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Randomized shortest paths (RSPs) are tool developed in recent years for different graph and network
analysis applications, such as modelling movement or flow in networks. In essence, the RSP framework
considers the temperature-dependent Gibbs–Boltzmann distribution over paths in the network. At low
temperatures, the distribution focuses solely on the shortest or least-cost paths, while with increasing
temperature, the distribution spreads over random walks on the network. Many relevant quantities can
be computed conveniently from this distribution, and these often generalize traditional network measures
in a sensible way. However, when modelling real phenomena with RSPs, one needs a principled way
of estimating the parameters from data. In this work, we develop methods for computing the maximum
likelihood estimate of the model parameters, with focus on the temperature parameter, when modelling
phenomena based on movement, flow or spreading processes. We test the validity of the derived methods
with trajectories generated on artificial networks as well as with real data on the movement of wild reindeer
in a geographic landscape, used for estimating the degree of randomness in the movement of the animals.
These examples demonstrate the attractiveness of the RSP framework as a generic model to be used in
diverse applications.

Keywords: randomized shortest paths; random walk; shortest path; parameter estimation; maximum
likelihood; animal movement modelling.

1. Introduction

1.1 Background and motivation

Modelling the movement and flow of different entities on networks is a key topic in network
science [1–6]. It is not only relevant for studying physical movement but also for more abstract processes
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2 I. KIVIMÄKI ET AL.

such as communication, the spread of diseases and financial transactions, to name a few. Moreover, mod-
els of movement and flow are often used as the basis of popular distance, centrality and other measures
on networks.

The two most standard paradigms for studying movement on networks consider it as occurring over
shortest paths or over random walks. These paradigms are, however, often too simple for building realistic
models. In reality, movement or flow rarely strictly follows the shortest paths, nor is it completely random.
In addition, the standard network measures derived from these paradigms often have caveats. The shortest
path distance, for instance, does not take into account connectivity besides the shortest path, that is, the
number of other short connections between nodes. Moreover, when comparing distances on unweighted
graphs, the shortest path distance often results in ties between node pairs, because it typically yields a
limited number of integer values.

Random walks can be used for defining the commute time and commute cost distances [3, 7, 8], as
well as the closely related resistance distance [9]. They reflect the connectivity between nodes, but only
in small networks. Instead, in large networks they become only dependent on the local connectivity of the
nodes, in many cases the node degrees [10, 11]. This phenomenon has been called the global information
loss problem in [12, 13].

The above reasons have motivated the development of alternatives for the traditional paradigms, with
special focus on defining new distances on networks. One such alternative, which is also the main topic of
this work, is the randomized shortest paths (RSPs) framework [8, 14–16]. The RSP framework is based on
considering a Gibbs–Boltzmann distribution over paths from a source node s to a target node t involving
an inverse temperature parameter, β = 1/T > 0, which controls the degree of randomization from the
optimal, shortest paths. At the limits of the parameter range, the distribution focuses either on solely the
optimal paths (β → ∞) or spreads over random walks (β → 0+). In the framework, the optimality of a
path can be defined as the number of steps, or, more generally, based on real-valued edge costs, denoted
by cij for edge (i, j). On the other hand, random walks are considered based on edge affinities aij which can
be defined independently of the edge costs (see Section 1.2 for details). This enables the consideration
of optimality and randomness of paths as being based on different grounds, which can be relevant for
some applications. The Gibbs–Boltzmann distribution is an exponential-family distribution, but can also
be interpreted in terms of maximum entropy modelling [17].

Originally the RSP framework was proposed in order to define many interpretable metrics on a
network, such as distance measures between the network nodes [8, 16] or node and edge centrality
measures [14]. Furthermore, the RSP framework can also be used for purposes of planning or predicting
paths on networks and for modelling movement or flow patterns on networks [18, 19], which is the
application domain considered in this article. One problem that has not yet been tackled in depth in
the literature is the estimation of the parameters of the RSP model. This work tackles the problem by
presenting methods for computing maximum likelihood estimates (MLEs) of the parameters of the RSP
model in cases where the data consist of trajectories between nodes on a network. Such data may be
generated whenever recording a movement or flow process on a network, including examples such as

• geolocation data of animals moving on a geographical network,

• trip data gathered from public transportation networks,

• trajectory data of players in video games, or

• browsing behaviour data of web users.
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 3

The main focus in this work is on the estimation of the inverse temperature parameter β based on such
data, in which case the network structure, that is, the edge costs and edge affinities, are considered known
and fixed. A relatively high value of β (i.e. low temperature) describes trajectories following optimal or
near-optimal paths between the source and target nodes, whereas a low value of β (high temperature)
can describe trajectories resembling a random walk with a drift towards the target [18]. By setting β

to an appropriate value, the RSP model can take into account the assumption that movement or flow
on a network often does not occur completely optimally nor completely randomly. When considering
movement on a network, such an assumption can be valid for various reasons. For example, the agent
(e.g. an animal) moving on the network might not have sufficient global information of the network or be
intelligent enough in order to follow optimal paths. Or the agent can simply have a simultaneous preference
for both randomness (i.e. exploration) and optimality (exploitation), which can help in obtaining more
knowledge of the environment or in distracting a prey or an opponent trying to predict and intercept the
agent.

In earlier literature, the value of β has often been selected by some form of tuning. However, these
tuning schemes are not based on solid statistical grounds and can be very specific for the application in
question. For instance, in [8], the authors use distance measures derived from the RSP framework for
clustering graph nodes, and the value of β is fixed by maximizing the clustering performance using a part
of the data.

We first derive the MLEs of β for trajectories that have been recorded fully but also tackle the more
complicated scenario where the trajectories are incomplete. We confirm the validity of these methods with
artificial examples using simulated geographic networks and an artificial community-structured network.
In addition, we test the developed MLE methods on real data of trajectories in a geographic landscape,
based on GPS recordings of movements of wild reindeer. This example is devised mostly to verify that
the MLE computations can be run in practice and that the methods provide reasonable results. Recently,
the RSP framework was applied to similar data in [19] for locating movement corridors of wild reindeer
in a geographical landscape. In addition, it has been made familiar to the ecological community thanks
to the implementation in the gdistance R package [20]. This article is partly a continuation of the
work in [19], as we also consider trajectories of wild reindeer as a use case for the problem of fitting the
model to data of movement trajectories. However, in addition to this ecological application, the theory
developed in the article is generic so that the methods can be used for any movement or flow phenomena
on networks that are suitable for the RSP model.

In addition to β, the edge costs, cij, and edge affinities, aij, can be considered as parameters of the
RSP framework. Although we do also briefly discuss the estimation of edge costs from trajectory data,
in Section 2.4, the focus is mostly on the estimation of β, as commonly in RSP applications the graph
structure, that is, the edge costs and affinities, are considered fixed and known. Furthermore, as the
purpose of this work is only in developing the RSP theory for fitting the RSP model to trajectory data, the
evaluation of the MLEs in specific ecological applications and comparison with other model estimation
approaches are left for future work. We also plan to later investigate the use of the methods developed
here for parameter estimation in the context of clustering and classification of graph nodes.

The article structure is as follows: in the rest of this section, we recall the RSP framework and discuss
its properties that are required for following the remainder of the article. We also discuss other work
related to model estimation in similar problem settings at the end of the section. In Section 2, we derive
and validate MLEs for data consisting of complete trajectories. Section 3 deals with MLEs in situations
where the data consist of incomplete trajectories, that is, where only a subset of the edge or node sequence
of a path is observed. In Section 4, we use the methods derived in Section 3 to fit the RSP model to data
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4 I. KIVIMÄKI ET AL.

consisting of GPS trajectories of wild reindeer by estimating the inverse temperature parameter associated
to the trajectories.

1.2 Randomized shortest paths

The RSP framework has been developed during the past decade in several works [8, 14–16], focusing
mostly on the definition of distance, similarity or centrality measures on graphs or networks. It was
initially inspired by models developed in the field of transportation science [21]. In this section, we recall
the definition of the RSP framework and the related results relevant for the remainder of the article. Before
that, however, we define the terms and notation used in the article.

1.2.1 Definitions and notation
Vector and matrix notation. Vectors are generally denoted by lowercase boldface characters and matrices
by capital boldface characters, ei denoting the ith basis vector, that is, 1 at element i and 0 elsewhere. The
length of vectors and size of matrices is determined depending on the context, if not stated explicitly. I
denotes the identity matrix (of appropriate size) and Iij denotes the matrix whose element (i, j) is 1 and
other elements are 0. Otherwise, for an arbitrary matrix X, the lowercase xij and sometimes [X]ij are used
to denote the element (i, j) of X, whereas Xij denotes the matrix containing the value [X]ij at element
(i, j) and zero elsewhere.

Graphs and paths. Let G = (V , E) be a directed, strongly connected graph with node set V containing n
nodes labelled from 1 to n, i.e. V = {

1, . . . , n
}
; and edge set E containing m edges represented as ordered

pairs (i, j), where i, j ∈ V and i �= j (i.e. we do not consider graphs with edges from a node to itself). For
any node i ∈ V , we denote by Succ(i) the set of successor nodes of i, that is, Succ(i) = {

j ∈ V |(i, j) ∈ E
}
.

A path ℘ on G is defined as a sequence of nodes ℘ = (v0, . . . , vL), where (vi−1, vi) ∈ E for all
i = 1, . . . , L and where L ≥ 1 is the length of the path (note that thus a single node does not constitute a
path). The length of an arbitrary path ℘ is denoted as L(℘). The lth node of path ℘ is denoted by ℘(l),
where 0 ≤ l ≤ L(℘). Note that the node indexing along a path starts from 0. Likewise, the edge between
the lth and (l + 1)th node is denoted by ℘(l, l + 1), and the subpath or subsequence, from the l1th to the
l2th node by ℘(l1 : l2).

The focus in this work is especially on hitting paths, that is, paths, where the last node appears only
once, or, formally, paths ℘ for which ℘(i) �= ℘(L(℘)) for all i < L(℘). The set of all hitting paths from
a starting node s to a target node t is denoted by Pst . Note that with the above definition, a hitting path
cannot go from a node to itself, and thus Ptt = ∅ for all t ∈ V . Moreover, the subset of Pst containing
only paths of a fixed length k is denoted by P (k)

st . A pair of starting node s and target node t is concisely
referred to as an s-t-pair and the paths in Pst as s-t-paths. Throughout the article, t is used as the index
of the absorbing target node. Note that the results derived in this work for hitting paths can be easily
generalized to all paths, not only hitting ones. We focus only on hitting paths for two reasons: because
of brevity, and because the network measures derived from the RSP framework are more directly related
to many traditional network measures when considering hitting paths than when considering all paths.

Edge weights, path costs and probabilities. In the RSP framework, each edge (i, j) ∈ E is associated
with two kinds of weights: an affinity aij > 0 and a cost cij > 0. In addition, for node pairs that are not
connected by an edge, that is, such (i, j) ∈ V × V that (i, j) /∈ E, we define aij = 0 and cij = ∞. The edge
affinities and costs define the affinity matrix A and cost matrix C, both of size n × n, whose elements
(i, j) are the corresponding values for the node pair (i, j) ∈ V × V .
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 5

The edge costs cij define the optimality of movement and can be considered in terms of the energy
consumption, geographical distance, time duration, monetary value or other form of expense related to
the step over an edge. The cost of a path ℘ is defined as the sum of the edge costs along the path:

c̃(℘) =
L(℘)∑
l=1

c℘(l−1),℘(l). (1.1)

Note the tilde above the c, which we use generally to differentiate between path-related and edge-related
quantities. For any s-t-pair, the least cost from s to t means the minimum path cost over all s-t-paths. The
least cost can be considered as a directed and weighted form of the shortest path distance.

While the edge costs define optimality of movement, the edge affinities instead determine what is
meant by random movement. Namely, the affinities determine random walks on the graph, which are
generated by the transition probability matrix Prw with elements

prw
ij = aij∑n

k=1 aik
, forall (i, j) ∈ E, and 0 otherwise. (1.2)

The random walk with the above transition probabilities corresponds to a first-order Markov chain with
state set V . The random walk probability distribution, Prw

st , over the set of hitting paths from s to t is
determined by the product of the transition probabilities, that is, for any hitting path ℘ ∈ Pst ,

Prw
st (℘) =

L(℘)∏
l=1

prw
℘(l−1),℘(l). (1.3)

Note that this product determines the path probabilities in a well-defined manner, as it is known that for
hitting paths (see e.g. [22]) ∑

℘∈Pst

Prw
st (℘) = 1. (1.4)

The random walk generated by the transition probabilities prw
ij is sometimes referred to as the reference,

natural, or unbiased random walk and the superscript ‘rw’ in the above quantities naturally refers to
(unbiased) random walks.

