.4.31) means ‘Detector-System’; it
is used to denote the Rényi-2 entanglement of the reduced bipartition,
including the mode of any detector and the Gaussian system under
measurement.

We carry out a numerical minimization for the differences
√
a2 + a2

3 − 1−
a and

√
a2 + a2

3 − 1 −α, ∀ r,θ obtaining respectively ≈ 1.464 and 1.428;
this implies that

√
a2 + a2

3 − 1 > {a,α}; therefore, according to Eqs.
(1.4.65) and (1.4.66), we have EDS2 , 0. On the other hand, we analyze
the difference a−α as a function of r and θ, finding the two cases: α < a
and a ≤ α; therefore, according to Eqs. (1.4.65) and (1.4.66) we have
On the other hand, we analyze the difference a−α as a function of r
and θ, finding the two cases: α < a and a ≤ α; therefore, according to
Eqs. (1.4.65) and (1.4.66) we have

EDS2 =
1
2 lng, (2.4.32)

with

g =


β

8a2 , if α < a,(
a2−a2

3
a2−1

)2
, if a≤ α.

(2.4.33)
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Figure 6: Plot for the reduced entanglement EDS
2 as a function of r and θ. This

quantity represents the amount of entanglement contained in the reduced
bipartition containing the mode of any detector and that of the Gaussian
system under inspection. It has an oscillatory behavior with period π/2.
The maximum value is ln (5/3) attained when the Gaussian system under
measurement is a minimum uncertainty state. The minimum values are
at θ = (2n+ 1)π/4, n = 0,1,2, · · · for r , 0, tending asymptotically to the
absolute minimum of (1/2) ln(2) in the limit situation of |r| −→ ∞.

What essentially Eq. (2.4.30) means is that the partie A3, which
contains the mode of the Gaussian system under measurement, is the
principal support of the tripartite entanglement relationship between
A1,A2 and A3; that is, without the partie A3, there is no possibility
to see any entanglement in the reduced system containing the parties
A1 and A2 only, which is an expected fact since, under the interaction
Hamiltonian, Eq. (2.1.45), one of the two conjugate observables of the
detectors is directly linked with one of the two belonging to the Gaussian
system under inspection, just as we sketch in Fig. 3. Therefore, the
entanglement relation between the detectors in the tripartite system is an
inherent consequence of their coupling with the Gaussian system under
observation. On the other hand, Eq. (2.4.31) imply that the two reduced
bipartitions containing the modes of any detector and the Gaussian
system under measurement present the same amount of entanglement



2.4 the simultaneous measurement process as a quantum · · · 91

for the same r and θ. Notably, these reduced entanglements are distinct
from zero, which is a necessary fact for the information transfer of the
canonical pair on study toward the quantum state of the detectors; this
behavior is again a consequence of the symmetry of the Hamiltonian, Eq.
(2.1.45). In Fig. 6 we plot EDS2 as a function of r and θ.

Taking into account Eqs. (1.4.9) and (1.4.69) and the considerations
for the reduced two-mode Rényi-2 entanglements explained before, we
have the following expressions for all E (Ai|AjAk)

2 of the system

EDDS2 = E (A1,2|A2,1A3)
2 =

1
2 ln(a2), (2.4.34)

E (A3|A1A2)
2 =

1
2 ln(a2

3), (2.4.35)

where the superscript DDS in Eq. (2.4.34) stand as ‘Detector, Detector-
System’; it is used to denote the Rényi-2 entanglements of the global
bipartitions containing any mode detector as focus. Hence, Eq. (2.4.34),
imply that any of the two global bipartitions focused on the partie
containing the mode of any detector, present the same amount of en-
tanglement for the same r and θ parameters; this entanglement is ever
distinct from zero since the minimum value of a1 and a2 (consequently of
a) is 2 as can be directly verified from Eqs. (2.4.27) and (2.4.28). This
symmetry is again a consequence of the linear interaction, Eq. (2.1.45),
linking symmetrically the system of the two detectors with the Gaus-
sian system under observation. In Fig. 7 we plot EDDS2 and E (A3|A1A2)

2
as functions of r and θ. From Eqs. (2.4.27) to (2.4.29) we can verify
{a1,a2,a3} > 1 and a3 > {a1,a2} for a determined r and θ; then, from
Eqs. (2.4.34) and (2.4.35) we deduce E (A3|A1A2)

2 > EDDS2 ; see Fig 8.

For the full tripartite entanglements, we need to consider the three
focus options for the expression, Eq. (1.4.64); however, by taking into
account the same considerations that for the reduced two-mode Rényi-2
entanglements, it is straightforward verify that

E ′
2 = E (A1|A2|A3)

2 = E (A2|A1|A3)
2 ; (2.4.36)

then, using Eqs. (1.4.64) and (1.4.66) we have

E ′
2 =

1
2 ln

a2

g

 . (2.4.37)
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Figure 7: Plots for the Rényi-2 entanglements EDDS
2 (bottom figure) and EA3|A1A2

2
(upper figure) as functions of r and θ. Such quantities dictate the amount of
entanglement for the global bipartitions focused on the partie containing the
mode of any detector and that of the Gaussian system under measurement
respectively. They have an oscillatory behaviour with a period of π/2. Their
maximum values are reached at θ = (2n+ 1)π/4, n = 0,1,2, · · · for any
r , 0. Besides, they are increasing functions of |r|. The minimum values are
min

[
EDDS

2
]
= (1/2) ln(4) and min

[
EA3|A1A2

2

]
= (1/2) ln(9), reached when

the Gaussian system under measurement is a minimum uncertainty state.
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Figure 8: Plots for the Rényi-2 entanglements EDDS
2 and EA3|A1A2

2 (bottom and upper
curves respectively) at various fixed rotation angles. The gray dashed lines
represent the possible minimum values for these quantities. From this, we
can see that EA3|A1A2

2 > EDDS
2 .

In a similar procedure we get

E (A3|A1|A2)
2 =

1
2 ln

a2
3
g2

 . (2.4.38)

According to Eqs. (2.4.37) and (2.4.38), the amount of tripartite
entanglement is the same when the focus is the partie containing the
mode of any detector and distinct from the case when is focused on the
mode of the Gaussian system under examination. In Fig. 9 we plot E ′

2
and E (A3|A1|A2)

2 as functions of r and θ. Both tripartite entanglements
grow as the magnitude of the squeezing of the Gaussian system under
observation increases, in concordance with a loss of purity of the reduced
single-mode systems, i.e., a loss of information about the knowledge of
its initial quantum states. Notably, the tripartite entanglement focused
on any detector is greater than the one focused on the Gaussian system
under inspection for fixed r and θ values, then E ′

2 > E (A1|A2|A3)
2 ; see Fig.

10.
This behavior is consistent with the description of a user locally localized
in the partie (focus) containing a single mode with associated symplectic
invariant ai.
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Figure 9: Plot for the residual tripartite entanglements E ′
2 (top figure) and E (A3|A1|A2)

2
(bottom figure) as functions of r and θ. These quantities quantify the
complete amount of tripartite entanglement in our Gaussian Arthurs-Kelly
measurement setting. They are focused respectively on any detector and
the Gaussian system under examination. They have an oscillatory behavior
with period π/2. They have a maximum value for a determined r , 0 at θ =
(2n+1)π/4, n= 0,1,2, · · · . Besides, the global tripartite entanglement grows
as the squeezing factor r also grows. The minimum values are, respectively,
ln(6/5) and ln(27/25), attained when the system under measurement is a
minimum uncertainty state.
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Figure 10: Plots for the tripartite entanglements E ′
2 and EA3|A1|A2

2 (top and lower curves
respectively) at various fixed rotation angles. The gray dashed lines represent
the possible minimum values for these quantities. From this, we can see
that E ′

2 > EA3|A1|A2
2 .

Then, to close this section and chapter, we summarize the findings
of the quantification of the tripartite entanglement. In essence, we find
one symmetric entanglement structure in the mode bipartitions of the
system, in particular:

(a) The reduced bipartition containing only the modes of the two
detectors has zero amount of entanglement; this means that the
partie associated with the mode of the Gaussian system under mea-
surement is the principal support of the tripartite entanglement
relation in the measurement setting. That is, as a consequence
of the symmetry associated with the interaction Hamiltonian, Eq.
(2.1.45), the canonical pair of the Gaussian system under measure-
ment gets linked with the canonical set composed by an observable
of the first detector and the corresponding conjugate variable of
the second detector; see Fig. 3. Also, as a consequence of the sym-
metry in the unitary dynamics governing the measurement process,
the two reduced bipartitions containing the mode of any detector
present the same quantity of entanglement, which implies that both
detectors are equally entangled with the Gaussian system under
observation; this is the fact allowing the transfer of information
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about the canonical pair under measurement to the quantum state
of the detectors.

(b) The two global bipartitions focused on any detector contain an equal
quantity of entanglement, which comes again from the symmetry
of the interaction Hamiltonian given by Eq. (1.1.1). Notably, the
global bipartition focused on the mode of the Gaussian system
under observation presents a higher quantity of entanglement from
those focused on the detectors; see Figure 8. Therefore, the amount
of entanglement in any global bipartition of the system will depend
logarithmically on the symplectic invariant ai associated with the
mode chosen as focus, as Eqs. (2.4.34) and (2.4.35) suggests.

(c) The full tripartite entanglements quantified by the residual tripar-
tite Rényi-2 entanglement depend, in general, on the partie chosen
as the focus. We find the same amount of entanglement when the
focus is the partie containing the mode of any detector, which is
again a consequence of the symmetry of the interaction Hamilto-
nian governing the dynamics of the measurement process. Besides,
the tripartite entanglement focused on any detector is greater than
the one focused on the Gaussian system under examination. This
behavior is consistent with the description of an observer localized
on the partie chosen as focus, where the entanglement from the
perspective of this observer will be like ‘at sight’ of the reciprocals
purities associated with the other two parties; in this manner, the
entanglement focused on the Gaussian system under measurement
will be higher.

Usuario
Tachado



3

T H E F U L L D Y N A M I C A L A RT H U R S - K E L LY
M E A S U R E M E N T P R O C E S S

“History is written by victors.”

unknown origin

3.1 justification

The seminal model raised by Arthurs and Kelly constitutes the direct
generalization of the standard von Neumann measurement scheme [93] for
the position and momentum observables of an arbitrary system. However,
the Arthurs-Kelly model is attained only for the particular situation in
which the detectors are, concretely, infinitely coupled with the system
under measurement. Besides, the joint unbiasedness condition (see
Appendix 5.2 and subsection 2.1.3) formally demands that the expected
values of the marginal measurement outputs match with the theoretical
mean values of the position and momentum observables of the system
under examination; this implies that the time of the measurement must
be chosen as the reciprocal of the coupling constant (see Section 2.2);
this fact results in that the time-lapse for the measurement process
must be instantaneous, [110] which becomes a non-plausible situation
for experimental situations in which it could not be possible to achieve
the strong coupling regime.

The phenomenon of spreading is an inherent characteristic of a quan-
tum particle which is described by a wave packet, i.e., by a continuous
superposition of plane waves, where the whole group runs with constant
motion. Then, the effect of spreading is given by the temporal increase

97
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of the associated probability distribution together with the diminishing
of the amplitude of the associated wave packet [149]. Then, with this in
mind, the Arthurs-Kelly measurement process boards a situation in which
the wave functions representing each component of the measurement
setting do not come under spreading, which allows reaching the funda-
mental limits of predictive and retrodictive accuracy of the measurement
(see sections 2.1.2, 2.3.1, 2.3.2). Therefore, the consideration of a model
that includes the free evolution of each measurement component allows
studying the impact of the free propagation in the accuracy aspects of
the simultaneous measurement process.

On the other hand, related with the entanglement generation, there
exists a close relationship between the entanglement of composed sys-
tems and the spreading of the wave packet describing the dynamics of
the system; for example, in the coincidence and single-particle schemes
of photoionization [150] and spontaneous emission of a photon [151].
Therefore, in this Chapter, we board the complete dynamics of the
Arthurs-Kelly measurement model to investigate the effects of free prop-
agation of the system in its entanglement properties in the particular
regime of Gaussian states.

3.2 dynamics

The full (closed) dynamics of the Arthurs-Kelly measurement process is
given by the following Hamiltonian

Ĥ = (κ1x̂3p̂1 + κ2p̂3p̂2) + Ĥfree, (3.2.1)

where

Ĥfree =
p̂2

1
2m1

+
p̂2

2
2m2

+
p̂2

3
2m3

, (3.2.2)

represents the free energy operator of each subsystem in the measurement
setting. It must be noted that the Hamiltonian, Eq. (3.2.1), does not
appeal to a particular coupling regime; therefore, we have no more an
instantaneous time interval for the measurement process.

We recur to the time evolution operator method to compute the
dynamics of the wave function through the measurement process as Eq.

Usuario
Resaltar
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(2.2.1) establishes. Then, with the Hamiltonian, Eq. (3.2.1), the time
evolution operator becomes

e−iĤt = e
− it

2m1
p̂2

1e
− it

2m2
p̂2

2e
−it
(

p̂2
3

2m3
+κx̂3p̂1+κp̂3p̂2

)
. (3.2.3)

Notably, we have the quadratic momentum operator p̂2
3 which does not

commute with the position x̂3 of the system under observation; therefore,
the factorization of operator, Eq. (3.2.3), cannot carried out through the
conventional Baker-Campbell-Hausdorff formula; instead, we proceed
with the general method of factorization explained in Reference [94]; then,
for simplicity of the process, we assume the same coupling constants
κ1 = κ2 = κ in the unitary operator, Eq. (3.2.3); we give a step-by-step
derivation for the factorization process in the Appendix, Section 5.4; the
result is

e−iĤt = e∆x1p̂2
1e

− it
2m2

p̂2
2e

− it
4m3

p̂2
3e− itκ

2 p̂3p̂2e−itκx̂3p̂1e
− it

4m3
p̂2

3e− itκ
2 p̂3p̂2, (3.2.4)

with
∆x1 = −(it/2m1) + (it3κ2/12m3). (3.2.5)

One of the principal advantages of using the time evolution operator
method to calculate the dynamical evolution is that it allows us to
avoid the difficult task of solving the Schrödinger equation with the
Hamiltonian, Eq. (3.2.1). Comparing the full dynamical time evolution
operator, Eq. (3.2.4), with that of the strong coupling regime, Eqs.
(5.1.3) and (5.1.4), we observe the presence of operators of the form
ecp̂

2
i as a difference; these terms appears only as a consequence of the

consideration of the free Hamiltonian, Eq. (3.2.2), in the dynamics of
the measurement process.

Since the original proposal of Arthurs and Kelly consider an arbitrary
state as the system under measurement, let us consider this assumption
for the application of the free energy operator on an arbitrary wave
function in the position representation; that is

e−iĤtψ(x) = exp [−ip̂2t/2m]ψ(x)

= exp
[
it

2m
d2

dx2

]
ψ(x) (3.2.6)

=
∑∞
k=0

1
k!

(
it

2m
)k d2kψ(x)

dx2k ,
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where we have expanded the exponential in McLaurin series.
Notably, as Blinder indicates [152], there no exist a closed expression

for the series in the last line of Eq. (3.2.6); then, we can not infer
information about the exact analytical expression for an arbitrary wave
packet under free dynamics; consequently, it is difficult to obtain exact
expressions for the expected values of polynomials of any order in the
quadrature operators. However, let us recall that we have the two
following conditions

(i) We need to satisfy the joint unbiasedness condition.

(ii) We need to explore the fundamental limits of
retrodictive and predictive accuracy aspects of the
simultaneous measurement under the consideration of a
full dynamics of the measurement process.

