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It is likely that there will continue to be a substantial increase in the number of wind turbines as we aim to 

meet global energy demands through renewable sources. However, these structures can have adverse 

impacts on airborne wildlife, such as posing a potential collision risk with the turbine structure. A range of 

methods and technologies have been applied to the collection of bird flight parameters, such as height 

and speed, to improve the estimation of potential collision compared to traditional visual methods, but 

these are currently not applied in a consistent and systematic way.  To this end, a systematic literature 

search was conducted to (1) examine the methods and technologies that can be used to provide bird 

flight data to assess the impact of wind energy developments and (2) provide an updated framework to 

guide how they might be most usefully applied within the impact assessment process. Four empirical 

measurement methods were found that improve the estimation of bird flight parameters: radar, 

telemetry, ornithodolite and LiDAR. These empirical sensor-based tools were typically more often applied 

in academic peer-reviewed papers than in report-based environmental statements. Where sensor-based 

tools have been used in the report-based literature, their inconsistent application has resulted in an 

uncertain regulatory environment for practitioners. Our framework directly incorporates sensor-based A
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methods, together with their limitations and data requirements, from pre-deployment of infrastructure to 

post-consent monitoring of impacts. This revised approach will help improve the accuracy of estimation of 

bird flight parameters for ornithological assessment of wind energy. Sensor-based tools may not be the 

most cost-effective. However, a precedent has been set for wind energy development consent refusal 

based on ornithological impact assessment, therefore the cost of collecting accurate and reliable flight 

data may be balanced favourably against the cost of development consent refusal. 

Keywords: bird flight, collision risk, conservation, evidence-based, renewable energy. 
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Over the past century, an accelerating pace of industrialisation has led to increasing numbers of man-

made structures, including renewable energy developments (Coates et al. 2011, Vas et al. 2015, Shepard 

et al. 2016), extending into and co-occupying the airspace with airborne wildlife (Lambertucci 2014). The 

collision and disturbance risks associated with wildlife interactions and renewable energy developments 

have the potential to affect species ecology and conservation (Martin 2011, Davy et al. 2017, Shamoun-

Baranes et al. 2017, Thaxter, Buchanan, et al. 2017, Lambertucci and Speziale 2020). 

    Due to a number of high profile incidents (Orloff & Flannery 1992, Bevanger et al. 2009), collisions 

between birds and wind turbines have become a particular concern. As the industry continues to develop, 

with larger turbines being deployed and as costs fall to levels where government subsidies are negligible, 

wind energy will play a pivotal role in delivering global renewable energy targets (IRENA 2018, Committee 

on Climate Change 2019). Wind turbines are therefore increasingly commonplace in marine and 

terrestrial environments, raising the potential for negative avian interactions. 

    In the absence of an accurate, reliable and widely used means of collecting data on collision rates, 

particularly for offshore developments, estimates of the number of collisions between birds and turbines 

are usually predicted using collision risk models (CRMs; Masden & Cook 2016). CRMs form a key part of 

the pre-construction Environmental Impact Assessment (EIA) process in the UK and elsewhere (US Fish & 

Wildlife Service 2012, Jenkins et al. 2015). These models provide a means of estimating the probability of 

a bird colliding with a turbine blade (Masden & Cook 2016). This requires data on both bird and turbine 

characteristics, including, but not limited to, bird flight parameters, such as flight height and flight speed, 

and bird morphometrics, as well as turbine specifications such as rotor speed and turbine size. Collision 

estimates have been found to be sensitive to the bird flight parameters input into the model 

(Chamberlain et al. 2006, Douglas et al. 2012, Masden 2015) and, as a result, factors that affect the 

estimation of these flight parameters are likely to affect final collision estimates. It is therefore vital to 

ensure accurate and robust estimation of flight parameters during data collection for EIAs. 

    The need to collect data on flight height and speed is driven by guidance issued by statutory bodies 

(Atienza et al. 2011, Strickland et al. 2011, US Fish & Wildlife Service 2012, Jenkins et al. 2015, Santos et 

al. 2017, Scottish Natural Hertiage 2017). However, the current methods recommended for use in 

collecting bird flight data in relation to impacts of wind energy have changed little from those outlined 

initially (Orloff & Flannery 1992, US Fish & Wildlife Service 2003, Scottish Natural Hertiage 2005). Current 

guidance recommends flight height data are collected by observers visually estimating flight heights 

(Atienza et al. 2011, Strickland et al. 2011, US Fish & Wildlife Service 2012, Jenkins et al. 2015, Santos et 

al. 2017, Scottish Natural Heritage 2017). Flight speed data collection is not a requirement under current 

statutory guidance (US Fish & Wildlife Service 2012, Jenkins et al. 2015, Scottish Natural Hertiage 2017); A
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these data can be collated from existing values in the literature (e.g. Bruderer & Boldt 2001, Alerstam et 

al. 2007).  However, from the initial issue of formal guidance (US Fish & Wildlife Service 2003, Scottish 

Natural Heritage 2005) to the present, a number of tools and technologies have emerged that are now 

routinely applied to the collection of bird flight data (Masden et al. 2009, Katzner et al. 2012, Shepard et 

al. 2016, Cook et al. 2018). Current guidance may therefore not reflect the most reliable methodologies 

with which to measure bird flight parameters. 