The reference random walk defines the expected hitting time and the expected hitting cost from s to t,
as the expected path length, or path cost, respectively, over the random walk distribution Prw

st . The sums,
from s to t and back from t to s, of expected hitting times and costs define, respectively, the commute
time distance and the commute cost distance. It is well known that on an undirected graph (i.e. a graph
for which aij = aji and cij = cji for all (i, j) ∈ E), where edge costs correspond to edge resistances
(i.e. cij = rij = 1/aij; in which case affinities correspond to conductances), both the commute time and
commute cost distances are proportional to the resistance distances between corresponding nodes. More
exactly, if we denote, for any s-t-pair on an undirected graph, by �res

st , �CT
st and �CC

st , respectively, the
resistance, commute time and commute cost distances between s and t, then the following holds [7, 8, 23]:

�res
st = �CT

st∑
(i,j)∈E

aij
= �CC

st∑
(i,j)∈E

aijcij
. (1.5)
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6 I. KIVIMÄKI ET AL.

As mentioned earlier, in Section 1.1, although the edge costs can be defined based on the edge affinities
(for instance as cij = 1/aij, as above in the electric circuit analogue), generally in the RSP framework,
the two weights can be—and are considered in the derivations as—independent of each other. This
assumption is convenient technically but also makes sense due to the fact that the underlining drivers
behind optimal and random movement can be very different from each other. In the simplest examples,
even when the edge costs may obtain arbitrary non-negative values, the random walk can be considered
oblivious to the edge features by defining the affinities aij = 1 for all (i, j) ∈ E, which results in a natural
random walk with uniform transition probabilities at each node. On the other hand, defining cij = 1 for all
(i, j) ∈ E corresponds to considering the length of paths as their cost, in which case the random walk can
nevertheless be considered with arbitrary affinities that depend on local features of edges, thus leading
to a natural random walk with non-uniform transition probabilities at each node.

1.2.2 Definition of the RSP framework The RSP framework can be defined and interpreted in different
ways [8, 14–16, 22], but here, we present the most often formulated version, based on cost minimization
constrained by relative entropy. Consider an agent moving on the graph from a starting node s to a target
node t �= s. Instead of moving randomly, as defined by the unbiased transition probabilities in Equation
(1.2), the agent aims to move in an optimal way. However, for various possible reasons, the movement
of the agent is not completely optimal.

Instead, the agent is considered to choose its path from Pst from a distribution which minimizes the
expected path cost constrained to a fixed relative entropy with respect to the unbiased random walk.
Formally, we seek for the distribution that satisfies the minimization problem

Minimize
Pst

〈c̃〉 =
∑

℘∈Pst

Pst(℘)c̃(℘) s.t.

⎧⎨⎩J
(
Pst‖Prw

st

) = J0∑
℘∈Pst

Pst(℘) = 1, (1.6)

where J
(
Pst‖Prw

st

)
is the Kullback–Leibler divergence, or relative entropy, with respect to the natural

random walk distribution

J
(
Pst‖Prw

st

) =
∑

℘∈Pst

Pst(℘) log
(
Pst(℘)/Prw

st (℘)
)

, (1.7)

which is constrained to a fixed value J0 > 0, and which determines the degree of randomness associated
with the movement behaviour of the agent. A low value of J0 constrains the distribution Pst to remain
very similar to the random walk distribution Prw

st , while a high value of J0 allows the distribution to focus
more on optimal, low-cost paths.

The solution of (1.6), which can be obtained with the Lagrangian method (see e.g. [16]), is the
Gibbs–Boltzmann distribution (which we also refer to as the RSP distribution) over the set Pst:

Pst(℘) = Prw
st (℘) exp(−β c̃(℘))∑

℘ ′∈Pst

Prw
st (℘ ′) exp(−β c̃(℘ ′))

, (1.8)

where β = 1/T > 0 is the inverse temperature parameter, resulting from introducing T as the Lagrangian
multiplier of the relative entropy constraint. The parameter β is thus related to the relative entropy value
J0. Namely, for low values of β (corresponding to low values of J0), that is, when β → 0+, the distribution
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 7

converges to the random walk distribution. For high values of β (high values of J0), that is, when β → ∞,
the distribution focuses more and more on the low-cost paths.

Among the other interpretations of the RSP framework, the RSP distribution could be obtained from
an inverse point-of-view as well, namely by considering minimization of relative entropy with a fixed
expected cost. That way the RSP framework can be interpreted as a maximum entropy model [24], as
minimizing relative entropy with respect to the random walk distribution is conceptually close, though
not equivalent, to maximizing the Shannon entropy.

Normally in the RSP model, for convenience, the user is required to set the value of β, instead of
J0, to determine the degree of randomness associated to the distribution. Note that there is no analytical
expression for computing the value of β that would result in the RSP distribution with a given relative
entropy J0. Instead, for obtaining the RSP distribution with a particular relative entropy, the corresponding
value of β can be obtained with a bisection search. Also worth noting is that Equation (1.8) is the solution
of the problem in Equation (1.6) only if J0 < Jmax, where Jmax is the relative entropy at the limit β −→ ∞,
where the RSP distribution is focused only on the shortest paths and zero for other paths.

Let us denote the numerator in (1.8), that is, the likelihood of path ℘, as

w̃(℘) = Prw
st (℘) exp(−β c̃(℘)). (1.9)

In fact, we make this definition for all paths between s and t, not only the hitting ones. The denominator
in Equation (1.8) is the partition function of hitting s-t-paths, which accumulates the overall likelihood
of hitting s-t-paths, and which is denoted by

Zst =
∑

℘∈Pst

Prw
st (℘) exp(−β c̃(℘)) =

∑
℘∈Pst

w̃(℘). (1.10)

Finally, by defining the edge likelihoods by

wij = prw
ij exp(−βcij), (1.11)

the path likelihood is, in fact, the product of the edge likelihoods along the path:

w̃(℘) =
L(℘)∏
l=1

w℘(l−1),℘(l). (1.12)

1.2.3 Computation of main quantities Here, we gather results from earlier literature for computing
quantities from the RSP distribution that are relevant for the current work. We first present the computation
of the path likelihoods w̃ and the partition function, Zst , based on matrix computations, and then show
how, using the partition function, we may compute the expected cost of paths from s to t, as well as
the expected number of traversals over edges and the expected number of visits to nodes, over the RSP
distribution. All of these quantities and their computation appear throughout the derivations related to
the maximum likelihood estimation in later sections.

The edge likelihoods wij, from Equation (1.11), define the likelihood matrix W, which can be expressed
as

W = Prw ◦ exp(−βC), (1.13)
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8 I. KIVIMÄKI ET AL.

where Prw and C are the matrices containing the reference transition probabilities and edge costs, respec-
tively, ◦ is the element-wise, that is, Hadamard, product, and the exponential is taken element-wise as
well. The likelihood matrix W is substochastic, because its row sums are all less than unity,

∑
j wij < 1.

This can be interpreted as W defining a killed random walk (also sometimes called an evaporating random
walk), where the residue probability at each node i, 1−∑j wij, corresponds to the probability of transition
from i to an imaginary, absorbing ‘cemetery node’, instead of continuing the walk to a neighbouring node.

We present two ways of computing the partition function of Equation (1.10). The first way is to define
matrix

−t
W = W − IttW (1.14)

as the matrix W with row t set to zero. This is equivalent to considering a deletion of all edges leaving
node t, which makes t an absorbing node (or state; analogously to absorbing Markov chains [25]).

The overall likelihood of hitting paths from s to t of given length k = 1, 2, . . ., is given by elements

of the powers of
−t
W:

∑
℘∈P(k)

st

w̃(℘) =
[−t

Wk

]
st

. (1.15)

As a result, the partition function, Zst , defined earlier in Equation (1.10), can be computed by summing
over all path lengths k:

Zst =
[−t

W + −t
W2 + −t

W3 + · · ·
]

st

=
[
(I − −t

W)−1 − I
]

st

. (1.16)

However, computing quantities with the above approach can be costly, when considering different
target nodes, t, as the matrix inverse appearing in Equation (1.16) has to be computed separately for each
t. A second way of computing the partition function Zst is to first compute the fundamental matrix of all
paths, given by

Z = I + W + W2 + W3 + · · · = (I − W)−1, (1.17)

whose elements zst quantify the expected number of visits to node t before being killed (i.e. transitioning
to the cemetery node) during a killed random walk starting from node s based on the substochastic
transition matrix W. Then, as was shown in [22, Appendix B] and in [8], the partition functions Zst ,
from Equation (1.10), for any s and t such that s �= t, can be computed based on elements of matrix Z of
Equation (1.17) as

Zst = zst/ztt . (1.18)

Note, that, for any s-t-pair, the italic zst always refers to element (s, t) of matrix Z, whereas the calligraphic
Zst denotes the partition function, defined in Equation (1.10). Based on this result, as discussed in [22]
and [8], for any s and t such that s �= t, the partition function of hitting paths Zst can be shown to quantify
the probability that a walker starting from node s and moving according to the substochastic transition
matrix W survives to node t before being killed.
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 9

Finally, the matrix whose element (s, t) contains the partition function Zst from Equation (1.10) for
all (s, t) ∈ V × V can be expressed, based on Equation (1.18), as

Zh = ZD−1
Z − I, (1.19)

where DZ is the (n × n) diagonal matrix of the diagonal elements of Z. Although this expression is more
convenient for computing the partition functions between multiple (or all) s-t-pairs at once, in this article
we, however, rely more on the form in Equation (1.16), considering one target node t at a time.

Note that the non-negativity, substochasticity and irreducibility (as G is strongly connected) of W

imply that the spectral radius of W is less than unity, ρ(W) < 1. Also, although
−t
W is not irreducible,

as the graph is not strongly connected after the removal of the edges leaving t, we nevertheless have

ρ(
−t
W) < 1, as setting a row to zero in a matrix cannot increase its spectral radius. This ensures, based

on Perron–Frobenius theory, that the matrix series in Equations (1.16) and (1.17) converge and can be
computed using the presented matrix inverses [26].

The partition function Zst can be manipulated in order to derive the computation of various meaningful
quantities related to the RSP framework. In particular, the expected number of traversals over an edge
(i, j), when moving according to the RSP distribution over hitting paths from s to t, is given by (see e.g.
[14])

n̄ij(s, t) =
∑

℘∈Pst

Pst(℘)nij(℘) = − 1

β

∂ log Zst

∂cij
, (1.20)

where nij(℘) denotes the number of times edge (i, j) appears on path ℘. This derives from the fact that

∂ c̃(℘)

∂cij
= nij(℘). (1.21)

Similarly, the expected cost of moving from s to t when moving according to the RSP distribution
over hitting paths from s to t is (see e.g. [8])

〈c̃〉st =
∑

℘∈Pst

Pst(℘)c(℘) = −∂ log Zst

∂β
. (1.22)

By altering the temperature, the expected cost over the RSP distribution interpolates between the least cost
(when β → ∞) and the expected hitting cost (when β → 0+) from s to t. Accordingly, the symmetrized
version 〈c̃〉st + 〈c̃〉ts interpolates between the least cost distance (multiplied by 2), and the commute cost
distance.

Thanks to the above derivative expressions (1.20) and (1.22), the above quantities can be expressed
in terms of elements of matrices W (from Equation (1.13)) and Z (from Equation (1.17)) as (again, see
[8, 14])

n̄ij(s, t) =
(

zsi

zst
− zti

ztt

)
wijzjt (1.23)
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10 I. KIVIMÄKI ET AL.

and

〈c̃〉st =
∑

(i,j)∈E

n̄ij(s, t)cij =
∑

(i,j)∈E

(
zsi

zst
− zti

ztt

)
wijcijzjt . (1.24)

From (1.23), the expected number of visits to node i with respect to the RSP distribution over hitting
paths from s to t, can be computed as (again, see [14] for details)

n̄i(s, t) =
∑

j∈Succ(i)

n̄ij(s, t) =
(

zsi

zst
− zti

ztt

)
zit . (1.25)

The quantity n̄i = ∑
s∈V

∑
t∈V n̄i(s, t) was coined in [14] as the simple RSP betweenness centrality of

node i, which interpolates between the shortest path likelihood betweenness (when β → ∞), which is
strongly related to the standard shortest path betweenness centrality [27], and the stationary distribution
of the unbiased random walk (when β → 0+) on the graph.