Therefore, we need to restrict ourselves to a kind of wave function
which satisfies the two above conditions and allows us to apply the free
energy operators of the unitary operator of Eq. (3.2.6) to obtain a closed
expression for the resulting wave function governing the dynamics of
the system and the expected values of polynomials in the quadrature
operators of the system. In this thesis work, we appeal to a Gaussian
function to represent the initial state of the system under measurement.

The Gaussian functions are contained in the well-known Schwartz
space, S(R), which is the linear space of all functions f : R −→ C which
have derivatives of all orders and satisfy the condition [153]:

Pa,b (f) ≡ sup
x∈R

∣∣∣xaf b(x)∣∣∣<∞, (3.2.7)

for a,b ∈ W = {0,1,2, · · ·}. The finiteness condition for all a ≥ 1 and
b ∈W , implies that xaf b(x) −→ 0 as |x| −→ ∞ for all a,b ∈W ; so they
are commonly refered as rapidly decreasing functions.

By using a Gaussian wave function, ψ(X) ∈ S(R), for the system
under measurement we can satisfy (i), because under the unitary operator,
Eq. (3.2.4), the wave function remains Gaussian through the temporal
evolution; this implies that the expected values of the linear quadrature
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position and momentum operators are vanishing at any time t (including
t= 0), that is,

⟨X⟩ =
∫
X∈R

ψ∗(X, t)Xψ(X, t) dX = 0, X ∈ {x,p} , (3.2.8)

therefore, the joint unbiasedness condition will be trivially satisfied by
using a Gaussian wave function to represent the system under inspection.

On the other hand, the Gaussian states are minimum uncertainty states,
which implies that they saturate the Heisenberg uncertainty relation, and
the retrodictive and predictive uncertainty relations summarized by Eq.
(2.1.17). Therefore, a Gaussian function representing the system under
measurement will allow inspecting the effect of the free propagation of
the measurement setting on the fundamental accuracy aspects of the
simultaneous measurement, i.e., fulfill the condition established in (ii).

Therefore, in the following, we use a Gaussian wave function to de-
scribe the system under measurement; this is one of the central facts
of this thesis work, allowing us to apply the Gaussian mathematical
background developed through Chapter 1 to a measurement setting
described entirely by continuous variable Gaussian wave functions. In
particular, and without any preferential reason, we choose the same
mathematical structure as that of the pointers of the measuring device,
Eqs. (2.1.51) and (2.1.52), to represent the system under observation;
then, we characterize it by a squeezed vacuum state with a squeeze factor
of S3 = 1/

(
21

2δq
)
, being δq the standard deviation of the associated ini-

tial position probability distribution; by using Eq. (2.1.61) and a Fourier
transform, it is trivial to verify that the initial momentum probability
distribution have variance of δp = 1/2δq. Then, following Eq. (3.2.4),
we have a product of three squeezed vacuum states as the initial wave
function of the measurement setting.

Using Eqs. (2.2.1) and (2.2.2) together the time evolution operator,
Eq. (3.2.4), to compute the wave function of the system at any time t,
the result in compact form is

Ψ (χ, t) = N (t)exp [−{ε1(t)x2
1 + ε2(t)x2

2 + ε3(t)x2
3 + ε4(t)x1x2

+ ε5(t)x1x3 + ε6(t)x2x3}] , (3.2.9)

where N (t) and εj(t) are the complex time-dependent functions explicitly
defined in the Appendix, Sec. 5.5. Besides, we have condensed the
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spatial dependence on the xi variables in χ. The application of the time
evolution operator of Eq. (3.2.4) to the initial state involves one and
two-dimensional Fourier transforms; we give a step-by-step derivation of
Eq. (3.2.9) in Appendix, Sec. 5.6.

The wave function, Eq. (3.2.9), has associated a three-variable Gaus-
sian probability distribution; it can be verified that it is normalized for
all t. Besides, it describes the dynamics of the pointers plus the Gaussian
system under examination in the position space while the measurement
is in progress, and since it cannot be expressed as a product of individual
functions, it is entangled [58] between the pointers and system variables.
In the particular situation of the Arthur-Kelly model where the system
under inspection is a Gaussian state, the entanglement generated con-
stitutes an example of three-mode Gaussian entanglement [11]; we will
study the entanglement properties of this system in Section 3.5.

3.3 accuracy in the full dynamical measurement
process

In this section, we employ the concepts developed in Sec. 2.1.2 to
characterize the retrodictive and predictive accuracy aspects in the
completely dynamical Arthurs-Kelly simultaneous measurement process
for the specific Gaussian configuration of squeezed vacuum states.

In all the following we will compute the temporal dynamics of the
mean value for any position and momentum function, Q(χ̂, ϱ̂, t), through

⟨Q(χ̂, ϱ̂, t)⟩ =
∫
Ψ ∗(χ, t) Q(χ̂, ϱ̂, t) Ψ (χ, t) dχ, (3.3.1)

with dχ=
∏3
i=1dxi. For the remaining of this section, we take the mean

value of the n-th moment of some observable at the time in which the
simultaneous measurement is carried out in the strong coupling regime; as
we explain in Sec. 2.2, this time is the reciprocal of the coupling constant:
t= τ = 1/κ [98] 1, this election superbly simplifies the definitions and
calculations. We further choose the variance σ2

Â
=
〈
Â2

〉
−
〈
Â
〉2, as the

measure of dispersion for the probability distribution of any observable

1 In this time the joint readout takes place. Therefore, projective measurements are done in the pointers
leaving the post-measurement Gaussian state as the normalized projection on the eigenspace of the
observed eigenvalues according to the postulate of a projective quantum measurement [5].
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Â. We emphasize that each marginal probability distribution associated
with the wave function of Eq. (3.2.9) have a Gaussian shape with zero
mean value; therefore, their variances coincide with the squared root-
mean-square (rms) error, which is a reasonable measure of dispersion that
quantifies the degree at which the probability distribution of an observable
deviates from another which is pretended to estimate [154, 155].

3.3.1 Retrodictive aspect

First we recall that indexes 1,2,3 label the first and second detector,
as well as the system under observation for our measurement setting
respectively. Then, using the definitions for the retrodictive error opera-
tors, Eqs. (2.1.11) and (2.1.12), together the unbiased condition of the
retrodictive aspect of accuracy, Eq. (2.1.27), and the condition, (2.1.30),
we deduce the following variances

σ2
ε̂R

x3
= σ2

x̂1 − δ2
q3, (3.3.2)

σ2
ε̂R

p3
= σ2

x̂2 − δ2
p3. (3.3.3)

Now using the wave function, Eq. (3.2.9), together the condition, Eq.
(3.3.1), we compute the variances quantifying the widths of the marginal
probability distributions of the position detectors at the time t= κ−1:

σ2
x̂1 = δ2

q3 +
b

2 + η1(κ) + η2(κ), (3.3.4)

σ2
x̂2 = δ2

p3 +
1
2b + η3(κ). (3.3.5)

Where δ2
q3 (δ2

p3) represent the variance of the initial probability distribu-
tion of position (momentum) of the Gaussian system under measurement.
Comparing the last two expressions with Eqs. (2.2.11) and (2.2.12) at
the time t = κ−1 (therefore α1 = α2 = 1), we can note the extra terms
ηi; they are given by the following expressions

η1(κ) =
(m1 − 6m3)

2

36bm2
1m

2
3κ2 , (3.3.6)

η2(κ) =
1

16δ2
qm

2
3κ2 , (3.3.7)
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Figure 11: Behavior of the product σ2
x̂1σ

2
x̂2 given by Eq. (3.3.10), versus the coupling

constant κ, for the values δx3 = 1, mi = 1. As κ decreases, the product
shift upwards from its minimal value of 1 due to the contribution of the
∆1 (κ)-function; this expression quantifies the spreading contribution of the
wave function to the product of variances characterizing the marginal prob-
ability distributions of the pointer positions at the time of the simultaneous
measurment.

η3(κ) =
b

m2
2κ2 ; (3.3.8)

The Eqs. (3.3.6) to (3.3.8) appears only with the consideration of the
free Hamiltonian, Eq. (3.2.2); they quantify the spread in the variances
of the marginal probability distributions of positions of the pointers as
a consequence of the free evolution of the wave function governing the
dynamics of the measurement process; see Section 3.4.

Besides, the Eqs. (3.3.6) to (3.3.8) are vanishing as the coupling
between the Gaussian system and pointers becomes larger, that is,

lim
κ−→∞ηj(κ) = 0, j = 1,2,3; (3.3.9)

therefore, in this situation, we recover the variances, Eqs. (2.2.11) and
(2.2.12), for the strong coupling regime at the time t= κ−1. If we take
the product of Eqs. (3.3.4) and (3.3.5) with the ideal balance parameter
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expressed by Eq. (2.2.13) (with α1 = α2 = 1) as b= 2δ2
x3, together the

lower bound of the Heisenberg uncertainty relation, we obtain the Arthurs-
Kelly uncertainty product associated with the completely dynamical
measurement process for our specific Gaussian configuration:

σ2
x̂1σ

2
x̂2 =

[
σ2
x̂1σ

2
x̂2

]
min +∆1 (κ) , (3.3.10)

where
[
σ2
x̂1σ

2
x̂2

]
min = 1 is the lower bound of the uncertainty relation

derived by Arthurs and Kelly [98]; this term represent the minimum
value that the product σ2

x̂1σ
2
x̂2 can be reach. Besides, the ∆1 (κ)-function

is given by

∆1 (κ) =
11m2

1(4δ4
q+κ

2m2
2)−24m1(4δ4

q+κ
2m2

2)m3+72(4δ4
q+κ

2[16δ8
qm

2
1+m

2
2])m2

3

288(δ2
qκ

2m1m2m3)
2 .

(3.3.11)

Since the ∆1-function reciprocally depends on the square of the coupling
constant κ, the lower bound

[
σ2
x̂1σ

2
x̂2

]
min shift upwards as κ decreases; see

Fig. 11, in fact we have

lim
κ−→∞∆1 (κ) = 0, (3.3.12)

which is an indicative that a weak coupling between the pointers and
the Gaussian system causes a loss in the retrodictive accuracy of the
simultaneous measurement.

However, although the product given by Eq. (3.3.10), gives a quantita-
tive notion of the retrodictive accuracy in the simultaneous measurement,
the variances σ2

x̂1 and σ2
x̂2 cannot be directly interpretable as experi-

mental errors [101, 102, 103]. Instead, the variances of the retrodictive
error operators positively quantify the noises deviating the probability
distributions of the measurement outputs from the initial probability
distributions of the canonical pair under examination. Substituting Eqs.
(3.3.4) and (3.3.5) in Eqs. (3.3.2) and (3.3.3), we trivially find

σ2
ε̂R

x3
=
b

2 + η1(κ) + η2(κ), (3.3.13)

σ2
ε̂R

p3
=

1
2b + η3(κ). (3.3.14)
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Figure 12: Behavior of the product σ2
ε̂R

x3
σ2

ε̂R
p3

given by Eq. (3.3.15) versus the coupling
constant κ, for the values δx3 = 1, mi = 1. As κ decreases, the product shift
hyperbolically upwards from its minimal value of 1/4 due to the contribution
of the ∆2 (κ)-function. This plot describes the behaviour of the uncertainty
product associated with the retrodictive accuracy in the full dynamical
simultaneous measurement process of position and momentum observables;
the lower bound is reached in the strong coupling regime described by
Arthurs and Kelly.

The Eqs. (3.3.13) and (3.3.14) quantify all error in the retrodictive
accuracy of the simultaneous measurement of the position and momen-
tum observables; the terms b-dependent characterize the intrinsic noise
induced by the detectors to the measurement outputs in the strong cou-
pling regime, as Eqs. (2.3.4) and (2.3.5) show. Comparing Eqs. (3.3.13)
and (3.3.14) with Eqs. (2.3.4) and (2.3.5), we see that the expressions
ηi(κ) given by Eqs. (3.3.6) to (3.3.8) adds extra noise to the retrodictive
aspect of the simultaneous measurement.

Taking the product of Eqs. (3.3.13) and (3.3.14) with the ideal balance
parameter b= 2δ2

x3 and using the lower bound of the Heisenberg uncer-
tainty relation, we obtain the uncertainty product of the retrodictive
accuracy of the simultaneous measurement

σ2
ε̂R

x3
σ2
ε̂R

p3
=
[
σ2
ε̂R

x3
σ2
ε̂R

p3

]
min

+∆2(κ); (3.3.15)
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where the term
[
σ2
ε̂R

x3
σ2
ε̂R

p3

]
min

= 1/4 represents the lower bound of the
retrodictive uncertainty relation given by Eq. (2.1.42); besides, the
∆2(κ)-function is given by

∆2(κ) =
11m2

1(8δ4
q+κ

2m2
2)−24m1(8δ4

q+κ
2m2

2)m3+72(8δ4
q+κ

2[16δ8
qm

2
1+m

2
2])m2

3

(24δ2
qκ

2m1m2m3)
2 ;

(3.3.16)

therefore, again, the lower bound of the uncertainty product associated
with the retrodictive error operators is hyperbolically displaced upwards
by the ∆2(κ)-function as the coupling constant κ goes smaller; this is
because the expression, Eq. (3.3.16), reciprocally depends on the square
of κ; see Figure 12.

Hence, we can conclude that the consideration of the free evolution
operators in the dynamics of the measurement process negatively affects
the retrodictive accuracy in the simultaneous measurement of the position
and momentum observables. The extra fluctuations go beyond the
intrinsic noise induced by the pointers of the measuring apparatus;
they result from the spreading of the global Gaussian wave function
characterizing the measurement configuration through the measurement
process. Then, that spreading noise is reduced only by increasing the
coupling between the pointers and the system under observation.

3.3.2 Predictive aspect

Considering the definitions for the predictive error operators, Eqs. (2.1.13)
and (2.1.14), together the predictive unbiased condition for the simulta-
neous measurement, Eq. (2.1.28), we derive the following variances

σ2
ε̂P

x3
= σ2

x̂1 + σ2
x̂3 − 2

〈
Û †x̂1x̂3Û

〉
, (3.3.17)

σ2
ε̂P

p3
= σ2

x̂2 + σ2
p̂3 − 2

〈
Û †x̂2p̂3Û

〉
, (3.3.18)

where the last term in the last two expressions express the double
covariance between the observables defining the predictive error operators;
we compute it by using the definition, Eq. (3.3.1); hence we obtain

2
〈
Û †x̂1x̂3Û

〉
= 2δ2

q3 + b+ 2η2(κ), (3.3.19)
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Figure 13: Behavior of the product σ2
ε̂P

x3
σ2

ε̂P
p3

given by Eq. (3.3.25) versus the coupling
constant κ, for the values δx3 = 1, mi = 1. As κ decreases, the product
shift hyperbolically upwards from its minimal value of 1/4 due to the
contribution of the ∆3 (κ)-function. This plot describes the behaviour of
the uncertainty product associated with the predictive accuracy in the full
dynamical simultaneous measurement process of position and momentum
observables; the lower bound is reached in the strong coupling regime
described by Arthurs and Kelly.

2
〈
Û †x̂2p̂3Û

〉
=

1
b
+ 2δ2

p3. (3.3.20)

In the same way we compute the variances σ2
x̂3 and σ2

p̂3, obtaining

σ2
x̂3 = δ2

q3 + b+ η2(κ), (3.3.21)

σ2
p̂3 = δ2

p3 +
1
b
. (3.3.22)

Then, using Eqs. (3.3.4) and (3.3.5), together Eqs. (3.3.19) to (3.3.22)
in Eqs. (3.3.17) to (3.3.18), we obtain the following variances

σ2
ε̂P

x3
=
b

2 + η1(κ), (3.3.23)

σ2
ε̂P

p3
=

1
2b + η3(κ). (3.3.24)
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The Eqs. (3.3.23) and (3.3.24) quantify all the noise deviating the
probability distributions of the positions of the pointers at the time
of the measurement from the probability distributions of the canonical
pair under observation at the same time. Comparing Eqs. (3.3.23)
and (3.3.24) with Eqs. (2.3.8) and (2.4.1), we observe the extra terms
η1,3(κ), which, as we explain in Section 3.3.1, result from the spreading
in the global Gaussian wave function associated with the measurement
configuration. Therefore, we recover the fundamental noise inherently
coming from the measurement process in the strong coupling limit, i.e.,
in the situation mathematically described by Eq. (3.3.9).