        The tools and technologies applied to the collection of bird flight data range from bird borne devices, 

such as GPS telemetry (Cleasby et al. 2015, Poessel et al. 2018) to remote-sensing approaches, such as 

radar (Stumpf et al. 2011, Hulka et al. 2013; Cook et al. 2018a). However, there is currently no guidance 

on how these methods can and should be applied to the collection of bird flight data in relation to 

quantifying impacts of wind energy, creating an uncertain regulatory environment for practitioners. Given 

that these methods are based on sensors that have been adapted for rather than designed for collecting 

bird flight data, the reliability of measurements may vary in response to the characteristics of the bird 

target (e.g. May et al. 2017, Cole et al. 2019), and/or the characteristics of the tracking environment (Kelly 

et al. 2009, May et al. 2017). Other limitations associated with logistics and with the sensor can also affect 

how useful a given tool is in accurately collecting bird flight data (Brookes 2009, Kelly et al. 2009, Cook et 

al. 2018, Cole et al. 2019,  Péron et al. 2020). 

    Using sensor-based measurement methods to improve the accuracy of bird flight parameters can also 

refine how collision risk is calculated; from current calculations of species-specific collision risk to possible 

calculations of behaviour-specific collision risk. Currently, the collision-risk modelling process results in 

either a single value representing the likelihood of a species colliding with turbine blades (Band 2012), or 

a mean collision risk and associated confidence intervals per species (Johnston et al. 2014, Masden 2015, 

McGregor et al. 2018). However, bird flight height and flight speed are known to change as the behaviour 

of the bird changes (Cleasby et al. 2015, Fijn & Gyimesi 2018). As a result, it is likely that collision risk will 

vary between different behaviours and this has been shown to be the case both within (Stienen et al. 

2008, Morinha et al. 2014) and between species (de Lucas et al. 2008, Thaxter et al. 2017). Calculating 

collision risk related to different species behaviours may therefore offer an improvement over current 

calculations. It is not possible, following current guidance and data collection recommendations, to 

partition flights into separate behaviours other than subjectively, but these can be defined empirically 

post-hoc from changes in measured flight parameters such as height, speed and trajectory (e.g. Pirotta et 

al. 2018). 

   At present, bird flight data collected to support EIAs often does not make use of the best methods 

available. Therefore, changes are required in the way data collection is approached in order to allow us to A
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better estimate species-specific collision risk, and derive more use from the flight data collected, including 

estimates of behaviour-specific collision risk. A potential barrier to updating data collection guidance is 

the lack of understanding around how tools and technologies that currently exist could be applied in the 

context of flight data requirements for EIAs and CRMs. Here, we propose such an update in the format of 

a framework for data collection. This framework is constructed from a review of methods used to 

estimate bird flight parameters in relation to interactions with wind turbines. From this review, we aim to 

understand the different tools and technologies that have been applied to measuring flight parameters 

and, how they might be applied as part of baseline data collection for EIAs.     

Current data collection process for EIA 

The main goal of the EIA is to identify the potential negative effects of a development and eliminate, 

mitigate or compensate for those effects (Fig. 1). This begins with a scoping phase which is primarily a 

desk-based review of existing ornithological and habitat data of the area. During this phase, a level of 

value is established against which to measure impact based on, for example, designations, rarity and 

known sensitivity to effects of wind energy developments. Following scoping, observer-based surveys are 

used to collect data on bird species present, and their number, distribution and flight characteristics 

within the development area. These data are then entered into CRMs to predict potential collisions 

between birds of the area and the proposed turbines. It is during baseline data collection that using 

sensor-based methods could improve the estimation of bird use of the development area and therefore 

more accurately predict collision rates. Note that although Fig.1 is based on the UK EIA process, baseline 

data collection is a feature of the EIA process in many countries (Atienza et al. 2011, Strickland et al. 2011, 

US Fish & Wildlife Service 2012, Jenkins et al. 2015, Santos et al. 2017), meaning the suggestions for 

improvements to baseline data collection made here are applicable internationally.  

METHODS

Data collection

In order to build a framework to improve collection of flight data during baseline surveys, we first carried 

out a systematic literature review to assess which methods have been applied to the collection of bird 

flight data in relation to impacts of wind farms. We searched Web of Science, Google Scholar, Google 

Search and the Tethys online database (www.tethys.pnnl.gov) for Environmental Statements (ESs), peer-

reviewed publications, book chapters and theses and any references therein. Search terms were ‘wind A
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energy’, ‘wind farm’ or ‘wind turbine’ in combination with ‘bird flight’ and ‘bird collision’, and further 

substituting ‘bird’ for ‘avian’ and ‘ornithological’. This gave eighteen search term combinations all 

together. Literature searching was carried out until March 2019. Based on the recommendations by 

Haddaway et al. (2015), we focussed on the first 300 results from Google Scholar and our searches were 

limited to sources that were accessible online and written in English (see Supplementary Material S1). 