The RSP distribution over paths from s to t can also be interpreted as defining a biased random walk,
with new transition probabilities containing a drift towards t. The biased transition probabilities towards
t can be obtained by using (1.23) and (1.25) as

p(t)
ij = n̄ij

n̄i
= wijzjt

zit
, (1.26)

for all i �= t. As we consider hitting paths, n̄t = 0, and the biased transition probabilities are separately
defined as zero for the target node, that is, p(t)

tj = 0 for all j. As can be seen from Equation (1.26), the

biased transition probabilities are independent of s, that is, p(t)
ij is the same for any edge (i, j) for all

starting nodes s. The biased transition probabilities can be used for generating individual paths over a
graph according to the RSP distribution.

1.3 Related work

The RSP framework was originally defined in order to develop distance and centrality measures on
graphs for graph-based machine learning purposes [8, 15, 16]. Variants of the RSP framework have been
developed for different use cases, including the sum-over-paths [28] and bag-of-paths [22] frameworks.
Parameter tuning in applications of these frameworks (e.g. in clustering in [8] and semi-supervised
classification in [29]) has usually been dealt with by using a held-out tuning data set, and by searching
for the parameter value giving best performance on this data. In this article, we approach the parameter
estimation problem from a more fundamental view. Note, however, that the setting is quite different from
the previous applications of the RSP framework, and we leave for future work the investigation of using
the results derived here for parameter tuning in other application areas of RSPs.

The RSP framework shares similarities with the logit assignment model and its different variants
proposed in transportation science [30–33] and was originally inspired by such models [21]. Logit assign-
ment models are sometimes criticized for a couple of reasons. First, they can become computationally
untractable when considering cycles on the network because of infinitely cumulating costs [34]. This prob-
lem has been alleviated, for instance, by restricting the path set to ‘efficient’ paths [32], by constraining
the path lengths [35], or by introducing a discount factor [34] that makes the model interpolate between
unbiased and optimal behaviour similarly (but not equivalently) to the inverse temperature parameter
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 11

β in the RSP model. A second criticism about logit assignment is that it has the independence from
irrelevant alternatives (IIA) property [31], essentially meaning that an agent leaving from s to t according
to the logit probabilities will more likely select an edge that leads to more alternative s-t-paths, even if
those paths are almost identical (i.e. irrelevant). This issue has been addressed, for instance, with different
nested models [36, 37], where the set of paths (or choice set) is partitioned into nests containing irrelevant
alternatives.

The logit assignment models originate from random utility theory, where edge costs (or utilities) are
considered as a sum of a deterministic part and a random (‘error’ or ‘noise’) part, which leads to a logit
distribution over paths similar to the Gibbs–Boltzmann distribution of the RSP framework (see e.g. [31])
when minimizing expected cost. In such a formulation, the expected cost actually corresponds to the
concept of free energy, or potential in the RSP formalism [8, 22]. However, normally the RSP free energy
is considered as the relative free energy by regularizing costs in terms of relative entropy (instead of the
Shannon entropy) with respect to the unbiased random walk, (see Section 1.1). Thanks to this difference,
the RSP model avoids the issue of intractability of computation that the logit assignment model faces
with cycles on the network. In more detail, the regularization based on relative entropy results in the
substochasiticity of the likelihood matrix W defined in Equation (1.13), which ensures that the RSP
model can be computed for any positive value of the inverse temperature parameter β, without having to
restrict the set of paths. The RSP model also alleviates the IIA issue in some cases, as the addition of an
alternative route causes a change in the unbiased random walk, and thus the RSP probabilities.

The standard derivation of the RSP model considers cost-minimization subject to constrained relative
entropy. The relative entropy can be interpreted information-theoretically as a fixed degree of informed-
ness, or knowledge that the random walker has of the environment (compared to an unbiased random
walker); in other words, the walker aims at minimizing travel cost constrained on its knowledge of the
network. Such an information-theoretic interpretation can be expressed for some logit assignment mod-
els, as for example, the rational inattention model in [38]. On the other hand, the RSP model can also
be derived in a similar fashion to the derivation of the logit assignment model, based on augmented edge
costs, and minimization of expected augmented path costs. We leave these developments for future work,
but mention them here to increase the motivation of using RSPs in modelling trajectory data, in addition
to the discussion on the topic already in Section 1.1.

The literature behind logit assignment models is extensive, and also includes various studies for
parameter estimation, also with maximum likelihood methods. The early works [39, 40] derive maximum
likelihood methods for a parameter of the logit assignment model corresponding to the inverse temperature
in our formulation. Their results are similar to the results derived in our work for complete trajectories,
although the works only consider networks without cycles. Also, the dispersion-constrained model in [41]
is based on a maximum-entropy approach similar to the RSP framework, and involves the estimation of a
temperature parameter. Other works, such as [34, 35, 37, 42–44] focus, in various traffic-related settings,
on the problem of estimating parameters on edges or parameters associated to features on edges, which
in some cases corresponds to the problem of estimating the inverse temperature and in some case to the
problem of estimating edge costs in the RSP framework (the latter of which is addressed only briefly in
the current work, in Section 2.4). The above cited works in logit assignment and related models are in
many respects very close and similar to the RSP model. However, one key difference is that, as already
discussed above, the RSP model considered in this article, by maximizing relative entropy, generalizes a
pure, unbiased random walk, whereas the logit assignment models can be seen as maximizing the Shannon
entropy over paths. In addition, to the best of our knowledge, a similar definition and handling of data
consisting of incomplete trajectories, as presented here, do not seem to appear in the logit assignment
literature.
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12 I. KIVIMÄKI ET AL.

The problem of parameter estimation in the RSP framework has similarities with the more general
problem of estimation of Markov chain transition probabilities from trajectory data (see e.g. [45–47]).
Indeed, when assuming the RSP model, a given value of β defines the biased transition probabilities
towards the target node, according to Equation (1.26), and thus estimating β implies estimating the
transition probabilities. However, the general estimation of Markov chains, studied in the works cited
above, does not involve assumptions on the distribution of paths on the graph, and also does not consider
affinities, costs or other weights related to the transitions. Moreover, Markov chain estimation has been
mostly studied for continuous-time Markov jump processes, for the estimation of the generator matrix
of the process. Such techniques have been developed for example, for healthcare research, for studying
disease progression and treatment effects, where the temporal aspect is of course vital [45]. Instead, the
RSP framework is only analogous to a discrete time Markov chain, although extending the idea of RSPs
to consider continuous time is a planned topic for future research.

Another problem related to the current work, especially the problem of model inference with incom-
plete trajectory data, is the inference of aggregate Markov chains, which has been applied to ion channel
modelling [48]. There the state space is divided into aggregates and only the aggregate that the system
is in, instead of the actual state, is observed. Aggregated Markov chains have also been only considered
in the context of continuous-time chains. Aggregated Markov chains bare similarities with the study of
stochastic complementation in discrete-time Markov chains [49].

Besides the temporal aspect, there are also other differences between the general estimation of Markov
chains and the estimation of RSP parameters. Namely, the methods for Markov chain estimation normally
require data containing observations at each state of the chain, as the transition probabilities for unobserved
states cannot be estimated [50]. The estimation of the inverse temperature parameter in the RSP model,
however, does not require this, and it can be estimated even for a sparse set of incomplete trajectories, as
derived and verified with experiments in Section 3.

2. Maximum likelihood estimation with complete trajectories

The rest of the article is dedicated to deriving and verifying methods for computing the likelihood of
the RSP model parameters when modelling trajectory data, and computing the maximum likelihood
estimates (MLEs). The focus is mostly on the likelihood of the inverse temperature parameter β. For
estimating β, the graph structure, that is, the edge affinities (or the reference transition probabilities)
and edge costs, are always assumed to be known completely and exactly. The MLE of β is denoted
in general as β̂MLE. However, in the expressions for the MLEs, β does not normally appear explicitly,
but the expressions involve other RSP quantities, which can be computed with the methods detailed in
Section 1.2.3. Accordingly, β̂MLE can then be found by performing a search that satisfies the expressed
MLE criterion, or by other, more direct optimization means.

This section deals with data sets of complete trajectories on a network, that is, where each node (and
thus each edge) of the observed path has been recorded. We derive the results by first considering the
simple case where all trajectories are observed to go from one starting node s to one destination node t,
and then extend to trajectories between several s-t-pairs. The methods are then validated with artificial
data. We also present briefly in this section a method for estimating the edge costs cij from complete
trajectories, when assuming that only the affinities or reference transition probabilities are known, but
otherwise the focus of the article is on the estimating β. Later, in Section 3, we tackle the problem of
computing β̂MLE when the data consist of incomplete trajectories, where only a part of the edges or nodes
visited along each trajectory is observed.
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 13

2.1 Single source and target

Let �st be a data set containing K fully observed hitting paths going from s to t.

Theorem 1 Assuming independence between the trajectories, the maximum likelihood estimate of the
inverse temperature, β̂MLE, given the data set �st , as described above, is the value of β for which the
expected cost of hitting s-t-paths over the RSP distribution, 〈c̃〉st , from Equations (1.22) and (1.24),
satisfies,

〈c̃〉st = 1

K

∑
℘∈�st

c̃(℘), (2.1)

Proof. Based on the assumption of independence between the trajectories, the likelihood is simply the
product of the individual path probabilities from Equation (1.8):

L(β | �st) =
∏

℘∈�st

Pst(℘) =
∏

℘∈�st

Prw
st (℘) exp(−β c̃(℘))

Zst
(2.2)

and the log-likelihood is

log L =
∑

℘∈�st

(
log Prw

st (℘) − β c̃(℘)
)− K log Zst . (2.3)

Taking the derivative of the log-likelihood with respect to β, and setting it to zero gives us the necessary
optimality condition for the MLE:

∂ log L
∂β

= −
∑
℘∈�

c̃(℘) − K
∂ log Zst

∂β
= 0 ⇐⇒ 〈c̃〉st = 1

K

∑
℘∈�

c̃(℘), (2.4)

where we used Equation (1.22). �

Theorem 1 simply states that the likelihood is maximized by the value β̂MLE for which the expected
cost over the RSP distribution equals the average cost of the observed trajectories. A similar result is
common in a large class of maximum entropy estimation procedures [24], whereas it is presented here
for the first time in the literature related to RSPs. As discussed above, Equation (2.4) cannot be solved
explicitly for β. Instead, the value β̂MLE has to be estimated numerically by finding the root of the equation.

2.2 Multiple sources and targets

Let then � denote a data set of trajectories between different s-t-pairs, �st ⊂ � the set of trajectories in
the data that go from a particular s to a particular t, and Kst = |�st| the number of trajectories from s to t
(with Kst = 0 if none of the trajectories go from s to t).
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14 I. KIVIMÄKI ET AL.

Theorem 2 Given data set �, and assuming, again, independence between the trajectories, β̂MLE is the
value for which the RSP expected costs, 〈c̃〉st , for all s and t satisfy∑

s,t∈V

Kst〈c̃〉st =
∑
s,t∈V

∑
℘st∈�st

c̃(℘st) (2.5)

Proof. The likelihood, given �, is simply the product of the likelihoods for each s-t-pair and, accordingly,
the log-likelihood can be written as

log L(β | �) =
∑
s,t∈V

(
−Kst log Zst +

∑
℘st∈�st

(
log Prw

st (℘st) − β c̃(℘st)
))

. (2.6)

Again, as in the proof of Theorem (1), setting the derivative to zero, we see that the MLE of β should
satisfy ∑

s,t∈V

Kst〈c̃〉st =
∑
s,t∈V

∑
℘st∈�st

c̃(℘st). (2.7)

�

Thus, as in Theorem 1, as well as often in maximum entropy estimation methods [24], the most likely
value of β corresponds to the one for which the empirical average agrees with the expected value given
by the model. Likewise, as in Section 2, Equation (2.7) cannot be solved explicitly for β, but β̂MLE has to
be determined numerically.