Taking the product of variances, Eqs. (3.3.23) and (3.3.24) and us-
ing the ideal balance parameter b = 2δ2

x3 together the lower bound of
Heisenberg uncertainty relation, we obtain the uncertainty product asso-
ciated with the predictive accuracy of our specific Gaussian measurement
process

σ2
ε̂P

x3
σ2
ε̂P

p3
=
[
σ2
ε̂P

x3
σ2
ε̂P

p3

]
min

+∆3(κ); (3.3.25)

where
[
σ2
ε̂P

x3
σ2
ε̂P

p3

]
min

= 1/4, represent the lower bound of the predictive
uncertainty relation given by Eq. (2.1.44); besides, the ∆3(κ)-function
is given by

∆3(κ) =
m2

1(8δ4
q+κ

2m2
2)−12m1(8δ4

q+κ
2m2

2)m3+36(8δ4
q+κ

2[16δ8
qm

2
1+m

2
2])m2

3

288(δ2
qκ

2m1m2m3)
2 ;

(3.3.26)

therefore, as happened with the retrodictive aspect of accuracy reviewed
in Section 3.3.1 , the lower bound of the uncertainty product associated
with the predictive error operators is hyperbolically displaced upwards
by the ∆3(κ)-function as the coupling constant κ goes smaller; this is
because this expression reciprocally depends on the square of κ; see
Figure 13.

Therefore, we conclude that the free energy operators negatively affect
the predictive accuracy in the simultaneous measurement of the canonical
pair. that is, the spreading induced by the free evolution adds extra
fluctuations to the intrinsic noise of the measurement process, resulting in
the variances of the predictive error operators increasing as the coupling
constant κ diminishes.
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3.4 the role of the free evolution in the accuracy
of the measurement

We explain in subsections (3.3.1) and (3.3.2) that the consideration of
the free energy operators in the dynamics of the simultaneous mea-
surement process results in a spreading of the global Gaussian wave
function characterizing the measurement configuration; this process adds
extra fluctuations to the variances of the probability distributions of
the observables of each component of the measurement setting, which
derives in the reduction of the retrodictive and predictive accuracy of
the simultaneous measurement. To give a more detailed explanation for
the relation between the spreading of the Gaussian wave function of the
measurement setting and the retrodictive and predictive accuracy in the
simultaneous measurement, let us analyze the process of free evolution
of a Gaussian wave packet in one dimension.

Let us consider a particle whose potential energy is zero at every point
of space. The particle is not subject to any force; therefore, it is free.
Under this assumption, the Schrödinger equation in one dimension is

i h̄
∂Ψ (x, t)

∂t
= − h̄2

2m
∂2Ψ (x, t)
∂x2 , (3.4.1)

this equation is satisfied by solutions of the form

Ψ (x, t) = Aexp [i(kx−ωt)] , (3.4.2)

being A a normalization constant; besides, k and ω satisfy the relation
ω = h̄k/2m. Now, the superposition principle establishes that every
linear combination of plane waves is a solution of the Schrödinger equation
given in Eq. (3.4.1); then we have

Ψ (x, t) = (2π)−1
2
∫ +∞

−∞
g(k)exp [i(kx−ωt)]dk. (3.4.3)

We choose the g(k)-function as a Gaussian centred at k0, that is,

g(k) =

√
a

(2π) 1
4
e−a2

4 (k−k0)2, a ∈ R, (3.4.4)

then, we have

Ψ (x, t) =
√
a

(2π) 3
4

∫ +∞

−∞
e−a2

4 (k−k0)2 exp [i(kx−ωt)]dk, (3.4.5)
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Figure 14: Plots of the probability density given by Eq. (3.4.9) at the subsequent times:
a) t1 = 0.1, b) t2 = 0.7, c) t3 = 2.0. As the time elapses, the width of the
probability density of the Gaussian wave packet increases according to Eq.
(3.4.11), while the amplitude diminishes. This phenomenon describes the
spreading of the wave packet.
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by grouping the k-dependent terms in the exponentials, and completing
a perfect square, we have the solution

Ψ (x, t) =
(

2a2

π

)1/4
eiφ(

a4+ 4 h̄2t2
m2

)1/4e
ik0x exp

−
(
x− h̄k0

m t
)2

a2+ 2i h̄t
m

 ,

(3.4.6)

with

φ= −
θ− h̄k2

0
2m t

 , (3.4.7)

θ =
1
2 arctan

[ 2 h̄t
ma2

]
. (3.4.8)

Taking the squared modulus of Ψ (x, t) we have the probability density
for the Gaussian wave packet:

|Ψ (x, t)|2 = 1
σ0(t)

√√√√ 2
πa2 exp

−2
(
x− h̄k0

m t
)2

a2σ2
0(t)

 , (3.4.9)

where

σ0(t) =

√√√√1+ 4 h̄2t2

m2a4 . (3.4.10)

It can be trivially verify that the variance, [δx(t)]2, associated with the
Gaussian distribution, Eq. (3.4.9), is

[δx(t)]
2 =

a2

4 [σ0(t)]
2 ; (3.4.11)

therefore, the width of the Gaussian probability distribution quadratically
increases with increasing time, while the amplitude decreases; see Fig.
(14). This is the phenomenon of spreading of the Gaussian wave packet.

With the last results in mind, let us go back to the dynamics expressed
by Eq. (3.2.1). The first two terms between parentheses are the inter-
action Hamiltonian which links the observables of the position of the
pointers with the canonical pair under observation. This dynamics is a
generalization to the position and momentum observables of the standard
Von Neumann measurement process for a single observable [93].
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Figure 15: Set of 4000 points generated from the joint probability distribution
ρ(x1,x2, t = κ−1) =

∫+∞
−∞

∣∣∣Ψ (χ, t= κ−1)
∣∣∣2 dx3 with the wave function, Eq.

(3.2.9), at time of measurement t = κ−1 using the values δq = 1, b = 2δ2
q ,

and mi = 1. Each point constitutes a joint record of the pointers, which is
registered in the x1x2-plane. To graphically inspect the notion of retrodic-
tive and predictive accuracy, the whole set of records is compared versus
the contour plots of the Wigner function (with δq = 1) associated to the
Gaussian state under inspection before (Figs. (a), (b)) and after (Figs. (c),
(d)) the measurement respectively, for the cases of strong coupling (κ= 100,
left figures.) and weak coupling (κ= 0.5, right figures.). The deviation from
the Wigner functions becomes larger in the weak coupling regime.

Arthurs and Kelly find that the dynamics involving only these Hamilto-
nian carries an unavoidable noise, which is proportional to the fluctuations
of the probability distributions of the pointers; this noise raises the lower
bound of the Heisenberg uncertainty relation by the extra factor of h̄/2.
Notably, the transfer of information from the system under observation
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to the state of the pointers is possible due to the quantum entanglement
created by the interaction, Eq. (2.1.45).

Instead, the terms of free energy given by Eq. (3.2.2) cause the
spread of the three-dimensional Gaussian wave function as the time
elapses (consequently, of its probability distribution), as we explained
before. It must be noted that we choose t= κ−1 as that time in which
the simultaneous reading of the pointers is carried out. If we adjust
the beginning of the interaction at t = 0, the time interval for the
measurement process is

∆τ = tfinal − tinitial = κ−1, (3.4.12)

which implies that the strong coupling assumption carries an instanta-
neous measurement process, while a weak coupling carries a long time.
From the results analyzed for the spreading phenomena of the Gaussian
wave packet, we deduce that the wave function of the measurement
configuration goes on a higher spread in the weak coupling regime, which
implies an increasing noise affecting the variances of the probability
distributions of the system’s variables; then, this noise negatively affects
the retrodictive and predictive accuracy aspect of the simultaneous mea-
surement; then, both aspects will be higher as the coupling between the
detectors and the system under measurement is bigger. Therefore, to
see this argument, in Fig. 15 we plot a set of 4000 points coming from
the joint probability density

ρ(x1,x2, t= κ−1) =
∫ +∞

−∞

∣∣∣Ψ (χ, t= κ−1)
∣∣∣2dx3, (3.4.13)

and we compare it versus both, the Wigner distribution of the Gaussian
system before (retrodictive aspect) the measurement:

W (x3,p3, t= 0) = π−1
∫ +∞

−∞
ϕ∗

3(x3 + ξ)ϕ3(x3 − ξ)e2ip3ξ dξ, (3.4.14)

and the Wigner distribution of the Gaussian system after (predictive
aspect) the measurement:

W (x3,p3, t= κ−1) = π−1 ∫+∞
−∞ Ψ ∗(x1,x2,x3 + ξ,τ )Ψ (x1,x2,x3 − ξ,τ )

×e2ip3ξ dx1dx2dξ; (3.4.15)

we recall that ϕ3(x3) is the initial vacuum state of the Eq. (2.1.61)
that represents the Gaussian system under measurement, and Ψ (χ, t)
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is given by Eq. (3.2.9) which represent the global measurement setting
through the measurement process. Then, for a determined coupling κ,
the degree of accuracy for the retrodictive and predictive aspects of the
simultaneous measurement will be stipulated by the variances of the
error operators, Eqs. (3.3.4) and (3.3.5), and (3.3.23) and (3.3.24).

3.5 generation of quantum entanglement

Quantum entanglement is the fundamental resource for the development
of quantum technologies, like quantum computers, quantum-enhanced
sensors, and efficient communications schemes; these advances build
up the so-called second quantum revolution [148]. The fundamental
nature for entangled systems was put in context by Schrödinger [55],
who noticed that for the two-particle system described by EPR [54], it is
not possible to give an individual description for each particle. Then, he
concludes that until some observation does not happen, one only disposes
of a global account for the whole system; this is the well-known statute
that an entangled quantum system can not be expressed as a product of
the individual functions until some interaction with the global system
takes place.

One of the seminal manifestations of the quantum entanglement as a
resource was posed by Von Neumann in his standard model of a quantum
measurement of a single observable [93]; see Section 2.1.1. In this scheme,
an interaction Hamiltonian links the quantum state of a “detector” with
another system that we desire to measure. Then, due to the superposition
principle, the states of the system under examination becomes correlated
with the states of the measuring apparatus through the unitary dynamics;
therefore, we have a global quantum state which can not be factorizable;
that is, there exists a lack of individuality for each subsystem. This
entangling process allows transferring the information from the system
under examination to the quantum state of the detector. Hence, just
one way to theoretically arm ourselves with quantum entanglement is
through the so-called meter-system interactions, which is nothing more
than an entanglement generator process between
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Figure 16: Schematic representation of the Arthurs-Kelly measurement process which
is divided into two stages: a) an interaction (starting at t= 0) between the
system and the pointers, described by a unitary operator Û = e−itĤ , which
creates entanglement between the components of the measurement setting,
and b), the readout process (carried out at t= τ = κ−1), where projective
measurements take place in each pointer variable. The statistics of the
measurement outputs carry information about the statistics of the initial
conjugate pair of the system under observation. The dotted line between
these two stages represents the entanglement between all components of the
whole configuration. Besides, the joint unbiasedness condition establishes
that the mean values of the measurement outputs must match with the mean
values of the initial position and momentum observables that we pretend
to know. The post-measurement state |ϕ′

3(x3)⟩ is normalized projection
of the state before the measurement, |ϕ3(x3)⟩, on the eigenspace of the
observed eigenvalue, according to the postulate of a (projective) quantum
measurement [5].

one or more pointer variables (representing the degrees of freedom of the
measuring device) and a physical observable (represented by a hermitian
operator) of some system which we pretend to know. This process is the
same line of thinking presented by Arthurs and kelly in their measurement
process.

In this section, we pose the Arthurs-Kelly model as a process of genera-
tion of entanglement between the three systems building the measurement
configuration. Given our assumption of a Gaussian system as the system
under observation, we pose the measurement process as a generator of
continuous-variable tripartite entanglement in the particular regime of
Gaussian states. Hence we study the effects of free evolution of the
dynamics of the measurement process in the qualitative and quantitative
entanglement properties developed in the system. Then, we show that
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the full dynamical Arthurs-Kelly measurement model represents one
more mechanism for the three-mode entanglement generation artillery
[156].

It must be noted that any measurement process can be divided into two
stages [157, 158]: (i) an entangling interaction, where the observables of
the system under measurement come in the form of quantum correlations
with the observables of the measuring device, and (ii) a readout process,
where the measurement output takes place (here is where lies the quantum
measurement problem [159], with which we will not get involved). In
the Arthurs-Kelly measurement model, the transfer of information of the
canonical pair to the state of the pointers is possible due to the quantum
entanglement induced by the interaction of the Eq. (2.1.45), in the first
stage, and finished in the second stage with the reading of the pointers,
see Figure 16.

Notably, the non-commutative part of the right-hand side of Eq. (3.2.3)
involves the quadratic momentum operator p̂2

3 (which only appears with
the consideration of the free energy of the system under examination)
which does not commute with the position operator x̂3 which implies
that the entanglement properties of the global system should be affected
by this dispersive operator. Therefore, we formulate the hypothesis
that the spreading (i. e., the coupling between the Gaussian system
and the pointers of the measuring device) directly affects the tripartite
entanglement properties of the system.

3.5.1 Separability properties

The state given by Eq. (3.2.9) describes the system throughout the
measurement process; it is entangled (at any time t) between the three
CV modes building the measurement setting, that is, the two pointers
of the measurement device and the Gaussian system under observation;
therefore, it constitutes the first trivial case of multipartite entanglement.
Then, focusing on N = 3 subsystems, one can establish genuinely tri-
partite entanglement appealing to Werner’s condition expressed by Eq.
(1.3.17). Then, by recurring to this definition, the state expressed by Eq.
(3.2.9) cannot be written as a product of individual functions, that is,
Ψ (x1,x2,x3, t) , f1(x1, t)f2(x2, t)f3(x3, t). Even by assuming the time
of the simultaneous measurement t= κ−1, and taking the limit situation



118 the full dynamical arthurs-kelly measurement process

of the strong coupling described by Arthurs and Kelly, the wave function
of the system is not a product of individual functions. In that case,
we recover the situation where the pointers and the Gaussian system
interact instantly; therefore, it is natural to expect that the system is
still entangled between the three CV modes.

Alternatively, one can establish genuine tripartite entanglement by
means of the biseparability condition (see Section 1.3.5.1) [59, 60, 61]:

Let ρ̂ the density operator describing a composite CV system
consisting ofN = 3 modes, labeled respectively by the indexes
1,2,3. That state is genuinely tripartite entangled if the
density operator can not be written in the biseparable form,
that is, by Eq. (1.3.18).

Then, by neglecting the three possible mixtures of pure biseparable
states for a tripartite system, we certify genuine tripartite entangle-
ment. This general statute implies, only within the particular regime
of pure states [60], that by neglecting the three possible bipartitions of
(1 vs 2)-subsystems of a tripartite system, we certify genuine tripartite
entanglement.

In our particular measurement scheme, which involves only pure Gaus-
sian states, it is possible to prove genuine tripartite entanglement through
the PPT criterion since, as we explain in Section 1.3.5.2, it is a nec-
essary and sufficient condition for determining the separability of all
“1 vs various” mode-bipartitions of the system [63, 64]. Then, we test
the separability for each of the three possible mode-bipartitions of the
system described by Eq. (3.2.9). We proceed as follows.