    Only documents quantifying bird flight in relation to interactions with wind energy (terrestrial and 

marine) were included and all phases of development (pre-construction, construction, post-construction) 

were considered.  We excluded qualitative reviews, commentaries or other sources that did not include 

details of data collection methods. Simulation model-based analyses were included if they were 

parameterised with empirical data and the method was stipulated; if the study used other referenced 

data, that literature trail was followed. Where a study deployed more than one method for data 

collection, these were considered separately.  

    From the studies collated, we extracted information about the methods used, the flight parameters 

quantified, criteria of method selection, duration of data collection, goal of data collection, and if 

measurements were validated/calibrated prior to deployment of the method. Where data were collected 

by a cohort of sensors with overlapping deployment periods, as in Reid et al. (2015), the maximum 

deployment duration of an individual sensor was used. We classified studies as ‘sensor’ where a tool or 

technology was used to collect data remotely, e.g. via devices that transmit and receive signals that are 

reflected, refracted or scattered by the target object (e.g. radar) or are attached to the target object and 

transmit or receive signals produced by other technology (e.g. GPS tags). This definition results in two 

possible approaches to data collection; borrowing terminology from fluid dynamics: (1) Eulerian data 

collected at the site of the potentially impacted (wind farm) space (e.g. radar), and (2) Lagrangian data 

collected at the site of the potentially impacted bird, i.e. including telemetry (Cleasby et al. 2015) - see 

also Cole et al. (2019). Validation of measurements was considered to have been undertaken if testing 

was carried out to ascertain if the sensor’s accuracy was in line with manufacturer guidelines. Calibration 

was defined as a test of how well the sensor performed and how the uncertainty in measurements varied 

over changing conditions. Methods that quantified horizontal and vertical bird movement and speed were 

considered capable of quantifying flight in 3D as these parameters are often crucial for distinguishing 

between flight activities or behaviours. 

    The use of observer-based data collection under current EIA protocols has the benefit of collecting both 

site-specific and species-specific data, but this may not be the case with the sensor-based methods 

considered here. As a result, we used the selection criteria that we extracted from the collated studies 

and the classification of the method as Eulerian or Lagrangian, in addition to limitations known to be A
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associated with these methods elsewhere in the literature, to compile Table 1 and subsequently assess 

where each method could fit in to a framework for data collection.

RESULTS

Methods to quantify bird flight

A total of 308 applications of different methods, across 267 studies fulfilled the criteria outlined above (a 

number of studies deployed more than one method, see Supplementary material S1), out of a total of 393 

studies reviewed, for which ten different methods were used (Table 1, Fig. 2). Following our definitions, 

radar, telemetry, LiDAR and ornithodolite (a pair of binoculars with inbuilt laser rangefinder, inclinometer 

and digital magnetic compass), and laser rangefinder paired with inclinometer represented sensor-based 

methods, while vantage-point surveys, boat-based transects, digital aerial surveys, acoustic methods and 

thermal animal detection system (TADS) paired with visual methods were considered non-sensor (Table 

1). Although microphones for acoustic methods and cameras used in digital aerial surveys and TADS do 

use a kind of sensor to capture data and are therefore technically sensor-based methods, neither a 

microphone nor a camera are capable of directly measuring flight parameters. Microphone or camera 

based flight data must be back-calculated with a degree of observer subjectivity and as a result, they are 

included in Fig.2 and Table 1 with non-sensor methods. Further methods such as visual tracking (e.g. 

Perrow et al. 2006), whereby birds were tracked visually using a rigid-hulled inflatable boat (RHIB) provide 

data akin to telemetry for some metrics such as speed and are classified as such.  

     Significantly more studies referenced flight data for onshore than offshore wind energy developments 

(X2
2 = 169.09, P < 0.001), 173 (65%), 93 (35%) respectively (one study quantified bird flight at both 

onshore and offshore locations). Visual based methods, encompassing onshore vantage point and 

offshore boat-based surveys, were used significantly more frequently than any other method (X2
8 = 

689.66, P < 0.001). However, across all studies there were 143 applications of sensor-based methods 

(53%). Five sensor-based methods were used overall (Fig. 2), with radar being used significantly more 

frequently than other sensor-based methods (X2
4 = 133.05, P < 0.001). Sensor-based methods were 

typically deployed for longer durations and therefore likely collected a greater quantity of data to 

characterise the spatial and temporal variation in flight characteristics. Eighty-three of the 143 studies 

that deployed a sensor-based method gave information on the duration over which data were collected; 

of the 165 applications of non-sensor methods, 133 gave information on the duration of data collection. 

The duration of data collection was significantly different between sensor and non-sensor based studies A
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based on the results of a Wilcoxon test, with median durations of 41 and 23 days respectively (z214 = -

3.192, P < 0.005).

