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Summary 
This thesis focuses on the economics and polices for the electrification of transport. 
Over the last few years we have observed a rapid rise in the number of battery electric 
vehicles (BEVs) in Norway. This growth is the combined result of rapid technological change 
and a targeted national climate policy. The rising share of BEVs relative to the share of 
conventional vehicles could lead to socio-economic benefits such as reduced greenhouse gas 
emissions and local pollution, but it could also pose new challenges such as pressure on the 
capacity of the electricity distribution network. In addition, BEVs have similar negative 
externalities as fossil-fueled vehicles with regards to congestion, road wear and accidents. 
BEVs can mitigate some market failures and exacerbate others, creating a messy optimization 
problem for the social planner. This illustrates the need for new knowledge on mechanisms 
and welfare enhancing policies in the transport and electricity markets as they become more 
integrated. This thesis seeks to contribute to the body of knowledge on the subject, in the 
following introductory chapter and four independent chapters. The latter chapters are 
written as scientific papers that are either published or in the process of getting published in 
peer-reviewed journals. 

The first chapter takes a national perspective. An increasing market share of BEVs relative 
to ICEVs leads to, ceteris paribus, reduced government revenue. BEVs also have many of the 
same externalities as ICEVs, but they cannot be captured by a fuel tax, and it seems 
implausible to tax EVs explicitly through their electricity charging. I find that a distance-
based road pricing scheme, differentiated by vehicle type and when and by where the driving 
takes place, can be a good response to this issue. 

The second chapter takes the analysis down to the city level, where the growth in BEVs has 
been most pronounced. The area of study is the Oslo metropolitan areas, where they have 
very ambitious short-term emission targets. Reaching these targets implies extremely high 
social costs, even if costs are kept to a minimum. A least-cost strategy will require a relatively large 
shift to BEVs, but where appropriate balances are stricken between road prices, public 
transport fares and vehicle purchase taxes. 

At the time of writing, there is no ability for the local grid operators, the DSOs (Distribution 
System Operators), to differentiate their grid tariffs over the day. There is therefore no 
incentive for the individual BEV owner to reschedule charging times, and if charging during 
peak hours leads to extra cost for the DSO, the cost is borne by all of their customers. This 
would be a case of a pecuniary externality in an incomplete market. In the third chapter we 
investigate the feedback between the transport market and electricity market and how 
policies in one market can affect the equilibrium in the other. 

Can the local grid costs stemming from BEVs be estimated empirically? We answer this 
question in the fourth chapter. If any country would have any usable data to test this, it would 
be Norway. Norway has had many years with high growth in BEVs, where the absolute 
number of BEVs in certain places could have had an impact on DSO costs. We do find 
statistically and economically significant effects from BEVs on DSO costs, but there is a lot 
of heterogeneity in the results. 

The main overarching contribution is new and improved understanding of how the 
emergence of BEVs, as a technology in the transport sector, changes the calculus of 

social costs and benefits and how policies optimally should respond to these changes. 
This is done by extending well-established modeling frameworks to include BEVs and 
charging issues, and econometric analysis of a new and highly relevant dataset on BEV 
density and DSO costs. With this we can better understand the mechanisms at play, and what 
balances need to be struck to form welfare-enhancing policies. 





 

 

Sammendrag 
Denne avhandlingen tar for seg elbilpolitikk i et samfunnsøkonomisk perspektiv. De 
siste årene har vi opplevd en rask økning i antall elbiler i Norge. Denne veksten er et resultat 
av både rask teknologisk utvikling og en målrettet nasjonal klimapolitikk. Den økende 
andelen av elbiler i forhold til andelen konvensjonelle biler kan føre til samfunnsøkonomiske 
fordeler som reduserte klimagassutslipp og lokal forurensning, men det kan også gi nye 
utfordringer som press på kapasiteten til strømdistribusjonsnettet. I tillegg har elbiler 
tilsvarende eksterne kostnader som konvensjonelle biler med tanke på kø, veislitasje og 
ulykker. Elbiler kan dempe noen markedssvikt og forverre andre, og skape et rotete 
optimaliseringsproblem for samfunnsplanleggeren. Dette understreker behovet for ny 
kunnskap om den gjensidige påvirkningen mellom transport- og elektrisitetsmarkedet, og 
hva som kan være samfunnsmessig effektiv politikk. Denne avhandlingen bidrar til 
kunnskapen om emnet, i det følgende kappen og fire uavhengige kapitler. De siste kapitlene 
er skrevet som vitenskapelige artikler som enten er publisert eller i ferd med å bli publisert i 
fagfellevurderte tidsskrifter. 
Det første kapittelet tar et nasjonalt perspektiv. En økende markedsandel av elbiler i forhold 
til konvensjonelle biler fører til, ceteris paribus, reduserte offentlige inntekter. Elbiler har også 
mange av de samme eksternalitetene som konvensjonelle biler, men de kan ikke fanges opp 
av en drivstoffavgift, og det virker usannsynlig å kunne skattlegge elbiler eksplisitt gjennom 
ladingen av bilene. Jeg finner at et distanse-basert veiprisingssystem, differensiert etter 
kjøretøytype og når og hvor kjøringen foregår, kan være en god måte å møte dette problemet. 
Det andre kapittelet tar analysen ned til bynivå, der veksten i elbiler har vært mest markant. 
Fokuset er på Oslo-området, der de har svært ambisiøse utslippsmål på kort sikt. Å nå disse 
målene innebærer ekstremt høye samfunnskostnader, selv om kostnadene holdes på et 
minimum. En minstekostnadsstrategi vil kreve et relativt stort skifte til elbiler, men fordrer 
en effektiv balansering mellom veipriser, kollektivpriser og engangsavgifter for bil. 
I skrivende stund er det ingen muligheter for de lokale nettselskapene til å differensiere 
nettleien time for time. Det er derfor ikke noe insentiv for den enkelte elbileier å tilpasse når 
hen lader, for hvis lading i topplasttimer fører til ekstra kostnader for nettselskapet, blir 
kostnadene spredd på alle kundene deres. Det blir et tilfelle av en pekuniær eksternalitet i et 
ufullstendig marked. I det tredje kapittelet undersøker vi samspillet mellom transport- og 
strømmarkedet og hvordan politikk i det ene markedet kan påvirke likevekten i det andre. 
Kan de kostnader i distribusjonsnettet som stammer fra elbiler estimeres empirisk? Dette 
gjør vi i fjerde kapittel. Hvis noe land ville ha brukbare data for å teste dette, vil det være 
Norge. Norge har hatt mange år med høy vekst i elbiler, men med mye lokal variasjon, så det 
er mulig å identifisere hvordan elbiler påvirker nettkostnader. Vi finner statistisk og 
økonomisk signifikante effekter fra elbiler på nettkostnader, men det er mye heterogenitet i 
resultatene. 
Det viktigste overordnede bidraget er ny og forbedret forståelse av hvordan 

fremveksten av elbiler, som en teknologiendring i transportsektoren, endrer 
regnestykket av samfunnsmessig nytte og kostnader, og hvordan politikk optimalt 

skal svare på disse endringene. Ved å bygge videre på veletablerte modellrammeverk til å 
omfatte elbiler og aspekter knyttet til elbillading, og en økonometrisk analyse av et nytt og 
relevant datasett, kan vi bedre forstå mekanismene og hvordan ulike politiske virkemidler 
kan brukes til å styrke det samfunnsøkonomiske overskuddet. 
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Introductory chapter to PhD thesis 
Economics and policies for the 
electrification of transport 
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1 Introduction and motivation 

I recall my professor in an undergraduate microeconomics course saying “Without any 
market failures, there wouldn’t be any need for economists!”. While such a statement was 
probably meant more as motivation for the class rather than being an undisputable fact, it 
contributed to form and reinforce my thought process whenever I discuss our analyze a 
policy issue. Some of the early questions I ask early in the thought process are “What exactly 
are the market failures here?”, “Or is it a government failure?” or “Could it be a tricky trade-
off between market failures and government failures?”.  

Perman, Ma, McGlivray, and Common (2003) provide the following set of necessary 
conditions for markets to produce efficient allocations: 

1. Markets exist for all goods produced and consumed. 
2. All markets are perfectly competitive. 
3. All transactors have perfect information. 
4. Private property rights are fully assigned in all resources and commodities. 
5. No externalities exist. 
6. All goods and services are private goods, i.e. there are no public goods. 
7. All utility and production functions are “well-behaved”. 
8. All agents are maximizers. 

Throughout this dissertation I will be covering issues where several of these conditions do 
not hold, more specifically conditions 1 (missing markets), 2 (imperfect competition), 5 
(externalities) and 6 (public goods). The transport and energy sector, the overarching 

research area for this thesis, are more or less embedded with textbook market 
failures. These sectors are also subject to a lot of policy. There is a magnitude of regulations 
and taxes (with more or less targeted exemptions), subsidies and infrastructure financed by 
distortionary taxes elsewhere in the economy. It can be argued that some of this policy is 
targeted towards correcting market failures, but a lot of it is not. And the policies that are 
targeted towards correcting market failures are likely to be sub-optimally assigned. In other 
words, we might be pretty far away from any theoretical perfectly competitive Pareto-
efficient market. So there is room for improvement. 

The topics of the thesis are the economics and polices for the electrification of transport. 
Over the last few years we have observed a rapid rise in the number of battery electric 
vehicles (BEVs) in Norway. This growth is the combined result of rapid technological change 
and a targeted national climate policy. So what are the issues here? The rising share of BEVs 
relative to the share of internal combustion engine vehicles (ICEV) could lead to socio-
economic benefits such as reduced greenhouse gas emissions and local pollution, but it could 
also pose new challenges such as pressure on the capacity of the electricity distribution 
network. In addition, BEVs have similar negative externalities as fossil-fueled vehicles with 
regards to congestion, road wear and accidents (Thune-Larsen, Veisten, Rødseth, & Klæboe, 
2014). On top of that, the low cost of driving a BEV will also affect the relative 
competitiveness of public transportation (and walking and cycling), which may prevent the 
exploitation of scale economies for scheduled urban transport, see Mohring (1972). In other 
words, BEVs can mitigate some market failures and exacerbate others, creating a messy 
optimization problem for the social planner. This illustrates the need for new knowledge on 
mechanisms and welfare enhancing policies in the transport and electricity markets as they 
become more integrated. 
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These issues need to be boiled down to some applicable research questions, and the scope 
must be limited to what can be done during the time of the project. The first scope limitation 
is that the research will be focusing on the case of Norway. With electrification of transport 
as a problem area, it makes sense to focus on Norway. It is the country in the world with the 
highest share of BEVs among new car sales, and with the subsequent fastest growth in the 
BEV share of the car fleet. Challenges and benefits related to the electrification of transport 
will be visible here first. 

It is useful to start with the big picture. The externalities stemming from car transport, and 
the strain on government budgets due to declining tax revenue from the purchase, ownership 
and use of cars, are national issues. With regards to the latter, an increasing market share of 
BEVs relative to ICEVs leads to, ceteris paribus, reduced government revenue (Ministry of 
Finance, 2017). BEVs also have many of the same externalities as ICEVs, but they cannot 
be captured by a fuel tax, and it seems implausible to tax EVs explicitly through their 
electricity charging. And even if all types of cars could be taxed through fueling, such a system 
would still be unable to internalize externalities that depend on when and where the driving 
takes place. In summary, what we are seeing is that the current system for vehicle taxation is 
unable to get BEVs to internalize the externalities from their driving, and there is a large 
government revenue loss.  

Most transport economists would suggest a road pricing scheme as a potential candidate to 
counter this emerging problem. A promising variant could be distance-based road pricing, 
differentiated across vehicle types and pre-defined areas and time periods according to their 
external costs, also factoring in revenue recycling through reduced labor taxation. Such price 
differentiation can be made possible by using satellite technology. This seems like a good 
topic for the first analysis, on national level. 

The rapid growth in the BEV stock is a national issue, but it is clear that fastest uptake is 
happening in and around the largest cities (Figenbaum, 2018). That means that in addition 
to the issues of externalities and government revenue, we also have the interaction with the 
cities’ public transport (PT) system. This seems like a good topic for the second analysis, 
where we take it down to city level. 

In addition to adding new complexity to both the transport systems and government 
finances, BEVs add new complexity to the electricity system. Continued growth in BEV sales 
in accordance with the National Transport Plan will lead to about 1.5 million BEVs by 2030 
(about half of the passenger car stock), which will increase national electricity consumption 
by less than 3% according to Skotland, Eggum, and Spilde (2016). However, they point out 
that the charging of BEVs, especially if many do so simultaneously and at high capacity, 
could challenge the capacity of the electricity grid. As pointed out in the literature, BEV 
charging can lead to a peak capacity problem in the local grid (Azadfar, Sreeram, & Harries, 
2015; Masoum, Deilami, Moses, Masoum, & Abu-Siada, 2011). And at the time of writing, 
there is no ability for the local grid operators, the DSOs (Distribution System Operators), to 
differentiate their grid tariffs over the day. There is therefore no incentive for the individual 
BEV owner to reschedule charging times, and if charging during peak hours leads to extra 
cost for the DSO, the cost is borne by all of their customers. This would be a case of a 
pecuniary externality in an incomplete market. Hence, for a third analysis, we want to 
investigate the feedback between the transport market and electricity market and how 
policies in one market can affect the equilibrium in the other. We will assess how polices can 
be optimized to reach policy goals at least cost. It will be a question of optimizing the car 
fleet, the transport equilibrium and the charging equilibrium. 

Can the local grid costs stemming from BEVs be estimated empirically? If any country would 
have any usable data to test this, it would be Norway. By the end of the project, Norway will 
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have had many years with high growth in BEVs, where the absolute number of BEVs in 
certain places could have had an impact on DSO costs. This seems like a good venue for the 
fourth analysis. 

These four analyses contribute to the common goal of building knowledge on how to 

deal with the challenges and opportunities that arise from transport electrification. 
The scope of this work is centered on the Norwegian perspective, so more global issues such 
as the production of BEVs and the challenges arising from the BEV supply chain is out of 
scope. However, while the research is mainly focusing on the Norwegian case, the findings 
will provide useful knowledge far beyond Norwegian borders. As other nations are aiming 
to increase the BEV share of the car fleet, learning from Norwegian successes and mistakes 
will be useful. 

The remainder of the introductory chapter goes as follows: Section 2 provides some 
background to the thesis problem area. Section 3 gives and overview of the theory, methods 
and data applied in the thesis. In section 4 I provide a synthesis of the thesis. Here I first give 
an overview, discuss the main findings and an how the papers contribute to the literature, 
before providing a brief summary of each paper. Section 5 provides conclusions and 
implications. A snapshot of all papers, with research questions, theory, methods, data and 
findings can be found in a summary table in the Appendix. 
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2 Background 

I will briefly put the market failures this thesis will investigate in context with the Norwegian 
economy. An overall estimate of total external costs from road transport given in van Essen 
et al. (2019). They estimate that these external costs totaled up to €7.4 bn in 2016, which 
corresponded to about 3.4% of Norwegian GDP. Although such figures are subject to large 
uncertainty, it gives an idea of the welfare cost of some of the market failures in transport. 

The CO2 emissions from road transport have generally been growing since the 1990s, along 
with the growth in the number of passenger cars and kilometers driven. However, emissions 
per vehicle kilometer has fallen over the same period, with the sharpest declines after 2015. 
These accelerations in emission efficiency have largely been helped by the rapid growth in 
hybrids, plug-in hybrids and in particular, BEVs (see Figure 1). 

The growth in BEVs has been largely policy-driven. Over the years, the policies affecting the 
relative competitiveness of BEVs have included exemption from VAT, exemption from the 
purchasing tax (although only the weight component would generate a positive tax for 
BEVs), exemption from tolls and ferry fares, free municipal parking and access to bus lanes 
(Figenbaum, 2018). However, probably the most powerful policy measure is the CO2-
component of the purchase tax (see Figure 1). This tax component is piecewise linear 
function of measured gCO2/km per vehicle, where the marginal cost per gCO2/km increases 
after thresholds 70, 95, 125 and 150 g/km. Passenger cars with very high emissions per km 
may experience a tax burden that may be double the pre-tax purchase price. Many of these 
policy measures will be discussed in the articles of this thesis. 

Finally, an increase in the BEV fleet leads to an increase in electricity consumed, as the cars 
need to be charged. In 2018, electricity consumed for road transport reached 475 GWh1. 
This still only corresponds to 0.4% of Norway’s electricity use in 2018, but the growth will 
continue. With continued growth in BEV sales, Skotland et al. (2016) projects that Norway 
will have about 1.5 million passenger BEVs on the road by 2030, more than half of the 
passenger car fleet. This would entail a 3% increase in national electricity usage compared to 
2015. In other words, a dramatic shift in the car fleet will not result in dramatic shifts in 
electricity usage. However, as we discuss above, we are more concerned about the capacity 
of the components i the local grid. The annual revenue cap, which is a function of annual 
costs for DSOs have grown from NOK 10.1 bn in 2007 to NOK 13.9 bn (about €1.4 bn) in 
20192. This is about 0.4% of Norwegian GDP.  

The market failures in the transport and electricity sector matter to the Norwegian 

economy. Effectively reducing the external costs of transport, and avoiding cost escalations 
in the local grid sector, would be welfare enhancing. This provides good motivation for 
finding policy improvements, which again provides good motivation for analysis in this 
thesis. 