First, we recall that for our specific Arthurs-Kelly measurement con-
figuration, the indexes 1,2,3 label the modes associated with the first
and the second pointer and the Gaussian system under measurement,
respectively; then, we compute the three CMs associated with the three
mode-bipartitions: 1|23, 3|12 and 2|31. For this process, we array the
canonical pairs of each mode in a vector operator like the one given in
Eq. (1.1.6), that is,

R̂ = (q̂1, p̂1, q̂2, p̂2, q̂3, p̂3)
T (3.5.1)



3.5 generation of quantum entanglement 119

R̂ = (q̂3, p̂3, q̂1, p̂1, q̂2, p̂2)
T (3.5.2)

R̂ = (q̂2, p̂2, q̂3, p̂3, q̂1, p̂1)
T . (3.5.3)

Then we use the definition for the generic element of the covariance
matrix, Eq. (1.2.9), to compute each of the 36 elements of the 6 × 6-
dimensional covariance matrices associated with the three mode-bipartitions
of the system. For the compute of the expected values, we use the defi-
nition, Eq. (3.3.1) together the wave function, Eq. (3.2.9), at the time
t= κ−1 and the balance parameter tuned at the ideal value for maximal
accuracy in the simultaneous measurement as we explain in section 2.2.
Then, we obtain the following three covariance matrices which we express
in block form

σ1|23 =


σ1 λ1,2 λ1,3
λT

1,2 σ2 λ2,3
λT

1,3 λT
2,3 σ3

 , (3.5.4)

σ3|12 =


σ3 λT

1,3 λT
2,3

λ1,3 σ1 λ1,2
λ2,3 λT

1,2 σ2

 , (3.5.5)

σ2|31 =


σ2 λ2,3 λT

1,2
λT

2,3 σ3 λT
1,3

λ1,2 λ1,3 σ1

 , (3.5.6)

where each entry in the last three matrices represents a (2×2)-dimensional
matrix and the superscript T denotes its transpose. We define the block
matrices composing the CMs, Eqs. (3.5.4) to (3.5.6), in the Appendix
5.7. The diagonal elements represent the single-mode covariance ma-
trices, and the off-diagonal codify the correlation between them. Each
term in the entries of the block matrices depends on the masses of each
subsystem, the coupling constant, and the standard deviation of the
initial position probability distribution of the Gaussian system under
examination; in what follows, we omit this dependence for brevity. The
covariance matrices, Eqs. (3.5.4) to (3.5.6), are associated with a pure
state since they satisfy Eqs. (1.4.2), (1.4.3) and (1.4.5).

To analyze the separability of each bipartition, we partially transpose
the corresponding CM with respect to the single-mode partie; then, we
test its physical validity by checking the satisfaction of the uncertainty
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relation, Eq. (1.2.11). This process implies testing the positive semidefi-
niteness of three (6 × 6)-dimensional Hermitian matrices; therefore, we
use the so-called Silvester’s criterion [160]:

Silvester’s criterion.
A Hermitian matrix A is positive semidefinite if every
principal minor (including Det A) is non-negative.

Then, by using the software Mathematica and Silvester’s criterion, we
find that each of the three partially transposed covariance matrices, Eqs.
(3.5.4) to (3.5.6), do not obey the uncertainty relation σ̃j|kl + iΩ ≥ 0
since each corresponding matrix has at least one negative principal minor,
which is given by the determinant of the (5 × 5)-dimensional leading
submatrix of each matrix. Therefore, this implies the non-physical
validity of each partially transposed covariance matrix associated with
each bipartition, which means the certification of genuine tripartite
entanglement in our specific Gaussian configuration of the full dynamical
Arthurs-Kelly measurement process.

It is important to note that this non-separability is maintained for any
value of the physical parameters involved in the wave function describing
the dynamics, Eq. (3.2.9). The non-separability of each bipartition is
maintained in the strong coupling regime described by Arthurs and Kelly;
that is to say, if we take the limit situation for each of the partially
transposed covariance matrices:

lim
κ−→∞ ˜σi|jk, for i,j,k ∈ {1,2,3} , i , j , k, (3.5.7)

and we compute the left-hand-side of the uncertainty relation ˜σi|jk+ iΩ,
we obtain the following matrices

˜σ1|23 + iΩ=



4δ2
q3 i 0 2δ2

q3 4δ2
q3 0

−i 1
δ2
q3

1
2δ2

q3
0 0 1

δ2
q3

0 1
2δ2

q3

1
δ2
q3

i 0 1
δ2
q3

2δ2
q3 0 −i 4δ2

q3 4δ2
q3 0

4δ2
q3 0 0 4δ2

q3 6δ2
q3 i

0 1
δ2
q3

1
δ2
q3

0 −i 3
2δ2

q3


, (3.5.8)
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˜σ3|12 + iΩ=



6δ2
q3 i 4δ2

q3 0 0 4δ2
q3

−i 3
2δ2

q3
0 1

δ2
q3

− 1
δ2
q3

0
4δ2

q3 0 4δ2
q3 i 0 2δ2

q3
0 1

δ2
q3

−i 1
δ2
q3

− 1
2δ2

q3
0

0 − 1
δ2
q3

0 − 1
2δ2

q3

1
δ2
q3

i

4δ2
q3 0 2δ2

q3 0 −i 4δ2
q3


, (3.5.9)

˜σ2|31 + iΩ=



1
δ2
q3

i 0 1
δ2
q3

0 − 1
2δ2

q3
−i 4δ2

q3 −4δ2
q3 0 −2δ2

q3 0
0 −4δ2

q3 6δ2
q3 i 4δ2

q3 0
1
δ2
q3

0 −i 3
2δ2

q3
0 − 1

δ2
q3

0 −2δ2
q3 4δ2

q3 0 4δ2
q3 i

− 1
2δ2

q3
0 0 − 1

δ2
q3

−i 1
δ2
q3


, (3.5.10)

for which it is trivial to verify the following determinants of the corre-
sponding upper (5 × 5)-dimensional leading sub matrices

Det
[

˜σ1|23 + iΩ
]
(5×5) = −8δ2

q3, (3.5.11)

Det
[

˜σ3|12 + iΩ
]
(5×5) = −8/δ2

q3, (3.5.12)

Det
[

˜σ2|31 + iΩ
]
(5×5) = −32δ2

q3; (3.5.13)

then, since δ2
q3 > 0, the principal minors expressed by Eqs. (3.5.11) to

(3.5.13) are negative; hence, this verify the non-physical validity of the
partially transposed covariance matrices associated with each mode-
bipartition in the strong coupling regime; therefore, the condition of
genuine tripartite entanglement remains valid even in the original model
of Arthurs and Kelly.

3.5.2 Qualitative properties

We have proved in the last section the non-physical validity of each of the
three mode-bipartitions in our specific full dynamical Gaussian model of
the Arthurs-Kelly measurement process. As we explain in Section 3.5.1,
the biseparability condition (see Eq. (1.3.18)) implies that the negation
of the three bipartitions of the pure tripartite system means genuine
tripartite entanglement. Therefore, given the extensive classification
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for three-mode Gaussian states explained in Section 1.4.2, we conclude
that our system is categorized in the class (C1); that is, there exists
inseparability for each of the three bipartitions of the system.

3.5.3 Quantitative properties

In this section, we study the quantification of the tripartite entanglement
generated in our full dynamical Arthurs-Kelly measurement process; for
this purpose, we recur to the minimum residual Gaussian contangle as
quantifier measure; then, we follow the steps developed for pure tripartite
Gaussian states explained in Section 1.4.4.2.

From Eq. (1.4.9) and the CMs, Eqs. (3.5.4) to (3.5.6), we identify the
local invariants ai corresponding to the modes 1,2 and 3, that is, to the
first and second pointer, and the Gaussian system under observation for
our measurement configuration; then we have

aj =

√√√√4+ 1
ℓ
, (3.5.14)

al = amin = 2, (3.5.15)

ak =

√√√√9+ 1
ℓ
, (3.5.16)

where ℓ= (2
√

2κm3δ
2
q̂3)

2. Then, according to Eqs. (1.4.9) and (1.4.10),
the local invariants aj and ak are increasing as the quantity ℓ becomes
smaller; this implies the loss of purity of the single-mode systems associ-
ated with the first pointer and the Gaussian system under examination
as the coupling constant κ, the mass m3, and the variance δ2

q̂3 are small.
This fact is a consequence of the free evolution of the Gaussian system
under measurement since as κ −→ ∞ (i.e., the situation without any
free dynamics), the quantities aj and ak acquire punctual values which
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Figure 17: a) Region of allowed values delimited by the saturation of the triangle
inequality, Eq. (1.4.11), for the local invariants given by Eq. (3.5.14) to
(3.5.16); they tend to vary hyperbolically (dotted line) within this region
according to the relation ak =

√
a2

j + 5. This fact verify the physical validity
of the covariance matrices representing the three bipartitions of the system.
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Figure 18: Plot of the minimum residual Gaussian contangle Gres
τ (ℓ) for the entangled

three-mode Gaussian system associated with our specific Gaussian mea-
surement configuration of the full dynamical Arthurs-Kelly measurement
process. This plot is associated with symplectic invariants, Eqs. (3.5.14) to
(3.5.16). The blue curve represents the quantity of tripartite entanglement
contained in the measurement configuration as a function of the parameter
ℓ. The increase in the amount of entanglement happens as this parameter
decreases and vice versa.

are independent of the initial preparation of the measured Gaussian
system. In this situation, we recover a specific value for the tripartite
entanglement developed in the measurement configuration, which is
correspondent with the strong coupling regime described by Arthurs and
Kelly.

At the value of al = 2, the local invariants given by Eqs. (3.5.14) and
(3.5.16), are constrained to hyperbolically vary in the form a2

k − a2
j = 5,

inside the region of allowed values delimited from the saturation of the
triangular inequality of Eq. (1.4.11) with the constraints 2 < aj < ∞
and 3 < ak < ∞; see Fig. 17; this verify the validity of the three CMs
given by Eqs. (3.5.4) to (3.5.6). Since the local symplectic invariants
of Eqs. (3.5.14) and (3.5.16), depend on the mass of the Gaussian
system under measurement and completely determine the amount of
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entanglement of the three-partite Gaussian system, we can conclude
that the free energy operator ep̂2

3/2m3 appearing in the time evolution
operator of the Eq. (3.2.4), is the only one that affects the quantitative
entanglement properties of the system as we hypothesize in Section
3.5. This is because the free energy operators ep̂2

1,2/2m1,2 merely act as
dispersive operators without some involvement in the correlation between
the x̂3 and p̂3 observables appearing in the time evolution operator given
in Eq. (3.2.4).

Now, in the following, we systematically follow the three steps ex-
plained in Section 1.4.4.2 for the determination of the quantitative
entanglement properties of our Gaussian three-mode state describing the
full dynamical Arthurs-Kelly simultaneous measurement process at the
time t= κ−1.

Then, following the steps (1) and (2) and using Eqs. (3.5.14) to
(3.5.16), we determine the smallest reciprocal single-mode purity; that
is, al = 2, which is associated with the state of the second detector of
the measurement setting. Hence, following the step (3), we compute
the parameters s and d according to Eqs. (1.4.47) and (1.4.48); then,
we compute the quantities given in Eqs. (1.4.51) to (1.4.55), to finally
substitute in Eqs. (1.4.50) and (1.4.49) in order to get the quantifier
Gres
τ for the tripartite entanglement of the system. Finally, we plot the

minimum residual Gaussian contangle of our measurement setting at the
time t = κ−1 as a function of ℓ in Fig. 18. Hence, let us analyze that
plot in order to establish the role of the free evolution of the system in
the entanglement properties. Specifically, we can observe the following
three points:

(a) We have an increasing amount of tripartite entanglement as the
ℓ-parameter diminishes; the maximum is arcsinh2[

√
3], reached in

the limit situation limℓ−→0G
res
τ (ℓ).

(b) We have an decreasing amount of tripartite entanglement as the
ℓ-parameter grows, following an asymptotic regularization up to
the minimum value of arcsinh2[

√
3] − 5ln2(3)/4 reached in the

limit situation: limℓ−→∞G
res
τ (ℓ).

(c) Since the quantity of tripartite entanglement of the system depends
on the ℓ-parameter, we conclude that in the full dynamical mea-
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surement process, the initial preparation of the Gaussian system
under observation plays a role in the quantitative entanglement
properties of the system.

From point (a), we can associate an increasing amount of tripartite
entanglement in the measurement configuration as the mass m3 and the
variance δ2

q̂3 diminishes; notably at fixed values for these preparation pa-
rameters we deduce that a weak coupling between pointers and Gaussian
system also causes an increase in the amount of tripartite entanglement
of the system. From point (b) we deduce the conversely; that is, as the
mass m3 and the variance δ2

q̂3 increases, the tripartite entanglement of
the system follows an asymptotic decreasing up to the minimum value;
hence, for fixed values of these parameters, we infer that strong coupling
between pointers and system carries less development in the tripartite
entanglement of the system. Therefore, we have the bound

arcsinh2[
√

3]− 5ln2(3)/4 ≤ Gres
τ (ℓ) ≤ arcsinh2[

√
3], (3.5.17)

for the tripartite entanglement developed in the full dynamical Arthurs-
Kelly measurement process in our specific Gaussian measurement con-
figuration. Then, notably, the lower bound of Gres

τ (ℓ) is reached in the
strong coupling scheme described by Arthurs and Kelly, which, as we
will explain just bellow, is a consequence of an instantaneous time-lapse
of the measurement process.

The variation of the tripartite entanglement in dependency of the
ℓ-parameter (for fixed values of m3 and δ2

q̂3) is only a consequence of the
spread of the global wave function through the measurement process. We
recall that in a weak coupling regime, we have a larger time-lapse for
the measurement process (see Section 3.4); hence, as a consequence, we
have an increasing spreading in the global wave function describing the
measurement setting, as well as in each marginal wave function associated
with each system. Therefore, this phenomenon carries a increasing loss
information process about the initial quantum state of each subsystem.
Then, the spreading affects only the single-mode purity of the first pointer
and that of the Gaussian system under examination, as can be verified
from Eqs. (3.5.14) and (3.5.16) and the definition for purity, Eq. (1.4.10).
Notably, this behavior is analogous to that of a free propagating Gaussian
wave packet entangled with another subsystem; for example, in hybrid
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continuous-discrete variable schemes [161, 162, 163] where the external
(the position) and internal (the spin) degrees of freedom of a spin particle
are entangled. In such settings, the entanglement becomes increasing as
the spreading of the Gaussian wave function (which characterizes the
external degrees of freedom of the system) increases; hence reflecting the
loss of purity of the system, therefore, the loss of information initially
associated with the quantum state of the particle. Even such spreading
of the Gaussian wave function has been associated with the quantum
steerability and the non-local features of the system [164, 165]. Then,
the minimum residual Gaussian contangle correctly quantifies the loss of
purity in the three-mode Gaussian system describing the measurement
process, which is a natural fact since this entanglement quantifier is
based on the logarithmic negativity, Eq. (1.4.41), which, in principle, is
equivalent to the entropy of entanglement for pure states [35].