2.3 Validation of β̂MLE with complete trajectories

The above results and their accuracy were evaluated by generating trajectories on three artificial graphs.
The first graph is a simple 20 × 20 grid with uniform edge costs. The second is a 20 × 20 Gaussian
landscape depicted as a heatmap in Fig. 1A. In that graph, each node (corresponding to a pixel in the
heatmap) is assigned a cost based on a mixture of Gaussian distributions on a plane overlaid on the
grid. In more detail, the mixture consists of five low-cost and five high-cost Gaussian patches, which
cause decrease and increase of the costs from a base value of 0.5. The edge costs on the graph are then
determined by the cost assigned to the ending node of the edge. In both the uniform grid and the Gaussian
landscape, each node is connected to its adjacent and diagonal neighbours and the cost of the diagonal
connections is multiplied by

√
2. Affinities are fixed as reciprocals of costs, that is, aij = 1/cij, and

reference transition probabilities (as explained earlier) as the normalized affinities, prw
ij = aij/

∑
k aik .

The third graph used for validating our results is a weighted directed graph generated with the
Lanchichinetti–Fortunato–Radicchi (LFR) algorithm [51] designed for generating artificial complex net-
works with a community structure. We simply generated one LFR graph with 400 nodes forming 5
communities, with the mixing parameters for nodes and weights set to 0.2, the degree sequence exponent
to 4 and the average degree of nodes set to 4. A visualization of the resulting LFR graph used in the
experiments is depicted in Fig. 1B, where the node colours represent the community of each node. The
weighted-network version of the LFR algorithm generates edge weights wij that reflect the strength of
connection between nodes respecting the community structure. In order to study the effect of the possible
independence between edge affinities and costs on the estimation results, we defined the affinities on the
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Fig. 1. Two of the three graphs used for validating the MLE methods. (A) The generated 20 × 20 Gaussian landscape. Edge costs
are determined by costs on pixels, shown by the heatmap, so that for pixel j, cij = cj for all i s.t. (i, j) ∈ E. (B) The graph generated
with the LFR algorithm. The node colours depict the nodes’ communities.

LFR graph simply as aij = 1 for all (i, j) ∈ E, and used the weights wij generated by the LFR algorithm for
defining costs by taking the reciprocal, that is, cij = 1/wij. Thus, considering this graph in the validation
experiments, in addition to the two grid graphs introduced above, ensures that the methods developed in
this work also work properly with other network structures as well as with independent edge affinities
and costs.

Using a set of values for β, 200 paths were generated on both landscapes based on each studied value
of β. Each path was generated by first drawing an s-t-pair uniformly randomly on the grid, however only
accepting node pairs that were at least three steps apart on the grid. A path between each s-t-pair was then
generated by using the biased transition probabilities from Equation (1.26). Then, for each such set of
paths �, the value β̂MLE(�) was inferred by finding, by a simple line search, the value of β that satisfied
Equation (2.7). The above procedure was repeated 10 times for each studied value of β and the mean and
standard deviation of the MLEs was recorded. The results in Table 1 show that the MLEs, on average,
indeed closely match the true values of β used for generating the paths.

2.4 Estimation of edge costs

So far, we have only focused on the problem of estimating the inverse temperature parameter β in situations
where the graph structure, that is, the edge affinities (or the reference transition probabilities) and the edge
costs are known a priori. In this section, however, we consider briefly the problem of estimation of edge
costs from trajectories. Thus, assume that only the edge affinities (or the reference transition probabilities)
are known a priori. If the affinities cannot be quantified, but the graph structure (i.e. which nodes are
connected by edges) is known, then we can simply assume unit affinities. We then try to estimate the
edge costs based on the observed trajectories.

It turns out that this estimation problem actually contains the problem of estimating β, meaning that
solving the edge cost estimation problem also solves the estimation problem of β. This is due to the fact
that concerning the RSP distribution over paths (Equation (1.8)), parameter β can be considered as a
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16 I. KIVIMÄKI ET AL.

Table 1 The MLEs in the experiment with complete observed trajectories. The first column on the left
shows the value of β used for generating the paths and the two other columns show the mean ± the
standard deviation of the MLEs over 10 repetitions.

β β̂MLE, uniform grid β̂MLE, simulated landscape β̂MLE, LFR graph

0.001 0.00096 ± 0.00020 0.00111 ± 0.00024 0.00113 ± 0.00032
0.005 0.00486 ± 0.00053 0.00526 ± 0.00064 0.00490 ± 0.00090
0.01 0.00970 ± 0.00085 0.01029 ± 0.00115 0.01056 ± 0.00140
0.05 0.04874 ± 0.00306 0.04894 ± 0.00511 0.05228 ± 0.00776
0.1 0.09785 ± 0.00497 0.09956 ± 0.00392 0.10351 ± 0.01329
0.5 0.49601 ± 0.01908 0.50897 ± 0.02236 0.49371 ± 0.04843
1 1.01719 ± 0.03833 0.99922 ± 0.02422 0.97016 ± 0.07956
5 5.07901 ± 0.23531 4.99453 ± 0.17301 5.10122 ± 0.38010
10 10.08117 ± 1.04427 10.05533 ± 0.35628 10.32488 ± 0.79659

simple scaling factor of the path costs. Namely, consider a data set of trajectories is generated according
to the RSP distribution with a fixed inverse temperature, say β∗, which is unknown to the user. But this
is the same distribution as one would obtain by considering the RSP distribution with β = 1, but on a
modified graph with edge costs ĉij = β∗cij, as then, for each ℘,

β∗c̃(℘) = β∗
L(℘)∑
l=1

c℘(l−1),℘(l) =
L(℘)∑
l=1

ĉ℘(l−1),℘(l) = ĉ(℘). (2.8)

Expressed conversely, if we try to estimate the costs from the trajectories, we may simply assume that
β = 1, as a result of which we should end up with cost estimates ĉij. But these estimates contain the
information of both the ‘original’ edge costs and the value β∗ used to generate the data on the original
graph. This shows that the estimation of β is in practice only a subproblem of the edge cost estimation
problem.

We now derive the MLE of edge costs in the case of complete trajectories, given a data set �, as in
Section 2.2. For this, we assume the value β = 1, and search for edge costs that maximize the likelihood
of the trajectories.

Theorem 3 Given data set � = ∪s,t∈V�st , with Kst = |�st|, as in Section 2.2, and assuming that β = 1,
the MLE of the edge cost parameters cij, for all (i, j) ∈ E is the value for which the expected number of
visits over each edge (i, j) over hitting s-t-paths, n̄ij(s, t), (from Equations (1.20) and (1.23)) satisfy

∑
s,t∈V

Kst n̄ij(s, t) =
∑
s,t∈V

∑
℘st∈�st

nij(℘st). (2.9)

Proof. Recall the log-likelihood of observing a set �st of K trajectories from s to t, from Equation (2.3)
(now with β = 1). Using Equations (1.20) and (1.21), the partial derivative of the log-likelihood w.r.t. an
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 17

edge cost cij is

∂ log L
∂cij

= Kn̄ij(s, t) −
∑

℘∈�st

nij(℘), (2.10)

where, for recollection, nij(℘) is the number of traversals over edge (i, j) along path ℘ and n̄ij(s, t) is its
expectation with respect to the RSP probability distribution over hitting paths from s to t.

Setting the derivative in Equation (2.10) to zero, we see that the MLE of an edge cost cij should satisfy

n̄ij(s, t) = 1

K

∑
℘∈�st

nij(℘). (2.11)

The theorem follows directly by considering the data set as � = ∪s,t�st , with Kst = |�st| where
�st = {

℘ ∈ � | ℘ ∈ Pst

}
for all s, t ∈ V . �

Again, as Theorems 1 and 2, this result is analoguous to corresponding results in maximum entropy
modelling [24], but appear here for the first time in the context of RSPs. Unfortunately, as was the case
with the MLE of β, the above cannot be solved analytically for cij. Moreover, the dimension of the problem
is now the number of edges, so the solution cannot be found only by a simple line search. The MLE of
the edge costs can, instead, be sought for example, by performing a gradient ascent towards the direction
given by the edge derivatives in Equation (2.10) above. We leave the investigation of this idea for future
work, and focus in the remainder of the article on the estimation of β.

3. Maximum likelihood estimation with incomplete trajectories

This section deals with the case where data consist of incomplete trajectories from s to t. For a path
℘ ∈ Pst , an incomplete trajectory means a subsequence of either the edge sequence or the node sequence
constituting ℘. For each such trajectory, we assume that the source and target nodes, s and t are known
and t is considered as absorbing; this assumption is discussed in more depth later on.

In this section, we derive methods for computing the likelihood of the inverse temperature parameter β

given an observed data set � of incomplete trajectories, which constitute the most relevant contribution of
this work. These methods provide useful tools for many applications, because often in empirical tracking
studies trajectories can only be recorded partially. We derive the likelihood computation methods from
the simplest case to the general one. First, we consider the cases where only one edge or one node is
observed from one trajectory, and then generalize to cases where multiple edges or multiple nodes are
observed over several trajectories. We also demonstrate experimentally the behaviour of the likelihood
and validity of the methods.

The methods developed here for likelihood computation for incomplete trajectories are general in
the sense that they make the most naive possible assumption on the method of observation, that is, the
sampling of edges or nodes along the trajectories. In more detail, we assume that the observed edges have
been drawn from a uniform distribution over the actual trajectory. Although simplistic, this assumption
makes the method applicable to many different scenarios. The sampling assumption is discussed in more
depth in Section 3.4, where we also consider, as an alternative, that the number of observations along a
trajectory is binomially distributed. However, this binomial prior is not investigated in the experiments
in the article, but they rely on the uniformity assumption.
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18 I. KIVIMÄKI ET AL.

3.1 Determining s and t

In the case of incomplete trajectories, determining or inferring the starting node s and the absorbing
target node t is not necessarily obvious. In some cases, it can be resolved trivially by determining the last
observed node on the trajectory as the target. In others, the target node might be evident in the network;
for instance, considering movement in a computer game, the target node could be determined as the state
where the game is completed or won. Sometimes it can also be meaningful to select an area or a subset
of nodes of the network as a set of absorbing targets. Such a strategy can be more suitable in cases where
the observed incomplete trajectories are sparse.

Another option, which we also use in the experiments in Section 4, is to consider, as in the previous
strategy, an area of the network as the destination of movement, but decide the target t for each trajectory
as the first observed node of the trajectory within this area or subset (and neglect the remaining part of the
trajectory). The motivation for this is that the random walker is assumed to move according to the RSP
distribution only until it reaches a particular part of the network, after which its movement behaviour
might change. This assumption evidently holds for the use case in Section 4, where the data is based on
seasonal migration of wild reindeer from one habitat to another.

For more sophisticated methods, one could also incorporate the bag-of-paths (BoP) models [22, 29] in
different ways. The standard BoP framework is simply an extension of RSPs where the Gibbs–Boltzmann
distribution is defined over the set of paths between all node pairs, instead of one s-t-pair at a time. This
formulation leads to the BoP probability distribution over all s-t-pairs, meaning the probability that a
given node-pair, s and t, are the source and target nodes of a path sampled from the ‘bag of paths’. These
probabilities are determined by the overall costs of paths between a given s and t, compared to the costs
of paths between other node-pairs. A similar model has been considered in the context of transportation
research in [52]. An even more sophisticated approach would be the margin-constrained BoP model [53],
where two distributions on the nodes of the network, k ∈ V , are given as input; one fixes the probability
that k is a source node of a path, while the other fixes the probability that k is a target node of a path. The
model then computes flows based on these fixed margins and the Gibbs–Boltzmann distribution over the
set of all (hitting or regular) paths from the sources to the targets. In other words, the margin-constrained
BoP model is applicable when the source and target distributions can be determined from data. Finally,
we leave the consideration of incorporating these ideas in the maximum likelihood model for future
research.

3.2 One observed edge

Consider a situation where the data set � consists of only one edge (i, j) that has been observed from
one trajectory from s to t, where s and t are known beforehand. In this section, we present a computable
expression of the likelihood function of β in such a case, discuss the intuition behind this expression, and
also present an example illustrating the behaviour of the likelihood function.