  

                                                 
1 https://www.ssb.no/energi-og-industri/artikler-og-publikasjoner/stadig-mer-alternativt-drivstoff-i-
transport 
2 https://www.nve.no/reguleringsmyndigheten/okonomisk-regulering-av-nettselskap/nokkeltall-for-
nettselskapene/ 
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Figure 1: Upper left: Trends in CO2 emissions from passenger cars (Source: Statistics Norway). Upper right: Trends 
in kilometers traveled and CO2 emissions per km from passenger cars (Source: Statistics Norway). Lower left: 
Developments in the Norwegian passenger car fleet (Source: Statistics Norway). Lower right: Rates for different 
components of the purchasing tax for passenger cars in Norway in 2019 (Source: Fridstrøm (2019)).  
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3 Theories, methods and data 

In this section I present the strands of economic theory, the methodological traditions and 
the type of data central to my thesis, and how the articles relate and contribute to the scientific 
literature. A more compact presentation of theories, methods and data used in the articles 
can be found in the summary table in the Appendix. 

3.1 Theories 

The main branch of economic theory that underpins this thesis is welfare economics. Welfare 
economics attempts to provide a framework in which normative judgements can be made about alternative 
configurations of economic activity (Perman et al., 2003, p. 7). In order to rank different resource 
allocations in the economy, the analyst has to accept some ethical criterion. In mainstream 
economics it is common to apply ethical criteria derived from utilitarian moral philosophy, 
developed by thinkers such as David Hume, Jeremy Bentham and John Stuart Mill. In this 
structured form of utilitarianism, social welfare consists of some weighted average of the 
total utility levels of all society’s individuals (ibid). 

Under the strict conditions for a perfectly efficient market listed in the opening section, the 
market will bring about a resource allocation that maximizes social welfare. When one or 
many of these conditions do not hold, we have a market failure. These market failures are 
obstacles to reaching the goal of maximized social welfare. As economists, we want to assess 
the mechanisms and magnitudes of the concrete market failures, as part of a welfare analysis. 
The next step of the analysis is to identify policies that can bring about the maximal welfare 
improvement in the presence of these market failures.  

We now move our focus to the specific sectors where we find the market failures of interest 
in this thesis. One of the main categories is externalities, notably environmental externalities. 
This is where we move into the branch of economic theory called environmental economics. 
According to Perman et al. (2003) and Pearce (2002), the first systematic treatment of 
pollution as an externality was done in Pigou (1920). However, it was in the 1960s that 
environmental economics truly came of age (Pearce, 2002), with seminal works such as Coase 
(1960), Boulding (1966) and Ayres and Kneese (1969). Going back to Pigou (1920) again, 
this contains also one of the earliest discussions of road pricing as a means to efficiently 
respond to externalities from transport. With this we move into the economics branch of 
transportation economics. 

Market failures in the transport sector 

It is hard to imagine a transport sector that could qualify as a perfectly competitive market. 
Let us start with the road itself. Where roads fit on the spectrum from private to public goods 
depend on their institutional arrangement with respect to excludability, and traffic flow 
(congestion) with respect to rivalry (Benson, 2017). The financing of building and 
maintenance of roads can be done by user payments (e.g., by a private road operator with a 
natural monopoly) and/or by government budgets, often financed by distortionary taxes. 
Both of these ways of funding can hamper market efficiency.  

Even if the infrastructure market failure is “solved” there would still be the issues of the 
multiple external costs that are generated by the use of the infrastructure. In the case of road 
transport, these negative externalities include global emissions (CO2), local emissions (e.g., 
NOX and particulate matter), noise, accident risk, road wear and congestion (Rødseth et al., 
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2020; van Essen et al., 2019). CO2 emissions stem from the burning of fossil fuels, and the 
marginal damage cost is independent of where the burning (i.e., driving) takes place. 
However, the marginal cost stemming from the other externalities depend on where and 
when the driving takes place, and what kind of car is driven (Thune-Larsen et al., 2014). A 
kilometer driven by a BEV on a highway with free-flow volumes far from any towns or cities, 
imposes a much lower cost on society than an old diesel car driving during congested peak 
hours in the middle of a dense city on a cold, windless day.  

Public transport (PT) ridership has its own externalities. It can contribute to many of the 
same externalities as car driving does, but the average per-passenger kilometer external cost 
is generally lower. If a portion of the car drivers shift to PT, the amount of external costs 
can be expected to go down (Parry & Small, 2009). However, PT in many cities experience 
crowding during peak hours, which implies an external cost that the individual rider imposes 
on the other riders (De Palma, Kilani, & Proost, 2015; Hörcher, Graham, & Anderson, 2017; 
Li & Hensher, 2011). It may also be efficient to subsidize PT in order to exploit the “Mohring 
effect” (Mohring, 1972), as increasing route density and frequency will reduce PT users’ 
waiting costs and access cost (Parry & Small, 2009). 

The ideal policy prescribed from a transport economics textbook would be road pricing, 
where drivers would pay a tax per kilometer equal to the marginal external costs of driving 
that kilometer. Economists have been making the case for the policy of road pricing ever 
since Pigou (1920) and Knight (1924) in order to manage the externality of congestion. 
Hundreds of papers have been written on road pricing since then, with examples of seminal 
contributions to the theory from Walters (1961), who translated the backwards -bending 
speed-flow functions to a cost function and derived optimal gasoline taxes and optimal 
congestion tolls, and Vickrey (1969), who developed a bottleneck model and analyzed 
congestion pricing not only as a means to secure efficient utilization of current infrastructure, 
but also vitally informing the planning for future infrastructure expansions. Another 
important example is Mohring and Harwitz (1962), who established that under certain 
conditions, an optimal congestion pricing scheme will exactly cover the cost of the optimal 
supply of road capacity.  

It has long been acknowledged that the world in which economists recommend road pricing 
is more complex than what is shown in the simplest models, moving the analysis to second-
best solutions (Lindsey & Verhoef, 2000). Such cases include the issues of pricing both public 
transport (an imperfect substitute to car driving) and road use (Button, 2004; Small, 2004), 
constraints on the price and/or how much of the network that can be priced (Marchand, 
1968; Small & Yan, 2001; Verhoef, Nijkamp, & Rietveld, 1996), complexities in linking the 
road price to financing road infrastructure (Verhoef & Rouwendal, 2004), issues in the 
political economy (Evans, 1992), issues of implementation and acceptance (Rouwendal & 
Verhoef, 2006), and revenue recycling of road prices in the presence of distortionary labor 
taxes (Munk, 2008; Parry & Bento, 2001; Parry & Small, 2005). The latter subject is related 
to the double dividend hypothesis, a widely debated area of environmental economics 
(Bovenberg, 1999; Jacobs & de Mooij, 2015). 

A hundred years after Pigou, the case for road pricing is particularly strong. One reason is 
that the technology that enables road pricing, e.g., satellite and sensor technology, has vastly 
improved over the last decades (de Palma & Lindsey, 2011; Small & Verhoef, 2007). Another 
reason is related to changes in the vehicle fleet. Fuel taxes have worked as an instrument to 
imprecisely correct market failures from transport, but increased fuel efficiency and the 
growth in BEVs reduces the relevance of this instrument. These developments reduce the 
tax cost per vehicle km, potentially increasing the discrepancy between the tax and distance-
based external costs, and also stimulating more driving, often referred to as a rebound effect 
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(Parry, Evans, & Oates, 2014; Proost, Delhaye, Nijs, & Van Regemorter, 2009). BEVs also 
strengthen the case for road pricing, as government revenue from fuel taxes will decline, and 
covering this shortfall with distortionary taxes elsewhere would exacerbate other 
inefficiencies in the economy (Fridstrøm, 2019). BEVs also bring us into a sub-field of energy 
economics, as they bring in new challenges for the market of electricity distribution, which 
has its own market failures. 

Market failures in electricity distribution 
There are interesting aspects of market failure in many parts of the electricity supply chain, 
from generation to transmission, to distribution and finally to retailers. In generation, there 
is a large focus on the environmental externalities, most notably greenhouse gas emissions 
from fossil fueled plants (Decker, 2014). Electricity transmission, where the generated 
electricity is transported over long distances in high-voltage power lines in order to minimize 
energy losses, is a classic case of increasing returns to scale and natural monopoly in addition 
to network externalities stemming from the physical laws that govern power flows in an 
interconnected network (Hsu, 1997). In my research I focus on the distribution side, i.e. the 
local grid.  

DSOs (Distribution System Operators) manage the transport of electricity after it has been 
transformed to lower voltage so that it is safe to use for end consumers. These companies 
need to invest in a lot of physical infrastructure, such as transformers, sub-stations, overhead 
and underground cables and monitoring and signaling equipment. Many of these investments 
are sunk, long-lived and immobile. It is a typical case of high fixed costs and low marginal 
costs, giving rise to natural monopoly conditions (Decker, 2014, p. 229).  

There are many ways to regulate a DSO. Examples include rate of return regulation, various 
form of price cap regulation, and as they do in Norway; yardstick competition. Under 
yardstick competition, a theory with early works from Shleifer (1985), the regulated firms are 
benchmarked against each other, and receive a revenue cap as a function of the most efficient 
firms among its peers. In Norway, the regulator does the benchmarking through a series of 
Data Envelopment Analyses (see e.g., Coelli, Rao, O'Donnell, & Battese, 2005). This form 
of regulation mimics the workings of a competitive market, as it gives a firm incentives to 
reduce costs in order to stay ahead or not fall behind its peers in order to maximize profits 
or limit losses (Agrell, Bogetoft, & Tind, 2005). The firms will be driven by the pressure of 
benchmarking to reduce costs while delivering required services. This cost-saving potential 
would largely be the firms’ private information under other forms of regulation. From the 
regulator’s point of view, benchmarking reduces the firms’ informational advantage (Fehr, 
Hagen, & Hope, 2002). However, the regulator still has to ensure that the firms do not 
collude or find other ways to game the system, and has to calculate the industry efficient level 
correctly, and to factor in aspects regarding both demand conditions and production 
opportunities that are out of the firms’ control (Decker, 2014, pp. 135-137).  

With more than a hundred DSOs in Norway regulated under benchmark competition, the 
natural monopoly issues are at least addressed. But there is another market failure that may 
be causing problems. The missing incomplete market of distribution grid capacity. Here, the 
monthly grid tariffs that consumers pay are a function of a fixed component and a per kWh 
component that is uniform throughout the day. Without the ability for prices to signal 
scarcity, there will be instances where enough consumers simultaneously drawing electricity 
from the same sub-station will cause a need for the capacity of the existing sub-station to be 
upgraded before the end of its technical life (Haidar, Muttaqi, & Sutanto, 2014; Masoum et 
al., 2011). This means that DSOs need to undertake investments, meaning higher capital 
costs. In the short run there also may be higher operating costs due to maintenance and 
inspections. In Norway, higher DSO costs translates into higher revenue caps. 40% of the 
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revenue cap is based on cost recovery and the rest is based on the cost norm from the 
yardstick competition. Hence, unless the DSO affected by the higher cost due to higher 
capacity demand is at the efficiency frontier and therefore sets the cost norm, the DSOs cost 
increase will not be matched by a revenue increase, leading to lower profits. In addition , the 
increased revenue cap leads to higher tariffs for all consumers, not just the consumers who’s 
consumption pushed the DSO to undertake new costs. Due to the incomplete market for 
capacity in the distribution grid, these customers can impose costs on others, and pay only a 
fraction of the cost they caused. This can be considered a pecuniary externality in a missing 
market (Greenwald & Stiglitz, 1986). 

There are reasons to expect that many BEV owners could be such consumers. Without any 
tariff differentiation across the day, there is no incentive for BEV owners to do anything but 
what is most convenient. For many that would entail plugging in the car to charge directly 
after coming home from work (Barton et al., 2013; De Hoog, Alpcan, Brazil, Thomas, & 
Mareels, 2015). This coincides with peak hours electricity demand. The Norwegian regulator 
of the electricity distribution sector, NVE (The Norwegian Water Resources and Energy 
Directorate) developed a stress-test for neighborhoods with high BEV density. They 
simulated a case where 70% of the residents charge their BEVs simultaneously during peak 
hours, they find that power demand can increase by up to 5 kW per household. This results 
in overload for more than 30% of the transformer stations currently servicing the distribution 
network (Skotland et al., 2016).  

The theoretical intersection for the thesis 
This thesis can be placed in the intersection of welfare economics, environmental economics, 
transport economics and energy economics. It seeks to model optimal second-best policies 
in the presence of both environmental externalities and other externalities in the transport 
market in light of the growth in BEVs in Norway, and value the potentially exacerbated 
pecuniary externalities stemming from peak grid capacity usage. This modeling will then be 
used to discuss potentially welfare-enhancing policies. 

3.2 Methods and data 

3.2.1 Numerical modelling in transport economics 
The first three papers have theoretical sections where I derive analytical expressions for 
optimal policies. The analytical results are then solved numerically. This provides illustrations 
of the magnitudes of welfare changes from the polices, and provide insights into the various 
mechanisms at play in the optimization problem. The numerical models can in essence be 
considered very stylized transport models.  

Flügel, Flötteröd, Kwong, and Steinsland (2014) provides a useful typology of transport 
models, where the models can be classified according to how they represent time 
(static/dynamic/quasi-dynamic), their resolution (micro-/meso-/macroscopic) and how 
they deal with uncertainty (deterministic/stochastic). Within this typology, the transport 
models in this thesis can be classified as a static, macroscopic and deterministic model. 

I would like to contrast this with the more elaborate transport modeling systems applied in 
Norwegian transport planning and project appraisal. The transport model that forms the 
basis for paper 2 and paper 3 has a small set of heterogeneous representative agents, a limited 
number of car types and they drive on aggregate, representative road links. Furthermore, in 
the existing family of transport models in Norway, none of them bring together all the 
elements of car choice, choice of transport pattern by mode and time of day, congestion and 
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crowding feedback and occasional long trips into the same model. The regional transport 
models (RTMs), with the Oslo-region version documented in Rekdal and Larsen (2008), and 
the national transport model (NTM), documented in Rekdal et al. (2014), are classic 4-step 
transport demand models (Ortúzar & Willumsen, 2011) that find their equilibrium in a 
complete transport network. However, there is only one representative car type, the car stock 
is exogenous, and there is no crowding feedback in public transport. Keeping car type choice 
exogenous and omitting crowding feedback is also the case for the urban transport models 
for Oslo (MPM23 (Flügel & Jordbakke, 2017)) and Trondheim (using MATSim (Horni, 
Nagel, & Axhausen, 2016)), along with the model EFFEKT (Vegdirektoratet, 2015) that the 
Norwegian Public Roads Authority uses for cost-benefit analysis. The Railway directorate’s 
model TRENKLIN (Flügel & Hulleberg, 2016) includes crowding feedback on trains, but 
has no modeling of car transport. As for the main model for car choice and predicting market 
shares for cars, the BIG3-model (Fridstrøm, Østli, & Johansen, 2016; Østli, Fridstrøm, 
Johansen, & Tseng, 2017), it has no modeling of how the cars are used. While all of these 
members from the family of Norwegian transport models can model either travel mode 
choice, transport flows or the vehicle fleet far more sophisticated than ours, our model has 
the advantage of bringing more elements together in a transparent, relatively noncomplex 
model.  

The established transport models used for transport planning and project appraisal in the 
Norwegian setting are not suited to work with the research questions in Paper 1 either. This 
model is even more stylized than the model in Paper 2 and Paper 3, as it has an even narrower 
set of model agents and car types, and excludes aspects like public transport. However, I 
wanted to add some (stylized) representation of labor market responses and the trade-off 
that policy-makers face when they have a binding budget constraint and distortionary labor 
taxes. With this goal in mind, there is not much to build from the current family of 
Norwegian transport models.  

I also would like to contrast the stylized transport models in this thesis with the models that 
inspired them. The numerical modeling exercise in Paper 1 largely builds on the modeling 
done in Parry and Small (2005) and Tscharaktschiew (2014), but extends the analysis with 
road pricing in multiple areas with multiple car types, which provides new nuance and insight 
to this framework used to derive optimal gasoline (or diesel) taxes. In this model the goal is 
to find the set of road prices that optimizes the balance between the external costs from 
passenger car driving with the costs of financing a binding government budget constraint 
with distortionary labor taxes.  

In Paper 2 the numerical modeling builds on the modeling from Börjesson, Fung, and Proost 
(2017) and extends it to include a car choice module, multiple heterogeneous agents, 
occasional long car trips. As this model gives insight into the mechanisms driving both car 
choice and transport patterns, it opens up to a rich and transparent analysis of trade-offs for 
urban transport policy, in particular in light of ambitious climate targets and the availability 
of EVs in consumers choice set. The model in Paper 3 is an extension of the model in Paper 
2, where we add a distribution grid cost module. Here we model the feedback between the 
transport sector and the grid sector, where model agents that choose to own an EV affect 
the cost of the local grid, that again affect grid tariffs for all electricity consuming agents. 

The model parameters build on numerous data sources, many of them publicly available, 
such as car ownership and travel data from Statistics Norway. The transport model in Paper 
2 and Paper 3 also heavily uses the data from the National Travel Survey from 2014, 
documented in Hjorthol, Engebretsen, and Uteng (2014) to calibrate the model agents. The 
                                                 
3 BIG is a Norwegian-language acronym meaning “vehicle cohort model” 
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travel survey is also an important data source for many of the aforementioned members of 
the Norwegian family of transport models. All the numerical modeling also relies on 
parameters, such as elasticities, from Norwegian transport models and the transport model 
literature. I emphasize in the papers that these parameters are subject to uncertainty, and 
therefore provide sensitivity analysis in all of these papers to illustrate how the results should 
be evaluated in light of this uncertainty. 