On the other hand, the point (c) highlights the fact that only with
the consideration of the free evolution of the measurement configuration
through the measurement process, the initial preparation of the Gaussian
system under inspection gets involved in the entanglement properties of
the system, since the ℓ-parameter depends on its mass m3 and its initial
variance δ2

q̂3. The squeezing of the Gaussian system under measurement
gets involved in the amount of entanglement of the system since we have
S3 = (

√
2δq)−1 and the ℓ-parameter depends directly proportional to

δ2
q̂3. Then, by increasing the squeezing of the Gaussian system under

measurement, the entanglement of the system grows and vice versa.
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4

S U M M A RY A N D C O N C L U S I O N S

4.1 scope and proposals of this thesis work concern-
ing with the arthurs-kelly measurement process
as a continuous-variable scheme for quantum in-
formation processing

“La esperanza es el peor de los
males, pues prolonga el tormento
del hombre”

Friedrich Nietzsche

One of the most recurrent treaties of the theory of quantum me-
chanics is the famous statute that is impossible to know with arbitrary
accuracy the position and momentum of a quantum object. The birth
of this principle comes originally from Heisenberg [96], who, through
the famous thought gamma-ray experiment, intuitively arrives at the
particular position-momentum indeterminacy relation: q1p1 ∼ h̄; then,
in this expression q1 represents the precision at which the position is
known (quantified by some dispersive measure) and p1 the accuracy
at which the value of momentum is determinable. However, the first
mathematically formal attempt to associate the Heisenberg uncertainty
relation for the canonical pair with a measurement process comes from
the hand of Arthurs and Kelly [98] using the standard model of a quan-
tum measurement proposed by von Neumann [93]. Then, the model
joins two conceptual cornerstones of the theory of quantum mechanics:
the indeterminacy of conjugate variables of a quantum system and the
first measurement theory of von Neumann proposed as soon after the
birth of quantum mechanics.

129
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One of the goals of this thesis work is to identify the model of simul-
taneous measurement as a continuous-variable scheme from which it is
possible to highlight genuinely quantum features. Concerning with the
field of quantum information with continuous variables [19, 166], we point
out the model as a specific generator of multipartite, and, particularly,
tripartite continuous-variable Gaussian entanglement either in the full
dynamical or the strong coupling model; see Sections 4.3 and 4.4. We
prove this statute in the particular regime of Gaussian states which
is the more extensive regime for the develop of quantum information
research field [23]. However, we conjecture that the generation of tripar-
tite entanglement for the Arthurs-Kelly model must be maintained for
any quantum state since the original proposal (which uses an arbitrary
state as the system under observation) demonstrates the transfer of the
statistical information about the canonical pair for this more general
case, which in principle is an indirect proof of the existence of quantum
entanglement, even, in this more general scenario.

The seminal model proposed by Arthus and Kelly [98] pretends to show
the fundamental limits of (retrodictive) accuracy in the measurement
of position and momentum variables; because of this, they discard the
free evolution of the system and take only into account the interaction
Hamiltonian, which links the three subsystems of the measurement
setting. In this scenario, they show the existence of an inherent and
unavoidable noise carried by the measurement process, which directly
comes from the fluctuations of the detectors. Besides, this extra noise is
a mathematical consequence of keeping commuting the observables of the
detectors even through the measurement process [110]; in other words,
to maintain the simultaneous measurability of the canonical pair from
the system of the detectors, it is necessary to add extra fluctuations to
the initial statistics of the observables under examination; however that
noise is balanced, then, it prevents to measure with arbitrary accuracy
both canonical observables.

We demonstrate that the original proposal for the simultaneous mea-
surement is a particular case of the fully dynamical model. In this more
general case, we show the emergence of an extra noise that affects the
accuracy of the simultaneous measurement as the system under examina-
tion spreads in time. Therefore, the free evolution of the wave function
of the measurement configuration has a role in the accuracy of the si-
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multaneous measurement. Also, we study the concepts of retrodictive
and predictive accuracy [101, 102, 103] of the simultaneous measurement
process in a complete dynamics regime; we find that the free evolution
of the system has an impact on the determination of the statistics of
the position and momentum variables for both aspects of accuracy. In
particular, we show that the coupling between the detectors and the
Gaussian system under measurement determines the quantity of spread-
ing of the wave function describing the system through the measurement
process; based on this fact, we conclude that the coupling between the
three subsystems of the measurement set-up has a direct influence on
both aspects of accuracy of the simultaneous measurement.

The future steps concerning with the research of this thesis can involve
direct applications of the entanglement developed by the simultaneous
measurement process; for example, the task of teleportation [167], quan-
tum communication and tomography [168], the research field of one-way
quantum computation using continuous variables [169] or the link with
the quantum information using continuous-variable cluster states [79].
Besides, we can board fundamental studies like quantum non-locality
[170], quantum steering [60], and consider the effects of decoherence [35]
in the more realistic case where the system is not closed. Also, we can try
to demonstrate the three-mode entanglement in the most general case of
an arbitrary system under observation using, for example, entanglement
witnesses for continuous-variable systems [171, 172].

In the following sections, we will give the conclusions about the three
principal research topics of this thesis work, that is: 1. the accuracy in
the full dynamical measurement process of the position and momentum
observables; see Sections 3.3 and 3.4. 2. The tripartite entanglement
generated in the simultaneous measurement process for the position
and momentum in the original regime of strong coupling; see Section
2.4 and 3. the tripartite entanglement generated in the simultaneous
measurement process in the full dynamical model; see Section 3.5.
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4.2 conclusions about the accuracy in the full dy-
namical simultaneous measurement process of
position and momentum observables of a gaus-
sian system

We consider the complete dynamics of the simultaneous measurement
process of the position and momentum; therefore, we include the free
energy operator of each subsystem in the measurement set-up. Besides, to
examine the effect of the free evolution in the accuracy of the simultaneous
measurement, we assume a quantum system represented by a Gaussian
state; in particular, we choose a squeezed vacuum state like the state
representing the detectors of the measurement apparatus. With these
assumptions, we implicitly assume an arbitrary coupling constant in a
complete Gaussian configuration, and the whole system becomes under
temporal spread through the measurement process.

As a mathematical consequence of the joint unbiasedness condition (see
Section 5.2 and Subsection 2.1.3), the time required for the simultaneous
reading of the pointers is the reciprocal of the coupling constant; this fact
implies that a weak coupling entails a long time-lapse of the measurement
process and, conversely, the strong coupling implicitly carries a short
time of measurement. Then, due to these facts, the effect of the spreading
in all marginal and global density probabilities becomes higher in the
weak coupling regime; consequently, the extra noise due to the spreading
results in an increase in the fluctuations affecting the marginal statistics
collected by the detectors of the measurement device; see Section 3.3.

From the last arguments and considerations, we arrive to the the
following conclusions:

(1.) The accuracy of the simultaneous measurement of position
and momentum observables increases by increasing the cou-
pling between the detectors and the Gaussian system under
examination.

Conversely,
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(2.) The accuracy of the simultaneous measurement of position
and momentum observables decreases by decreasing the cou-
pling between the detectors and the Gaussian system under
observation.

In particular, the conclusions (1.) and (2.) are valid for the two aspects
of accuracy in the simultaneous measurement [101, 102, 103]. We study
two aspects of accuracy: (i) the retrodictive, which essentially quantifies
the degree to which the statistics of the marginal measurements of the
pointers coincides with the initial (before the measurement) statistics of
the observables of position and momentum of the system under inspection
and (ii) the predictive, which compares the match between the statistics
of the marginal measurements collected by the pointers and the final
statistics of position and momentum just after the time of measurement.
Notably, this last aspect of accuracy allows the definition for a disturbance
observable which quantifies the degree of perturbation on the canonical
observables of the system under examination due to the measurement
process [101, 102, 103].

Finally, we establish the fact that the strength of the conclusions (1.)
and (2.) must be maintained for any other system that is not Gaussian
for which the measurement is being carried out. This argument comes
from the fact that the free energy operators ea(t)p̂2

i appearing in the time
evolution operator of the Eq. (3.2.4) will cause the free propagation of
the wavefunction of the whole system 1, i.e. the temporal dispersion of
its associated probability distribution [149, 173].

4.3 conclusions about the entanglement generated
in the simultaneous measurement process in the
regime of strong coupling

In general, a quantum measurement process is divided into two stages
[157, 158]: (i) an entangling interaction, where all subsystems of the
measurement configuration become correlated, and (ii) a readout process,
where the observable property appears in the subsystem acting as the

1 In Appendix 5.9 it is proved through the convolution theorem for inverse Fourier transform, that
the application of this operator to an arbitrary state is equivalent to the dynamics with the free
particle-propagator in the method of Green’s functions.
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detector; in this stage, all quantum correlations disappear, and the
subsystems are no more entangled.

In particular, we study the entanglement properties generated in the
original model of simultaneous measurement proposed by Arthurs and
Kelly; then, we focus on the interaction stage of this process. We consider
a rotated, displaced, and squeezed vacuum state as the system under
measurement; that is, we have the most general continuous-variable
Gaussian single-mode state [23]; therefore, with this consideration, we
have a complete Gaussian measurement configuration since the detec-
tors of the measurement apparatus are represented by squeezed vacuum
states. Essentially, the mechanism to transfer the statistical information
about the position and momentum observables of the system under
examination is possible due to the quantum entanglement between the
three subsystems. Then, under these considerations, we conclude that

(1.) The entanglement generated in the simultaneous measurement
process of position and momentum observables proposed by
Arthurs and Kelly constitutes a particular case of tripartite
Gaussian entanglement when the system under measurement
is Gaussian.

We prove the previous conclusion by testing the physical validity of
each of the three partially transposed covariance matrices describing
the three (1 vs 2)-mode bipartitions of the three-mode system. We
carry out this process through the PPT criterion [62] in the language
of the covariance matrices [63]; see Section 1.3.5.2. In particular, we
find that each partially transposed covariance matrix does not obey the
Heisenberg uncertainty relation for multiple continuous-variable modes,
which implies that the three subsystems that compose the measurement
configuration are entangled between them. This last fact allows to
classify the generated entanglement in the category of genuinely three-
mode entangled states [9] just like other systems as the tripartite versions
of the continuous variable GHZ-states [10, 76] and the analogous version
of the continuous-variable Einstein-Podolsky-Rosen (EPR) states [77, 78].

We conjecture that the conclusion (1.) must remain valid for any
other system under examination since the original model of simultaneous
measurement of Arthurs and Kelly shows the transfer of information
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about the canonical pair of an arbitrary system, which implicitly means
generation of quantum entanglement in this more general assumption.
Besides, the strength of this conjecture is supported by the fact that our
analysis shows that the entangled nature of the system is independent
of the initial preparation of the Gaussian system under observation.
Moreover, the general dynamics displayed by the Eqs. (2.3.1) shows a
tripartite relation between three distinct variables, each belonging to a
different mode of the measurement configuration, which implies quantum
correlations between these observables; therefore, this also supports the
validity of our conjecture.

On the other hand, we study the entanglement structure developed by
the measurement process. Then, we use the residual tripartite Rényi-2
entanglement as a quantifier measure; see Section 1.4.4.3. In particular,
we examine all global and reduced mode-bipartitions as well as the
entanglement between the three modes of the system.

For the one-to-one entanglements, that is, for the reduced bipartitions
including only two modes, we conclude the following

(2a.) The reduced bipartition containing the modes of each detector
has zero entanglement.

(2b.) The reduced bipartition containing the modes of any detector
and the one of the system under measurement presents the
same amount of entanglement.

The conclusion (2a.) shows that the mode associated with the Gaussian
system under measurement is the principal support of the tripartite
relation. Then, by tracing this system, we cannot see direct entanglement
relation between the canonical observables of the detectors. These
variables are related to just one distinct canonical variable of the system
under examination; see Fig. 3. On the other hand, the conclusion
(2b.) implies that each detector is equally entangled with the Gaussian
system under measurement, which is a crucial and necessary fact for
the transfer of information about the canonical pair to the state of
the detectors. Notably, the entanglement contained in this reduced
bipartition depends on the squeezing parameter r and the rotation angle
θ of the Gaussian system under examination; besides, that entanglement
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is bounded according to (1/2) ln(2) and ln(5/3), where the maximum
happens when the system is in a minimum uncertainty state.

For the reduced bipartitions of (1 vs 2) modes, we conclude that

(3.) The global bipartitions focused on any detector contain the
same amount of entanglement for the same squeezing param-
eter r and rotation angle θ of the Gaussian system under
examination. Besides, the entanglement of the global biparti-
tion focused on the Gaussian system under inspection is ever
greater than those bipartitions focused on the detectors for the
same squeezing parameter r and rotation angle θ.

The conclusion (3.) is a direct consequence of the interaction Hamilto-
nian governing the measurement process; that is, it creates a symmetric
entanglement structure around the Gaussian system under examination.
Besides, the dynamic of the measurement process principally affects
the purity of the system under examination, as can be verified from
Eqs. (3.5.16) and (1.4.10); then, since the quantifier of residual Rényi-2
entanglement for the global bipartitions directly depends on the inverse
of the single-mode purities, hence, it is natural to expect a higher amount
of entanglement in the global bipartition focused on the system under
examination. Therefore, in essence, the nature of the conclusion (3.) is
a consequence of the symmetry in the unitary dynamics of the measure-
ment process and how it affects the single-mode systems. Notably, the
entanglement in the global bipartitions focused on any detector and the
Gaussian system under observation are bounded below by (1/2) ln(4)
and (1/2) ln(9) respectively; besides, these entanglements have an oscil-
latory behavior with a period of π/2, and they increase indefinitely as
the magnitude of the squeezing parameter r increases.
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For the full tripartite entanglements, we conclude that

(4.) The tripartite entanglements focused on any detector contain
the same amount of entanglement for the same squeezing
parameter r and rotation angle θ of the Gaussian system under
examination. Besides, the tripartite entanglement focused on
the Gaussian system under inspection is ever smaller than the
tripartite entanglement focused on the detectors for the same
squeezing parameter r and rotation angle θ of the Gaussian
system under examination.

The conclusion (4.) is again a consequence of the symmetry and
nature of the unitary dynamics of the simultaneous measurement process.
Besides, the behavior of the full tripartite entanglements is consistent
with the description of an observer localized on the mode chosen as focus,
where the entanglement from the perspective of this observer will be like
‘at sight’ of the reciprocals purities associated with the other two parties;
in this manner, the tripartite entanglement focused on the Gaussian
system under measurement will be higher for the same squeezing and
rotation angle parameters. Notably, the tripartite entanglements have
an equivalent behavior to the ones presented in the global bipartitions
of (1 vs 2)-modes; that is, they are oscillatory functions of r and θ with
a period of π/2, and they increase indefinitely as the magnitude of the
squeezing parameter r also increases; besides, they are bounded below
according to ln(6/5) and ln(27/25) for the focus of any detector and
the Gaussian system under measurement respectively.

4.4 conclusions about the entanglement generated
in the simultaneous measurement process in the
completely dynamical model

As we explain in the last section, all measurement process includes an
entangling interaction, where all observable properties are in correlation,
and the measurement read-out time, where the desired property under
examination takes form in the detector. Then, we study the first stage
in this process. In this case, we board the completely dynamical process;
therefore, we include the free evolution of each subsystem of the measure-
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ment configuration. Under this fact, we have the free energy operator
(p̂3)2/2m which gets involved with the non-commutativity of the x̂3
variable; then, from this fact, is deduced that the spreading phenomena
of the wave function will be involved in the entanglement properties of
the system.

To consider the involvement of the free evolution in the entanglement
generated in the simultaneous measurement process, we assume a par-
ticular state as the system under exploration; this is because we do
have not an explicit mathematical expression that gives us the temporal
evolution of an arbitrary wave function in the time evolution operator
method [152]; see Eq. (3.2.6) and the text bellow. Therefore, we choose
a Gaussian state as the system under measurement; in particular, we
select a squeezed vacuum state like the state of the detectors in order to
represent the system under examination. Therefore, with this assump-
tion, we have an entire Gaussian measurement configuration, and all
frameworks [3, 9, 35] to test and quantify entanglement in these systems
are valid.

First, we compute the temporal evolution employing the time evolution
operator method [94]; hence, we use the wave function governing the
dynamics to obtain the covariance matrices describing the three (1 vs 2)-
mode bipartition of the system. Then, by testing the separability of
each partially transposed covariance matrix, we arrive at the following
conclusion,

(1.) The entanglement that arises in the completely dynamical
simultaneous measurement process of Arthurs-Kelly for the
position and momentum observables constitutes a particular
example of tripartite Gaussian entanglement when the system
under measurement is represented by a Gaussian state.