Flight parameters quantified

Of the five non-sensor-based methods, four collected data on multiple flight parameters (Fig. 3) but none 

collected data on flight speed and therefore were also incapable of collecting data in three-dimensions 

(Fig. 3). Of the five sensor-based methods identified in the literature search, all were used to collect data 

on multiple flight characteristics (see Fig. 3). Three (radar, telemetry and ornithodolite) were used to 

collect data on both bird flight height and speed and could therefore be used to improve collision risk 

estimates under species-specific collision risk calculations. All three methods were applied to the 

collection of three-dimensional flight data necessary for behaviour-specific collision risk calculations. 

LiDAR was not applied to the collection of flight speed and therefore neither to three-dimensional data, 

but the details of how this could be achieved were provided in the manuscript (Cook et al. 2018).

    Although radar was the most common of the sensor-based methods used (Fig. 2), the prevalence of 

sensor-based methods varied markedly across the data time series (Fig. 4), with radar most common early 

on, and telemetry more prevalent later in the time series. This likely reflects the advancement of 

telemetry technology in availability, affordability and for use on smaller species. The overall diversity of 

methods available also increased later in the time series.  

Building a framework    

In Fig. 5, we inserted the three sensor-based methods applied to the collection of 3D flight data (Fig. 3) 

and LiDAR into the original EIA framework (Fig. 1), alongside additional limitations and logistical 

considerations identified for each method (Table 1). We suggest that the use of these methods in a given 

study be assessed in the context of the results of the scoping phase (Fig. 1) and a pre-deployment phase 

where the results of scoping can be verified and any logistical challenges in application be assessed. This 

approach ensures the most appropriate tool is selected to maximise the quantity and quality of the data 

collected. Ideally, Lagrangian data collection would follow Eulerian data collection, the latter being used 

to identify potential species at risk through site-wide collection of sensor-based flight data and the former 

being used to provide more species-focussed data collection based on the Eulerian survey data. However, 

such an approach may increase the typical two-year timescale in the UK or one year timescale elsewhere 

(Strickland et al. 2011, US Fish & Wildlife Service 2012, Jenkins et al. 2015, Santos et al. 2017), for 

undertaking pre-construction baseline data collection, and as a result the two are presented as distinct A
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data collection options in Fig. 5. This also allows for the collection of Lagrangian-type data directly 

following scoping and pre-deployment surveys where known issues may have been identified.

Pre-deployment surveys

The logistical limitations of the sensor-based measurement tools (Table 1) may limit how effective a 

particular method is during baseline data collection. An understanding of the characteristics of the 

potential development site is therefore useful in order to select the most appropriate tool and can be 

gained through observer-based site surveys. Such surveys can identify physical site characteristics that 

may hinder data collection, such as the presence of a high density of non-bird objects in the tracking 

vicinity, i.e. clutter (Kelly et al. 2009, May et al. 2017). Species-specific qualitative data can also be 

gathered which may aid method selection at the site; for example, the number and species of birds at risk, 

their behavioural activity (e.g. foraging, migrating, roosting), and whether species from the site are 

potential designated features of nearby protected sites or have a notable conservation status, such 

classification as an Annex 1 species (EC Birds Directive 79/409/EEC). In this way, this data collection phase 

can be used to confirm the assumptions made during the literature-based scoping phase. Such a pre-

deployment phase is a feature of the EIA process outside the UK (Strickland et al. 2011).  

Baseline data collection

Following scoping and pre-deployment surveys, we recommend that bird flight data are collected using 

one of the sensor-based measurement methods. We suggest that Eulerian-based tools be used for site-

wide data collection, to provide a quantitative measure of flight characteristics where use of the site by 

species can be relatively well described by individual flight parameters, e.g. birds commuting from 

roosting areas to foraging areas. Lagrangian-based tools, on the other hand, are most useful for species-

specific data collection, to provide a quantitative measure of individual flight parameters where use or 

movement through the site results in complex flight patterns, e.g. birds foraging in the area. This 

reiterates the need for the pre-deployment survey phase outlined previously to aid in selecting the most 

appropriate tool.   

Eulerian site-wide data collection: Framework stage 2a

As part of site-wide baseline data collection, empirical flight height and flight speed data may be needed 

for a range of bird species occurring in the potential development space. Eulerian type technologies which 

collect data from a fixed space, i.e. in this case the potential development site, can be used to collect this A
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site-wide baseline data. From the literature search conducted here, three Eulerian type technologies have 

been applied to the collection of bird flight parameters in relation to interactions with wind energy (Table 

1) and are capable of collecting both flight height and flight speed data (Fig. 3) in situ for better estimation 

of species-specific collision risk. Radar was the most frequently used method, likely due to its historical 

application within the field of ornithology and the availability of marine surveillance radars (Eastwood 

1967, Hamer et al. 1995). Radar can collect both flight height and flight speed data, but requires separate 

horizontal and vertical arrays or a multi-array combination in order to do so. The main limitation of radar 

is the inability to distinguish between bird species using radar data alone (Rosa et al. 2016), necessitating 

that data be ground-truthed using an observer (Table 1). However, given radar can be operated 

nocturnally and in a wide range of weather conditions, this makes it a valuable tool for baseline data 

collection. By contrast, the other two Eulerian type methods (LiDAR and ornithodolite) cannot collect data 

in inclement weather or nocturnally, largely due to being manually operated. LiDAR and ornithodolite 

technologies are therefore likely to have useful supplementary value should radar deployment not be 

possible. For example, the ornithodolite is portable and may be used wherever is accessible to the 

operator; similarly, aircraft-mounted LiDAR can be operated far offshore where the use of radar may not 

be feasible. 