3.2.2 Econometric models for grid costs & BEV density 
Because Norway has built up a relatively high density of BEVs over a number of years, there 
is a possibility of analyzing if and how much local growth in BEVs affect DSO costs. By 
merging together data from NVE on annual costs of DSOs applied for regulation, their 
operational area, and data on registered cars at municipal level, we get a unique panel  dataset 
(repeated observations on individual units – in our case DSOs) for such analysis. This dataset 
allows us to investigate how BEVs affect DSO costs by exploiting local differences in the 
growth of BEVs over time.  
We apply linear regression models with fixed effects to this dataset, in order to address 
problems such as unobservable variables which can cause bias. Fixed effects models are a 
common part of many econometrics textbooks (Cameron & Trivedi, 2005; Hill, Griffiths, & 
Lim, 2008; Wooldridge, 2002). The fixed effects will control for all time-constant variation, 
both time-invariant explanatory variables and unmeasured time-invariant variables. 
Algebraically, it works as estimating based on the deviations from means for the individual 
unit. A variable that does not vary over time for an individual unit, will by definition not 
deviate from its mean. Hence, deviations from the mean kills all time-invariant individual 
effects. And most importantly, it kills off unobserved individual effects (Angrist & Pischke, 
2008), that can cause omitted variable bias. Using the explanation from Cameron and Trivedi 
(2005), given the key assumption that all unobserved variables are time-invariant, the 
causative effect of BEVs on DSO costs is then measured by the relationship between 
individual changes in costs and individual growth rates in the BEV stock. 
Some of the time-invariant variables may have a relatively strong correlation with our variable 
of interest, the number of BEVs. An example of an unmeasured time-invariant variables 
could be the distances within and between the populated areas in DSOs operational areas, 
which drives up DSO costs per customer and drives down the attractiveness of BEVs due 
to longer driving distances. An example of the measured time-invariant explanatory variables 
could be Average temperature, as colder winters could affect both DSO costs positively and the 
attractiveness of BEVs negatively as it reduces their range (Figenbaum & Weber, 2017). By 
using fixed effects, we reduce the problem of omitted variable bias when we analyze the 
relationship between BEVs and DSO costs. However, fixed-effects estimation has the 
drawback of not being able to estimate effects of time-invariant measurable variables, even 
though this may be of some interest. 
Another drawback with the fixed effects model is that prediction of the conditional mean is 
not possible (Cameron & Trivedi, 2005). We can only predict the changes in the conditional 
mean, in our case, DSO costs, caused by the changes in the time-varying regressors. However, 
the first and most important step forward is estimating the marginal impact of BEVs on 
DSO cost, for which fixed effects estimation is very suitable. 
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4 Synthesis of papers 

4.1 Overview, main findings and how the papers contribute 
to the literature 

The four articles written for this thesis are briefly summarized in the upcoming subsections. 
All the papers feed in to the overarching theme of the thesis, namely how to best respond 
to a transport sector that is becoming increasingly electrified, although their approaches 
differ. In one end I approach the theme through broad policy analysis in complex settings of 
BEVs and multiple market failures that need to be simulated in numerical models in order 
to be able to analyze all the various mechanisms at play. In the other end, I approach through 
a narrow empirical analysis of what are the marginal costs of inflicted on DSOs when the 
number of BEVs increases. Figure 2 gives an overview of how the papers relate to each other 
and the overarching theme. 

 
Figure 2: A schematic overview of papers in the thesis, and their main topics 

Main findings 

All three papers that use numerical modeling to analyze policy aspects relating to BEVs fall 
into the strand of the economics literature that addresses the search for optimal policy 
instruments when dealing with multiple externalities. But in all of the papers, market failures 
outside of road transport are included, which brings in some of the complexities and trade-
offs in a second-best world where the traditional Pigovian solution may not be the optimal. 
Such complicating factors are: government budget constraints and distortionary taxes (Paper 
1), the presence of public transport that gets crowded during peak hours and shifting 
equilibria with different car ownership shares in an urban transport setting (Paper 2), and the 
presence of pecuniary externalities in the incomplete grid capacity market (Paper 3). The 
findings from the model results in all three papers point to that Norwegian transport policies 
are quite misspecified compared to the policies that maximize social welfare (in the model). 
ICEVs are found to be undertaxed for their city driving, and overtaxed for their driving in 
rural areas. But then again, the driving of BEVs is undertaxed in general. Many of the findings 
are in line with what is found in the road pricing literature  (e.g., De Borger & Mayeres, 2007; 
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Munk, 2008; Parry & Bento, 2001). When the question changes from how to use policy to 
optimize welfare, to how to use policy to reach stated emission targets at least cost, we find 
that the role of BEVs and optimal policies change. The resulting policies will make owning 
and driving ICEVs far more expensive, making a switch to BEVs a cost-minimizing response 
for many agents. However, we find that the social cost of achieving these emission targets 
come in the order of several thousand NOK per ton abated, in line with what is found in 
other papers analyzing where the transport sector is narrowly targeted for emission cuts 
(Mayeres & Proost, 2013; Proost et al., 2009).  

In Paper 3 our model finds that higher BEV density leads to higher costs to  users of the 
electricity grid, as they increase the need for distribution transformers to be replaced before 
their technical life runs out. This leads to higher grid tariffs, although not very large, and it 
does add extra to the cost of CO2 abatement. This is of course sensitive to how prematurely 
the transformer has to be replaced. In paper 4 we approach the question of cost additions to 
the local grid due to BEV charging from another angle. We try to investigate empirically how 
large the local grid costs imposed from BEV charging have been over the last decade. Here 
we use annual data at the DSO level, with regards to DSO outputs, costs and registered 
BEVs, which can be considered a more top-down approach to the question. We find 
statistically and economically significant cost elasticities, in line with conclusions from 
simulation exercises on the subject (see e.g., De Hoog et al., 2015; Masoum et al., 2011). The 
findings imply a cost per BEV far higher than what is found in Paper 3 for the median DSO. 
However, for the DSO in the Oslo area (the largest in the country), the estimated marginal 
cost per BEV is lot lower and thus closer to what is implied in Paper 3. We also find that the 
heterogeneity among DSOs, especially along the dimensions of size and average cost-per-
customer, matters a lot. 

Contribution to the literature 
While the contribution of each paper is summarized more in detail in each article summary4 
in the upcoming subsection, I want to spend a few paragraphs on the overarching 
contribution of this thesis to the literature. In short, the main overarching contribution 

is new and improved understanding of how the emergence of BEVs, as a technology 
in the transport sector, changes the calculus of social costs and benefits and how 

policies optimally should respond to these changes. This is done by extending well-
established modeling frameworks to include BEVs and issues related to their charging, and 
econometric analysis of a new and highly relevant dataset on BEV density and local grid 
costs. With this we can better understand the mechanisms at play, and what balances need 
to be struck to form welfare-enhancing policies.  

Paper 1 provides new insights into how to optimally design a road pricing scheme in a world 
with electric vehicles and government budget constraints and distortionary labor taxes. The 
modeling framework, which in previous literature has mainly been used to analyze fuel taxes 
on an aggregate, national level (see e.g., Parry & Small, 2005; Tscharaktschiew, 2015), is 
extended to incorporate how the external costs of driving varies by time, place and type of 
vehicle, and how this scheme fits in with ambitious policy goals for reducing CO2-emissions.  

Paper 2 contributes to the literature with improved understanding of how the mix of policy 
instruments tolls, fares, parking charges and car purchase taxes interact with each other in 
the transport market equilibrium, especially with the availability of EVs, and how to use these 
instruments to strike the balance between costs and benefits in the urban setting. It also 
illustrates a way of seeing the division of labor between different policy instruments. While 

                                                 
4 A condensed synthesis of the papers can also be found in Table 1 in Appendix to the introductory chapter. 
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tolls, fares and parking charges can be used to optimize the transport equilibrium, car 
purchasing taxes can be used to optimize the car fleet of agents participating in the optimized 
transport market. The insights from this model continue in Paper 3, where it is extended to 
include the impacts that higher EV density can have on local grid costs, and how that changes 
the optimal policy mix. All the extensions from the modeling framework of Börjesson et al. 
(2017) contributes with a useful tool for analysis in the transport economics literature. 

The thesis also contributes to the literature on the impacts EV charging may have on the 
distribution grid with an econometric analysis on real data on the relationship between BEVs 
and DSO costs. As far as we know, no such analysis has been done with real nation-wide 
data before, as the literature until now has analyzed the problem through simulation 
exercises. Uncovering the social costs stemming from BEV charging improves the 
understanding of social costs and benefits in the transport and electricity sector when BEVs 
are available. 

The thesis provides a clarifying perspective to the social costs and benefits of an increasing 
BEV share. It is clear that the usage of BEVs, at least the way they are driven and charged 
under current policies, have social costs. Policies can contribute to improve the cost-benefit-
ratio, but it is clear that as long as policy makers are committed to the high ambitions of the 
Paris agreement, a large shift from conventional cars to BEVs is a part of a cost-minimizing 
response.  

Limitations and future research 

There are some caveats worth mentioning. The numerical models used in papers 1-3 are 
quite stylized, so the exact numerical results should be interpreted with caution. There are 
some major model simplifications. An important one is the use of a small number of 
representative agents, which means that there is a lot of heterogeneity in how people behave 
in the transport market, how they respond to policies and how they are affected by policies, 
that are not captured. These agents have simplified utility functions, where important aspects 
like consumer tastes and quality differences for cars are ignored, and their valuation of a 
vehicle is largely a function of generalized travel cost. The models also rely on parameters 
that can be considered fairly uncertain. We address some of this uncertainty by conducting 
sensitivity analysis in order to show how the uncertainty in the underlying parameters affect 
the results. We do this for some of the most uncertain parameters in all three papers with 
numerical models.  

I would also like to mention some important caveats with regards to estimating grid costs. 
The data we have only allows us to observe the BEVs registered in the DSOs operational area. 
We do not observe the owners’ actual charging behavior and their power usage from other 
appliances, i.e., the very usage of grid capacity we expect to drive up DSO costs. In addition, 
some of the charging from BEVs may even occur in other areas than where the car is not 
registered, e.g., on cabin trips. So even though we have identified a statistically significant 
and relatively robust relationship between BEV density and DSO costs, there are still some 
unanswered questions regarding what happens in this relationship. 

There are many promising ways to expand the research in this thesis. The numerical models 
could be expanded with a wider range of vehicles for a wider range of heterogeneous agents 
to choose from. Aspects of agents’ tastes and quality differences of the cars would also be 
promising model extensions. If data permitting, the empirical analysis of the effect BEVs 
have on grid costs can be expanded to include the BEV ownership of cabin owners, and the 
composition of different household types and different types of BEVs, as they may have 
different charging patterns. The empirical framework can also be used to analyze the effect 
of peak grid tariffs, if regulation eventually will allow for this.  
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4.2 Article 1: How to road price in a world with electric 
vehicles and government budget constraints 

Published in Transportation Research Part D: Transport & Environment 

In this paper we examine what characterizes second-best road prices targeting external costs 
from driving BEVs and internal combustion engine vehicles (ICEV) when there are 
distortionary labor taxes and binding government budget constraints. Further, we examine 
how this second-best pricing fits with government CO2 emissions reduction targets.  

Our paper makes the following contributions: First, it extends an established modeling 
framework (see e.g., Lin & Prince, 2009; Parry & Small, 2005; Tscharaktschiew, 2015) for 
optimal taxation in transport with revenue recycling of distortionary labor taxes to include a) 
different areas and time periods where external costs vary, and b) both ICEVs and EVs and 
their associated taxes. This allows us to take a broad view how a national road pricing scheme 
optimally would look like. As road prices per combination of vehicle type, area and time 
period, and the labor tax rate are determined simultaneously, this model also allows us to see 
the endogeneity of how changes in one road price affects the levels of the others. This can 
result in road prices that differ from traditional Pigovian solutions, and we can see how costs 
and benefits of the scheme are distributed geographically. Second, it provides numerical 
results for the case of Norway, a country where the Ministry of Transport has started 
investigating the possibilities for distance-based road pricing applying satellite technology. It 
is also the country with the highest BEV share of the car fleet in the world, strengthening 
both fiscal and externality arguments for moving from fuel tax to a more sophisticated way 
of road pricing. 

We find that optimal road pricing scheme is characterized by large price differentials between 
when and where the driving takes place. This demonstrates how analyzing a road pricing 
scheme that differs over different spatiotemporal states and car types adds more nuance and 
insight than, for example, analyzing a single gasoline tax. In the optimal scheme ICEVs face 
a higher cost in large cities but lower costs in most parts of the country compared to the 
initial situation, even if it leads to a slightly higher labor tax rate. We also find that BEVs 
should be taxed, and in rural areas they should be taxed higher than ICEVs due to large fiscal 
interaction effects. We find that interaction with the rest of the fiscal system generally leads 
to a tax markup on the external costs. In sum, the road pricing scheme leads to higher welfare.  

We also find that as long as the optimal road pricing scheme applies the recommended 
reference price for CO2 in Norway, it will not contribute much to reaching the short-term 
government emission target. In order to reach this target at least cost, a shadow price 16 
times the recommended reference price is needed, indicating a large mismatch between the 
recommended reference price for CO2 and the target, a finding similar to that in Mayeres 
and Proost (2013) and De Borger and Proost (2015). This CO2 constrained optimization 
leads to substantially higher road prices for ICEVs and somewhat lower for EVs compared 
to the second-best optimum.   
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4.3 Article 2: Vehicle choices and urban transport 
externalities. Are Norwegian policy makers getting it 
right? 

Co-authored with Stef Proost and Kenneth Løvold Rødseth 

Accepted in Transportation Research Part D: Transport & Environment 

This paper uses a stylized numerical transport model for the greater Oslo area to analyze 
transport policies. The modeling approach draws on Börjesson et al. (2017), but our paper 
provides three key extensions to the framework, most notably multiple heterogeneous 
representative agents, a car choice module, and a more comprehensive set of transport 
patterns as occasional long car trips are included in addition to short daily trips by car and 
PT. The prime purpose of this model is to look into the interactions between combinations 
of policies and inhabitants’ car purchase, car use, PT use and urban transport externalities. 
As far as we know this is the first paper putting all these elements together in a fully 
transparent model where all effects can be checked and policies can be optimized in terms 
of welfare and/or reaching climate goals. Our model gives a simplified but complete 
description of the urban transport market equilibrium, both with regard to transport patterns 
and car ownership. It allows us to analyze how different types of agents respond to different 
transport policies, and how they are affected.  

First, we explore the medium-term effects of the current BEV friendly policies. Second, the 
model is used to explore the potential for more efficient pricing of car and PT use, and more 
efficient purchase taxes. We find that the current policies lead to massive penetration of 
BEVs and therefore to a strong reduction of CO2 emissions. However, they also lead to 
much more congestion and decreased use of PT. More welfare-enhancing policies require 
efficient pricing of road congestion and PT, and provide incentives for consumers to choose 
the most efficient combinations of cars. Such policies lead to a less extreme penetration of 
BEVs than the current transport policies. However, they do achieve a more efficient 
transport equilibrium and substantial resource cost savings, leading to higher welfare levels. 
We also use the model to identify policies that leads to the achievement of the emission 
reduction targets in the greater Oslo area at least cost. Reaching these targets in a cost-
effective way will require a large switch to BEVs. However, the welfare cost per ton of CO2 
abated that will far exceed the recommended reference value of CO2. 

Although the exact numbers from the reported results must be interpreted with caution, they 
can provide some important policy lessons. First, efficiency can be gained through more toll 
differentiation between peak and off-peak hours. Second, widening the gap between peak 
and off-peak fares in PT would also probably produce efficiency gains. A third policy lesson 
from our findings is that purchase taxes are powerful instruments for achieving policy goals, 
confirming findings from Fridstrøm and Østli (2017). It is not the most efficient instrument 
to correct transport market failures, but it can serve a valuable purpose in a second-best 
world. Such second-best considerations include cases where the potential for fuel taxes is 
limited by fuel tax competition (Mandell & Proost, 2016). A useful way of viewing the 
problem in this paper is in terms of market correction and incentive compatibility. Tolls, 
fares and parking charges can incentivize optimal transport use, and thereby provide 
corrections in the transport market. Purchase taxes (and possibly their exemptions) on the 
other hand, can ensure incentive compatibility in the corrected transport market. It can 
ensure that agents actually select the car combination the optimal policies are designed for.  
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4.4 Article 3: Optimal policies for electromobility: Joint 
assessment of transport and electricity distribution costs 
in Norway 

Co-authored with Stef Proost and Kenneth Løvold Rødseth 

The electrification of transport will make the transport and energy systems more intertwined: 
EV-friendly transport policies increase the demand for power, thus challenging the 
distribution grid’s capacity, while electricity policies impact the generalized costs of driving 
EVs. There exists some literature that looks at how the electrified transport will affect the 
need for grid investments and/or demand management in order have sufficient power 
capacity (De Hoog et al., 2015; Neaimeh et al., 2015). Most of these studies assume that 
transport demand, and therefore EV users’ demand for electricity, is exogenous (Daina, 
Sivakumar, & Polak, 2017a, 2017b). This paper contributes to the literature by looking at the 
mechanisms and outcomes in both the transport and energy market, and the feedback in-
between them. 

This paper builds on the stylized numerical transport model for the greater Oslo area from 
Paper 2 of this thesis. Here, we add a module for using the distribution grid to charge EVs, 
so we can study costs and benefits in both the electricity market and transport market jointly. 
The model allows the agents to choose type of car (or no car), their transport pattern and (if 
they own an EV) how much to home charge during power peak and off-peak hours. If 
enough EV-owning agents charge during power peak hours, costly grid expansions may be 
needed. With this, we can examine how the distribution grid company can respond in order 
to mitigate these costs with different pricing schemes and how this in turn affects the 
transport equilibrium. 