The last conclusion is based on the fact that the three partially co-
variance matrices of the (1 vs 2)-mode bipartitions do not obey the
Heisenberg uncertainty relation for multiple continuous-variable modes.
Then, we can classify the generated entanglement of the category of
genuinely three-mode entangled states [9] as we establish for the model of
strong coupling. Notably, the non-separability of these matrices holds for
the limit situation of strong coupling, which means that our completely
dynamical model of measurement proves the entanglement generation
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for any proportionally-dependent coupling between the detectors and
the Gaussian system under examination. Again, we conjecture that the
strength of the conclusion (1.) must maintain for any quantum state un-
der examination since the unitary dynamics governing the measurement
process includes the interaction Hamiltonian, which, inherently entangle
the three subsystems defining the measurement setting. This aspect
is indirectly shown by Arthurs and Kelly [98] who show the transfer
of information of the statistics of the canonical pair on interest to the
system of the detectors. Besides, the completely dynamical model in-
cludes the free energy operator (p̂3)

2 /2m, which does not commute with
the position observable x̂3, which is an independent fact of the system
under examination. Moreover, the conclusion (1.) is independent of the
initial preparation of the Gaussian system under observation, which is
an indirect indication for their validity and extension on any quantum
system under measurement.

On the other hand, we determine the quantitative entanglement prop-
erties developed in the system through the measurement process as a
proportionally-dependent function of the coupling between the detectors
and the system under observation. In particular, we use the minimum
residual Gaussian contangle as a quantifier; see Section 1.4.4.2. First of
all, we find the loss of purity of the single-mode systems associated with
the first detector and the Gaussian system under observation as the cou-
pling between the detectors and the system under measurement is small.
This fact comes directly from the non-commutativity of the (p̂3)

2 and x̂3
variables. Then, analyzing the tripartite entanglement of the system as a
proportionally-dependent function of the coupling between the detectors
and the Gaussian system, we arrive at the following conclusions

(2a.) The tripartite Gaussian entanglement developed by the simul-
taneous measurement process is increasing as the coupling
between detectors and the Gaussian system under observation
diminishes.
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Conversely

(2b.) The tripartite Gaussian entanglement developed by the si-
multaneous measurement process diminishes as the coupling
between detectors and the Gaussian system under observation
increases.

Notably, the tripartite entanglement of the system (quantified by
the minimum residual Gaussian contangle) is bounded between the
margins stipulated by the conclusions (2a.) and (2b.) according to
arcsinh2[

√
3]− 5ln2(3)/4 ≤ Gres

τ (ℓ) ≤ arcsinh2[
√

3]. Hence, the tripar-
tite entanglement of the system is a proportionally-dependent function
of the coupling between the detectors and system under examination,
where the proportionality factor depends on the mass of the system under
measurement m3 and its initial variance δ2

q̂3 (consequently also depends
on its squeezing). Therefore, in this case, the initial preparation of the
Gaussian system under examination plays a role in the entanglement
properties developed in the system.

Besides, the conclusions (2a.) and (2b.) imply that the free evolution of
the system under measurement plays a role in the tripartite entanglement
properties of the system; This is because the minimum residual Gaussian
contangle proportionally depends on (of m3 and δ2

q̂3) the coupling between
the detectors and the Gaussian system under measurement. Hence,
since the time of the simultaneous read-out of the detectors is the
reciprocal of the coupling constant, we deduce that a long time-lapse
(weak coupling) of the measurement process carries a further development
of the entanglement in the system. Conversely, a short time-lapse (strong
coupling) of measurement takes less amount of entanglement in the
system. Notably, the behavior of this process is correctly captured by the
minimum residual Gaussian contangle since it is an adequate entropic
tripartite entanglement quantifier for three-mode Gaussian states [35];
therefore, we conclude that

(2c.) The behavior of the tripartite Gaussian entanglement devel-
oped by the simultaneous measurement process describes a phe-
nomenon of loss of the initial information about the Gaussian
measurement configuration due to the spreading phenomena.
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The conclusion (2c.) is well supported, for example, by the fact
that in hybrid continuous-discrete variable schemes [161, 162, 163] the
entanglement becomes increasing as the spreading of the Gaussian wave
function increases; hence reflecting the loss of purity of the system
through the unitary dynamics; therefore, describing the loss of the initial
information associated with the quantum state of the particle.

Once again, we conjecture that the validity of the conclusions (2a.),
(2b.) and (2c.) must be maintained for any system under measurement
because the free energy operator (p̂3)

2 /2m will cause the spreading of
any state, since that phenomena is in inherent characteristic of the free
evolution of wave packets.

♣
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5

A P P E N D I C E S

5.1 derivation of the arthurs-kelly dynamics through
the time evolution operator method

In this Appendix we derive the wave function governing the dynamics of
the Arthurs-Kelly simultaneous measurement process.

To apply correctly the operator e−iĤt to the initial wave function, Eq.
(2.2.2), it is necessary to factorize it; then, we resort to the disentangling
theorem (see pag. 49 [4]):

eÂ+B̂ = e−1
2 [Â,B̂]eÂeB̂

= e
1
2 [Â,B̂]eB̂eÂ. (5.1.1)

From Eq. (2.1.45) we identify Â= −itκ1x̂3p̂1 and B̂ = −itκ2p̂3p̂2, and
[
Â,B̂

]
= −α1α2p̂1p̂2 [x̂3, p̂3]

= −iα1α2p̂1p̂2, (5.1.2)

where we take αi = κit, i = 1,2, omitting the time dependence for
brevity. Then, according to Eq. (5.1.1) we can factorize the Arthurs-
Kelly interaction Hamiltonian as

e−itĤ = e
i
2α1α2p̂1p̂2e−iα1x̂3p̂1e−iα2p̂3p̂2, (5.1.3)

e−itĤ = e− i
2α1α2p̂1p̂2e−iα2p̂3p̂2e−iα1x̂3p̂1. (5.1.4)

Taking the momentum representation for the wave function of the ob-
served system ϕ3(x3) −→ ϕ3(p3), and expressing the wave function of the

143
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first prove through a Fourier transform: ϕ1(x1) = (2π)−1/2 ∫ e−ix1p1ϕ1(p1) dp1,
the initial wave function, Eq. (2.2.2), is

ψ(x1,x2,x3, t= 0) = (2π)−1/2
∫
ϕ1(p1)ϕ2(x2)ϕ3(p3)e

−ix1p1 dp1, (5.1.5)

using the factorization given by Eq. (5.1.4), we apply the first exponential
operator to the initial wave function:

e−iα1x̂3p̂1ψ(x1,x2,x2, t= 0)

=
∑
n

(−iα1x̂3p̂1)
n

n!
ψ(x1,x2,x2, t= 0)

= (2π)−1/2
∫ ∑

n

(−iα1)
n

n!
p̂n1ϕ1(p1)ϕ2(x2)x̂

n
3ϕ3(p3)e

−ix1p1 dp1

= (2π)−1/2
∫
ϕ1(p1)ϕ2(x2)

∞∑
n

(−iα1p1)
n

n!
x̂n3ϕ3(p3)e

−ix1p1 dp1

= (2π)−1/2
∫
ϕ1(p1)ϕ2(x2)

∞∑
n

(α1p1)
n

n!

∂ϕ3(p3)

∂p3

n e−ix1p1 dp1

= (2π)−1/2
∫
ϕ1(p1)ϕ2(x2)ϕ3(p3 +α1p1)e

−ix1p1 dp1, (5.1.6)

where we have used the McLaurin series of the exponential

eÂΨ =
∞∑
n=0

1
n!
ÂnΨ , (5.1.7)

and the condition [152]

exp (β∂z)f(z) =
∞∑
n=0

βn

n!

(
∂

∂z

)n
f(z) = f(z+ β). (5.1.8)

Applying the second exponential operator of Eq. (2.2.6) to the result of
Eq. (5.1.6), we have

e−iα2p̂3p̂2e−iα1x̂3p̂1ψ(x1,x2,x2, t= 0)

= (2π)−1/2
∫ ∞∑
n=0

(−iα2p̂3p̂2)
n

n!
ϕ1(p1)ϕ2(x2)ϕ3(p3 +α1p1)e

−ix1p1 dp1

= (2π)−1/2
∫ ∞∑
n=0

(−iα2)
n

n!
ϕ1(p1)p̂

n
2ϕ2(x2)p̂

n
3ϕ3(p3 +α1p1)e

−ix1p1 dp1

= (2π)−1/2
∫
ϕ1(p1)ϕ3(p3 +α1p1)

∞∑
n=0

(−α2p3)
n

n!

∂ϕ2(x2)

∂x2

n e−ix1p1dp1

= (2π)−1/2
∫
ϕ1(p1)ϕ2(x2 −α2p3)ϕ3(p3 +α1p1)e

−ix1p1dp1. (5.1.9)
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Finally, applying the last operator of Eq. (2.2.6) to the resulting wave
function, Eq. (5.1.9), we have

e− i
2α1α2p̂1p̂2e−iα2p̂3p̂2e−iα1x̂3p̂1ψ(x1,x2,x2, t= 0)

= (2π)−1
2
∫ ∞∑
n=0

(
− i

2α1α2p̂1p̂2
)n

n!
ϕ1(p1)ϕ2(x2 −α2p3)ϕ3(p3 +α1p1)e

−ix1p1dp1

= (2π)−1
2
∫ ∞∑
n=0

(
− i

2α1α2
)n

n!
p̂n1ϕ1(p1)p̂

n
2ϕ2(x2 −α2p3)ϕ3(p3 +α1p1)e

−ix1p1dp1

= (2π)−1
2
∫ ∞∑
n=0

(
−1

2α1α2p1
)n

n!
ϕ1(p1)

(
∂ϕ2

∂x2

)n
ϕ3(p3 +α1p1)e

−ix1p1dp1

= (2π)−1
2
∫
ϕ1(p1)ϕ2 (x2 −α2p3 −α1α2p1/2)ϕ3(p3 +α1p1)e

−ix1p1dp1.
(5.1.10)

Therefore, the wave function describing the dynamics of the Arthurs-Kelly
simultaneous measurement is

Ψ (x1,x2,x3, t) = (2π)−1
2
∫
ϕ1(p1)ϕ2

(
x2 −α2p3 − α1α2p1

2

)
×ϕ3(p3 +α1p1)e

−ix1p1 dp1, (5.1.11)

which is entangled between the three positions xi of the proves and the
investigated system.

5.2 mathematical formulation of the joint unbiased-
ness condition

In this appendix we analyze the mathematical definitions for the joint
unbiasedness condition which constitute the mathematical basis for the
so called Heisenberg uncertainty relation for joint measurements [104].
This analysis goes under the theory presented by Roy [174].

Lets Assume a measuring device like one presented by Arthurs and
Kelly; then, there is a system with two independent degrees of freedom
where each is linked with an self-adjoint observable of an arbitrary
system, such observables being canonically conjugate. Each system have
associated an own Hilbert space Hi, such that the whole configurations
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live on the global Hilbert space H = ⊗3
i=1Hi. With out any specific

interaction, the time evolution of the global system is

|Ψ (t)⟩ = Û(t) |ψ(0)⟩ , (5.2.1)

with the initial state

|ψ(0)⟩ = |ϕ1(0)⟩ |ϕ2(0)⟩ , (5.2.2)

being a pure and factorizable product of the detectors states; the labels
i = 1,2 identifying the first and second detector respectively. In the
more general case including mixed states, the dynamics of the measuring
detectors and the system is given through the density operator

ρ̂(t) = Û †(t)ρ̂(0)Û(t), with ρ̂(0) = ρ̂1 ⊗ ρ̂2. (5.2.3)

In the Heisenberg representation, any observable X̂ evolves according to

X̂(t) = Û(t)X(0)Û †. (5.2.4)

by using Eqs. (5.2.3) and (5.2.4) and the cyclic property of the trace,
we have 〈

X̂(t)
〉
= Tr

[
ρ̂(T )X̂(0)

]
= Tr

[
ρ̂(0)X̂(t).

]
(5.2.5)

Then, the observables of the detectors after the interaction, X̂(t) ‘tracks’
the initial system observables Y (0), if

⟨X(t)⟩ = ⟨Y (0)⟩ , (5.2.6)

hence by using Eq. (5.2.5), we have

Tr
[
ρ̂(0)

(
X̂(T )− Ŷ (0)

)]
= 0. (5.2.7)

The above result constitutes the so called joint unbiasedness condition,
which implies that the experimental outputs of the detectors match on
average the theoretical values of the inspected system.

5.3 prove for expression given by eq. (1.4.5)

In this appendix we give an explicit prove for Eq. (1.4.6). To complete
this mission, expand the symplectic invariant, Eq. (1.4.3), for N = 3,
that is

∆1,2,3 = Det σ1 +Det σ2 +Det σ3 + 2 (Det ε12 +Det ε13 +Det ε23) ;
(5.3.1)
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then expand the symplectic invariant, Eq. (1.4.3), for each of the reduced
two-mode states of the tripartite system, that is

∆1,2 = Det σ1 +Det σ2 + 2Det ε12, (5.3.2)

∆1,3 = Det σ1 +Det σ3 + 2Det ε13, (5.3.3)

∆2,3 = Det σ2 +Det σ3 + 2Det ε23, (5.3.4)

hence, using Eqs. (5.3.2) to (5.3.4) and (1.4.5), it easy to show that

∆1,2 − Det σ12 = ∆1,2 − Det σ3, (5.3.5)

∆1,3 − Det σ13 = ∆1,3 − Det σ2, (5.3.6)

∆2,3 − Det σ23 = ∆2,3 − Det σ1. (5.3.7)

Therefore, taking the sum of the right hand side of Eqs. (5.3.5) to (5.3.7),
and the definitions Eqs. (5.3.2) to (5.3.4)

(∆12 − Det σ12) + (∆13 − Det σ13) + (∆23 − Det σ23) = ∆1,2,3

= 3. ■
(5.3.8)

5.4 factorization of the time evolution operator

In this appendix, we show the process for factorizing the time evolution
operator, Eq. (3.2.3); then we follow the methodology exposed in [94].

We have the following time evolution operator

e−iĤt = e
− it

2m1
p̂2

1e
− it

2m2
p̂2

2e
−it
(

p̂2
3

2m3
+κx̂3p̂1+κp̂3p̂2

)
; (5.4.1)

then, it is necessary to factor the last exponential in the above equation
because x̂3 do not commute with p̂3 and p̂2

3. Take the operators

Â= −it
 p̂2

3
2m3

+ κp̂3p̂2

 , (5.4.2)

B̂ = −itκx̂3p̂1; (5.4.3)
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then, the following commutators are obtained through a test function
f(x3) [

Â,B̂
]
= it2

(
κ

m3
p̂1p̂3 + κ2p̂1p̂2

)
, (5.4.4)

[
Â,

[
Â,B̂

]]
= 0, (5.4.5)

[
B̂,

[
Â,B̂

]]
=
it3κ2

m3
p̂2

1. (5.4.6)

We now define an auxiliary function F (ζ) in terms of the exponential to
factor

F (ζ) = eζ(Â+B̂), (5.4.7)

and its derivative
F ′(ζ) = (Â+ B̂)F (ζ), (5.4.8)

where ζ is an auxiliary parameter which we take as 1 after finish all
calculations; we then set a generic factorization that allows factorizing
the last exponential of Eq. (5.4.1) in the most convenient manner; that
is

F (ζ) = ef0(ζ)ef1(ζ)N̂1ef2(ζ)N̂2ef3(ζ)N̂3; (5.4.9)

besides, its derivative is

F ′(ζ) = f ′
0(ζ)F (ζ) + f ′

1(ζ)N̂1F (ζ) + f ′
2(ζ)e

f0(ζ)ef1(ζ)N̂1N̂2e
f2(ζ)N̂2ef3(ζ)N̂3

+f ′
3(ζ)e

f0(ζ)ef1(ζ)N̂1ef2(ζ)N̂2N̂3e
f3(ζ)N̂3. (5.4.10)

In this work we consider N̂1 = Â, N̂2 = B̂, N̂3 = Â; therefore, Eq.
(5.4.10) is

F ′(ζ) = f ′
0(ζ)F (ζ) + f ′

1(ζ)ÂF (ζ) + f ′
2(ζ)e

f0(ζ)ef1(ζ)Âef2(ζ)B̂ef3(ζ)Â

+f ′
3(ζ)e

f0(ζ)ef1(ζ)Âef2(ζ)B̂Âef3(ζ)Â; (5.4.11)

then, according to Eq. (5.4.8), it is necessary to factorize the function
F (ζ) to the right in the right-hand side of the above equation, but the
third and fourth terms prevent it. The third term of Eq. (5.4.11) is
solved as

f ′
2(ζ)e

f0(ζ)ef1(ζ)ÂB̂ef2(ζ)B̂ef3(ζ)Â = f ′
2(ζ)

(
B̂+ f1(ζ)

[
Â,B̂

])
F (ζ),

(5.4.12)
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where we have used the fact that for self-adjoint operators X̂ and Ŷ it is
satisfied that efi(ζ)X̂ Ŷ =

(
efi(ζ)X̂ Ŷ e−fi(ζ)X̂

)
efi(ζ)X̂ , together the commu-

tators, Eqs. (5.4.4) and (5.4.5), and the condition [175]:
(
efi(ζ)X̂ Ŷ e−fi(ζ)X̂

)
= Ŷ + fi

[
X̂, Ŷ

]
+
f 2
i

2!