3.2.1 Derivation of the likelihood function

Theorem 4 Let ℘ be a hitting path from s to t drawn from the RSP distribution (Equation (1.8)), and let
i be a node sampled from a uniform distribution over the node sequence of ℘. The likelihood function of
β in such a situation can be computed as

L(β | (i, j); s, t) =
[
Lij

]
s,n+t

Zst
, (3.1)
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 19

where
[
Lij

]
s,n+t

is the element (s, n + t) of the (2n × 2n) matrix that can be expressed using the matrix
logarithm [54], log, as

Lij =
∞∑

k=1

Qk
ij

k
= −log(I − Qij), (3.2)

where Qij is the (2n × 2n) block matrix

Qij =
⎡⎣ −t

W Wij

0
−t
W

⎤⎦ . (3.3)

Recall that
−t
W is the matrix from Equation (1.14) obtained by setting row t of matrix W to zero, and Wij

is the matrix containing value wij at element (i, j) and zero elsewhere.

Proof. Let us denote by ρ the random variable corresponding to the drawing of a trajectory from Pst along
which the edge is observed. We then make the fundamental assumption that the probability distribution
of ρ is the RSP distribution (see Equations (1.8) and (1.9)):

P(ρ = ℘) = PRSP
st (℘) = w̃(℘)

Zst
. (3.4)

Furthermore, let ε be the random variable corresponding to the drawing of the observed edge. As discussed
above, assume that ε is sampled uniformly from the edge sequence of the observed trajectory. Then the
conditional probability of drawing edge (i, j), given a particular path ℘, is given by the number of times
℘ traverses edge (i, j), nij, divided by the total number of edges traversed along the ℘, that is, its length,
L(℘):

P(ε = (i, j)|ρ = ℘) = nij(℘)

L(℘)
. (3.5)

Thus, the joint probability of observing edge (i, j) along path ℘ is

P (ε = (i, j), ρ = ℘) = P (ρ = ℘) P (ε = (i, j) | ρ = ℘) = w̃(℘)nij(℘)

ZstL(℘)
. (3.6)

Note that the partial derivative of the path likelihood w̃(℘) (Equation (1.9)) can be expressed, using
Equation (1.21), as

∂w̃(℘)

∂cij
= Prw

st (℘)
∂ exp(−β c̃(℘))

∂cij
= −βw̃(℘)nij(℘). (3.7)

Based on this, the probability of observing edge (i, j), which is also the likelihood function of β, is
obtained from (3.6) by marginalizing out ρ:

L(β | (i, j); s, t) = P(ε = (i, j); β) (3.8)
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20 I. KIVIMÄKI ET AL.

=
∑

℘∈Pst

P(ε = (i, j), ρ = ℘; β) (3.9)

= 1

Zst

∑
℘∈Pst

w̃(℘)nij(℘)

L(℘)
= − 1

βZst

∂Z̃st

∂cij
, (3.10)

where we define a new partition function

Z̃st =
∑

℘∈Pst

w̃(℘)

L(℘)
=

∞∑
k=1

∑
℘k∈P(k)

st

w̃(℘k)

k
, (3.11)

with P (k)
st being the set of hitting paths from s to t of length k. Recalling Equation (1.15) and that

−t
W is

the matrix obtained from matrix W by setting row t to zero, we see that the new partition function can
be expressed using the matrix logarithm:

Z̃st =
⎡⎣−t

W +
−t
W2

2
+

−t
W3

3
+ · · ·

⎤⎦
st

=
[
−log(I − −t

W)

]
st

, (3.12)

which exists, as ρ(
−t
W) < 1.

Next we show how the derivative of the above quantity, needed for the computation of the likelihood
(3.10), can be computed. For this, we use the shorthand notation ∂cij X = ∂X/∂cij for the partial derivative
of a quantity X (e.g. a function or a matrix). First of all, for any (i, j) ∈ E such that i �= t,

∂cij

−t
W =

(
∂cij wij

)
Iij =

(
∂cij p

rw
ij exp(−βcij)

)
Iij = −βWij, (3.13)

where Iij = eieT
j is the matrix with 1 at element (i, j) and zero elsewhere, and where we have defined

Wij = wijIij. We can thus write the derivative of
−t
Wk as

∂
−t
Wk

∂cij
= (∂cij

−t
W)

−t
Wk−1 + −t

W(∂cij

−t
Wk−1)

= −β

(
Wij

−t
Wk−1 + −t

W
(

Wij

−t
Wk−2 + −t

W
(

Wij

−t
Wk−3 + · · ·

)))

= −β

k∑
l=1

−t
Wl−1Wij

−t
Wk−l � −βS(k)

ij , (3.14)

where we have defined, for convenience,

S(k)

ij =
k∑

l=1

−t
Wl−1Wij

−t
Wk−l. (3.15)
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 21

This matrix can be computed with the help of the auxiliary (2n × 2n) block matrix

Qij =
⎡⎣ −t

W Wij

0
−t
W

⎤⎦ , (3.16)

as the kth power of this matrix can be shown to be:

Qk
ij =

⎡⎣ −t
Wk S(k)

ij

0
−t
Wk

⎤⎦ . (3.17)

Accordingly, the derivative of the new partition function, required in Equation (3.10), can be computed
as

∂Z̃st

∂cij
= eT

s

∞∑
k=1

⎛⎝∂
−t
Wk/k

∂cij

⎞⎠ et (3.18)

= −βeT
s

∞∑
k=1

S(k)

ij

k
et (3.19)

= −βeT
s

∞∑
k=1

Qk
ij

k
en+t (3.20)

= −βeT
s Lijen+t (3.21)

= −β
[
Lij

]
s,n+t

, (3.22)

where

Lij =
∞∑

k=1

Qk
ij

k
= −log(I − Qij). (3.23)

Finally, combining (3.10) and (3.22), the likelihood function can be expressed as

L(β | (i, j); s, t) = − 1

βZst
(−β

[
Lij

]
s,n+t

) =
[
Lij

]
s,n+t

Zst
. (3.24)

�

It is possible to derive the derivative with respect to β of the above likelihood function. However, the
form of the derivative is rather complicated, involving the matrix logarithm of a (4n × 4n) block matrix.
More importantly, the root of the derivative cannot be solved in closed form, unlike in the case with
complete trajectories in Section 2. Thus, for finding β̂MLE, it is more straightforward to search directly
for a value of β that maximizes (3.1).
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22 I. KIVIMÄKI ET AL.

Fig. 2. The computation of the one-edge likelihood can be interpreted as making a copy G′ of the original graph G and adding an
edge from node i of G to node j of G′ and considering likelihoods of paths from node s of G to node t of G′.

3.2.2 Intuition behind the computation of the likelihood function The computation of the single-edge
likelihood can also be understood from another, more informal, perspective. Namely, the matrix Qij in
Equation (3.3) can be interpreted as a likelihood matrix defining a new graph consisting of the original
graph G (with links going out of the target node t deleted) augmented with its copy G′ and with a
directed edge from node i of subgraph G to node j of subgraph G′ (i.e. node n + j of the new graph) with
edge likelihood wij. This idea is illustrated in Fig. 2. Element (s, n + t) of the kth power of matrix Qij

thus enumerates all s-t-paths of length k that traverse edge (i, j) and cumulates the corresponding path
likelihoods.

Concerning the computation in practice, the current standard for matrix logarithm computations is
the algorithm developed in [55], which is implemented, for instance, in Matlab and SciPy as the logm
function. However, we are only interested in computing one element of the matrix logarithm, and for this
purpose, we found the Matlab implementation numerically too unreliable. More exactly, the algorithm
produces inaccurate values of the element (s, n+t) of matrix Lij (see Equation (3.22)) when β is relatively
large, causing the values [Lij]s,n+t to be very small. To get more reliable values, we compute the matrix
logarithm element iteratively based on the power series expression of the logarithm, by computing a finite
sum according to Equation (3.12).

For future research, it is worth mentioning that the above computational techniques involving the
matrix logarithm could also be used, for example, for defining a network centrality measure based on
the probability of uniformly sampling an edge or node over paths between nodes. This could be done
considering the RSP distribution, but also with the natural random walk distribution. Namely, for the
observation probability over natural random s-t-walks, one can simply perform the above computations

by setting β = 0, which corresponds to replacing the matrix
−t
W with the matrix Prw − IttPrw, that is, the

random walk transition probability matrix with row t set to zero.

3.2.3 Example of the one-edge likelihood We demonstrate the behaviour of the one-edge likelihood,
expressed in Equation (3.1), with a simple example illustrated in Fig. 3A. We consider a 5 × 5 grid with
links to diagonal neighbours included. The edge costs are 1 for horizontal and vertical edges, and

√
2 for

diagonal edges and affinities as inverse costs, aij = 1/cij. We consider paths from node 7, in the lower
left corner, to node 25 in the upper and right-most corner. We then compute, for different values of β, the
likelihood of observing each of the edges leaving from node 7 as an edge of such a path.
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MAXIMUM LIKELIHOOD ESTIMATION FOR RANDOMIZED SHORTEST PATHS 23

(A) (B)

Fig. 3. The 5 × 5 grid, where the green node 7 is the starting node, s, the red node 25 is the absorbing target node, t (A); the
log-likelihoods of observing each of the coloured edges for different values of β (B). Note the logarithmic scale on the horizontal
axis.

The results are plotted in Fig. 3B, which shows the likelihoods for each edge as a function of β as
separate curves. Moreover, the dashed vertical lines indicate the peaks of the curves, i.e. the value β̂MLE

corresponding to observing the edge in question. As is expected, the highest β̂MLE value is obtained for
the edge (7, 13), which lies on the least cost path from node 7 to node 25.1 In addition, the β̂MLE values
decrease as we consider edges that move more and more away from the shortest path.

3.3 One observed node

The likelihood of β can also be computed in the case where a trajectory is observed to visit a particular node
instead of an edge. We derive the one-node likelihood using the fact that the number of visits to a node i
along a path ℘, ni(℘), can be expressed as the sum of travelsals out of that node: ni(℘) = ∑

j∈Succ(i) nij(℘).
Note that this definition of ni(℘) directly means that the observed node cannot be the absorbing terminal
node t, that is, that the observation is made before the end of the path.

However, the possibility that the intermediate node, drawn from a path ℘ ∈ Pst , is actually node
s, must be considered more carefully. In this work, we assume that the outcome of the observation can
indeed be node s, but that the observation is done after the first step, that is, that the observation is
made from the subsequence ℘(1, . . . , L(℘) − 1), excluding the first node ℘(0) = s and the last node
℘(L(℘)) = t. Moreover, we assume that the node is sampled uniformly from this subsequence. The
exclusion of the first node ℘(0) from consideration complicates the derivation a bit compared to the
derivation of the single-edge likelihood. Because of this, the full derivation of the result is presented
separately in Appendix A.

1 In fact, in this case, the likelihood can be seen to increase indefinitely, indicating that β̂MLE = ∞. Indeed, as β increases,
the RSP probability of the least cost path along edge (7, 13) increases, and the probability of observing the edge (7, 13) increases
likewise. This also leads to the increase of the likelihood function indefinitely as β increases.
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24 I. KIVIMÄKI ET AL.

Theorem 5 Let ℘ be a hitting path from s to t drawn from the RSP distribution (Equation (1.8)), and
let i be a node sampled from a uniform distribution over the node sequence of ℘. Then, the likelihood
function of β can be computed as

L(β | i; s, t) = 1

Zst

∑
u∈Succ(s)

wsu [Li]u,n+t , (3.25)

which contains, again, a matrix logarithm, Li = −log(I − Qi), where

Qi =
⎡⎣ −t

W Wr(i)

0
−t
W

⎤⎦ , (3.26)

and Wr(i) = IiiW is the matrix containing the ith row of matrix W on its ith row, but zeros elsewhere.

Proof. In Appendix A. �

3.4 Multiple observed edges

In many data sets of incomplete trajectories, the trajectories contain several observations, meaning that
the trajectories have been observed to pass through more than only one edge or node of the network. Here,
the computation of the likelihood of β given such a sequence of multiple observed edges is presented.
For this, consider a data set containing one sequence ẽ = (e1, . . . , eM) of M edges observed from one
trajectory (in the corresponding order). Let us also denote (im, jm) = em for all m = 1, . . . , M and assume
that all im and jm (except possibly jM) are different from the target node t.