To our knowledge, it is the first time these features have been applied in the same model. 
The analysis will give insight into the feedback between the transport market and electricity 
market and how policies in one market can affect the equilibrium in the other. With this we 
can assess how polices can be optimized to reach policy goals at least cost. 

We find that as today’s EV-policies drive up the EV-share of the car fleet, they also drive up 
investment costs in the local distribution grid as old transformers need to be replaced 
prematurely with transformers with higher capacity. Our model finds an equilibrium where 
the increased cost of transformers leads to between NOK 12 and 18 (approx. € 1.3 - € 2) in 
added annual non-car electricity costs per agent, depending on the DSO’s pricing scheme. 
We find that a pricing scheme that applies peak tariffs for the grid will help strike a better 
balance between investment costs and EV-owners’ disutility of charging during off-peak 
hours.  

We argue that the resulting increase in electricity expenses is small, and would probably go 
unnoticed by most households as it represents less than a 0.1% increase in annual electricity 
costs (including tariffs and taxes) for households with normal consumption between 10 000 
and 20 000 kWh per year. However, our sensitivity analysis shows that the cost can get 
substantially higher if the old transformers have to be replaced sooner than in the baseline. 

The shift to BEVs and PHEVs is an integral part of reaching the ambitious goals of reducing 
CO2-emissions by 50% in the greater Oslo area at least cost. We find that adding the charging 
issues leads to NOK 17-27 in additional costs per tCO2e under baseline assumptions. If the 
policy makers have committed to the CO2-target and are willing to pay the cost of reaching 
it, adding the grid costs is not going to be very discouraging.  
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4.5 Article 4: The impact of electric vehicle density on local 
grid costs: Empirical evidence from Norway 

Co-authored with Askill Harkjerr Halse 

We observe a rapid rise in the number of BEVs in Norway, and there exists a literature (see 
e.g., De Hoog et al., 2015; Masoum et al., 2011) that warns that BEV charging will cause 
substantial future costs to the local grid, unless measures are put in place. If indeed the 
aggregate uncoordinated charging by BEV owners does induce higher costs to DSOs, then 
Norwegian data would be the first place to investigate. Detailed data of all Norwegian DSOs 
and all registered BEVs during the last ten years give a unique opportunity to analyze this 
relationship. To our knowledge, such an empirical analysis has not been done before on real 
data in a country-wide analysis. It will therefore push the knowledge frontier on a debated, 
but relatively unexplored topic empirically. Findings may have implications for how to 
regulate DSOs, how to price household power usage and how to assess the net social cost 
of achieving emission reduction targets through promoting BEVs. 

By merging together data from NVE on annual costs of DSOs applied for regulation, their 
operational area, and data on registered cars at municipal level, we get a unique panel dataset 
for such analysis. The two first data sets were also merged together in Orea, Álvarez, and 
Jamasb (2018) for the purpose of efficiency analysis using a spatial econometric approach. 
Our data set of 107 Norwegian DSOs outputs, costs and registered BEVs in their operational 
area between 2008 and 2017 allows us to investigate how BEVs affect DSO costs. Exploiting 
local differences in the growth of the BEV fleet over time, we investigate how an increase in 
the number of BEVs affects the costs of the local DSO, using fixed-effects estimation that 
account for time-invariant characteristics of the DSO (see e.g., Mehmetoglu & Jakobsen, 
2016). We also control for growth in output indicators that could be correlated with growth 
in the BEV fleet. We look at both total costs and individual cost components.  

We find that increases in the BEV fleet are associated with positive and statistically significant 
increases in costs when controlling for other DSO outputs and year dummies. The point 
estimates also imply that the effect is economically significant, with a preferred model giving 
a cost elasticity of 0.018 from increases in the local BEV stock. This finding is robust to the 
addition of several controls and removal of outliers. We also find the strongest impact 
through operational costs, and not capital costs. Although we find significant effects in the 
national sample, there is a lot of heterogeneity in these results, with the marginal cost 
estimates being a lot higher for small DSOs in rural areas, and a lot lower for larger DSOs. 
This heterogeneity also indicates that the BEV-induced costs is not a major problem that has 
affected a large number of consumers. The half of the sample with the largest DSOs, where 
the estimated cost elasticity from BEVs was close to zero, serve over 93 % of the customers 
in the entire sample. 

Finding that increased BEV ownership is associated with higher DSO costs, implies that the 
case for a well-specified peak-pricing system for grid tariffs is strengthened, so that efficient 
load-shifting is properly incentivized. Many BEV owners would probably respond by 
installing smart charging systems, which would ease the household cost minimization and 
ensure more efficient grid capacity utilization, even with small hour-to-hour price 
differences.  
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5 Conclusions and implications 

The fundamental question is whether society actually accepts our politicians pledge to limit 
global average temperature rise to well below 2 degrees. Reaching that goal is going to imply 
an extremely high shadow price for greenhouse gas emissions, even if costs are kept to a minimum. 
Implementing policies that actually lead to fulfillment of the Paris agreement will require a 
strong mandate from voters. It is clear that a shift to BEVs is part of a best response to the 
policies that lead to fulfillment of the Paris agreement, a part of a cost minimizing strategy. 
But just because we observe a rapid rise in the number of BEVs, it does not mean that we 
are fulfilling the agreement at minimized cost, nor does it mean that we are fulfilling it at all. 
Policymakers can fail at both. This research shows that there are substantial welfare gains 
from optimizing incentives in both transport and electricity markets, and that these 
incentives will make this promising technology actually promising. The main policy 
implications from the thesis can be summarized as follows: 

Distance-based road pricing differentiated according to where, when and what type of car 
can be welfare enhancing compared to today’s system of fuel taxes and tolls. Compared to 
today’s situation in Norway, it would be more efficient with a lower tax burden for driving 
in rural areas, and a higher burden for driving in congested times and areas of dense cities. 
The growth in BEVs strengthen the argument for such a road price. BEVs are a lot harder 
to tax than conventional cars, so a road price will be the best tool to do that, both for 
transport optimizing purposes, and for fiscal purposes. However, should it become reality, 
it is imperative that the system is designed for privacy protection from the get-go. We want 
a more efficient transport market, not Big Brother! 

In the urban transport setting the policy makers need to strike the right balance between 

road prices and public transport fares in order to optimize the transport system. In 
particular, this means a larger differentiation between peak and off-peak prices. Perhaps 
labeling this price differential as an “off-peak discount” could be more palatable way of 
framing it. The composition of vehicle purchase taxes can also be optimized so that 
agents will choose the car fleet that maximizes social welfare under optimized policies. 
Purchase taxes have in any case proven to be very powerful instruments.  

In order to incentivize efficient use of local grid capacity, peak hour grid tariffs can be an 
efficient instrument. When businesses and households get the right signal for economizing 
on their grid capacity usage, costly investments can be postponed and the system can be 
operated efficiently. As the BEV fleet grows, the case for peak grid tariffs grows, as shown 
in paper 3 and paper 4, and the tariffs will be a price signal for all usage of grid capacity. BEV 
charging, aided by smart-chargers, could be some of the easiest capacity usage to load shift 
away from peak hours, even with small price differentials. 

There are some promising signals from some Norwegian policy-makers and regulators to try 
to put together more efficient policies, such as distance-based road prices and peak tariffs. 
Although economists may give the impression, we know that efficiency is not the only aspect 
that needs to be considered in constructing such policies. However, I am hopeful that sound 
economic arguments will be a part of the democratic debate and the rest of the policy making 
process. Part of the power of economics is the ability to highlight important trade-offs and 
providing a framework on how to systematically strike a balance between the various costs 
and benefits. I have done my best to harness some of that power in putting together this 
thesis, and I hope it can provide a meaningful contribution to the debate, and thus go beyond 
its contribution to the academic literature. At least with some probability. 
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A B S T R A C T

In this paper we examine what characterizes second-best road prices targeting external costs from
driving electric (EV) and conventional (ICEV) vehicles when there are distortionary labor taxes
and binding government budget constraints. Further, we examine how this second-best pricing
fits with government set goals of reducing CO2 emissions. The paper further develops an ana-
lytical framework for assessing first- and second-best road prices on vehicle kilometers, extending
it to include EVs and externalities that vary geographically and by time of day. We find that
optimal road prices largely vary with external cost, but are also significantly affected by the
interactions with the rest of the fiscal system. Not surprisingly, the highest road prices should be
for ICEVs in large cities during peak hours due to high external costs. More surprisingly, we find
that the road price for ICEVs in rural areas should be lower than that for EVs due to large fiscal
interaction effects. These road prices give large welfare gains, but they lead to no reduction in
carbon emissions when applying the currently recommended social cost of carbon.

1. Introduction

The road transport market is associated with market imperfections such as local and global pollution, accidents, noise and road
wear. Thune-Larsen et al. (2014) calculate external costs in Norway of up to NOK 30 billion (Norwegian kroner; 1
NOK= €0.11= $0.13) per year from road transport – a figure that does not include CO2 costs, even though road transport in 2015
accounted for 19% of Norway’s greenhouse gas (GHG) emissions (Ministry of Finance, 2017). In addition to externalities from road
transport, inefficiencies in the economy arise from distortionary taxes elsewhere. Externalities and inefficiencies in the tax system
have recently come under renewed scrutiny with government-assigned expert committees publishing so-called Norwegian Official
Reports (Norges Offentlige Utredinger – NOU), with NOU 2014:13 – Capital Taxation in an International Economy and NOU 2015:15 –
Green Tax Commission. Looking for ways by which to mitigate these inefficiencies is in itself motivation for this paper.

As recommended by many transport economists before us, we propose a road pricing scheme for mitigating these inefficiencies.
More specifically, we propose distance-based road pricing, differentiated across vehicle types and pre-defined areas and time periods
according to their external costs, also factoring in revenue recycling through labor taxation.

We raise the following research questions: What characterizes the set of second-best road prices targeting external costs from
driving EVs and ICEVs when there are distortionary labor taxes and binding government budget constraints? How are these prices
affected by tax distortions in the labor, electricity and car ownership market? How does this second-best pricing fit with government
set goals of reducing CO2 emissions?

Our paper makes the following contributions: First, it extends an established modeling framework for optimal taxation in

https://doi.org/10.1016/j.trd.2018.10.002
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transport with revenue recycling of distortionary labor taxes to include (a) different areas and time periods where external costs vary,
and (b) both ICEVs and EVs and their associated taxes. This allows us to take a broad view how a national road pricing scheme
optimally would look like. As road prices per combination of vehicle type, area and time period, and the labor tax rate are determined
simultaneously, this model also allows us to see the endogeneity of how changes in one road price affects the levels of the others. This
can result in road prices that differ from traditional Pigovian solutions in several dimensions. We can also see how costs and benefits
of the scheme are distributed geographically. Second, it provides numerical results for the case of Norway, a country where the
Ministry of Transport has started investigating the possibilities for distance-based road pricing applying satellite technology. It is also
the country with the highest EV share of the car fleet in the world, strengthening both fiscal and externality arguments for moving
from fuel tax to a more sophisticated way of road pricing.

Our paper is constructed as follows. In Section 2 we provide some background and literature review. In Section 3 we introduce the
analytical framework and derive expressions for optimal road prices. The numerical modeling with parameter values and scenarios is
explained in Section 4, while the results from the modeling exercise are given in Section 5. Section 6 concludes.

2. Background and literature

In order to strike the appropriate balance between costs and benefits in the affected markets, the “textbook economics” solution
would be to find a set of taxes that provide the incentives for economic agents to do so. The optimal gasoline (or diesel) tax is given as
one solution in several papers; for instance, in the cases of the UK and USA (Parry and Small, 2005), and Germany (Tscharaktschiew,
2014, 2015).

However, there are shortcomings to correcting road transport market failures through fuel taxation. First, the external costs of
driving vary depending on where and when it takes place, making a fuel tax an imprecise instrument. In addition, a fuel tax provides
incentives for more energy efficiency, which could be beneficial with regard to carbon emissions and oil reliance, but lead to higher
external costs because lower user costs per kilometer would induce more driving. This has been pointed out in several papers (see
e.g., Parry et al., 2014a; Parry and Small, 2005; Proost et al., 2009).

Second, the possibility for fuel taxes to (imprecisely) correct for externalities and generate government revenue is reduced when
EVs (electric vehicles)1 are introduced. EVs have many of the same externalities as ICEVs (internal combustion engine vehicles), but
they cannot be captured by a gas tax and it seems implausible they can be taxed explicitly from electricity use.

So, are there better ways of taxing, ways that internalize external cost more precisely and allow for the taxation of all cars? This
brings us into the discussion of road pricing. A vast literature on road pricing has accumulated over the decades. Button and Verhoef
(1998, p. 4) refer to Pigou (1920) and Knight (1924) as the spiritual fathers of road pricing. Since then, hundreds of theoretical and
empirical papers on a wide variety of road pricing schemes have been published, making it useful to specify exactly what kind of road
pricing this article will focus on. Levinson (2010) developed a typology with 90 types of road pricing, organizing it along the three
dimensions; the spatial resolution, the temporal resolution and the pricing objective. Within the dimensions of this typology, this
article focuses on area based,2 time-varying, second-best road pricing.

We focus on this specific type of road pricing because we believe it has a potential to generate large efficiency improvements for a
country like Norway. Support for the merits of the distance-based aspects can be found in the literature. Analysis from Parry and
Small (2005) and from May and Milne (2004) shows that distance-based road pricing can generate greater social benefits than, for
example, fuel taxation and cordon-tolling. Furthermore, modeling analysis from Meurs et al. (2013) suggests that distance-based road
pricing using satellite technology can be beneficial for the Netherlands compared to the current tax system for car-use and car-
ownership. Small and Verhoef (2007) along with André de Palma and Lindsey (2011) argue for the potential for high economic
efficiency of distance-based road pricing, and note that GPS technology is suitable for a scheme like this. The latter argue that a
satellite-based road-pricing system has advantages with regards to scale economies and in the potential for value-added services and
revenue generation.

The technologies underlying satellite-based road pricing have matured over the last decades, meaning that the timing is good for
research having this in mind. Such technology could in theory enable the theoretically best type of road pricing according to the
typology from Levinson (2010); dynamic marginal cost pricing on differentiated links. However, both privacy concerns and the
understandability of the system for the general public sets a limit on spatial and temporal granularity. It will probably not be
permissible for the road pricing authority to monitor car users at the finest level of detail, and a large number of car users cannot be
expected to understand a system with a wide variety of dynamically changing road prices. This makes distance-based prices dif-
ferentiated across pre-defined areas and time periods a promising alternative. Finally, because of the new emphasis on reducing
inefficiencies in the Norwegian tax system, we want to focus on second-best road prices as a part of a tax reform where revenues are
recycled back into the economy through reduced distortionary labor taxes.

Many of the aspects included in this specific form of road pricing have been covered in previous literature. The term road pricing
has primarily been associated with road traffic congestion (Button and Verhoef, 1998, p. 6), and this has been the study of numerous
papers. Over time, several papers have included environmental and/or accident externalities along with congestion (De Borger and
Mayeres, 2007; De Borger and Wouters, 1998; André De Palma et al., 2004; Munk, 2008). Several papers have considered how road

1 In this paper, when we refer to electric vehicles (EVs) we consistently mean pure battery electric vehicles (BEVs), without any hybrid tech-
nology.
2 More specifically, distance-based road pricing that vary by a small number of areas; large city, small city and rural.
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prices should differ across areas, e.g., between the urban and the non-urban setting (Munk, 2008; Proost and Van Dender, 1998) or
across the diesel and gasoline cars (De Borger and Mayeres, 2007), and an integrated transport and land-use model that can e.g.,
simulate the effects of distance-based road pricing differentiated by area and gasoline, diesel and electric cars is under development in
the OECD (Tikoudis and Oueslati, 2017). Finally, many influential papers have considered road prices in interaction with other
distortionary taxes (see e.g., De Borger, 2009; André De Palma and Lindsey, 2004; Mayeres and Proost, 1997; Munk, 2008; Parry and
Bento, 2001; Parry and Small, 2005; Van Dender, 2003).

We build on an analytical framework introduced by Parry and Small (2005), who applied it in deriving the optimal First-Best
Pigou-Ramsey tax for gasoline in the UK and USA. This model was also used by Lin and Prince (2009) and by Antón-Sarabia and
Hernández-Trillo (2014) in calculating the optimal gasoline tax in California and Mexico, respectively. A modified version is used in
Parry (2009) and Tscharaktschiew (2015). Parry (2009) uses it to calculate optimal gasoline and diesel taxes, and Tscharaktschiew
(2015) uses it to calculate optimal gasoline taxes in a model with both electric and diesel cars. It is a fairly simple model that
generates insight and intuition. To a large extent, we build on the Tscharaktschiew (2015) version, which contains EV considerations.
In this paper, we extend these model exercises in several dimensions in order to assess the optimal second-best tax for vehicle
kilometers (hereafter, road prices). First, we analyze optimal road prices for both EVs and ICEVs and not just a single policy in-
strument such as gasoline tax. Second, we model how externalities vary geographically and by time of day, which gives us a set of
second-best road prices that differ across four different stylized spatiotemporal states, large cities during peak hours, large cities off-
peak, small cities and in rural areas. Third, we apply the model to analyze the shadow price for reaching a (sector-specific) GHG
emissions reduction target at least cost.