[
X̂,

[
X̂, Ŷ

]]
+ · · · , (5.4.13)

following the same procedure and using the commutators Eqs. (5.4.4)
and (5.4.6), the fourth therm of Eq. (5.4.11) is given by

f ′
3(ζ)e

f0(ζ)ef1(ζ)Âef2(ζ)B̂Âef3(ζ)Â

= f ′
3(ζ)

Â− f2(ζ)
[
Â,B̂

]
− (f2(ζ))

2

2
[
B̂,

[
Â,B̂

]]F (ζ); (5.4.14)

therefore the derivative, Eq. (5.4.11), is expressed as

F ′(ζ) =
{
f ′

0(ζ) + f ′
1(ζ)Â+ f ′

2(ζ)
(
B̂+ f1(ζ)[Â,B̂]

)
+f ′

3(ζ)
(
Â− f2(ζ)[Â,B̂]−

(
f 2

2 (ζ)/2
)
[B̂, [Â,B̂]]

)}
F (ζ), (5.4.15)

equalling it with Eq. (5.4.8), we obtain the following set of differential
equations

f ′
1(ζ) + f ′

3(ζ) = 1, (5.4.16)
f ′

2(ζ) = 1, (5.4.17)

f ′
0(ζ)− f ′

3(ζ)f
2
2 (ζ)

2 [B̂, [Â,B̂]] = 0, (5.4.18)

f ′
2(ζ)f1(ζ)− f ′

3(ζ)f2(ζ) = 0, (5.4.19)
which are subject to the conditions

f0(0) = f1(0) = f2(0) = f3(0) = 0, (5.4.20)

the solutions are given by

f0(ζ) =
[B̂, [Â,B̂]]

12 ζ3, (5.4.21)

f1(ζ) =
ζ

2, (5.4.22)

f2(ζ) = ζ, (5.4.23)
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f3(ζ) =
ζ

2. (5.4.24)

Substituting Eqs. (5.4.21) to (5.4.24) in Eq. (5.4.9) with N̂1 = Â,
N̂2 = B̂, N̂3 = Â and doing ζ = 1, the time evolution operator, Eq.
(5.4.1), is expressed as

e−iĤt = e∆x1p̂2
1e

− it
2m2

p̂2
2e

− it
4m3

p̂2
3e− itκ

2 p̂3p̂2e−itκx̂3p̂1e
− it

4m3
p̂2

3e− itκ
2 p̂3p̂2, (5.4.25)

where we have grouped the operators with power p̂2
1 into one, and we

have taken
∆x1 = −(it/2m1) + (it3κ2/12m3). (5.4.26)

5.5 time-dependent coefficients of the wave func-
tion describing the full dynamics of the simul-
taneous measurement process

In this appendix, we define the form of the time-dependent functions N (t)
and εj(t) appearing in the wave function, Eq. (3.2.9), which dictates
the temporal evolution through the completely dynamic measurement
process of the measurement configuration.

The εj(t) functions are defined as

εj(t) =
Γj(t)

Θ(t)
, j = 1,2,3,4,5,6, (5.5.1)

with

Γ1(t) = 3m1m3
(
t
(
−2bt+m2

(
i+ 4bκ2m3t

))
+ 4m3 (m2 + 2ibt)δ2

q

)
,

(5.5.2)

Γ2(t) = bm2
(
3bm1m3 + i

(
−6m3t+ κ2m1t

3))(it+ 4m3δ
2
q

)
, (5.5.3)

Γ3(t) = m3
(
6ib2m1m3t+ 2m2t

(
2iκ2m1t

2 +m3
(
−3i+ 6κ2m1tδ

2
q

))
+b

(
12m3t

2 +m1
(
3m2 (m3 + κ4m3t

4)− 8κ2t3
(
t− 3im3δ

2
q

))))
,

(5.5.4)
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Γ4(t) = 6bκ2m1m2m3t
2 (−t+ 4im3δ

2
q

)
, (5.5.5)

Γ5(t) = −6κm1m3t
(
t
(
im2 + 2b

(
−1+ κ2m2m3

)
t
)
+ 4m3 (m2 + 2ibt)δ2

q

)
,

(5.5.6)

Γ6(t) = 2bκm2m3t
(
−6ibm1m3 + t

(
5k2m1t

2 +m3
(
−12 − 12iκ2m1tδ

2
q

)))
,

(5.5.7)
and

Θ(t) =ibt
(
3m1m2m3 + 12m3

(
1 − 2κ2m2m3

)
t2 + κ2m1

(
−2+ 7κ2m2m3

)
t4
)

+ 4bm3
(
3m1m2m3 + 12m3t

2 + κ2m1
(
−2+ 3κ2m2m3

)
t4
)
δ2
q

+m2t
(
6m3 −κ2m1t

2)(t− 4im3δ
2
q

)
+ 6b2m1m3t

((
−1+ 2κ2m2m3

)
t+ 4im3δ

2
q

)
. (5.5.8)

While the N (t)-function is given by

N (t) = 2
2b2δ2

q

π3


1
4
3m1m2m

2
3

Θ(t)

1
2

, (5.5.9)

which plays the role of a normalization constant.

5.6 application of the fully dynamical time evolu-
tion operator to the initial wave function

Because the initial wave function of the system is in the canonical position
representation, it is convenient to express the time evolution operator,
Eq. (3.2.4), also in the same basis, this is done by simply taking the
substitution p̂i′ → −i∂xi′ for i′ = 1,2,3. Thus, the factorization given by
Eq. (3.2.4) can be expressed as

e−iĤt = e−∆x1∂2
x1eδ2(t)∂2

x2e
δ3(t)

2 ∂2
x3eδκ(t)∂x3∂x2eδ

′
k(t)x̂3∂x1e

δ3(t)
2 ∂2

x3eδκ(t)∂x3∂x2 ,
(5.6.1)

where we have done

δi′(t) =
it

2mi′
, i′ = 1,2,3. (5.6.2)
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And
δκ(t) = itκ/2, (5.6.3)
δ′
κ(t) = −tκ. (5.6.4)

We will refer to the exponentials of Eq. (5.6.1) from right to left, labeling
them from the first to seventh respectively; to apply them, we use the
one and two dimensional Fourier transform (FT)

F [f(q)] (p) = g(p) =
1√
2π

∫ +∞

−∞
f(q)e−iqpdq, (5.6.5)

F2D [m(x,y)] (u,v) = n(u,v) = 1
2π

∫ +∞

−∞

∫ +∞

−∞
m(x,y)e−i(xu+yv)dxdy,

(5.6.6)
and the one and two dimensional inverse Fourier transform (IFT)

F−1 [g(p)] (q) = f(q) =
1√
2π

∫ +∞

−∞
g(p)eiqpdp, (5.6.7)

F−1
2D [n(u,v)] (x,y) =m(x,y) = 1

2π
∫ +∞

−∞

∫ +∞

−∞
n(u,v)ei(xu+yv)dudv;

(5.6.8)
besides, we use the expansion in McLaurin series of an exponential
operator when we apply it to a wave function, that is,

eÂΨ =
∞∑
n=0

1
n!
ÂnΨ . (5.6.9)

Applying the first operator of Eq. (5.6.1) to the initial function, we
have

ψ1 = eδκ(t)∂x3∂x2ϕ1(x1)ϕ2(x2)ϕ3(x3) = ϕ1(x1)
∞∑
n=0

(δκ(t))n

n!
dnϕ3(x3)

dxn3

dnϕ2(x2)

dxn2
,

(5.6.10)
Applying two dimensional FT in x2 and x3 variables to Eq. (5.6.10), we
have

F2D [ψ1] (x1,p2,p3, t)

= ϕ1(x1)
∞∑
n=0

(δκ(t))n

n!
F
dnϕ2(x2)

dxn2

 (p2)F
dnϕ3(x3)

dxn3

 (p3)

= ϕ1(x1)
∞∑
n=0

(δκ(t))n

n!
(ip2)

n(ip3)
nF [ϕ2(x2)] (p2) F [ϕ3(x3)] (p3)

= ϕ1(x1)e
−δκ(t)p2p3F [ϕ2(x2)] (p2) F [ϕ3(x3)] (p3), (5.6.11)
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where in the second line we have used the case of separable functions (see
for example [176] pp. 9-10), and in the third line the derivative theorem
of the one FT

F
dnf(q)
dqn

 (p) = (ip)nF [f(q)] (p). (5.6.12)

Using the definition, Eq. (2.1.61), for ϕ3(x3) and ϕ2(x2) and taking the
two-dimensional IFT, the application of the first operator is finished, the
result is

ψ1 =

 δq
(2π)1/2σ1(t)

1
2

ϕ1(x1)ϕ2(x2) e
− (x3−2bδκ(t)x2)2

4σ1(t) , (5.6.13)

with

σ1(t) =
(
δ2
q − b (δκ(t))

2
)

. (5.6.14)

As can be seen, the wave function has become entangled between the
position variables x2 and x3; therefore, the initial product structure has
been lost due to the unitary dynamics.

Following a similar methodology, we apply the second operator of Eq.
(5.6.1) Eq. (5.6.13)

ψ2 = e
δ3(t)

2 ∂2
x3ψ1 = ψ′

1
∞∑
n=0

(
δ3(t)

2

)n
n!

∂2n
x3

(σ1(t))
−1/2

e
− (x3−2bδκ(t)x2)2

4σ1(t)

 ,

(5.6.15)
where we have left inside the brackets the term (σ1(t))

−1/2, in order to
simplify the application of the exponential operator (see for example the
methodology exposed in [152]) and we take

ψ′
1 =

 δq
(2π)1/2

1
2

ϕ1(x1)ϕ2(x2). (5.6.16)
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Applying FT in x3 variable to Eq. (5.6.15), we have

F [ψ2](x1,x2,p3, t)

= ψ′
1

∞∑
n=0

(
δ3(t)

2

)n
n!

F
∂2n

x3

(σ1(t))
−1/2

e
− (x3−2bδκ(t)x2)2

4σ1(t)


 (x1,x2,p3, t)

= ψ′
1

∞∑
n=0

(
δ3(t)

2

)n
n!

(ip3)
2nF

(σ1(t))
−1/2

e
− (x3−2bδκ(t)x2)2

4σ1(t)


 (x1,x2,p3, t)

= ψ′
1e

−
(

δ3(t)
2

)
p2

3F
(σ1(t))

−1/2
e

− (x3−2bδκ(t)x2)2
4σ1(t)


 (x1,x2,p3, t),

(5.6.17)

Taking the IFT in px3 variable to Eq. (5.6.17), the application of the
second operator is finished, the result is

ψ2 =

 δq
(2π)1/2σ2(t)

1
2

ϕ1(x1)ϕ2(x2) e
−(x3−2bδκ(t)x2)2

4σ2(t) , (5.6.18)

with

σ2(t) =

δ2
q − b (δκ(t))

2 +
δ3(t)

2

 ; (5.6.19)

then, the effect of the second operator is to increase the amplitude of
the entangled wave function and to contribute to the dispersion of the
Gaussian wave packet associated with the entangled variables x2 and
x3. In general, the operators of the type eC∂

2
xi have this dispersive effect

when they act on Gaussian wave packets; see [152].

We now apply the third operator

ψ3 = eδ
′
k(t)x̂3∂x1ψ2 =

∞∑
n=0

(δ′
k(t))

n

n!
x̂n3∂

n
x1ψ2 = ψ′

2
∞∑
n=0

(δ′
k(t))

n

n!
xn3

{
∂nx1ϕ1(x1)

}
,

(5.6.20)
where we have done

ψ′
2 =

 δq
(2π)1/2σ2(t)

1
2

ϕ2(x2) e
−(x3−2bδκ(t)x2)2

4σ2(t) . (5.6.21)



5.6 application of the fully dynamical time evolution · · · 155

Taking the FT of Eq. (5.6.20) in x1 variable

F [ψ3](p1,x2,x3, t)

= ψ′
2

∞∑
n=0

(δ′
k(t) x3)

n

n!
F
[
∂nx1ϕ1(x1)

]
(p1,x2,x3, t)

= ψ′
2

∞∑
n=0

(iδ′
k(t) x3p1)

n

n!
F [ϕ1(x1)] (p1,x2,x3, t)

= ψ′
2e
iδ′

k(t)x3p1F [ϕ1(x1)] (p1,x2,x3, t), (5.6.22)

Taking the IFT on Eq. (5.6.22) in p1 variable, the application of the
third operator is finished; thus we have

ψ3 =

 δq
(2π)1/2σ2(t)

1
2

ϕ1 (x1 + δ′
k(t) x3)ϕ2(x2) e

−(x3−2bδκ(t)x2)2
4σ2(t) . (5.6.23)

The effect of the third operator is proportionally to displace the x1
variable by the x3 variable or equivalently to entangled them; thus, this
operator acts as a displacement operator.