One main difference with the results presented earlier, for the one-edge and one-node likelihoods, is
that now the number of observations from a trajectory also needs to be considered as a random variable.
Let us denote this random variable by μ. Furthermore, let ε̃ = (ε1, . . . , εM) be the random vector
corresponding to the observed edge sequence of given length M consisting of the random variables
corresponding to the observed individual edges. Similar to the uniformity assumption used in the cases
of observing only one edge or node, we also assume a uniform distribution both for μ and for ε̃, in
addition to which we assume independence between the random variables ε1, . . . , εM . One justification
for considering the uniform distribution in both cases is that they are, in this setting, the maximum entropy
distributions, which implies that these assumptions are the most naive and generic ones possible.

In Section 3.7, we will also briefly consider an alternative where μ is binomially distributed. Assuming
other distributions may also make the model more accurate in cases where the actual sampling is known
to behave in a certain way, but the naive uniformity assumption can be useful when the sampling process
is not known or is very irregular. Such is the case, for instance, with the real data example in Section 4,
where we estimate β when fitting the RSP model to a data set of incomplete trajectories of wild reindeer.
In that data, although the locations of the animals are mostly measured at constant time intervals, there
are also missing observations causing long gaps between measurements.

Let us now derive the likelihood using the uniformity assumptions. Thus, assume that the number of
oberved edges, given a path ℘, is uniformly distributed, that is,
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P(μ = M | ρ = ℘) = 1/L(℘). (3.27)

Similarly, assume that given a path ℘ and a number of observations M the probability of observing the
edge sequence ẽ of M edges from ℘ is uniformly distributed over all

(L(℘)

M

)
possible subsequences of M

edges that can be drawn from ℘. For this, we denote by nẽ(℘) the number of times that the edge sequence
of ℘ contains ẽ as a subsequence. Then, the distribution of ε̃, conditional on the number of observations,
is

P(ε̃ = ẽ | μ = M, ρ = ℘) = nẽ(℘)(L(℘)

M

) . (3.28)

Theorem 6 Let ℘ be a hitting path from s to t drawn from the RSP distribution (Equation (1.8)), and let
ẽ be a sequence of M edges, sampled from a uniform distribution over the edge sequence of ℘, where,
furthermore, M is drawn from a uniform distribution over {1, . . . , L(℘)}. Then, the likelihood function
of β can be computed as

L(β | ẽ; s, t) = [Lẽ]s,Mn+t

Zst
, (3.29)

where

Lẽ =
∞∑

k=M

Qk
ẽ( k

M

)
k

, (3.30)

and

Qẽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−t
W Wi1j1 0 0 . . . 0

0
−t
W Wi2j2 0 . . . 0

0 0
−t
W

. . .
...

...
...

. . .
. . . 0

0
−t
W WiM jM

0 . . . . . . 0
−t
W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.31)

Proof. We present an exact proof of the theorem only in the special case of observing two edges in
Appendix B. Below, we sketch the intuition behind the proof in an informal way. �

Using Equations (3.27) and (3.28), the likelihood can be written as

L(β | ẽ; s, t) = P (ε̃ = ẽ, μ = M) (3.32)

=
∑

℘∈Pst

Pst(℘)P (ε̃ = ẽ | μ = M, ρ = ℘) P(μ = M | ρ = ℘) (3.33)
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26 I. KIVIMÄKI ET AL.

Fig. 4. The computation of the two-edge likelihood can be interpreted as making two copies, G′ and G′′, of the original graph G
and adding the required edges between the copies.

=
∑

℘∈Pst

Pst(℘)
nẽ(℘)(L(℘)

M

) · 1

L(℘)
(3.34)

= 1

Zst

∞∑
k=M

1( k
M

)
k

∑
℘k∈P(k)

st

w̃(℘k)nẽ(℘k). (3.35)

The exact manipulation of the above expression is fairly involved and is presented in Appendix B only
for the case of observing two edges on a trajectory. The derivation for two edges extends naturally to the
case of an arbitrary number of observed edges, although the proof of this is omitted for brevity. Here,
we only give an intuitive description of the derivation of the multiple-edge likelihood based on the idea
of copying the graph, used also earlier for explaining the computation of the one-edge likelihood, in
Section 3.2 and illustrated in Fig. 2.

Namely, for the edge sequence ẽ, we may consider producing M duplicates of the original graph
G and connect the duplicates via the edges of the sequence ẽ. This is illustrated for the case of two
observed edges in Fig. 4. Indeed, the extended likelihood matrix Qẽ from Equation (3.31) represents such
an extended graph of M + 1 copies of the original graph.

Now, it can be shown that the inner sum in the expression in (3.35) is given by element (s, Mn + t)
of the kth power of the matrix Qẽ; more exactly

∑
℘k∈P(k)

st

w̃(℘k)nij(℘k) = [
Qk

ẽ

]
s,Mn+t

. (3.36)

This result is proved formally for the two-edge likelihood in Appendix B. The case of observing M edges
follows from there naturally. Inserting the above Equation (3.36), as well the definition in Equation (3.30),
into Equation (3.35) leads to the desired result.

Note that unlike in the one-edge or one-node likelihood cases, the expression of the likelihood in Theo-
rem 6 has no direct connection with the matrix logarithm, and that the expression in Equation (3.30) cannot
be written in closed form. Instead, we compute the likelihood by computing the sum in Equation (3.30)
up to convergence.
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3.5 Multiple observed nodes

The likelihood of β given an incomplete node-trajectory can be computed similarly to the likelihood of
the incomplete edge-trajectory. The derivation of the computation is similar to the extension from the
one-edge likelihood to the one-node likelihood presented in Appendix 3.3. Because of this, we omit the
derivation and only state the result.

Theorem 7 Again, let ℘ be a hitting path from s to t drawn from the RSP distribution (Equation (1.8)),
and now, let ṽ be a sequence of M nodes, sampled from a uniform distribution over the node sequence
of ℘ (excluding the first and last nodes of the sequence),2 where, furthermore, M is drawn from a
uniform distribution over {1, . . . , L(℘) − 1}. With these assumptions, the multiple-node likelihood is
given, similarly to Equations (3.25) and (3.29), by

L(β | ṽ) = 1

Zst

∑
h∈Succ(s)

wsu [Lṽ]h,Mn+t , (3.37)

where the matrix Lṽ is defined equivalently to Equation (3.30), but by replacing matrix Qẽ with matrix
Qṽ, which, furthermore, is defined equivalently to the definition of the matrix Qẽ in Equation (3.31),
however, replacing the matrices Wimjm with the node-based matrices Wr(im) = Iimim W, which contain row
im of W on row im and zeros elsewhere (see Equation (3.26)).

Proof. This can be shown by extending the proof of Theorem 6 similarly to the extension from the
one-edge likelihood in Theorem 4 to the one-node likelihood in Theorem 5. However, the presentation
is omitted from here for brevity. �

The next section is devoted to verifying the above result with an artificial experiment, and in Section 4
its functionality and usability is tested with real data of incomplete trajectories of wild reindeer.

3.6 Validation of β̂MLE with incomplete trajectories

We evaluated the applicability and precision of the MLE method in the case of incomplete trajectories
from s to t. We only considered incomplete node trajectories and the corresponding method for computing
the MLE. The setting was similar to the experiment for validating the MLEs for complete trajectories in
Section 2. Namely, we again generated 200 paths for different values of β between uniformly distributed
s-t-pairs, where s and t were at least 3 steps apart from each other. We used the same three graphs that
were used in Section 2, that is, a grid with uniform costs, a simulated Gaussian landscape and a graph
generated with the LFR algorithm.

From the 200 generated paths, we extract a set � of 200 incomplete node trajectories by sampling
M nodes, where M = min(300, M ′), and M ′ is drawn uniformly from 1, . . . , L(℘). We limit the maxi-
mum length of an incomplete trajectory to 300 for computational efficiency. We then compute β̂MLE by

2 Again, as in the one-node likelihood case, studied in Section 3.3, the possibility of the first node being s must be considered
separately. As was done there, we here also make the assumption that the first observed node can be s, but it cannot be the first
node, ℘(0), of the observed path ℘.
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Table 2 The MLEs in the experiment with incomplete node trajectories. The first column on the left
shows the value of β used for generating the paths and the two other columns show the mean ± the
standard deviation of the MLEs over 10 repetitions.

β β̂MLE, uniform grid β̂MLE, simulated landscape β̂MLE, LFR graph

0.001 0.00101 ± 0.00016 0.00106 ± 0.00013 0.00108 ± 0.00033
0.005 0.00497 ± 0.00043 0.00510 ± 0.00069 0.00471 ± 0.00119
0.01 0.00980 ± 0.00070 0.00992 ± 0.00088 0.01045 ± 0.00198
0.05 0.05014 ± 0.00275 0.05091 ± 0.00250 0.05297 ± 0.00860
0.1 0.10117 ± 0.00704 0.09433 ± 0.00807 0.10384 ± 0.01226
0.5 0.50810 ± 0.03167 0.49411 ± 0.02237 0.49841 ± 0.05781
1 1.01074 ± 0.07147 0.98349 ± 0.03991 0.98186 ± 0.07691
5 4.92557 ± 0.27878 4.93601 ± 0.24915 5.09714 ± 0.45950
10 12.73153 ± 5.07237 10.08324 ± 0.28333 10.49840 ± 0.98032

performing a line search on β for finding the maximum value of log L(β | �). This is again repeated 10
times and we report the mean and standard deviation of the 10 obtained MLE values.

The results are gathered in Table 2. They show that the MLEs are accurate throughout the tested
range of values of β and thus confirm that the methodology derived in Section 3 can be used in practice.
Moreover, quite surprisingly, the results are almost as accurate as the results in Table 1 in the experiment
with complete trajectories of Section 2.3.

3.7 Binomial distribution on number of observations

So far, we assumed that the number of observations in an incomplete trajectory is a random variable
distributed uniformly over the range [1, L(℘)], where ℘ is the trajectory being observed. In this section,
we briefly discuss an alternative for the uniformity assumption by considering a binomial distribution
over the number of observations, μ ∼ Bin(L(℘), pμ) with the condition that L(℘) > 0. We only derive
here a way for computing the likelihood from incomplete trajectories with this assumption, but leave
further examination of this idea for future work.

Considering that the random variable corresponding to the number of observations of an incomplete
trajectory, μ, is binomially distributed, involves an additional parameter, pμ, that is, the probability of
making an observation at each step of an observed path. Thus, using this assumption means that pμ can
be estimated from the data by some means. Assuming a binomial distribution for μ, the probability of
observing M ≥ 1 edges from a path ℘ is

P(μ = M | μ ≥ 1) = P(μ = M)

1 − P(μ = 0)

= 1

1 − qM
μ

(
L(℘)

M

)
pM

μ qL(℘)−M
μ ,

= pM
μ qL(℘)

μ

qM
μ (1 − qM

μ )

(
L(℘)

M

)
,

(3.38)
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where pμ is a fixed probability that an observation is recorded at any given step of path of ℘ and
qμ = 1 − pμ. Inserting this to the expression of the likelihood in Equation (3.33) gives

L(β | ẽ) = pM
μ

qM
μ (1 − qM

μ )

∑
℘∈Pst

Pst(℘)nẽ(℘)qL(℘)
μ , (3.39)

which can be computed by replacing the definition of Lẽ, instead of Equation (3.30), as

Lẽ =
∞∑

k=1

(qμQẽ)
k = (

I − qμQẽ

)−1
. (3.40)

We only need the element [Lẽ]s,Mn+t from this matrix, which can be obtained, for instance, by solving the
(Mn + t)th column, lẽ

Mn+t , of Lẽ from the linear system(
I − qμQẽ

)
lẽ
Mn+t = eMn+t (3.41)

and picking its sth element. Then, the likelihood is given by replacing Equation (3.29) with

L(β | ẽ) = pM
μ

qM
μ (1 − qM

μ )
· [Lẽ]s,Mn+t

Zst
. (3.42)

Computing [Lẽ]s,Mn+t from the matrix inverse in Equation (3.41) can be done more efficiently than the
computation from Equation (3.30), which cannot be expressed in closed form. However, as mentioned
earlier, this method requires setting the observation probability pμ as an additional parameter, which
is not needed in the method based on the uniform distribution. However, as already mentioned, in the
remainder of the article, we will only focus on the uniformity assumption, as described in Section 3.4,
and leave the further study of the binomial assumption, discussed here, for future work.