Species-specific data collection: Framework stage 2b

As part of baseline data collection, information on flight height and speed may be required for key species 

that may be using the development site. Key species can be identified during scoping and pre-deployment 

surveys and subsequent discussion with stakeholders, linked to relevant legislation and an understanding 

of their life history traits. Lagrangian-type methods, represented in our framework (Fig. 5) as telemetry-

based methods, are most useful in this case. Animal-attached telemetry tags have been applied to the 

collection of bird flight parameters in relation to quantifying interactions with wind farms and are capable 

of quantifying both flight height and speed for calculating species-specific collision risk estimates (Thaxter 

et al. 2017, Fijn & Gyimesi 2018). Particular attention should be given to the method of determining 

height from GPS sensors in telemetry tags. The inherent two-dimensional perspective of GPS devices 

relative to the satellites from which positional data are derived, means that GPS-derived height data can 

be subject to large inaccuracies (Péron et al. 2020), although precision of estimates increases with faster 

sampling schedules (e.g. Bouten et al. 2013, Thaxter et al. 2019). Other sources of error such as GPS 

dilution of precision (DOP) can also be incorporated into a modelled flight height distribution, using 

Bayesian approaches to account for inherent error (Ross-Smith et al. 2016). This method is useful for 

improving accuracy of flight height distributions, but not necessarily accuracy of individual flight height A
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measurements. Alternatively, barometric altimeters may be incorporated into tags to quantify height, but 

these require continuous calibration to account for barometric drift, associated with spatial and temporal 

changes in atmospheric conditions (e.g. Cleasby et al. 2015). Field calibration may therefore not be 

feasible (but see Shepard et al. 2016, Borkenhagen et al. 2018), or may only likely be effective for a 

relatively short period of time (Péron et al. 2020). Deployment of telemetry devices should also consider 

any ethical consequences (Bodey et al. 2018), and the limitations associated with sample size and 

deployment duration (Thaxter et al. 2017) that may affect the use of the data collected for accurately 

determining collision risk.

Extension of the baseline

For collision risk estimates to better reflect the variability in bird flight characteristics with varying flight 

activity, we suggest an extension to baseline data collection (Fig. 5). Following on from Lagrangian 

species-specific data collection, it is also possible to calculate behaviour-specific collision risk estimates 

using behavioural states identified from the already collected telemetry data using, for example, 

movement modelling approaches (e.g. Pirotta et al. 2018). Using the flight parameter data associated 

with each behavioural state as separate inputs into CRMs, multiple collision risk estimates per species can 

be generated. Such an approach can help highlight when birds might be vulnerable to collision with 

turbines, e.g. when foraging or when commuting. Integrating this analysis with environmental co-variate 

data can help define the behavioural states, but can also provide a prediction of where birds might be 

vulnerable to collision. Such an approach could facilitate appropriate siting of the development and, 

depending on the resolution of the data, siting of individual turbines (de Lucas et al. 2012). Given the 

likely expansion in renewable energy worldwide, such an approach could be valuable at an early stage in 

the consenting process, enabling quick decision-making and conserving time and resources, as has already 

been demonstrated in the peer-reviewed literature (Péron et al. 2017).

   In order to develop behaviour-specific collision risk estimates, three-dimensional flight data are 

required. This was theoretically possible with all four of the sensor-based methods and demonstrated for 

three of them (Fig. 3) identified in our literature search. However, in order to predict, spatially, where 

birds might be vulnerable, an equal measurement of space use across the bird’s measured range is 

needed. This is not possible using Eulerian-based methods, which collect data from a fixed space. The 

resolution and precision with which flight data can be collected is reduced the further is the bird target 

from the Eulerian type device (May et al. 2017, Cole et al. 2019). Environmental variables and bird flight 

characteristics can also further influence the resolution and precision of data (May et al. 2017). As a A
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function of their data collection approach, Eulerian and Lagrangian methods therefore differ in the 

resolution of the information they are capable of providing across a given range. Animal-attached 

telemetry devices are already routinely used to distinguish between flight behaviours using movement 

models or accelerometry (Shamoun-Baranes et al. 2012, Pirotta et al. 2018), whereas Eulerian devices 

such as radar more commonly provide quantitative measurements associated with individual flight 

characteristics (Masden et al. 2009, Mateos-Rodríguez & Liechti 2012, Pennycuick et al. 2013). However, 

in order to use telemetry data in defining behavioural states, it is necessary to collect data at a suitably 

high resolution. There is thus a possible trade-off between data resolution and battery life for telemetry 

data which may result in conflicting objectives, such as for understanding general space use and detailed 

flight behaviour, if data from telemetry devices are also to be used for species-specific collision risk 

estimates. 