It must be noted that all operators in Eq. (5.6.1) that are still to
apply commute, hence the order of application of they does not matter
from this point. Following this idea, we apply the seventh operator of
Eq. (5.6.1) to Eq. (5.6.23)

ψ7 = e−∆x1(t) ∂2
x1ψ3 = ψ′

3
∞∑
n=0

(−∆x1(t))
n

n!
∂2n
x1ϕ1 (x1 + δ′

k(t) x3) , (5.6.24)

where we have taken

ψ′
3 =

 δq
(2π)1/2σ2(t)

1
2

ϕ2(x2) e
−(x3−2bδκ(t) x2)2

4σ2(t) . (5.6.25)

Taking the FT of Eq. (5.6.24) in x1 variable, we have

F [ψ7](p1,x2,x3, t)

= ψ′
3

∞∑
n=0

(−∆x1(t))
n

n!
F
[
∂2n
x1ϕ1(x1 + δ′

k(t) x3)
]
(p1,x2,x3, t)

= ψ′
3

∞∑
n=0

(−∆x1(t))
n (ip1)2n

n!
F [ϕ1(x1 + δ′

k(t) x3)] (p1,x2,x3, t)

= ψ′
3e

∆x1(t) p2
1F [ϕ1(x1 + δ′

k(t) x3)] (p1,x2,x3, t) (5.6.26)
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Taking the definition for ϕ1 (x1 + δ′
k(t) x3) and the IFT in p1 variable;

we finish the application of the seventh operator, the result is

ψ7 =

2b2δ2
q

π3


1
4

(σ2(t)σ3(t))
−1

2 e−bx2
2e

−
(x1+δ′

k
(t) x3)

2

σ3(t) e
−(x3−2bδκ(t) x2)2

4σ2(t) ,

(5.6.27)

with
σ3(t) = b+ 4∆x1(t). (5.6.28)

The seventh operator contributes to the amplitude and the dispersion of
the wave function associated with x1 and x3 variables. Before applying
the next operator, we complete the square binomial in the power of
exponentials for the x2 variable; thus, the wave function, Eq. (5.6.27),
can be rewritten as

ψ7 =

2b2σ2

π3

1
4

(σ2(t)σ3(t))
−1

2 e
− (β(t)x2−α(t) x3)2

4σ2(t) e
−
(x1+δ′

k
(t)x3)

2

σ3(t) e
−

x2
3(1−(α(t))2)

4σ2(t) ,

(5.6.29)
where we have done

β(t) =
[
(2bδκ(t))2 + 4σ2(t)b

]1
2 , (5.6.30)

α(t) =
2bδκ(t)
β(t)

. (5.6.31)

We now apply the sixth operator of Eq. (5.6.1) to Eq. (5.6.29)

ψ6 = eδ2(t)∂2
x2ψ7 = ψ′

7
∞∑
n=0

(δ2(t))
n

n!
∂2n
x2

(σ2(t))
−1

2 e
− (β(t)x2−α(t) x3)2

4σ2(t)

 ,

(5.6.32)
with

ψ′
7 =

2b2δ2
q

π3


1
4

(σ3(t))
−1

2 e
−
(x1+δ′

k
(t) x3)

2

σ3(t) e
−

x2
3(1−α2(t))

4σ2(t) , (5.6.33)
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taking the FT on Eq. (5.6.32) in x2 variable, we have

F [ψ6](x1,p2,x3, t)

= ψ′
7

∞∑
n=0

(δ2(t))
n

n!
F
∂2n

x2

(σ2(t))
−1

2 e
− (β(t)x2−α(t)x3)2

4σ2(t)


 (x1,p2,x3, t)

= ψ′
7

∞∑
n=0

(δ2(t))
n

n!
(ip2)

2nF
(σ2(t))

−1
2 e

− (β(t)x2−α(t)x3)2
4σ2(t)


 (x1,p2,x3, t)

= ψ′
7e

−δ2(t)p2
2F

(σ2(t))
−1

2 e
− (β(t)x2−α(t)x3)2

4σ2(t)


 (x1,p2,x3, t),

(5.6.34)

Taking the IFT on Eq. (5.6.34) in p2 variable, we finish the application
of the sixth operator; thus we have

ψ6 =

2b2δ2
q

π3


1
4

(σ3(t)σ4(t))
−1

2 e
− (β(t)x2−α(t)x3)2

4σ4(t) e
−
(x1+δ′

k
(t)x3)

2

σ3(t) e
−

x2
3(1−α2(t))

4σ2(t) ,

(5.6.35)
with

σ4(t) = σ2(t) + (β(t))
2
δ2(t). (5.6.36)

The sixth operator also contributes to the amplitude of the whole wave
function and the dispersion of the Gaussian wave packet associate to
the x2 and x3 variables. Before applying the next operator, we complete
the square binomial in x3 variable in the power of exponentials of Eq.
(5.6.35); thus, the wave function, Eq. (5.6.35), is rewrite as

ψ6 =

2b2δ2
q

π3


1
4

(σ3(t)σ4(t))
−1

2 e
−
(
λ(t)x3+

ξ1(x1,x2,t)
2λ(t)

)2

e

(
ξ1(x1,x2,t)

2λ(t)

)2

e−ξ2(x1,x2,t),

(5.6.37)
with

λ(t) =

1 −α2(t)

4σ2(t)
+

(δ′
k(t))

2

σ3(t)
+

(α(t))
2

4σ4(t)


1
2

, (5.6.38)

ξ1 (x1,x2, t) =
2δ′

k(t)

σ3(t)
x1 − α(t)β(t)

2σ4(t)
x2

 , (5.6.39)

ξ2 (x1,x2, t) =
 1
σ3(t)

x2
1 +

(β(t))
2

4σ4(t)
x2

2

 . (5.6.40)
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Hence we apply the fifth operator of Eq. (5.6.1) to Eq. (5.6.37)

ψ5 = ψ′
6

∞∑
n=0

(δ3(t)/2)n

n!
∂2n
x3 e

−
(
λ(t)x3+

ξ1(x1,x2,t)
2λ(t)

)2

, (5.6.41)

where we have taken

ψ′
6 =

2b2δ2
q

π3


1
4

(σ3(t)σ4(t))
−1

2 e

(
ξ1(x1,x2,t)

2λ(t)

)2

e−ξ2(x1,x2,t), (5.6.42)

taking the FT, Eq. (5.6.5), on Eq. (5.6.41) in x3 variable, we have

F [ψ5] (x1,x2,px3, t)

= ψ′
5

∞∑
n=0

(δ3(t)/2)n

n!
F
∂2n

x3 e
−
(
λ(t)x3+

ξ1(x1,x2,t)
2λ(t)

)2 (x1,x2,p3, t)

= ψ′
5

∞∑
n=0

(δ3(t)/2)n (ip3)
2n

n!
F
e−

(
λ(t)x3+

ξ1(x1,x2,t)
2λ(t)

)2 (x1,x2,px3, t)

= ψ′
5e

−
(

δ3(t)
2

)
p2

3F
e−

(
λ(t)x3+

ξ1(x1,x2,t)
2λ(t)

)2 (x1,x2,px3, t), (5.6.43)

Taking the IFT on Eq. (5.6.43) in p3 variable, we finish the application
of the fifth operator, the result is

ψ5 =

2b2δ2
q

π3


1
4

(σ3(t)σ4(t)σ5(t))
−1

2 e
−

(
λ(t)x3+

ξ1(x1,x2,t)
2λ(t)

)2

σ5(t) e

(
ξ1(x1,x2,t)

2λ(t)

)2

×e−ξ2(x1,x2,t),
(5.6.44)

with
σ5(t) = 1+ 2 (λ(t))2

δ3(t); (5.6.45)
then, the fifth operator contributes to the amplitude, and because of the
entanglement of all position variables, it also contributes to the temporal
dispersion of the whole Gaussian wave function.

Finally, to obtain the final wave function, we apply the fourth operator
of Eq. (5.6.1) to Eq. (5.6.44)

Ψ (x1,x2,x3, t) = eδκ(t)∂x3∂x2ψ5 =
∞∑
n=0

(δκ(t))n

n!
∂nx3∂

n
x2ψ5, (5.6.46)
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Applying the two dimensional FT to Eq. (5.6.46) in x2 and x3 variables,
we have

F2D

[
eδκ∂x3∂x2ψ5

]
(x1,p2,p3, t)

=
∞∑
n=0

(δκ(t))n

n!
F2D

[
∂nx3∂

n
x2ψ5

]
(x1,p2,p3, t)

=
∞∑
n=0

(δκ(t))n

n!
(ip2)

n(ip3)
nF2D [ψ5] (x1,p2,p3, t)

= e−δκ(t)p2p3F2D [ψ5] (x1,p2,p3, t), (5.6.47)

where in the second line we use the derivative theorem of the two
dimensional FT

F2D

[
∂nx∂

n
y f(x,y)

]
(u,v) = (iu)n(iv)nF2D [f(x,y)] (u,v). (5.6.48)

Taking the two dimensional IFT of Eq. (5.6.47) in p2 and p3 variables,
we finish the application of the fourth operator, we present the final
result as

Ψ (χ̂, t) = N (t)exp [−{ε1(t)x2
1 + ε2(t)x2

2 + ε3(t)x2
3 + ε4(t)x1x2

+ ε5(t)x1x3 + ε6(t)x2x3}] , (5.6.49)

The wave function, Eq. (5.6.49), is clearly a Gaussian wave function
with temporal dispersion, that is entangled between the three position
variables x1, x2 and x3.

5.7 definition of the block matrices for the covari-
ance matrices given in eqs. (3.5.4) to (3.5.6)

In this appendix, we define the (2 × 2)-dimensional block matrices com-
posing the covariance matrices given in Eqs. (3.5.4) to (3.5.6); they
are

σ1 =

 4δ2
q̂ +α11 α12
α12 1/δ2

q̂

 , (5.7.1)

σ2 =

 (
1/δ2

q̂

)
+α33 α34

α34 4δ2
q̂

 , (5.7.2)

σ3 =

 6δ2
q̂ +α55 α56
α56

3
2δ2

q

 , (5.7.3)
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λ1,2 =

 α13 2δ2
q̂

− 1
2δ2

q̂
0

 , (5.7.4)

λ1,3 =

 4δ2
q̂ +α15 α16

0 −1/δ2
q̂

 , (5.7.5)

λ2,3 =

 α35
1
δ2
q̂

4δ2
q̂ 0

 , (5.7.6)

where the functions αij (with αij = αji) appearing in Eqs. (5.7.1) to
(5.7.6) represent the contribution of the spreading in the global system
caused by the free energies appearing in the Hamiltonian, Eq. (3.2.1), of
the measurement process; these functions are given by

α11 =
11m2

1 − 24m1m3 + 72m2
3

72κ2m2
1m

2
3δ2
q

, α12 =
m1 − 6m3

6κm1m3δ2
q

, α13 =
3
m1

+ 1
m3

+
12δ4

q

m2

6κδ2
q

,

α15 =
1

8κ2m2
3δ2
q

, α16 =
m1 + 12m3

12κm1m3δ2
q

, α33 =
4δ2

q

κ2m2
2
, α34 = κα33,

α35 =
1
m3

+
16δ4

q

m2

4κδ2
q

, α55 = α15, α56 =
1

4κm3δ2
q

,

(5.7.7)

it is straightforward to verify that the functions given by Eqs. (5.7.7)
are vanishing in the strong coupling regime, that is, when

lim
k−→∞

αij = 0; (5.7.8)

therefore, recovering the situation of an instantaneous measurement
interaction raised by Arthurs and Kelly for our particular measurement
configuration.

5.8 block components of the covariances matrices
of eqs. (2.4.19) to (2.4.21)

In this appendix, we define the 2×2 dimensional block matrices composing
the CMs, Eqs. (2.4.19) to (2.4.21). All terms appearing depend on the
parameters r and θ; in the subsequent, we omit this dependence for
brevity. Then, we have (α1 = α2 = 1)

σ1 =

 δ2
q̂1 + (δp̂2/2)2 + δ2

q̂3 0
0 δ2

p̂1

 , (5.8.1)
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σ2 =

 (δp̂1/2)2 + δ2
q̂2 + δ2

p̂3 0
0 δ2

p̂2

 , (5.8.2)

σ3 =

 δ2
p̂2 + δ2

q̂3 Cov
Cov δ2

p̂1 + δ2
p̂3

 , (5.8.3)

ε1,2 =

 Cov δ2
p̂2
2

−
δ2
p̂1
2 0

 , (5.8.4)

ε1,3 =

 δ2
p̂2
2 + δ2

q̂3 Cov
0 −δ2

p̂1

 , (5.8.5)

ε2,3 =

 Cov δ2
p̂1
2 + δ2

p̂3
δ2
p̂2 0

 ; (5.8.6)

where the variances δ2
X̂

with X̂ ∈ {x̂1, x̂2, x̂3, p̂1, p̂2, p̂3}. On the other
hand, the term Cov represent the covariance of the Gaussian system
under observation, this is

Cov = sin(2θ)
(
e2r − e−2r) . (5.8.7)

Besides, we recall that the balance parameter appearing in δ2
x̂j

and δ2
p̂j

with j = 1,2, is fixed at the rate b= δx̂3/δp̂3 as we explain in Eq. (2.2.13).

5.9 mathematical equivalence between the frames
of schrödinger and free-propagator in the method
of green’s functions for the case of a free par-
ticle

Take the solution to the Schrödinger equation:

Ψ (x, t) = e−itĤ/ h̄ψ′(x,0), (5.9.1)

where ψ′(x,0) is an arbitrary initial wave function at time t = 0 and
represent Ψ (x, t) the associated wave function at any time t. Let us
assume a free particle in one dimension; then: Ĥ = p̂2

x/2m, where p̂x is
the momentum operator in x-direction defined as p̂x = −i h̄∂x. Therefore,
the Eq. (5.9.1) can be written as

Ψ (x, t) = ea∂
2
xψ′(x,0) =

∞∑
k=0

ak

k!
∂2k
x ψ

′(x,0), (5.9.2)
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where a= it h̄/2m. Now, apply a Fourier transform on both sides of Eq.
(5.9.2)

F
[
ea∂

2
xψ′(x, t)

]
(px) =

∞∑
k=0

ak

k!
F
[
∂2k
x ψ

′(x,0)
]
(px)

=
∞∑
k=0

ak

k!
(ipx)

2kF [ψ′(x,0)] (px)

=e−ap2
xF [ψ′(x,0)] (px),

(5.9.3)

Besides, in the second line we use the derivative property of the Fourier
transform: F

[
dnf(q)
dqn

]
(p) = (ip)nF [f(q)] (p). It must be noted that

the exponential e−ap2
x depends on the variable px; therefore, it can be

expressed by means of a Fourier transform of a function f(x); that is,

F [f(x)] (px) = e−ap2
x. (5.9.4)

Using the definition of the inverse Fourier transform: F−1 [M(b)] =
1√
2π
∫+∞
−∞ M(b)e+ibadb, we trivially verify

f(x) =
1√
2a
e−x2

4a . (5.9.5)

Now, using Eq. (5.9.4) the last line of Eq. (5.9.3) is

F
[
ea∂

2
xψ′(x, t)

]
(px) = F [f(x)] (px) ·F [ψ′(x,0)] (px). (5.9.6)

Take the inverse Fourier transform on both sides of the last equation

ea∂
2
xψ′(x, t) = F−1 [F [f(x)] (px) ·F [ψ′(x,0)] (px)] ; (5.9.7)

then, take the convolution theorem for a product of Fourier transforms:
f ∗g = F−1 [F [f ] ·F [g]] =

(√
2π
)−1 ∫∞

−∞ f(η)g(x−η,0) dη; therefore, the
Eq. (5.9.7) is

ea∂
2
xψ′(x, t) = f(x) ∗ψ′(x,0) =

(√
2π
)−1 ∫ ∞

−∞
f(η)ψ(x− η,0) dη

=
(√

2π
)−1 ∫ ∞

−∞
f(x− η)ψ(η,0) dη,

(5.9.8)

where in the second line of the last equation we use the commutative
property of the convolution theorem. Now, we use the Eq. (5.9.5)
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with the explicit definition a = it h̄/2m in the last line of Eq. (5.9.8),
obtaining

Ψ (x, t) = ea∂
2
xψ′(x, t) =

√
m

i2π h̄t
∫ +∞

−∞
e−m(x−η)2

2i h̄t ψ(η,0) dη. (5.9.9)

Then take into account that the dynamics of an arbitrary system Ψ (x, t)
can be obtained from its initial (t = 0) wave function ψ(x,0) through
propagators (Green’s functions), that is [173],

Ψ (x, t) =
∫ +∞

−∞
K(x,x′; t,0)ψ(x′,0) dx′. (5.9.10)

For a free particle, a simple form of the propagator K(x,x′; t,0) is

K(x,x′; t,0) =
√

m

i2π h̄te
im(x−x′)2/2 h̄t; (5.9.11)

therefore, using Eqs. (5.9.10) and (5.9.11) we have, for a free particle:

Ψ (x, t) =
√

m

i2π h̄t
∫ +∞

−∞
e−m(x−η)2

2i h̄t ψ(η,0) dη (5.9.12)

which is equal to Eq. (5.9.9).

■
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