4. Application to animal movement modelling

In order to test the applicability of the method for computing the MLE of β in a real data setting, we
ran the MLE method for a set of GPS trajectory data collected from individual wild mountain reindeer
in the Austhei area of Norway. The reason for studying this data is based on the apparent suitability of
RSPs for modelling animal movement. This holds especially for the study of wild reindeer, which are a
migratory species, that often have a good sense of knowledge of their environment. Accordingly, they
can be considered to follow fairly optimal routes when moving in a landscape. It would be, however,
unrealistic to assume that the animals always follow only the optimal path on a static landscape. Instead
their movement decisions may be considered to involve some randomness. This is exactly the kind of
scenario that the RSP framework is designed for. However, the aim of the experiments reported here
was simply to test whether the MLEs are practical to compute for real data with the methods derived
above and to see whether the estimates obtained seem sensible. We leave a more careful analysis of the
obtained results, and their applicability in more focused ecological problems, such as actual prediction
of movement, for future work.

The data considered here consist of incomplete trajectories recorded during springtime migration,
when the reindeer traverse the landscape from north to south crossing over a road passage cutting through
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Fig. 5. Visualization of the landscape used for studying wild reindeer movement showing the average incoming edge affinity of
each pixel as a heatmap (A). The heatmap of the number of times an animal was observed at each pixel (in red hue; the blue hue
shows the low-affinity (i.e. high cost) pixels simply in order to display the shape of the landscape on the image) based on the GPS
data (B).

the landscape. The same area and partly the same data were studied previously in the context of RSPs
in [19], although there the graph was constructed differently compared to the experiment presented here.
In [19], a method was also devised for estimating the inverse temperature parameter, however based on
a very different, more situation-dependent approach, compared to the more generic method introduced
in this work.

The landscape is modelled as a rectangular grid graph, where each node represents a 500 m wide
square pixel of a map image of the landscape. The size of the landscape is 80.5 km × 46 km, resulting
in a graph with 14812 nodes. As before, each pixel was again connected to its eight surrounding pixels.
First, the edge affinities aij were defined as Step Selection Probabilities (SSP) [56], inferred by detecting
features on each pixel with remote sensing methods and by measuring the preference of those features
for movement based on the reindeer GPS data. A more detailed explanation of how the affinities were
defined is provided in Appendix C. The edge costs were defined simply as the reciprocals of affinities,
i.e. cij = 1/aij. The landscape is illustrated in Fig. 5A as a heatmap, where the pixels are coloured
according to the average incoming edge affinity of each pixel.

The data contain 32 incomplete trajectories recorded during the years 2007–2013 from 14 different
individuals. Figure 5B visualizes the trajectory data by marking the number of times any of the 32
trajectories were observed at each pixel. The GPS measurements were made for the most part every
3 h, 50 % of trajectories contained all locations. However, many trajectories contain gaps of 6 h to 1
day, and one trajectory is missing locations for nearly 2 weeks. Trajectories started in the winter range
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(A) (B) (C)

Fig. 6. Examples of three trajectories of individual reindeer and the MLE of β of each trajectory. The starting point, on the north
side of the landscape, is depicted with a blue ’x’, and the ending point with a magenta ’+’. All 32 trajectories in the data have
different source and target nodes s and t.

between 1st and 20th March, and ended in the summer range between 8th and 30th June. We cut the
original trajectories after they have crossed a certain line which can be interpreted as a border of the
summer range. The number of observations in the resulting trajectories was between 57 and 535. For
each observation, we detect the pixel that the animal is in, and use the method derived in Section 3 for
computing the multiple-node likelihood. We consider the trajectories as extracted from hitting paths,
where the hitting node is selected to be the first pixel within the summer range where the animal has been
observed. As discussed in Section 3.1, more sophisticated methods could be used for determining the
hitting target node, such as the margin-constrained RSP model [53], where the graph nodes are assigned
probabilities of being a starting or ending node of a path.

We first computed β̂MLE for each trajectory separately, resulting in 32 MLE values. Figure 6 shows
three examples of trajectories and the corresponding β̂MLE values. As can be seen, the MLE values from
Fig. 6A–C increase. Similarly, the directness of the trajectories, in that order, seemingly increases. The
trajectory in Fig. 6A appears to circulate fairly randomly before arriving at the destination, whereas the
trajectory in Fig. 6C is heads quite straightforwardly towards the destination. The trajectory in Fig. 6B
appears as an intermediate type between the two others. These examples provide a sanity check and show
that the MLE method gives reasonable and meaningful estimates of β.

A histogram of the MLE values of the 32 trajectories is presented in Fig. 7. The MLEs remained for
the most part in a fairly consistent range of values, between [0.001, 0.01], with one exceptional trajectory
obtaining a MLE below this range, namely β̂MLE = 0.0004715. The mean of the individual MLEs was
〈β̂MLE(℘)〉℘∈� = 0.003311, and is represented in Fig. 7 as the dashed magenta line.

In addition to estimating the individual trajectory MLEs, we also considered the whole set of trajec-
tories as being generated by the same value of β, and thus computed the population-wide MLE value
using the whole set of trajectories. Note that all the trajectories are between different s-t-pairs, where s
is simply the first observed node of the trajectory, on the winter range, and t is, as explained earlier, the
first observed node on the trajectory that is located on the summer range. We consider the likelihood of
the set as the product of the likelihoods of each trajectory, that is, that the trajectories are independent.
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Fig. 7. Histogram of the MLE values for the 32 trajectories of reindeer. The solid red line marks the MLE obtained with the whole
set of trajectories, β̂MLE(�) = 0.002466, whereas the magenta dashed line shows the mean of the individual trajectory MLEs,
〈β̂MLE(℘)〉℘∈� = 0.003311.

Fig. 8. The expected number of visits to each pixel over the RSP probability distributions between each observed s-t-pair, with
three values of β = 0.1 (A), β̂MLE(�) = 0.002466 (B; the MLE based on the set of trajectories �), and β = 0.0001 (C). The red
hue at pixel i marks the value

∑
(s,t)∈X n̄i(s, t), given the value of β depicted above the plot. Here, X denotes the set of s-t-pairs of

the trajectories in the data set �.

Assuming independence between the trajectories is convenient for computation, but is also justified by the
fact that the trajectories are mostly collected over different years and can be from individuals belonging
to different herds. The MLE given by the whole set of trajectories was β̂MLE(�) = 0.002466, and is
marked by the solid red line in Fig. 7.

Figure 8 contains plots for the expected numbers of visits according to the RSP model with different
values of β. These were computed by considering the starting and ending nodes, s and t, of each trajectory
in the data separately, computing the expected number of visits to each pixel for that s-t-pair, and by
summing the contributions of each s-t-pair. In each plot, the blue hue represents the average incoming
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edge cost of each pixel, and the transparent red hue represents the observed or expected number of visits
by an animal to a pixel.

Figure 8A corresponds to the model computed with β = 0.1, and Fig. 8C with β = 0.0001 for each
s-t-pair. In between, Fig. 8B shows the result with the value β = 0.002466, which is the MLE estimated
by using the whole set of trajectories. We also constructed another plot by using for each s-t-pair the MLE
of β of the corresponding trajectory, but it is not presented here, because it resembles almost exactly the
plot obtained with the global MLE in Fig. 8B.

A visual inspection of the different plots obtained with the RSP distribution using different values of
β indicates that the model using the MLE values of β has most resemblance with the plot of the actual
observations. Note, however, that the plots in Fig. 8 are not exactly expected to resemble the plot in
Fig. 5B. Namely, as explained before, the RSP model does not take into account the temporal aspect of
the movement. The temporal aspect, however, is grained in the trajectories, as the speed of movement
and the time interval between observations vary. For instance, after crossing the road over to the south
side, the animals tend to move faster away from the road [57]. This results generally in a fewer number
of observations in the pixels south of the road. In other words, Fig. 5B rather depicts the time spent at
each pixel by the animals. Instead, the plots in Fig. 8, given by the RSP model, reflect the importance of
each pixel as an intermediate point of movement, which can be more crucial, for instance, for detecting
corridors and barriers in a landscape.

5. Conclusion

This paper focused on the estimation of parameters when fitting the RSP model to data containing
trajectories on a network, with most focus on the estimation of the inverse temperature parameter β.
Methods were derived for computing and maximizing the likelihood of values of β given a data set of
either complete or incomplete trajectories (in Sections 2 and 3, respectively). The methods were shown to
provide accurate estimates of β with simulation examples where trajectories were generated on artificially
constructed graphs. In addition to estimation of β, also maximum likelihood estimates of the edge costs,
cij, (i, j) ∈ E, of a graph were derived, when dealing with complete trajectories.

The MLE method derived for incomplete trajectories was also tested on real data of trajectories of
wild mountain reindeer on a landscape area in Norway. The purpose of the experiment was only to verify
further that the MLEs of β can be computed in practice and that the estimates seem reasonable and
sensible. This indicates that the MLE method provides a well-founded and functional way for model
fitting, when using the RSP model for more specific applications related to animal movement.

The most significant theoretical results of the paper, in Section 3, dealt with fitting the parameter β to
data consisting of incomplete trajectories. As a computational peculiarity, the derivation of the likelihood
function in the special case of observing only one edge or node of a trajectory was shown to involve the
matrix logarithm. In fact, the computational techniques appearing in the derivation could be applied for
various other network analysis purposes. For instance, a similar method can be derived for computing the
expected average edge cost of paths, which can be of use in situations where, for instance, two nodes may
be considered more reliably connected when there are, on average, no high-cost edges between them.
Also, as discussed in Section 3, the matrix logarithm could be used for computing the probability of
observing an edge or node over the natural random walk distribution between an s-t-pair, assuming the
uniform distribution over the path for the sampling process. This could be developed further to define a
new network centrality measure based on the observation probability of edges or nodes.

One further extension of the theory developed in this work is to consider features on the edges or
nodes of the network as separate costs, and to fit parameters on those features assuming the RSP model.
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Likelihood maximization could also be developed for other observation scenarios than the one dealt in
this work. One example would be a case where some of the nodes or edges of the network contain sensors
and the trajectories can only be observed when they visit these sensor nodes or edges. Also, the RSP
framework will in future work be extended to temporal networks, which will bring more challenges also
to the parameter estimation problem. Lastly, the methods developed here will hopefully indicate new
principled ways of selecting an appropriate value for β for other network data analysis tasks that the RSP
framework is used for.
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Appendix: Additional material and proofs of main results

A. Proof of Theorem 5

As before, let ρ be the random variable corresponding to the drawing of a path from the set Pst according
to the RSP distribution (Equation (1.8)). Given a path ℘ = (℘ (0) = s, ℘(1), . . . , ℘(L(℘)) = t), let us
consider two random variables:

• ν0, corresponding to the drawing of an intermediate node, drawn uniformly from the subsequence of
℘ excluding the last node, but including the first node, that is, (℘ (0), . . . , ℘(L(℘) − 1)), and

• ν1 corresponding to the drawing of an intermediate node, drawn uniformly from the subsequence of
℘ excluding both the first and last node, that is, (℘ (1), . . . , ℘(L(℘) − 1)).

Recalling the assumptions stated in Section 3.3, the one-node likelihood is given by the probability
distribution of ν1. However, we first derive the distribution of ν0 as an intermediate result and use it to
derive the distribution of ν1.