Post-consent data collection

Under current EIA guidelines, the need for post-consent data collection is assessed on a case-by-case basis 

and is not a requirement for all developments. However, by highlighting three different data collection 

goals (Fig. 5), we emphasise mandatory post-consent monitoring and highlight how the methods 

identified in our literature search and used in our framework can be used to meet these goals. Where a 

development is poorly sited, it may be necessary to attempt to mitigate potential collisions. This could be 

achieved by triggering intermittent shut down of turbines which is a proven effective measure for 

reducing bird mortality with little loss to overall energy generation (de Lucas et al. 2012). Sensor-based 

tools capable of automated detection, identification and tracking of birds as they enter the wind farm are 

likely most useful in triggering turbine shut down (McClure et al. 2018, but see Sheppard et al. 2015).  In 

this regard, radar is likely the most useful tool and has been used to help mitigate bird collisions at wind 

farms (Marques et al. 2014, Tomé et al. 2017) and in other industries such as aviation (Ginati et al. 2010, 

Coates et al. 2011). Camera-based methods have also been trialled in mitigating collisions at wind farms 

(Birdlife International 2015). Non-real-time monitoring may involve use of further spatial planning 

approaches, which may bring in wider datasets and alternative methods beyond the scope of this review 

(e.g. Bradbury et al. 2014), but could also include Lagrangian data to map hotspots of sensitivity and 

vulnerability using information on flight behaviour (e.g. Thaxter et al. 2019). 

    A second goal of post-consent data collection would be to quantify if collision risk estimates generated 

using CRMs were accurate and, if not, identify the real impact of the development regarding bird collision 

rates. Quantifying collision rate requires observer input to identify birds using turbine searches with an A
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understanding of searcher efficiency and bias, and potential scavenger removal (Morrison 2002, 

Smallwood 2007). Offshore monitoring requires automated detection of collision rates and has been 

trialled using Thermal Animal Detection System (TADS) and other sensors (Desholm et al. 2006, Skov et al. 

2018). 

   Assessing if bird use of the site has been modified between pre- and post-construction is a useful goal 

for post-consent monitoring. Birds may be attracted to the development area by, for example, turbine 

structures which may provide roosting or perching opportunities (Osborn et al. 2000, Percival 2001, 

Barrios & Rodríguez 2004, Morris & Stumpe 2015), or, for offshore infrastructure, aggregation of prey 

species (Aurore et al. 2016). Visual-based surveys can confirm the occurrence of bird use of the 

development space post-construction and what species may be using the site in a manner similar to pre-

deployment surveys. Given that any post-construction use of the development site is likely to be species-

specific, Lagrangian data collection is likely to be most appropriate to determine three-dimensional use of 

areas (e.g. Thaxter et al. 2018), that may also help refine collision estimates as above (under baseline 

extension) by incorporating elements of behaviour. Alternatively, birds may avoid the development area 

post-construction. Avoidance rates are a key parameter used in CRMs and post-consent data collection 

can help confirm if avoidance rates used were accurate. As avoidance is based on measurements of flight 

data through the development area, the same approach outlined in the baseline data collection can be 

applied here. Eulerian-type methods can be considered for the larger spatial scales of avoidance and 

telemetry for finer-scales (May 2015, Cook et al. 2018). Using the same method to quantify avoidance 

post-construction as was used during baseline data collection (Fig. 5) ensures consistent methodology and 

means that baseline data act as reference data.  Such a data collection design will further ensure that 

collision model predictions can be validated post-construction with actual avoidance incidents.

Validation and calibration of empirical methods 

We evaluated and extracted information from the peer and non-peer reviewed literature on the methods 

applied to the collection of bird flight data in relation to interactions with wind energy (Fig 2, 3), the 

specific parameters quantified by these methods (Fig. 3) and the limitations and selection criteria 

associated with the use of these methods (Table 1), in order to provide an update to the current data 

collection guidance as part of ornithological impact assessment of wind energy developments (Fig. 5). In 

doing so, we highlighted how the use of sensor-based methods to collect bird flight data in relation to 

wind energy has evolved, likely reflecting the adaptation of technologies for collecting bird flight data 

generally (Fig. 4).A
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    However, while developing a framework around sensor-based methods is likely to improve data 

accuracy and precision (Becker 2016, Fijn et al. 2018, Harwood et al. 2018), it is unlikely to be the most 

cost-effective means of data collection. This is likely to create challenges for the consenting process that 

may be overcome when such improvements in data accuracy and precision can be quantifiably 

demonstrated. This can be achieved when sensor-based methods are validated and calibrated. From the 

studies assessed here, however, the incidence of validation and/or calibration, according to our definition 

(see Methods) was low (Table 1). Rather, some studies opted to remove potentially erroneous data points 

(e.g. Poessel et al. 2018) or to restrict the data to within a certain range of the sensor (e.g. Welcker et al. 