The Pigovian solution of setting the corrective tax equal to marginal external cost (MEC) is well known (see e.g., Perman, Ma
et al., 2003). In this paper, we place ourselves in a second-best world with binding budget constraints and distortionary labor taxes, so
we want to find second-best road prices. This is related to the debate on how to correctly assess optimal environmental taxation in the
presence of distortionary taxation elsewhere in the economy (see e.g., Bovenberg, 1999; Jacobs and de Mooij, 2015) and the marginal
cost of public funds (MCF) (for a recent review, see Holtsmark and Bjertnæs, 2015). This literature shows that the debates on these
topics are far from settled. We construct a model for analyzing optimal road prices in an economy with distortionary taxes, and any
analyst using it may choose to disallow MCF above 1, perhaps as part of a “moral sensitivity analysis” (see e.g., Mouter, 2016). The
model can thus serve as a practical tool for analyzing the costs and benefits of road prices under varying assumptions.

3. Analytical framework

As explained above, we emphasize the importance of differentiating between spatiotemporal states, because the estimated value
of the externalities varies between them. In order to avoid cumbersome notation, we attempt to solve the model for a single state
containing all of the externalities, a state that can be thought of as a large city during peak hours. The numerical model calculates
solutions for all of the states under consideration.

We make the simplifying assumption that agents and their cars are constrained to remain within one state only. Although this
constraint is fairly strict, it should still cover the main purpose each agent has with her car.

We consider a static, closed economy model with a representative household with the following utility function:

=U u m v m v X l T E( , , , , , , , )F F P P (1)

The utility function u (.) considers goods in per household terms. It is quasi-concave and increasing in arguments mF and mP,
kilometers driven per car of type ICEV F( ) and EV P( ). It is also increasing in vF and vP; the number of cars per type.3 This also applies
for general consumption X , and leisure l. In contrast, utility is decreasing in argumentsT , total in-vehicle travel time that, in addition
to being an activity with some disutility (possibly), also reduces household utility through taking away time potentially used for
working (and earning for consumption) and leisure. Utility is also decreasing in E , representing an index of environmental ex-
ternalities.

Total travel time for a household depends on aggregate vehicle kilometrage M̄ in a particular area. We use bar notation to denote
economy-wide variables perceived as exogenous by travelers. The total per-period travel time for a household is given by:

=T t M M( ¯ )i (2)

The average travel time per kilometer t M( ¯ ) is increasing in the aggregate vehicle kilometers travelled ( ′ >t 0) as higher economy-
wide kilometrage leads to time delays due to congestion (in our stylized model we assume that such large traffic volumes in one area
only occur in large cities during rush hours) and

= + = +M M M m v m vP F P P F F (3)

is the per-household distance traveled by car per period.
Environmental externalities =E E F E P E M E M{ ( ¯ ), ( ¯), ( ¯ ), ( ¯ )}i F P M F M PF P cover traffic externalities stemming from energy consumption

EF and EP (increasing in the use of fossil fuels and electricity, F and P) and from vehicle kilometrage EMi (increasing in M̄i for each
vehicle type i). The partial derivatives of E translate into marginal external damage (in units) from energy usage and kilometers
traveled by car. We assume in this paper that there are no externalities associated with producing and consuming electricity for EVs,

3We look at average ownership rates of vehicle types per household, treating it as a continuous variable.
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i.e., =E P( ¯) 0P . In regard to GHGs, this assumption may hold for Norway, whose electricity generation consists overwhelmingly of
hydro (95.8% hydro in 2015) (IEA, 2017). The argument is further strengthened by the fact that Norway is a part of the EU ETS
market, as discussed in Bjertnæs (2016).

In the household monetary budget constraint, expenditures related to car transport and other consumption are set equal to after-
tax income in the following way:

+ + + + + + + + + + = −∼ ∼ ∼ ∼R f c m τ m c f v R p c m τ m c p v P X τ wL[( ) ( ) Γ ] [( ) ( ) Γ ] (1 )F F
d

F m F F F P P
d

P m P P P X LF P (4)

Here, = +R r τ( )i i i denotes the consumer price per unit of energy type i. All consumer prices contain the pure fixed producer
energy supply price ri and the energy tax τi. Energy intensity for cars, expressed in units per kilometer, is denoted

∼f for ICEVs and ∼p
for EVs – lower energy intensity means higher energy efficiency. The terms cFd and cPd denote the other distance-dependent costs
(repairs, service, etc.). We assume away any costs related to range anxiety or waiting time at charging stations for EVs.4 Tolls are
averaged to per-kilometer road prices (τmF and τmP). The terms

∼c f( ) and ∼c p( ) denote the other costs of owning a car, independently of
distance. This would mainly be an annuity of the pre-tax purchase cost – costs assumed to depend on energy efficiency. These capture
how increasing energy efficiency comes at a cost (otherwise every-one would choose the highest level of energy efficiency). As we
will see later, the model agent has an elasticity of fuel efficiency and can thus respond to changes in consumer fuel costs by choosing
higher or lower fuel intensity. Γi represents the sum of the annual ownership tax and the annuity of the purchase tax for vehicle type.
The cost of the general consumption goods basket is given by P XX .

Net labor income per household is given by −τ wL(1 )L , where τL is the tax rate on labor. Finally, w represents hourly gross wage,
while L represents labor supply (total per-year working hours). Total pre-tax labor income is denoted asW .

The relationship between fuel use, energy intensity and kilometers driven is given by:

= =∼ ∼F f M f m vF F F (5)

= =∼ ∼P p M p m vP P P (6)

Households also have a time constraint that can be written as follows:

+ + =L l t M M L( ¯ ) ¯ (7)

Available time L̄ is distributed between the activities labor, leisure and car travel.
The government is subject to the following budget constraint, where fixed public spending GOV is set equal to net revenue from all

taxes:

= + + + + + +GOV τ F τ P τ m v τ m v τ wL v vΓ Γ ,F P m F F m P P L P P F FF P (8)

We make the simplifying assumptions that general consumption goods are produced by firms under perfect competition and with
constant returns to scale technology, where labor is the only production input. This means that the firms generate no pure economic
profits and all producer prices are fixed. The gross wage for workers, w, equates the value of the marginal product of labor, which is
assumed to be constant.

3.1. Maximizing utility

Households are assumed to maximize their utility function given in Eq. (1) with respect to the choice variables∼ ∼m v f m v p X, , , , , ,F F P P and l. The optimization is subject to Eqs. (4) and (7), representing the monetary budget constraint and time
constraint, respectively. Households treat travel times (affected by aggregate kilometrage), external environmental damages and all
tax levels as given. We form the Lagrangian – where μ is the Lagrange multiplier for the complete economic household budget
constraint and can be interpreted as the marginal utility of income. We get first-order conditions from the optimization and use these
to obtain the household’s indirect utility function, which yields maximized utility given prices, taxes and income, but also travel time
and externalities determined by the aggregate level of driving.

The households’ indirect utility function can be expressed by the following set of parameters ≡ τ τ τ τ t EΩ { , , , Γ , Γ , , , }m m P F P LF P .
These parameters (policy variables and time and environmental externalities) are, as previously mentioned, treated as given by the
households. The government’s aim is to maximize the indirect utility function using the road pricing scheme policy variables.

≡ − + + + +
+ + + + + + − − − +

∼ ∼

∼ ∼
∼ ∼V u m v m v X l T E μ R f c m τ m c f v

R p c m τ m c p v P X τ w L l t M M

(Ω) max ( , , , , , , , ) ([( ) ( ) Γ ]

[( ) ( ) Γ ] (1 ) ( ¯ ( ¯ ) ))
m v f m v p X l

F F P P F F
d

F m F F F

P P
d

P m P P P X L

, , , , , , ,F F P P
F

P (9)

We show the analytical exercise of deriving the optimal tax on EV-km, τmP. Government revenues from τmP are recycled through
reducing labor taxes, and all other transport and energy taxes are kept constant. All the steps of the analytical derivations are given in

4 A standard range of 190 km would be sufficient for most daily commuters that charge the car at home. According to Figenbaum (2018), there are
about 1000 fast-chargers in Norway, amounting to one fast-charger per 140 BEV owners. The fast-chargers are mainly located in and around the
cities, and along the highways between cities. In addition, there are about 7500 slow or semi-fast chargers that are public (and/or work place),
making coverage adequate for most trip purposes in most parts of the country, but not all.
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Appendix A. Here, in the main part of the paper, only the most central equations are noted before we get to the analytical results. The
analytical exercise starts with total differentiation of the household’s indirect utility function with respect to τmP. After some algebra
and redefining of the externality terms we get the following expression for the marginal welfare effect of the kilometer tax:
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Parameter eF represents the MEC stemming from the consumption of fossil fuel. We also have MEC of driving 1 km when con-
tributing to congestion e M( )m

c , which is increasing in traffic volumes. Similarly, parameters emncF , and em
nc
P represent the environmental

MEC from driving 1 km from ICEVs and EVs, respectively (assumed to be constant within a given state). Parameters DF and DP
represent the per vehicle annual tax revenue + +∼τ m τ f m Γm F F F FF and + +∼τ m τ f m Γm P P P PP . As we can see, the EV-km tax brings
about a number of different changes in Eq. (10), which shows that the kilometer tax affects overall welfare through several channels.

3.2. Deriving second-best road prices

We set the marginal welfare change (given by Eq. (10)) equal to zero and solve for τmP. This gives us the following expression:
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After more algebra, which is shown in Appendix A, we get the final expression for the optimal kilometer tax:
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The first term is the corrective component:
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Parameters ηF and χF are for how consumption of ICEV-kms and fossil fuel react to the EV-km tax. Note that in our second-best
world we have to look at the total effect of the road price, and not simply equate the corrective tax to MEC.

The second term in (12) is the revenue recycling component:
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The term consists of the marginal cost of public funds, ΩτL, times the net tax revenue from marginally increasing the EV-km tax.
The parameter εMP is the own-price elasticity of EV-kms.

The third term in (12) is the tax interaction component (excluding the congestion feedback component):
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The fourth term is the congestion feedback component:
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The previously unmentioned parameters in these expressions are εMIc and εMI , the compensated and uncompensated income
elasticities for vehicle kilometers, εLI , the income elasticity of labor supply, and εLLc , the compensated elasticity of labor supply. ΩτL is
the marginal cost of public funds (MCF), which has the following formula:
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This term reflects the marginal efficiency cost of raising public funds through taxing labor. On the flip side, it also reflects the
marginal efficiency gain from cutting tax on labor, which could be done by, e.g., raising funds from road pricing. The numerator in
this expression represents the efficiency cost from an incremental increase in labor taxation, while the denominator gives us the
marginal change in public revenue. >ε 0LL represents the elasticity of labor supply (uncompensated). We have >Ω 0τL as a
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consequence of >ε 0LL and > − ε1 τ
τ LL(1 )
L
L

. The latter implies that τL is not so large that we find ourselves on the right side of the Laffer
curve’s peak, meaning that government revenue from increasing labor taxation will, on the margin, be positive.

Components of the optimal tax have been described thoroughly in Tscharaktschiew (2014, 2015), but here is a brief explanation.
The corrective tax component addresses the external environmental damages from driving an EV-km. It includes the kilometer-

related externalities in relation to congestion (same for all vehicles), and externalities such as pollution, noise and accident risk
(differs between EVs and ICEVs). Note that the tax on EV-kms may induce more driving of ICEVs, which contributes to a reduction in
the level of the corrective component.

The revenue recycling component is the efficiency gain from using additional EV-km tax revenue to cut the distortionary labor tax
and increase the efficiency of the tax system. The effect is equal to the marginal cost of public funds times the marginal net EV-km tax
revenue gains due to the increase in EV-km taxation.

The tax interaction component accounts for the efficiency loss in the labor market from the higher tax on kilometers. On the one
hand, higher taxes reduce the real household wage and have a discouraging effect on labor supply. On the other, they include the
income effect on labor supply from a higher km-tax. The other terms cover how the EV-km tax interacts with secondary markets, e.g.,
the electricity market, and the tax distortions there.

The congestion feedback component accounts for how raising the cost of travel through road prices may reduce vehicle kilometers
and congestion, and in that way affect labor supply through reductions in travel time. Workers may then allocate less of their time on
travel, and more of their time on either working or enjoying leisure activities. Since labor is subject to taxation, such a feedback effect
would improve welfare and ceteris paribus cause upward adjustments to the second-best kilometer tax. When we present our nu-
merical results, this is included in the tax interaction component where relevant, i.e. in the state large cities during peak hours.

3.3. Functional relationships

Parameters such as =ηF
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dM dτ
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P mP

quantify our assumptions on how households respond to changes in tax parameters. These

parameters can be expressed in terms of elasticities, e.g., =ηF
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0 , where we assume constant elasticity of demand. This

is common in these kinds of analysis of optimal pricing in the transport sector, as can be seen in for example Parry and Small (2005),
Parry (2009) and Tscharaktschiew (2014, 2015). We have similar expressions for responses in vehicle stock. The parametersmF0 and
mP0 are the per-vehicle kilometrage in the initial equilibrium. The levels in the new equilibrium depend on the road prices in the new
equilibrium. If, for example, ∗τmP does not differ from τm0P , then there will be no change in the new equilibrium, asmP would equalmP0.

As we can see from the equations that comprise the optimal taxes, the tax levels are on both the left-hand and right-hand sides of
the equation, so they must be solved numerically. In addition, we solve the model for road prices for both ICEVs and EVs, and for all
the stylized states simultaneously. The next step involves inserting parameter values into the model and calculating the optimal tax
rates.

4. Numerical model description and parameter values

In this section, we explain the scenario for calculating optimal tax levels for EV- and ICEV-kms. The thought experiment for the
calculation can be summarized as: (1) an assumption that the optimal kilometer taxes were implemented at the time of writing in
2017; (2) there is a medium-run adjustment from agents towards 20205; and (3) based on these medium-run adjustments, we get
values for the optimal taxes in 2020.

Our calculations ignore dynamics in the adjustments. We simply calculate the tax rates for 2020 with 2020 values on externalities
(i.e. values applied today are real-price adjusted for future years, as is recommended practice for CBA conducted in Norway; see, e.g.,
NOU 2012:16 (2012)). All monetary values are given in 2015 prices. Applied values for vehicle kilometers and levels of labor and
electricity taxes are also based on 2015 values.

Ideally, one would want to have individual tax levels for hundreds of car types based on the car’s individual characteristics. In our
model, we work with two types of car, an ICEV and an EV. The numerical values applied to the ICEVs are based on a weighted
average of diesel and gasoline-powered vehicles, weighted by their estimated aggregate vehicle kilometers in 2015,6 based on the BIG
model7 at the Institute of Transport Economics.

In the theoretical framework we have taxes on labor, fossil fuel, electricity, vehicle purchase and vehicle ownership, ICEV-km and

5 This is reflected in the choice of elasticities in the model. A way to think of the changes in a medium -run equilibrium in e.g., the transport
market, households are able to adjust their driving style, choices of destinations and frequencies, and a small fraction of them have had time to
change vehicle ownership. We would expect e.g., little change in the choice of residential and work place location.
6 Gasoline had 59% of the ICEV kms travelled in 2015, while diesel had 41%. To use the weighted average of gasoline and diesel as “fossil fuel” is

a simplification that allows us to focus on the differences between EVs and ICEVs. While there are large differences between diesel and gasoline both
with regards to external costs and current tax policy (Harding, 2014), the differences between electricity and any of the fossil fuels are even larger.
7 The acronym is derived from “bilgenerasjonsmodell”, meaning “car cohort model”.
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EV-km. In the numerical model, the current tax on fossil fuels, along with average tolls in the various states, is converted to a
corresponding tax on ICEV-kms. When we optimize road prices, drivers will face a price that strikes a balance between costs and
benefits from mitigating transport externalities and distortions in the labor market. That price will give drivers the incentive to
economize their kilometers appropriately. However, in the corrective component of the road prices we find both the distance-
dependent external costs (e.g., accident risk, local pollution, noise, etc.) and the external cost from fuel usage, which in this analysis
derives from the social cost of CO2. This cost component gives not only incentives for economizing on kilometers but also on fuel use.
Changes in the external cost of fuel use would induce changes to both kilometers driven and fuel efficiency. It can be thought of as if
taxes on fuel have been removed from the pump, but incorporated within the road price. Parts of the road price for a particular car
would then differ according to its fuel intensity and be an implicit fuel tax. This model technicality is useful when we calculate the
shadow price of reaching a GHG emissions reduction target at least cost using this road pricing scheme.

The government budget constraint must hold in equilibrium. The sum of changes from optimized km-tax revenue (that in the
initial condition contains current fuel taxes and tolls), and subsequent changes in electricity, vehicle purchase and ownership tax
revenue,8 must be offset by changes in the labor tax. This makes the equilibrium labor tax rate endogenous.

The scenario mimics a reform where fuel taxes and tolls are shifted over to distance-based road prices, differentiated across area,
time of day and vehicle type (almost exactly the reform recommended for Europe in De Borger and Proost (2015)), which are then
optimized, taking into account that labor tax rates change to maintain revenue neutrality. A situation where optimal road prices lead
to a reduction in labor tax rates corresponds to a net shift in tax burden from labor income to transport.

For the transport variables, the representative household in the model is considered as a weighted average of values for the
different geographical areas we consider. The areas are large cities (more than 100 000 inhabitants), small cities (between 15 000 and
100 000 inhabitants), and rural areas (fewer than 15 000 inhabitants), which contain 28%, 32%, and 40% of Norwegian households,
respectively. This is the same classification as in Thune-Larsen et al. (2014).