Using ni(℘) = ∑
j∈Succ(i) nij(℘), as earlier, the conditional probability of node i as the outcome of ν0,

given a path ℘ ∈ Pst , is

P(ν0 = i | ρ = ℘) = n̄i(℘)

L(℘)
=
∑

j∈Succ(i) n̄ij(℘)

L(℘)
. (A.1)

Then, marginalizing out ρ, we can write the distribution of ν0, in similar fashion to Equation (3.10)
for the one-edge likelihood, as

P(ν0 = i; β) = 1

Zst

∑
j∈Succ(i)

∑
℘∈Pst

w̃(℘)nij(℘)

L(℘)
(A.2)
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= − 1

βZst

∑
j∈Succ(i)

∂Z̃st

∂cij
. (A.3)

This equation is the equivalent of Equation (3.10) for edges. Now, similar to Equation (3.14), we have,
for any k ≥ 1

∑
j∈Succ(i)

∂
−t
Wk

∂cij
= −β

∑
j∈Succ(i)

k∑
l=1

−t
Wl−1WijWk−l (A.4)

= −β

k∑
l=1

−t
Wl−1

⎛⎝ ∑
j∈Succ(i)

Wij

⎞⎠Wk−l (A.5)

= −β

k∑
l=1

−t
Wl−1Wr(i)

−t
Wk−l (A.6)

� −βS(k)

i , (A.7)

where Wr(i) = IiiW is the matrix containing the ith row of matrix W on its ith row, but zeros elsewhere,
and S(k)

i defined analogously to S(k)

ij in Equation (3.15).
The rest of the derivation of the distribution of ν0 proceeds as in the single-edge likelihood case, but

with matrix Wr(i) in place of matrix Wij. Namely, the derivative expression appearing in Equation (A.3)
can be computed (as in Equations (3.18)–(3.22)), as

∑
j∈Succ(i)

∂Z̃st

∂cij
= eT

s

∞∑
k=1

S(k)

i

k
et , (A.8)

which, again, can be computed as element (s, n + t) of the matrix logarithm Li = −log(I − Qi), with the
(2n × 2n) block matrix (see Equation (3.20))

Qi =
⎡⎣ −t

W Wr(i)

0
−t
W

⎤⎦ . (A.9)

In conclusion, we can write the distribution of ν0 as

P(ν0 = i) = − 1

βZst
(−β[Li]s,n+t) = [Li]s,n+t

Zst
. (A.10)

Using the above, we can then derive the one-node likelihood according to the distribution of ν1. We
do this by considering a split of each path ℘ ∈ Pst into a path consisting of the first step, from s to one of
its successor nodes u ∈ Succ(s), and the rest of the path, from u to t. We denote, generally, by ℘u ∈ Pst

a path from s to t whose second node is a successor u ∈ Succ(s) of s, and by ℘ ′
u ∈ Put the remainder of

path ℘u after the first step. The likelihood is then given by

L(β | i) = P(ν1 = i; β) =
∑

℘∈Pst

Pst(℘)P(ν1 = i | ρ = ℘) (A.11)
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= 1

Zst

∑
℘∈Pst

w̃(℘)P(ν1 = i | ρ = ℘) (A.12)

= 1

Zst

∑
u∈Succ(s)

∑
℘u∈Pst
℘u(1)=u

w̃(℘u)P(ν1 = i | ρ = ℘u) (A.13)

= 1

Zst

∑
u∈Succ(s)

wsu

∑
℘′

u∈Put

w̃(℘ ′
u)P(ν0 = i | ρ = ℘ ′

u) (A.14)

= 1

Zst

∑
u∈Succ(s)

wsuP(ν0 = i)Zut (A.15)

= 1

Zst

∑
u∈Succ(s)

wsu [Li]u,n+t , (A.16)

where

P(ν0 = i)Zut =
∑

℘′
u∈Put

w̃(℘ ′
u)P(ν0 = i | ρ = ℘ ′

u) (A.17)

derives from

P(ν0 = i) =
∑

℘′
u∈Put

P(ρ = ℘ ′
u)P(ν0 = i | ρ = ℘ ′

u) (A.18)

when considering paths from u to t, instead of from s to t. This is the desired result, as expressed in
Equation (3.25).

�

B. Proof of Theorem 6 in the case of two observed edges

Here, we describe a more rigorous derivation, compared to the heuristic justification of Section 3.4, for the
computation of the two-edge likelihood, that is, the likelihood of observing two edges e1 = (i1, j1), e2 =
(i2, j2) along a path ℘. The derivation of the likelihood for the case of an arbitrary number of observed
edges, as expressed in Equation (3.29) could be derived in a similar way. However, here we deal only
with the two-edge case for conciseness and clarity.

We begin by rewriting the form presented in Equation (3.35) for the likelihood, with M = 2:

L(β | (e1, e2)) = 1

Zst

∞∑
k=2

1(k
2

) ∑
℘k∈P(k)

st

w̃(℘k)ne1�e2(℘k), (B.1)

where now ne1�e2(℘k) denotes the number of times that edges e1 and e2 appear on ℘k in that order, counting
all occurences of e1 and e2 as separate. For example, if ℘ = (1, 2, 3, 2, 3, 4), then n(1,2)�(2,3)(℘) = 2, as
the edge (2, 3) appears twice on ℘ after the appearance of the edge (1, 2).

Now, ne1�e2 can be calculated by iterating over all edges of the path, checking if the edge corresponds
to e1, and then computing the number of times e2 appears on the path after that. Summing the occurrences
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of e2 after each occurrence of e1 then gives ne1�e2 . Formally, for any ℘k ∈ P (k)
st with k ≥ 2, where

℘k = (℘ (0), ℘(1), . . . , ℘(k)), we have

ne1�e2(℘k) =
k−2∑
l=0

[
℘k (l, l + 1) = e1

]
ne2(℘k(l + 1 : k)), (B.2)

where ℘k(l1 : l2) = (℘ (l1), . . . , ℘(l2)) denotes the subpath of ℘k from the l1th node to the l2th node,
with 0 ≤ l1 < l2 ≤ k, and the brackets [ ] are the Iverson brackets [58], that is, 1 if the statement within
is true and 0 otherwise.

Inserting Equation (B.2) into the sum appearing in Equation (B.1), we can write the sum in matrix
form, for path length k ≥ 2 for path length k = 2 (using Equations (1.15), (3.7) and (3.13)):∑

℘k∈P(k)
st

w̃(℘k)ne1�e2(℘k)

=
∑

℘k∈P(k)
st

k−2∑
l=0

w̃(℘k(0 : l))
[
℘k (l, l + 1) = e1

]
× wi1j1w̃(℘k(l + 1 : k))ne2(℘k(l + 1 : k))

=
k−2∑
l=0

∑
℘k∈P(k)

st

w̃(℘k(0 : l))
[
℘k(l) = i1)

]

× wi1j1

[
℘k(l + 1) = j1

] (− 1

β

∂

∂ci2j2

w̃(℘k(l + 1 : k))

)

= − 1

β

k−2∑
l=0

eT
s

−t
Wlei1wi1j1eT

j1

⎛⎝∂
−t
Wk−l−1

∂ci2j2

⎞⎠ et

= 1

β2

k−2∑
l=0

eT
s

−t
Wl

⎛⎝ ∂
−t
W

∂ci1j1

⎞⎠⎛⎝∂
−t
Wk−l−1

∂ci2j2

⎞⎠ et .

(B.3)

But in fact, the matrix appearing above,

S(k)
e1�e2

= 1

β2

k−2∑
l=0

−t
Wl

⎛⎝ ∂
−t
W

∂ci1j1

⎞⎠⎛⎝∂
−t
Wk−l−1

∂ci2j2

⎞⎠ (B.4)

can be computed, for any k ≥ 2, as the (1, 3)-block of the kth power of matrix

Qe1�e2 =

⎡⎢⎢⎣
−t
W Wi1j1 0

0
−t
W Wi2j2

0 0
−t
W

⎤⎥⎥⎦ , (B.5)
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which is the two-edge version of the matrix Qẽ presented in Equation (3.31). For this, note that we can
write

Qe1�e2 =

⎡⎢⎢⎣
−t
W

−t
Wi1j1 0

0
−t
W

−t
Wi2j2

0 0
−t
W

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−t
W − 1

β
∂ci1j1

−t
W 0

0
−t
W − 1

β
∂ci2 j2

−t
W

0 0
−t
W

⎤⎥⎥⎥⎥⎦ . (B.6)

It can then be shown (although, again, omitted for brevity) by induction, that, for all k ≥ 2,

Qk
e1�e2

=

⎡⎢⎢⎢⎢⎣
−t
Wk − 1

β
∂ci1j1

−t
Wk 1

β2
S(k)

e1�e2

0
−t
Wk − 1

β
∂ci2 j2

−t
Wk

0 0
−t
Wk

⎤⎥⎥⎥⎥⎦ . (B.7)

Using the above, we can finally write the two-edge likelihood, continuing from Equation (B.1) as

L(β | (e1, e2)) = 1

Zst
eT

s

∞∑
k=2

1(k
2

)Qk
e1�e2

e2n+t =
[
Le1�e2

]
s,2n+t

Zst
, (B.8)

where

Le1�e2 =
∞∑

k=2

1(k
2

)Qk
e1�e2

(B.9)

is the two-edge version of Lẽ defined in Equation (3.30).
As already mentioned, the proof of Equation (3.29) for the likelihood for an arbitrary number M of

observed edges can be derived similarly to the process presented here. However, the derivation becomes
overly tedious and messy when for an arbitrary M and is left out of the scope of this work.

C. Estimation of edge affinities as step selection probabilities

For the landscape graph used in Section 4, we estimated the edge affinities aij based on the data and
general approach described in [19] from GPS data for more than 200 wild mountain reindeer from 7
of the largest wild reindeer management areas (including Austhei). As a slight difference, in [19] the
affinities were based on estimating a Step Selection Function without an intercept, and therefore the
model yielded values proportional, but not equal, to the probability of selecting a step. For the affinities
aij in this paper, we used the same models, but we refitted them using the method developed in [59] to
estimate actual probabilities of selection, using Step Selection Probability Functions (SSPF) [56, 60].
Using the ResourceSelection package [61] for R [62], we maximized the following log-likelihood
(see [56] for details):

L(β; x1, x2, . . . , xm) =
K∑

k=1

[(log π(xk; β) − log Pk(β))] (C.1)
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Table C1 Fitted coefficients for the summer step selection model of reindeer. ‘Max.’ denotes the maximum
value along the step, ‘prop.’ the proportion of the land cover class along the step, and ‘dens.’ is the road
density, which is the length of road within a 5 km radius. The methods are detailed in [19], our only
extension was to fit the models using a Step Selection Probability Function (see main text for further
details).

Estimate Std. error z-value Pr(> |z|)
Intercept −3.79 0.79 − 4.77 <0.001
Step length −1.24 × 10−3 2.51 × 10−5 −49.53 < 0.001
(max. slope)2 −1.33 × 10−3 4.79 × 10−5 −27.81 < 0.001
Max. solar radiation 0.30 0.02 17.77 < 0.001
Max. trail dens. −0.19 0.03 − 6.34 < 0.001
Max. road dens. 0.46 0.27 1.70 0.09
Crossing road −1.19 0.37 −3.20 < 0.001
Prop. bog −0.31 0.41 −0.76 0.45
Prop. non-forage 0.20 0.16 1.21 0.22
Prop. forage 0.88 0.14 6.37 < 0.001
Prop. lakes −1.40 0.33 −4.21 < 0.001
Prop. reservoirs −3.97 0.84 −4.70 < 0.001

where xk is the vector of M covariates associated to an observed step k between two consecutive locations,
i and j, K is the number of observed steps in the data set and π the probability of selection. Furthermore,

Pk(β) =
∫

π(x; β)fk(x; sk)dx, (C.2)

where fk(x; sk) denotes the distribution of resources available for step sk . We defined the area within 2 km
from the start location i of each step sk as available. We used the Akaike Information Criterion for model
selection (see [19] for details). Table C1 shows the parameter estimates that maximize the likelihood in
Equation (C.1).

We predicted the affinities aij as the probability of a step between adjacent pixels i and j using the
coefficients from the SSPF:

aij = exp(βT
SSPFx)

1 + exp(βT
SSPFx)

, (C.3)

where βSSPF is a row vector with M elements corresponding to the coefficients from the SSPF (see
Table C1), and x is a column vector with M elements describing the environmental characteristics of the
transition (first element is the intercept, and equals 1). Thus, aij is the probability of selection of step
i-to-j (instead of staying put) based on the vector of covariates (e.g. geographic distance between i and j,
road crossing, proportion of each land cover) characterizing this transition.
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14. Kivimäki, I., Lebichot, B., Saramäki, J. & Saerens, M. (2016) Two betweenness centrality measures based
on randomized shortest paths. Sci. Rep., 6, 19668.

15. Saerens, M., Achbany, Y., Fouss, F. & Yen, L. (2009) Randomized shortest-path problems: two related
models. Neural Comput., 21, 2363–2404.

16. Yen, L., Mantrach, A., Shimbo, M. & Saerens, M. (2008) A family of dissimilarity measures between
nodes generalizing both the shortest-path and the commute-time distances. Proceedings of the 14th SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2008). pp. 785–793. New York,
NY, USA. Association for Computing Machinery.
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