2017) or optimal sensor conditions (e.g. Brookes 2009, Cleasby et al. 2015), but such an approach may 

reduce amounts of potentially viable data for the consenting process. 

    Validation of device measurements can be achieved by quantifying the difference in measurement 

accuracy and precision with a known baseline. For example, Cole et al. (2019) used the known distance 

between ornithodolite operator and a building to test the precision of ornithodolite laser sensor in 

measuring distance. Alternatively, validation of a given device can be carried out using a second device 

that is already frequently used in quantifying bird flight. For example, Cook et al. (2018) validated 

measurements of flight height gained from LiDAR using unmanned aerial vehicles (UAVs) equipped with 

internal GPS or UAV height derived from photogrammetry. Calibrating a device establishes an 

understanding of how device measurements change specifically with the conditions likely to be 

experienced during deployment. For example, May et al. (2017) used a UAV to demonstrate that MERLIN 

avian radar detection was influenced by bird flight characteristics such as tortuosity, speed and height. 

Should calibrating devices to reflect all possible scenarios likely to be experienced during deployment not 

be possible, for example, as with atmospheric conditions and barometric altimeters attached to highly 

mobile species, possible post-hoc analytical solutions could be explored (e.g. Ross-Smith et al. 2016, 

Péron et al. 2020). 

   Validation and calibration of visual estimates is stipulated in current guidance (Scottish Natural Hertiage 

2017), but evidence suggests this has been inconsistently undertaken. Where calibration was reported for 

visual-based studies, it was undertaken during the data collection surveys, using reference structures (e.g. 

Rothery et al. 2009), but few studies quantified the impact of changing environmental factors, such as 

topography or weather on estimates. Statutory guidance often stipulates that bird flight data should be 

collected in a range of weather conditions (e.g. Camphuysen et al. 2004, Scottish Natural Heritage 2017), 

therefore results of the calibration in these operational conditions should be provided. The subjectivity of 

visually-estimated quantities adds to the difficulty in validating and calibrating measurements. By 

contrast, sensor-based devices may provide data subject to errors that are more consistent and A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

systematic, for example resulting from interference with bird detection from the environment. The more 

systematic the nature of discrepancies, the more feasible it is to quantify/ incorporate the effect of such 

discrepancies on the measurement of bird flight parameters. Where subjectivity might exist in 

determining the suitability of one sensor over another, Table 1, together with pre-deployment surveys, 

should provide contextual information to reduce such subjectivity. 

    While the increased cost of sensor-based methods likely deters statutory bodies from recommending 

the use of such methods, sensors offer improved accuracy in flight measurements in addition to an 

improved capacity to quantify the error and bias around such measurements. Such improvements may 

balance favourably against the increased cost of use given the potential economic cost of development 

consent refusal, consent delays, extended public inquiries or legal challenges based on inadequate data. A 

development in the UK has been refused consent based on estimates of bird collision mortality and 

uncertainty and disagreement around population mortality thresholds, with substantial economic cost to 

the developer (Broadbent & Nixon 2019). Such outcomes represent barriers to the development of 

renewable energy that can be, at least partially, overcome with collision estimates based on sensor-

derived flight data.   

Limitations and opportunities for further development 

The guidance outlined in Fig. 5 is focussed on quantifying impacts from a single development. Cumulative 

impact assessment is a legislative requirement of EIA and has been highlighted as a concern for birds 

interacting with wind energy developments (Masden et al. 2010, Bastos et al. 2015, Brabant et al. 2015, 

Vasilakis et al. 2017, Kikuchi et al. 2019). Deploying technologies to quantify cumulative impacts would 

benefit from a network of sensors collecting data from the same individuals or life stages across multiple 

developments. On a large scale, such as for migrating life stages, networks of weather radars such as the 

currently used NEXRAD (Crum & Alberty 1993) and OPERA (Holleman et al. 2008) could be useful. A 

similar initiative has been set up using automated telemetry monitoring specifically for wildlife tracking 

(Taylor et al. 2017). However, such approaches are only currently operational for onshore developments 

and in a limited number of locations. For finer-scale information, such as individuals interacting with 

multiple developments within their home range, telemetry data has been found to be useful (Vasilakis et 

al. 2017), with further potential use as a spatial planning tool (Thaxter et al. 2019). There is also a need to 

consider the indirect, energetic consequences of multiple encounters with wind energy developments 

during flight and their impacts on survival and fecundity (Masden et al. 2010). 
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Conclusions