The applied parameter values for the model are given in Table 1.
Values for the external costs from road transport are all taken from Thune-Larsen et al. (2014), a report made for the Ministry of

Finance, Ministry of Transport and Communications and The Ministry of Climate and Environment, that now serves as official
guideline parameters for conducting CBA in Norway.9 The congestion costs in this report are estimated for both freight and passenger
car transport. We only apply the estimates for passenger car transport, implicitly assuming a constant level of freight transport. The
external non-congestion costs consist of (with each component’s share of the national average estimate in parenthesis) external cost
estimates for local pollution (25%), noise (3%), accident risk (55%), road wear (< 1%) and winter management (16%). The com-
ponent that causes the largest differences between large cities, small cities and rural areas is the local pollution component. This
component is set to zero for EVs, and is the only difference between EVS and ICEVs with regards to non-congestion costs per km.10

More information about the parameter values is given in Appendix C.

5. Model results

Here we present the calculations of the second-best distance-based road prices differentiated by vehicle and spatiotemporal state.
Main results are given in Table 2.

5.1. Baseline second-best road pricing

The model calculates road prices that vary significantly between states and car types, largely reflecting the variation in external
costs. This can be seen in Table 2. The highest price is on driving an ICEV in a large city during peak hours, mainly because of the
external congestion costs. However, the marginal external congestion costs are lower in the new equilibrium than in the initial
situation, as the transport volumes during peak hours have been reduced significantly for both EVs and ICEVs. It is still worth noting
that the tax per kilometer is more than five times higher than the current sum of average toll and fuel tax per kilometer during peak
hours.

The lowest price is on driving an ICEV in rural areas. The tax per kilometer is actually 60% lower in the new equilibrium than the
sum of average toll and fuel tax per kilometer was initially. It is also worth noting that the optimal road price for ICEVs in rural areas
is actually lower than for EVs in these areas. This is also the case for driving in small cities. Hence, the current preferential treatment
of EV use, essentially facing zero taxation (except for general electricity taxation), is way below optimal road pricing.

In all cases there is a markup from the revenue recycling component, showing the efficiency gain from replacing revenue from

8 The purchase and ownership taxes per ICEV is assumed to remain constant in this model. This is a caveat, as the purchase tax is progressive in
both type approved CO2-emissions and NOX-emissions per km. Any increase in fuel efficiency in the car fleet will result in a decrease in purchase tax
revenue, ceteris paribus. On the other hand, with a higher pre-tax cost of more fuel efficient cars, the VAT revenue will increase.
9 Other possible external cost estimates could include estimates from the IMF (Parry et al., 2014b), but they only provide a national average for

external costs, and we make a point of using estimates that vary across areas and times of day. Applying the parameters specifically estimated for the
Norwegian context and recommended by official guidelines, also makes this exercise more relevant for a Norwegian policy discussion. This is also
discussed in the sensitivity analysis.
10 Note that EVs are assumed to have the same noise cost per km as ICEVs in spite of the higher engine noise from the latter. This is because noise

from tires on asphalt dominates at speeds over 30 km/h according to Thune-Larsen et al. (2014). In any case, noise makes up a relatively small
portion of the external costs, even in large cities.

P.B. Wangsness



Table 1
Parameter values for baseline calculations.

Model parameters Symbol Value Denomination Sources used and additional information

Vehicle technology, usage and ownership
Initial “fossil” fuel intensity ∼f 0 0.079 l/km Institute of Transport Economics, BIG model

EV electricity intensity (average of winter and summer) ∼p 0 0.25 kWh/km Institute of Transport Economics, BIG model

Initial vehicle kilometrage per car (EV & ICEV), large
cities, peak (lp)

milp0 940 km Institute of Transport Economics, Thune-Larsen et al. (2014)
and Statistics Norway StatBank (2018c)
[These kms per car per area numbers are weighted according
to area’s share of households. In sum, this results in a
national average of 12 230 km per car]

Initial vehicle kilometrage per car (EV & ICEV), large
cities, off-peak (lo)

milo0 10,806 km

Initial vehicle kilometrage per car (EV & ICEV), small
cities (s)

mis0 12,004 km

Initial vehicle kilometrage per car (EV & ICEV), rural (r) mir0 12,761 km

ICEVs per household, large cities (Fl) vFl0 0.960 cars Statistics Norway StatBank (2018f), Statistics Norway
StatBank (2018a), Statistics Norway StatBank (2018b)
[These cars per household per area numbers are weighted
according to area’s share of households. In sum, this results
in on average 1.112 ICEVs per household and 0.029 EVs per
household, implying on average 1.141 cars in total per
Norwegian household]

ICEVs per household, small cities (Fs) vFs0 1.128 cars

ICEVs per household, rural (Fr) vFr0 1.123 cars

EVs per household, large cities (Pl) vPl0 0.046 cars

EVs per household, small cities (Ps) vPs0 0.033 cars

EVs per household, rural (Pr) vPr0 0.015 cars

Car life-span 16.5 years Fridstrøm, Østli, and Johansen (2016)

Prices and taxes
“Fossil fuel” producer price rF 6.82 NOK/l Statistics Norway (2015)
Corresponding initial fossil-km producer price 0.54 NOK/km
Other private km costs for ICEVs cFd 1.32 NOK/km Vegdirektoratet (2015)

Electricity consumer price (includes VAT and electricity
tax)

RP 0.81 NOK/kWh Statistics Norway StatBank (2018e)

Corresponding EV-km price (includes VAT and electricity
tax)

0.20 NOK/km

Other private km costs for EVs cPd 1.13 NOK/km Vegdirektoratet (2015)

Initial fossil fuel tax τF0 6.58 NOK/l Finansdepartementet (2016)

Corresponding initial fossil-km tax τmF
0 0.52 NOK/km

Electricity tax per kWh τP 0.18 NOK/kWh Finansdepartementet (2016)
Corresponding electricity tax EVs pay per km 0.045 NOK/km

Average toll, large cities 0.47 NOK/km Calculated from National Public Road Administration’s toll
statistics and Statistics Norway’s passenger car transport
statistics. Users pay per passing of tolling station, but the
numbers have been normalized to per km

Average toll, small cities 0.25 NOK/km
Average toll, rural 0.11 NOK/km

Purchase tax+VAT for ICEV 164,892 NOK Based on disaggregate car sales data provided by Norwegian
Road Federation (OVF)Purchase tax+VAT for EV 0 NOK

Annual ownership tax for ICEV 3565 NOK Finansdepartementet (2016)
Annual ownership tax for EV 435 NOK
Real discount rate for purchase tax annuity 2% Risk-free component in real discount rate applied in CBA

(NOU 2012:16, 2012). In addition, car loans are usually
given at 4–5% and the Norwegian inflation target is 2.5%

Average marginal labor tax rate (benchmark) τL 40% Bjertnæs (2015)

Household behavior parameters
Own-price elasticity of fossil fuel intensity (i.e. the isolated

elasticity component for fuel efficiency w.r.t.
consumer fuel price)

∼ε f −0.092 Norsk Petroleumsinstitutt (2011)

Own-price elasticity of ICEV kilometers εMF −0.152 Rekdal and Larsen (2008)
Own-price elasticity of EV kilometers εMP −0.152 Rekdal and Larsen (2008)
Own-price elasticity of ICEV ownership w.r.t. costs per km εMF

vF −0.121 Boug, Dyvi, Johansen, and Naug (2002)

Own-price elasticity of EV ownership w.r.t. costs per km εMP
vP −0.121

Cross-price elasticity of EV kilometers i.e. how ICEV
ownership increases when the cost of EV-km increases

εMP
vF 0.0015 Institute of Transport Economics, BIG-model

Cross-price elasticity of ICEV kilometers, i.e. how EV
ownership increases when the cost of ICEV-km
increases

εMF
vP 0.486 Institute of Transport Economics, BIG-model

Income elasticity of vehicle kilometers εMI 0.185 Steinsland and Madslien (2007)
Compensated income elasticity of vehicle kilometers εMIc 0.151 Weighting estimates from West and Williams III (2007) on

average Norwegian household demographics
Income elasticity of labor supply εLI −0.03 Correspondence with Thor-Olav Thoresen on LOTTE-model

at Statistics Norway, documented in Dagsvik, Jia, Kornstad,
and Thoresen (2007)

Labor supply elasticity (uncompensated) εLL 0.178 Dagsvik et al. (2007)

(continued on next page)
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labor taxation with revenue from road pricing. We can also see that the tax interaction component lowers the final road prices. This is
because of the negative impact that the total changes in road prices and labor taxes have on labor supply. The impact on other tax
revenue leads to higher total road price levels. The exception is for ICEV driving in rural areas, small cities and cities off peak, as the
negative impact on other tax revenue becomes greater. Incentivizing EV driving over ICEV driving in these states will result in lower
tax revenues from, for example, purchase taxes, with inadequate substitution from EV road prices. This is why the impact on other tax
revenue drives the EV road price upwards. This shows some of the endogeneity between road prices, and how they affect the size of
each other’s tax interaction component, which again will affect the revenue recycling component and the total road price level. In all
cases the final road price is greater than the corrective component that targets the internalization of externalities, with the exception
of driving ICEV in rural areas, where the final road price is even lower than its direct external cost. For this case, the tax interaction
component has a larger impact on the final price than the revenue recycling component.

In all states, the optimal km-taxes are higher than their current levels for EVs. For ICEVs, however, the optimal km-taxes are lower
than current levels of fuel taxes and tolls with the exception of large cities. It seems that ICEVs are taxed higher than optimal in most
parts of the country. Hence, the optimal car travel volumes are higher than current volumes in these areas. This results in total 0.2%
more vehicle kilometers travelled per household, from 14 129 to 14 150 km per year, despite a large reduction in city driving. The
model also finds 0.5% lower rates of average vehicle ownership, from 1.152 to 1.146 cars per household. The impacts differ greatly
between states. In large cities, EV ownership rates increase by 36% as the cross-price effect from the road price on ICEVs dominates
the own-price effect for EVs. At the same time, ownership rates of ICEVs drop by 8% in large cities. For the rest of the country, the
effects are in the opposite direction. On average, ownership rates for EVs increase by about 11%, while the rates for ICEVs fall by
0.8%.

Because the model results indicate over-taxation of ICEVs in most parts of the country in the initial situation, the net revenue from
the road-pricing scheme is lower than the initial revenue. This indicates that in optimum it is better with a slightly higher labor tax
burden than a higher tax burden from road pricing, given the same government budget constraint. The total increase in labor taxes
corresponds to an increase in the average marginal tax rate from 40% to 40.1%. This could be an effect of Norway currently having
among the world’s highest taxes on gasoline and diesel, but it is worth noting that there are several European countries with similar
or higher fuel taxes (U.S. Department of Energy, 2018).

In order to calculate the welfare effect of this road pricing scheme, we numerically integrate the marginal welfare impact (shown
in Eq. (10) and rewritten in Eq. (B.7)). When numerically integrating the marginal welfare effect for all road prices, we end up with
an annual welfare gain of NOK 255 (about €28 or $33) per household. By comparison, Tscharaktschiew (2014) finds a welfare gain of
€13 per household when optimizing gasoline taxation. It is worth noting that the welfare gain is the national per capita average. The
gain will be higher in large cities where congestion would be curbed (making it comparable to welfare gains found in urban road
pricing case studies such as André De Palma et al. (2006)), and somewhat lower in rural areas.

What are the GHG emission implications when values such as these are applied in the model and second-best road prices are
calculated? The applied social cost of carbon (SCC) of NOK 420 per ton (about €47 or $53) is the parameter eF in the corrective
component in the ICEV road price that gives a direct incentive to economize fuel, while the road price as a whole gives an incentive to
economize kilometers. It is equivalent to moving fuel tax from the pump, but incorporating it in road pricing that would differ with
the vehicle’s fuel intensity. The SCC is lower than the current tax on fuel, so fuel efficiency incentives become weaker in the new

Table 1 (continued)

Model parameters Symbol Value Denomination Sources used and additional information

Labor supply elasticity (compensated) εLLc 0.208 = −ε ε εLL
c

LL LI

Externalities from car transport
External congestion costs per kilometer, initially, large

cities, peak
e M( )m
c 0 6.339 NOK/veh-km Thune-Larsen et al. (2014)

Calibrated congestion function parameter – marginal
congestion cost per km as a linear function of total
vehicle km driving in peak hours. This can be
considered a sub-component of emc

0.0237

External non-congestion costs per km ICEV, large cities,
peak (lp)

emF lp
nc 0.958 NOK/veh-km

External non-congestion costs per km EV, large cities, peak
(lp)

emPlp
nc 0.423 NOK/ veh-km

External non-congestion costs per km ICEV, large cities,
off-peak (lo)

emF lo
nc 0.823 NOK/ veh-km

External non-congestion costs per km EV, large cities, off-
peak (lo)

emPlo
nc 0.423 NOK/ veh-km

External non-congestion costs per km ICEV, small cities (s) emF s
nc 0.492 NOK/ veh-km

External non-congestion costs per km EV, small cities (s) emPs
nc 0.419 NOK/ veh-km

External non-congestion costs per km ICEV, rural (r) emF r
nc 0.171 NOK/ veh-km

External non-congestion costs per km EV, rural (r) emPr
nc 0.161 NOK/ veh-km

Fossil fuel related external costs eF 1.034 NOK/l Based on recommended social cost of carbon (420 NOK/ton)
from NOU 2015:15 (2016)
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optimized equilibrium. This leads to agents choosing ca 5% lower average fuel efficiency. With almost unchanged travel demand in
the nation as a whole, the annual GHG emissions from transport increase by 5.1% in optimum. It is clear that reducing GHG emissions
through an optimal road-pricing scheme implies that the carbon price would have to be higher than the recommended values.

5.2. Optimal road prices and a shadow price on CO2

The Norwegian government’s goal by 2030 is to reduce GHG emissions from 1990 levels by 40%. In 2016, annual emissions were
about 3% higher than in 1990. For the road transport sector, emissions were about 28% higher.11 We consider now a binding
emission reduction requirement for passenger car transport from 2015 levels (the initial situation in the model) to about 2020, when
the new equilibrium following the policy change would be reached. We consider a 15% reduction to be roughly in line with the
necessary trajectory for the emission reduction requirement to be met.

For this exercise, we set a constraint on equilibrium emissions. We allow the carbon price component in the road price (in effect,
the fuel tax) to not be set equal to the recommended SCC, but to vary freely. The model will solve given constraints for the optimal
road pricing scheme where the carbon price component will serve as a shadow price for the emission constraint. We then have the
case of achieving the emission reductions in the most efficient pricing scheme available, i.e. reducing emissions at least cost. The
results are given in Table 3.

The most notable difference in Table 3 compared to Table 2 is that the road price for ICEVs increases for driving in all states. The
increase is between 20% (driving in large cities during peak hours) and 550% (driving in rural areas). The same comparison for EVs
results in reductions for all states. The reduction is between 7% (driving in large cities in off-peak hours) and 24% (driving in small
cities). These road price changes working against the ICEV arise from a substantial increase in the carbon price component, now the
shadow price of the emission constraint. This shadow price is given in Table 4 alongside the social cost of carbon (SCC) and the initial
fuel tax (59% gasoline, 41% diesel) measured in NOK per liter.

It can be seen from Table 4 that the shadow price of the emission constraint is about 16 times the SCC, which corresponds to a
carbon price of NOK 7057/ton (about €784 or $882). We can also see that the carbon cost component exceeds the initial fuel tax by
about 150%. This means that to achieve the emissions reduction target at least cost alongside an optimized road pricing scheme
would not just be a question of “shifting from fuel tax and tolls to road price”, it would require increasing the tax burden on both fossil
fuel and kilometers.

So how do agents reduce their emissions at least cost? They could drive ICEVs less and/or more efficiently (or replace them with
more efficient ICEVs). The results show an approximate 10.3% drop in total household driving with ICEVs and average fuel intensity
drops by about 5.3%. Some of the reduction in ICEV kilometers materializes in a shift from ICEV to EV ownership. The results show
about 9.6% fewer kilometers driven in total when EVs are included. EV ownership has increased by about 33% nationwide (even
higher in cities). On the ICEV side, ownership rates have dropped by about 5.5% nationwide.

The increase in road pricing in this scenario means larger cuts in labor taxation. The total reduction in labor taxes corresponds to a
drop in the average marginal tax rate from 40% to 37%. However, this is not enough to save the scenario from substantially less
welfare compared to the initial situation. In this scenario, each household gets a welfare decrease of NOK 219 per year. The cal-
culation assumes that the actual welfare cost of a ton of GHG is NOK 420, the SCC, even though a higher shadow price has been forced
on the transport sector. The high shadow price for the emission constraint reflects high welfare costs from large-scale CO2 abatement
within the transport sector. For the Norwegian economy as a whole, the shadow price of a CO2 constraint like this would probably be
lower, because the existing emissions taxation is generally lower than in the transport sector (see e.g., NOU 2015:15, 2016), so
cheaper abatement opportunities would be exploited.

5.3. Sensitivity analysis and alternative scenarios

The model results are reliant on the parameter values, which in some cases derive from uncertain estimates (see e.g., Thune-
Larsen et al., 2014). We therefore provide sensitivity analysis to show how uncertainty in the underlying parameters creates un-
certainty in the results. This applies for estimates of both external costs12 and behavioral relationships, i.e. elasticities. We focus
mainly on testing the sensitivity of the elasticity values. The implications for road price levels of higher/lower external cost values are
easier to imagine; we have already shown the implications of higher carbon costs.

There are many ways to do sensitivity analysis. A common practice is varying the central parameters one-by-one to show how a
change in one parameter affects the result. We often find it more rewarding to vary a set of variables simultaneously in a consistent
scenario, which is useful in showing the range of outcomes, and helps the reader see the uncertainty in terms of different “stories”.