At present, bird flight data collected under EIA regulations often do not make use of the best methods 

currently available. Therefore, changes are required in the way data collection is approached and 

delivered in order to allow better estimation of species-specific collision risk, and derive more use from 

the flight data collected, such as behaviour-specific collision risk estimates. A potential barrier to updating 

data collection guidance is the lack of understanding around how tools and technologies that currently 

exist could be applied in the context of flight data requirements for EIAs and CRMs.  Here, a framework is 

presented, building on that used within the existing EIA framework, to help guide the collection of bird 

flight data using sensor-based methods that have already been applied to the collection of bird flight data 

in relation to quantifying impacts of wind energy. Our framework incorporating these sensor-based 

devices will help stream-line decision-making for practitioners and ensure data collection is more 

accurate, consistent and standardised. Our framework is targeted to better quantify impacts of wind 

farms on birds, but is transferable to other situations where there is a need to quantify bird interactions 

with anthropogenic structures. Given the growing need to meet energy demands through renewable 

sources, and the concurrent challenges posed by the climate and biodiversity crises, it is necessary that 

decisions about wind energy development are made with the best available evidence regarding potential 

ecological impacts.
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Table 1. Logistical factors that should be considered when deploying methods to collect bird flight data. ‘Sensor’ follows definitions of appropriate sensor-based 

data collection protocols (see Methods), ‘Approach’ refers to whether the data collection is Eulerian or Lagrangian (see Methods). ‘Main selection criteria’ 

represents the most frequently recorded reason across studies for selecting the method. ‘Primary limitations’ are those most frequently recorded across studies. 

NA is not applicable for a given method.

Method Sensor-

based 

(yes/no)

Approach Number 

studies from 

peer/non-

peer sources

Number of 

studies 

calibrated 

or 

validated

Main selection 

criteria

Deployed 

onshore/

offshore/

both

Mean duration of 

data collection 

(days)

Primary 

limitations

Radar Yes Eulerian 21/49 8 Nocturnal 

observations

Both 94 Lack of species-

specific data

Animal-attached 

telemetry

Yes Lagrangian 31/22 12 Species-specific 

data

Both 1080 Biases resulting 

from acceptable 

ratio of tag mass 

to bird body 

mass. Data 

collection 

restricted to 

times of the year 
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when birds are 

accessible

LiDAR Yes Eulerian 0/1 1 Limitations of 

visual estimates

offshore 12 Not deployable in 

inclement 

weather or 

nocturnally

Ornithodolite Yes Eulerian 3/8 1 Data quality/ 

species-specific 

data/ 

supplementary 

both 71 Not deployable in 

inclement 

weather or 

nocturnally

Laser rangefinder + 

inclinometer

Yes Eulerian 4/4 3 Site & species 

specific data/ 

data quality

Both 11 Doesn’t provide 

3D data

Vantage point 

survey

No NA 28/86 21 Recommended 

by statutory 

bodies 

onshore 65 Inaccurate 

relative to senor 

methods

Boat-based 

transect

No NA 4/44 7 Recommended 

by statutory 

bodies 

offshore 28 Inaccurate 

relative to sensor 

methods

Microphone No1 NA 0/1 0 Nocturnal onshore 2462 Microphone 
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1 Classed as non-empirical, given flight information cannot not be directly obtained (see text)

2 Based on a sample size of 1 

array/acoustic Observations sensor does not 

measure flight 

parameters 

directly

Digital aerial 

surveys

No1 NA 0/1 0 Recommended 

by statutory 

bodies

offshore 202 Camera sensor 

does not measure 

flight parameters 

directly

TADS + visual No1 NA 0/1 0 Parameterize 

collision risk 

models

offshore 512 Camera sensor 

does not measure 

flight parameters 

directly
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Figure 1. A framework outlining the EIA process (in the UK) with baseline data collection 
highlighted in red where sensor-based methods could provide bird flight data and where 
selection of sensor-based methods could be guided further by our framework. 
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Figure 2. The frequency with which different methods were deployed to collect bird flight 
data to quantify impacts of wind energy developments based on a literature search of 308 
applications. These studies were composed of peer-reviewed publications, grey literature 
and theses.  
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Figure 3. The frequency with which different methods were deployed to collect data on specific 
flight characteristics (trajectory, speed, height and flight in three-dimensions, meaning trajectory, 
speed and height data were collected concurrently) to quantify impacts of wind energy 
developments based on a literature search of 308 applications. These studies were composed of 
peer-reviewed publications, grey literature and theses.  
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Figure 4. Variation in the frequency of studies using sensor-based methods (143 applications in 
total) over time presented as (a) total counts of each method (coloured lines) and total counts of 
all sensor and non-sensor studies (grey line, 308 applications in total); and (b) their proportional 
frequency relative to other methods for a given year. Years with no data are where our search 
criteria returned no studies using a sensor-based method. 

(a)

(b)
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Figure 5. A framework for collecting flight data as part of EIA for wind energy, following a similar 

outline to the current EIA data collection framework (see Fig. 1), but including sensor-based 

measurement methods as primary baseline data collection methods. This framework includes a pre-

deployment phase to better characterise the site of interest and includes an extension to the 

baseline for calculation of behaviour-specific collision risk estimates derived from telemetry data. 

We also better characterise the need for post-consent data collection and break this down into 

different data collection goals. 