Two of our scenarios focus on uncertainty about how the agents will respond in the transport market, i.e. uncertainty in transport-
related elasticity parameters. In one of the scenarios, the agents turn out to be less responsive to transport policies, and vice versa for
the other. The parameters we vary in the two scenarios are given in Table 5.

11 Statistics Norway: StatBank: Table: 08940: Greenhouse gases, by source, energy product and pollutant 1990–2016 (retrieved November 2017).
12 Many of the uncertainties underlying these estimates are discussed in Thune-Larsen et al. (2014), and the external cost estimates for Norway in

this report differ somewhat from those found in Parry et al. (2014b). For example, the latter finds national average marginal accident costs per km to
be about the same as the former, but finds lower local pollution costs per liter of fuel (about half) than in the former, mostly due to lower average
emission factors.

P.B. Wangsness



The next two scenarios focus on the uncertainty concerning how agents will respond in the labor market. In one of them, we look
at the case where agent behavior in the labor market is less responsive to changes, and vice versa in the other scenario. The
parameters we vary in the two scenarios are given in Table 6.

We add two more scenarios that test the implications of different developments for EV purchases and EV purchase taxes. The first
considers the case where the stock of EVs has doubled at the expense of ICEVs, i.e. a doubling of the EV share under the same car fleet
size. This is particularly relevant since the growth of EV’s has been fairly large since 2015, the base year of the analysis. This scenario
is denoted 2X EV.

The last scenario considers the case where the government relaxes the biggest incentive for purchasing EVs, namely the exemption
from VAT. A 25% VAT on the average EV sold in Norway would correspond to NOK 91 558 on top of the sales price. This is
implemented in the model as an increase in the purchase tax annuity for EVs. In addition, EVs will pay the same annual ownership tax
as ICEVs, which corresponds to an increase from NOK 455 to NOK 3565 NOK per year. This scenario is denoted EV VAT.

The resulting second-best road price levels in these scenarios are given in Table 7.
The four scenarios that test sensitivity to elasticity values show that relatively moderate ranges (± 30%) for these values lead to

relatively large ranges for optimal taxes; 30% larger transport-related elasticity values leads to 45–87% lower optimal road prices
compared to baseline. The direction is not surprising, as more responsiveness makes it less attractive to tax because the agents are
more willing to reduce kilometrage and ownership and/or switch to another vehicle in response to prices. The absolute value of both

Table 3
Results from model calculations of second-best road prices in 2020 under a GHG emission constraint of 15% reduction from 2015 levels. Road prices
are given in 2015 NOK per km for a given state.

Vehicle type
and state

Corrective component
– own vehicle

Corrective component –
indirect impact

Revenue recycling
component

Tax interaction component –
labor market and congestion

Tax interaction
component – other taxes

Total

EV cities peak
hours

5.10 −0.82 5.39 −4.18 1.22 6.72

ICEV cities
peak hours

7.72 −1.33 7.71 −5.99 1.56 9.65

EV cities off-
peak

0.42 −0.24 1.63 −1.18 0.30 0.94

ICEV cities off-
peak

2.91 −0.12 3.29 −2.46 −0.74 2.86

EV small cities 0.42 −0.48 1.46 −1.04 0.32 0.67
ICEV small

cities
2.58 −0.05 2.71 −2.00 −1.25 1.97

EV rural areas 0.16 −1.05 1.35 −0.96 1.00 0.50
ICEV rural

areas
2.26 −0.01 2.27 −1.65 −1.55 1.30

Table 4
Fuel taxes/carbon cost component in road price. 2015 NOK per liter.

Initial fuel tax (including VAT) Social cost of carbon (SCC) Shadow price of emission constraint

NOK per liter fossil fuel 6.58 1.034 17.37

Table 5
Direction and relative change of parameter values in two scenarios for sensitivity analysis on responsiveness in transport markets.

Elasticity parameter More responsive transport market (MRTM) Less responsive transport market (LRTM)

Own-price elasticity of fossil intensity +30% −30%
Own-price elasticity of ICEV kilometrage +30% −30%
Own-price elasticity of EV kilometrage +30% −30%
Own-price elasticity of ICEV purchase w.r.t. ICEV km cost +30% −30%
Own-price elasticity of EV purchase w.r.t. EV km cost +30% −30%
Cross-price elasticity of ICEV purchase w.r.t. EV km cost +30% −30%
Cross-price elasticity of EV purchase w.r.t. ICEV km cost +30% −30%

Table 6
Direction and relative change of parameter values in two scenarios for sensitivity analysis on responsiveness in labor markets.

Elasticity parameter More responsive labor market (MRLM) Less responsive labor market (LRLM)

Labor supply elasticity (uncompensated) +30% −30%
Income elasticity of labor +30% −30%
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the revenue recycling and tax interaction components becomes smaller, but it is the reduced revenue recycling component that is
predominant. The corresponding road prices in the LRTM scenario are 27–96% higher than the baseline.

The more responsive the agents are in the labor market, the higher the road price; 30% greater elasticities for own-price and
income elasticity with respect to labor supply resulted in 49–320% higher road prices compared to the baseline. This is because larger
own-price elasticity of labor supply drives up the marginal cost of public funds and in turn the revenue recycling component; income
elasticity drives up the value of the tax interaction component (makes it less negative). At the opposite end, road prices in the LRLM
scenario are 31–184% lower than the baseline. The labor supply elasticity and income elasticity of labor are estimated to be relatively
small in the Norwegian LOTTE modeling system at Statistics Norway (see e.g., Dagsvik et al., 2007), namely 0.178 and −0.03,
respectively.13 This makes the optimal prices quite sensitive to changes in these parameters.

In the 2X EV scenario it can be seen that a doubled initial stock of EVs implies higher road prices for ICEVs in large and small
cities, but lower in rural areas. As for EVs, the optimal road price becomes lower, with the exception of cities during peak hours. This
is mainly because for given elasticities14 the absolute changes related to EV stock will be larger and for ICEV stock lower. This
increases the absolute value of parameters for household shifting to EV km and EV ownership when ICEV road prices increase, and
shifting from EV ownership when EV road prices increase (parameters ηP, φP and κP). Conversely, the corresponding parameters for
ICEVs decrease in absolute value. This will tend to lower road prices for EVs and increase for ICEVs.

In the EV VAT scenario we can see that removing the VAT exemption for EVs would imply a 1–4% higher road price for ICEVs,
while for EVs there is hardly any change (1% or less). The changes are driven by the impact the annual tax revenue per vehicle has on
the tax interaction component of the road price. When there is VAT on EVs, a higher road price on ICEVs is, on the margin, less of a
fiscal problem, as the government revenue loss from a switch to EVs becomes smaller. This is similar to Tscharaktschiew (2015)
finding that introducing EV purchase subsidies reduces the optimal gasoline tax.

We also find that removing the VAT exemption for EVs increases the welfare potential for the second-best road pricing scheme by
about 1% compared to the baseline results. This welfare increase would be in addition to whatever gains made from alternative use of
the revenue the government would have earned if EVs had the same VAT rate as other cars. In 2017, the VAT exempted from EV
purchases added up to 3.2 bn. NOK (Ministry of Finance, 2018).

These sensitivity tests give some indication of how this model would produce different optimal road prices for different countries.
Elasticity estimates in the transport market are a bit on the low side for Norway (further discussed in Appendix C) compared to other
countries, leading one to expect that optimal road prices will be higher in Norway, than in most other countries. Norway also seems to
put a higher value on external costs, and also has relatively high fuel taxes and tolls as a part of government revenue compared to
other countries, which also leads us to expect that Norwegian road prices would be higher than in most countries. On the other hand,
elasticities in the Norwegian labor market seems to be in the lower end. If other countries’ labor force is more responsive to labor tax
changes, it would drive road prices upwards and labor taxes downwards, compared to Norway.

6. Discussion and conclusion

Here we go through the research questions and how they have been answered.

6.1. What characterizes the set of second-best road prices targeting external costs from driving EVs and ICEVs when there are distortionary
labor taxes and binding government budget constraints?

The short answer to this question is that it is characterized by (1) large price differentials between states, (2) ICEVs face a higher

Table 7
Results from model calculations of second-best road prices in 2020 under various scenarios. Road prices are given in 2015 NOK per km for a given
state.

Vehicle type and state Baseline MR-TM LR-TM MR-LM LR-LM 2X EV EV VAT

EV cities peak hours 7.24 6.27 9.21 10.78 4.97 8.95 7.21
ICEV cities peak hours 7.97 6.89 10.20 13.64 5.33 39.90 8.01
EV cities off-peak 0.97 0.78 1.40 2.19 0.23 0.62 0.96
ICEV cities off-peak 1.31 1.08 1.79 3.04 0.44 5.50 1.35
EV small cities 0.88 0.67 1.32 2.06 0.16 0.72 0.88
ICEV small cities 0.68 0.53 1.00 1.56 0.10 1.53 0.70
EV rural areas 0.59 0.32 1.16 2.51 −0.34 0.50 0.60
ICEV rural areas 0.23 0.13 0.45 0.83 −0.20 0.21 0.24

13 These elasticity values are well within the normal range found in the meta-study by Bargain and Peichl (2016), although somewhat in the lower
end in absolute value. The labor supply elasticity is a national average, and it is lower for men and higher for women in absolute value, as is
common. The study mentions how the labor supply elasticity for women in Nordic countries seem to be relatively low (closer to those of men), as
seems to be a pattern in countries with relatively high participation rates for women in the labor force.
14 A large change in shares for the two car types would probably imply changes to their respective cross-price elasticities, but this was not

included in the sensitivity analysis.
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cost in large cities but lower costs in most parts of the country compared to the initial situation, even if it leads to a slightly higher
labor tax rate, and (3) EVs should not be untaxed. In sum, the road pricing scheme leads to higher welfare.

It is common to find that driving is undertaxed and labor overtaxed in previous literature using the analytical framework de-
veloped by Parry and Small (2005) and other authors referenced in the Introduction. In our study, we found that driving in large
cities is undertaxed, and in the rest of the country the opposite. This demonstrates how analyzing a road pricing scheme that differs
over four spatiotemporal states and two car types adds more nuance and insight than, for example, analyzing a single gasoline tax. It
also takes the big differences in external costs between spatiotemporal states seriously. The extended analytical framework can serve
as a tool for calculating second-best road prices in other countries as well, but, as the calculations and the sensitivity analysis show,
using parameters relevant for the national context is important.

6.2. How are these prices affected by tax distortions in the labor, electricity and car ownership market?

We find that interaction with the rest of the fiscal system generally leads to a price markup on the external costs. The differences
between states and car types largely reflect the differences in external costs per kilometer, the corrective component, but also an
interaction component that reflects how the km-tax in a given state with a given car type interacts with the rest of the fiscal system.
Within this interaction component there are two opposing forces. Revenue recycling through reducing labor taxation drives up road
prices, while road price interaction with the labor market and the rest of the tax system generally drives the price down. We can also
see that VAT exemption for EVs drives the optimal road price for ICEVs downwards in order to reduce the shift to EVs and the
subsequent loss of government revenue. The VAT exemption also reduces the overall welfare potential from the road pricing scheme.

6.3. How does this second-best pricing fit with government-set goals of reducing CO2 emissions?

The second-best road pricing scheme applies the recommended social cost of carbon of NOK 420 per ton, which in turn reflects the
part of the road price that directly concerns fossil fuel. Using the SCC, the direct tax on fuel becomes lower than in the initial
situation, giving less incentive to strive towards fuel efficiency. So even though the road pricing scheme gives incentives to economize
on travel distance (depending on the state), the net effect on GHG emissions is actually an increase. The short answer to the research
question is: as long as the optimal road pricing scheme applies the recommended SCC, it will not contribute much to reaching the
government emission target. This means that the goal of reducing CO2 emissions from passenger car transport implies a higher carbon
price than the recommended SCC.

In order to reach a 15% emission reduction requirement at least cost, a shadow price of carbon 16 times the SCC is needed. This is
reflected in road prices that are between 20% and 550% higher for ICEVs and between 7% and 24% lower for EVs compared to the
second-best optimum. Adaptation to these prices comes mainly through the ICEVs being driven less, but also through increased fuel
efficiency. Some of the reduced driving of ICEVs is reflected in a big increase in EV driving.

The large-scale CO2 abatement within the transport sector comes at a high welfare cost, which reveals a large mismatch between
the SCC and the government’s emission target. This can be interpreted as a goal conflict between welfare maximization and ambitious
emission targets. This is in line with De Borger and Proost (2015), who claim that too much emphasis has been put on climate issues,
compared to the other market imperfections related to the transport sector. It is worth noting that for the Norwegian economy as a
whole the cost would lower as cheaper abatement opportunities outside the transport sector would be exploited. This was the
conclusion for Belgium in Proost et al. (2009). Mayeres and Proost (2013) also find marginal abatement costs of many hundred Euros
when pursuing narrow measures within the transport sector.

6.4. Concluding remarks

As many great transport economists have suggested before, there are good reasons for policy makers to look closely at road
pricing as a future main instrument for regulating transport. We make the case for distance-based road pricing, differentiated across
vehicle types and pre-defined areas and time periods using satellite technology.

These results suggest that such a road pricing scheme is likely to be welfare enhancing. In the case of Norway, a policy implication
would be to start the formal process of investigating how to design and implement such a road pricing scheme. This paper and the
extended modeling framework can serve as input for analysis in such a process.

There are some caveats worth mentioning. Even though the model expressions are a bit messy and a bit tedious to derive, it is still
a fairly simple static model with one representative household. Future extensions could include heterogeneous agents, public
transport, freight transport, and a more comprehensive treatment of the car purchase tax system, which already provides incentives
for lower emission vehicles. The opportunity to substitute driving in one state with another (in particular driving in peak and off-peak
hours in large cities), and the cost of establishing and running such a road pricing scheme would also be promising extension.
Distributional impacts and political feasibility could also be looked at more closely. The modeling involves moving from one static
equilibrium to another, and the numerical modeling is based on 2015 being an equilibrium situation, although in many respects it
could be considered transitory, at least with regard to the EV stock. We try to incorporate this within the analysis through sensitivity
testing.

The numerical results also have their caveats, as they are based on estimates obtained from noisy data. Our sensitivity analysis
shows us that changes in uncertain behavioral parameters could imply a wide range of different optimal road prices. This brings us to
another policy implication: If a formal process of investigating satellite-based road pricing is undertaken, the process should be
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mindful of these uncertainties with regard to design and implementation planning.
The development of satellite-based road pricing for passenger cars in Singapore and the trials in Oregon and California are

exciting developments in real-world transport economics. Theory and numerical simulations make a good case for such a scheme. As
the share of EVs grow, the case will get even better.15 However, many steps need to be taken before satellite-based road pricing can be
seen widely in the real world. Citizens may be skeptical, for instance about privacy concerns (Duncan et al., 2017). However, the Data
Protection Agency in Norway claims that a satellite-based road pricing scheme could be designed to respect (and maybe even
enhance) privacy protection.16 Principles such as ownership of the data belonging to the car owner, and the scheme not being useable
for detailed tracking without informed consent, would to a large degree align such a scheme with privacy concerns.

Another important real-world factor is how the scheme would take form after a political process. Politics and other constraints
could easily reduce the efficiency of such schemes (see e.g., Anthoff and Hahn, 2010; Evans, 1992), and could hinder them from being
implemented in the first place. We saw in the case of the Dutch attempt to design a national road pricing scheme that politics was the
main reason for the project being stopped in 2011 after years of progress, seemingly close to the finishing line (Geerlings et al., 2012).

Attempts to develop satellite-based road pricing schemes may finally be successful, or they could continue to fail. In any case,
valuable learning experiences will be gained, and we strongly believe contributing to the body of knowledge on road pricing is a
worthy pursuit.
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Appendix A. Deriving second-best road prices

We follow many of the same analytical steps as in Tscharaktschiew (2015) when we here derive optimal road prices.
The household’s optimization program is to maximize the utility function Eq. (1) with respect to the choice variables∼ ∼m v f m v p X, , , , , ,F F P P and l subject to monetary budget Eq. (4) and time constraints Eq. (7). Households treat travel times (affected

by aggregate kilometrage), external environmental damages and all tax levels as given. We form the Lagrangian where μ is the
Lagrange multiplier for the complete economic household budget constraint and can be interpreted as the marginal utility of income.
We get first-order conditions (FOCs) from the optimization and use these to obtain the household’s indirect utility function, which
yields maximized utility given prices, taxes and income, but also travel time and externalities determined by the aggregate level of
driving.

The government’s optimization program is then to maximize the household’s indirect utility function with respect to a set of
parameters ≡ τ τ τ τ t EΩ { , , , Γ , Γ , , , }m m P F P LF P . These parameters, policy variables and time and environmental externalities, are treated
as given by the households.

≡ − + + + +
+ + + + + + − − − +

∼ ∼

∼ ∼
∼ ∼V u m v m v X l T E μ R f c m τ m c f v

R p c m τ m c p v P X τ w L l t M M

(Ω) max ( , , , , , , , ) ([( ) ( ) Γ ]

[( ) ( ) Γ ] (1 ) ( ¯ ( ¯ ) ))
m v f m v p X l

F F P P F F
d

F m F F F

P P
d

P m P P P X L

, , , , , , ,F F P P
F

P (A.1)

The policy instrument subject to change in its level is the km-tax for EVs. At the same time, changes in governmental tax revenue,
per kilometer travel time, and external costs are considered explicitly.

The analytical exercise of deriving the optimal tax on EV-km, τmp. starts by total differentiation of the household’s indirect utility
function with respect to τmP. For optimization of V (Ω) through τmP, with revenue recycling through τL we can consider the policy
instruments τmF , τF , τP, ΓP and ΓF as fixed in this exercise. Assuming = = = = =dτ dτ dτ dτ dτ dτ d dτ d dτΓ Γ 0m m F m P m P m F mF P P P P P , we

15 In a future with autonomous cars, where the generalized travel cost could get greatly reduced, and the average occupancy rate of cars could
drop (e.g., if autonomous cars drive people to work, drive back home empty, and drive empty to the workplace at the end of the day to pick up
again), regulating transport demand with distance-based road pricing using satellite technology could be essential.
16 http://www.ofv.no/artikler-2017/dynamisk-veiprising-kan-fjerne-bomstasjonene-article515-299.html (in Norwegian, easily translated using

translation software) [last accessed April 5th 2018].
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get:
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represents (dis-)utility stemming from a marginal change in aggregate externalities via changes in a car’s energy consumption and
kilometrage caused by a marginal increase in the km-tax for EVs. From here on, we assume that there are no externalities associated
with producing and consuming electricity for EVs, i.e. =E P( ¯) 0P . This is further discussed in Section 2. (A.2) can then be rewritten as:
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Replacing partial derivative terms ∂
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We divide both sides by μ, the marginal utility of income, and get the welfare change in monetary terms:
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In order to derive dτ dτL mP we totally differentiate the government budget constraint (remember W=wL and only electric cars
receive tax benefits):
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yielding
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We set the expressions + +∼τ m τ p m Γm i i i ii equal to Di for notational simplicity.
Equating dGOV dτmP to zero and solving for dτ dτL mP yields:
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Plugging Eq. (A.9) into Eq.(A.6), recalling = +M m v m vP P F F (see Eq. (3)), gives:
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We define the value of travel time as− + − ≡∂
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1 , where <∂
∂ 0V
T is the household’s disutility from aggregate travel time. It

also follows from Eq. (2) that = ′tdt
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. When we replace both of these expressions in Eq. (A.10) we get:
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For notational simplicity we rewrite the expressions for marginal external costs (marginal external damage expressed in monetary
terms) stemming from the consumption of fuel and kilometrage

≡ ′e
μ
V E1

F E FF (A.12)
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We also reorganize the expression to get a clearer view of the marginal welfare effect of the km-tax:
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As we can see, the EV-km tax causes numerous different changes in Eq. (A.16), which shows that the km-tax affects overall welfare
through various channels.

A.1. Deriving second-best road prices

We set the marginal welfare change seen in Eq. (A.16) equal to zero and solve for τmP. This gives us the following expression:
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We simplify the following expressions into reaction parameters.
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The expression in (A.17) can be aggregated to the following expression for the optimal km-tax:
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The optimal km-tax is expressed here by both a corrective component, τmCP and a “fiscal interaction” component τmI P . We apply the
definitions in (A.18) and (A.19) to the first part of the expression in (A.17) and get the following expression for the corrective
component.
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This component accounts for traffic-related externalities from EVs, but also the impact the km-tax for EVs may have on ex-
ternalities (through kilometers driven) from ICEVs.

The remaining part of the expression in (A.17) is the fiscal interaction component.
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This component represents interaction of EV-km tax with the broader fiscal system in the economy. The first, second and third
terms denote how a change in τmP affects tax revenue from ICEV km-tax, fossil fuel tax and electricity tax, respectively. The fourth and
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fifth terms denote how a change in τmP affects revenue from annual ownership and purchase taxes. The sixth term denotes how a
change in τmP affects labor tax revenue.

We proceed in this exercise by totally differentiating the terms in brackets in:
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Concerning the demand for vehicle kilometers, fossil fuels, electricity and car ownership, it is assumed that indirect changes in
labor taxation (through the government budget constraint) have a small impact on corresponding demands relative to the direct
impact of the km-tax. This is a reasonable approximation since Norwegian household income shares and income elasticities for
operating costs and purchase costs for own car are relatively small (Boug and Dyvi, 2008). This means that the largest part of any
compensation through revenue recycling will be spent on other goods. It is therefore reasonable to use uncompensated elasticities
(see Willig, 1976) in order to parameterize demand elasticities for vehicle kilometers, transport related energy and car ownership.
The total differential of ≡W wL decomposes the change in labor income (labor supply) into three effects: The first component arises
from the labor supply effect of raising the price of EV-kms relative to leisure which depends on the degree of substitution or com-
plementarity between EV-kms and leisure. The second term is the effect of revenue recycling, i.e. using EV-km tax revenues to reduce
τL will increase labor supply. The third effect is the change in labor supply due to a change in commuting travel time caused by a EV-
km tax induced change in vehicle kilometrage and, thus, congestion levels.

Plugging Eq. (A.30) into dτ dτL mP as displayed in Eq. (A.9) and grouping terms gives
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where
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and
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2 (A.33)

The expression in (A.30) can be manipulated further by applying the following expression for the marginal cost of public funds:
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This term reflects the marginal efficiency cost of raising public funds through taxing labor. On the flip side, it also reflects the
marginal efficiency gain from cutting tax on labor, which could be done by, e.g., raising funds from road pricing. The numerator in
this expression represents the efficiency cost from an incremental increase in labor taxation, while the denominator gives us the
marginal change in public revenue. >ε 0LL represents the elasticity of labor supply (uncompensated). We have >Ω 0τL as a con-
sequence of >ε 0LL and > − ε1 τ

τ LL(1 )
L
L

. The latter implies that τL is not so large that we find ourselves on the right side of the Laffer
curve’s peak, meaning that government revenue from increasing labor taxation will, on the margin, be positive.

We substitute = −dτ dτ B BL m 1 2P into Eq. (A.30), then plug the resulting expressions into Eq. (A.24), where we regroup terms and
use the definition of ΩτL in Eq. (A.34). We then get:
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Multiplying each term by −dM dτ
1
i mi

, and using the definitions of ηF (Eq. (A.18)), χF (Eq. (A.19)), κP (Eq. (A.20))) and φF(Eq. (A.21))
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gives
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The fiscal interaction component can be broken down into a revenue recycling component and a tax-interaction component. To
obtain a clear expression for the former, we need to manipulate Eq. (A.36). First, we obtain the following expressions from the own-
price demand elasticity of EV-km:
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The term + +∼R p c τP P
d

mP is the private cost of a vehicle-km by electric car.
We multiply the expression BΩτ 1L by −dM dτ

1
P mP

and apply the definitions of ηF (Eq. (A.18), χF (Eq. (A.19)), κP (Eq. (A.20)) and
φF(Eq. (A.21)), and we get:

− =
⎛

⎝

⎜
⎜⎜

− − − − −

− − +

⎞

⎠

⎟
⎟⎟

∼+ +
−

∂
∂

∂
∂ −

∼

( )B
dM dτ

τ η τ χ τ p τ

κ D φ D τ w
Ω 1 Ωτ

P m
τ

R p c τ
ε m F m F F P

P P F F L
L
τ

L
t
dt
dτ dM dτ

1

( )

1L
P

L

P P
d mP
MP

P F

mP mP P mP (A.38)

We can now define the following expression for the revenue recycling effect of the EV-km tax:
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We thus can rearrange Eq. (A.36) to:
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From the Slutsky equation it follows that:

∂
∂ = ∂

∂ −∂∂
L
τ

L
τ

L
I
M

m

c

m
P

P P (A.41)

where superscript c indicates the compensated elasticity and ∂ ∂L I is the income effect on labor supply. From the Slutsky symmetry
property and after some manipulation we get:
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εMIc represents the income elasticity for vehicle kilometers (alternatively the compensated cross-price elasticity of leisure). εLI re-
presents the income elasticity for labor.

Plugging Eq. (A.42) into Eq. (A.40) and using Eq. (A.37) gives:
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The terms τmRRP , τm
TI
P and τmTI( )

P are the road price components for revenue recycling, tax interaction and pure tax interaction,
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respectively.
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with RM as the full economic price (private cost) of vehicle kilometrage, we can write:
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It follows from the Slutsky equation applied to the demand function that:
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and from the Slutsky symmetry property for goods in the utility function:
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where − ∂ ∂τ w L τ(1 )L c
L is the change in disposable income following a compensated increase in the labor tax. After some manipulation,

we get:
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Plugging Eq. (A.47) into Eq. (A.44) gives:
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Substituting = −ε ε εLI LL LL
c and ≡ ′e M θt M( )m

c and =ηF
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, after regrouping terms we obtain the congestion feedback effect:
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We thus get the final expression for the optimal km-tax:
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It has the components:
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We solve the model in exactly the same way for ∗τmF , and obtain analogous expressions that look like the following:
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with the corrective component
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the revenue recycling component
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the tax interaction component (excluding the congestion feedback component).17
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and, finally, the congestion feedback component,
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The expressions for τmF mirror those for τmP. The parameters applied are given the same symbol, but with subscript F, and illustrate
the mechanisms for the agents’ responses to a change in the tax on ICEV-kms.

Appendix B. Deriving the welfare measure

As can be seen in Eq. (A.16), we have the following marginal welfare effect of increasing the road price:
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The next step is to factor out − dM
dτ

P
mP

and rearrange. This gives us:
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Further rearranging gives:
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Parts of this expression can be converted to the corrective component:
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Other parts can be converted into the interaction component (see Eq. (A.24))
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This gives us:
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We can rewrite −{ }dM
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using Eq. (A.37). This gives us:
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We numerically integrate this expression to find the change in welfare from a non-marginal change in the km-tax.

17 This expression has a term that is not present for determining road prices for EVs, namely =
∼

σ MF F
df dτmF
dMF dτmF

. This term is related to induced
changes in fuel efficiency.
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Appendix C. About the parameter values

Some of the parameter values in Table 1 require further explanation.
Initial vehicle kilometrage per car (EV & ICEV): Statistics Norway provides data of average kilometers driven annually per car on a

municipal level. We aggregate these to averages on the analysis area level, large cities, small cities and rural areas, according to
definitions from Thune-Larsen et al. (2014). This report finds that 8% of vehicle kilometers driven in large cities are spent in
congested peak traffic, which is used to divide between peak and off-peak kilometrage.

Car ownership per household: Statistics Norway provides data on car ownership on a municipal level, and separates between
ICEVs and EVs. We aggregate these to average car ownership per household on the analysis area level, large cities, small cities and
rural areas, according to definitions from Thune-Larsen et al. (2014). These numbers are again weighted according to each area’s
share of total households, so we get the weighted average car ownership per household.

Average toll: Data on toll paid by passenger cars to toll companies have been provided by the National Public Road
Administration’s toll statistics. Statistics on passenger car traffic volumes are given by Statistics Norway StatBank (2018d). Users pay
per passing of tolling station, but the numbers have been normalized to per kilometer by dividing passenger car toll revenue by
passenger car traffic volumes at county level. The national average was 0.31 NOK per km. The average tolls per kilometer for large
cities, small cities and rural areas were then approximated by dividing toll revenue by traffic volumes for counties where these area
types dominate.

Purchase tax and VAT: The Norwegian Roads Federation (OVF) provides disaggregated car sales data from which the average
price, purchase tax and VAT for the average ICEV can be calculated for any given year.

Own-price elasticity of car kilometrage: The newest estimates of elasticity values for the National and Regional Transport
Modeling system (NTM and RTM) in Norway give an own price elasticity w.r.t. all kilometer costs and tolls together of −0.152
(documented in Rekdal and Larsen (2008)). When putting this elasticity (adjusted for the ca. 40% fuel share of total kilometer costs
and tolls) together with the own-price elasticity of fossil fuel intensity (i.e. the isolated elasticity component for fuel efficiency w.r.t.
consumer fuel price), valuated at −0.092 (Norsk Petroleumsinstitutt, 2011) we get the relatively more familiar own price elasticity
for fuel. This sums up to −0.153. This is lower than the elasticity for gasoline applied for the US in Parry and Small (2005) (−0.55)
and Lin and Prince (2009) (−0.221) and the German case with Tscharaktschiew (2015), that totaled up to −0.5. Fridstrøm (2017)
argues that car transport in Norway has a quite low price sensitivity on a national level because most Norwegians do not live in dense,
urban areas with public transport as an alternative. In addition, Norwegians have for years gotten used to having both relatively high
average incomes, and high costs of car transport.

Cross-price elasticity of kilometer costs with respect to car ownership, i.e. how ownership of one car type increases when the
kilometer costs of another increases. This is obtained by simulating the effect of increasing energy costs on new car sales in the BIG-
model for the simulation year 2015, which then gives us a counterfactual change in the car stock. We extend this effect over 3 years
and convert the implied elasticity measure for energy into an elasticity measure for kilometer costs.
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Abstract 
Norway has the world’s highest share of battery electric vehicles (BEVs) in its 
passenger car fleet, thanks to a set of policies that has included high purchase taxes for 
fossil fueled cars, and no tolls, no VAT, and free parking for BEVs. This paper uses a 
very stylized transport model for the greater Oslo area to give insights into the effects 
of different transport policies. With this model we go beyond the market penetration 
studies for EVs, as it brings together both car choice and transport patterns with mode 
choice for a set of heterogeneous representative model agents. We illustrate the 
possible effects of current policies on congestion, CO2 emissions and other urban 
transport externalities, public transport use and crowding, tax revenues and welfare. 
On this basis, we explore other road toll, public transport fare and tax policies that can 
lead to better outcomes for the Oslo transport market while still respecting the CO2-
cap that reflects the goals of Norwegian policy makers.  

Keywords: electric vehicles; climate policy; urban transport policy; transport modeling 
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1 Introduction 
Enforced in 2016, the Paris agreement responds to the pressing threat of climate 
change, aiming to limit the global temperature increase this century to well below 2°C 
above pre-industrial levels. Being one of the top polluters, with about a quarter of 
global energy-related greenhouse gas emissions attributed to it (International Energy 
Agency, 2017), the transport sector is required to deliver major emissions reductions 
to achieve this target, and electrification could play an important role (ibid). In June 
2017, the Clean Energy Ministerial launched its EV30@30 campaign that aims for a 
30% sales share for Electric Vehicles (EVs) by 2030. And both the UK and France 
have both announced plans that by 2040, there will be no more sales of new 
conventional diesel and petrol cars (Internal combustion engine vehicles – ICEVs).  

Norway has the highest penetration of EVs worldwide, making it much like a social 
experiment to examine the results of EV-friendly policies. By the end of 2018, this 
country with 5.3 million inhabitants had about 190,000 battery electric vehicles (BEVs) 
and 90,000 plug-in hybrids (PHEVs) driving on its roads. In 2018, the market share of 
all new personal cars were 31% and 17% for BEVs and PHEVs, respectively 
(Norwegian Electric Vehicle Association, 2019). The highest market share is found in 
and around the big cities. In Oslo, the capital, BEVs share of the car fleet was 12.8% 
in 2018, and about 40% of new personal cars were BEVs (ibid). 

The rising market share for EVs in Norway is largely a result of policy2, and is in 
accordance with the government’s National Transport Plan (NTP3). The overall goal 
of the NTP is to develop “a transport system that is safe, promotes economic growth, and 
contributes to the transition into a low-emission society”.  

The NTP proposes a climate strategy to halve the transport sector’s greenhouse gas 
emissions. The NTP recommends that all new passenger cars, light commercial vans 
and city buses are zero emissions vehicles by 2025. The NTP also includes the 
government’s zero-growth objective, which states that the growth in passenger 
transport in urban areas should be facilitated by means of walking, cycling, and PT, 
and subsequently zero growth in car transport.  

Several BEV-friendly policies have been implemented since the 1990s. The most 
notable ones are 1) exemption from VAT, 2) exemption from registration tax (since 
the registration tax is largely a function of type-approved CO2 emissions, the 
registration tax would be zero for most BEVs even without the exemption), 3) 
exemption from road tolls, 4) access to bus lanes, and 5) free municipal parking. Some 
of these polices have been moderated in recent years, as the BEV share of the car fleet 
has grown relatively large. For a more comprehensive review of Norwegian BEV-
friendly policies, see Figenbaum, Assum, and Kolbenstvedt (2015).  

                                                 
2 It also helps that electricity prices in Norway are among the cheapest in Europe (Figenbaum et al., 
2019), largely as a result of abundant hydropower resources, which generated about 96% of the 
country’s electricity in 2015 (IEA, 2017). 
3 https://www.regjeringen.no/no/tema/transport-og-kommunikasjon/nasjonal-
transportplan/id2475111/ 



55 
 

In addition to the national ambitions for reducing CO2 emissions, there are local 
ambitions. The city of Oslo and the county of Akershus, who together broadly make 
up the Oslo metropolitan area, have ambitions that surpass the national target. Oslo 
has a goal of bringing down CO2 emissions by 50% by 2020 (Oslo Municipality, 2016). 
Similarly, Akershus has a target of a 50% emissions reduction by 2030 (Akershus 
County Council, 2016). 

In this paper we take a broader look at the EV question by considering multiple market 
failures in urban transport and their policy implications. The key research questions 
we address are the following: Which policies will be the most welfare-enhancing in the 
urban transport system with multiple market failures (e.g., congestion, accidents, local 
air pollution and CO2 emissions), and what role can BEVs play in achieving these 
policies? What characterizes the potential conflicts between welfare maximization and 
reaching the targets for reducing CO2 emissions (where the promotion of BEVs is a 
key instrument) and car transport volumes in the greater Oslo area? Furthermore, what 
trade-offs do we see between efficiency and acceptability? To answer these questions, 
we develop a stylized transport model that covers passenger transport in the Oslo 
metropolitan area, an urban area with approximately 1.2 million inhabitants.  

While the modeling approach draws on Börjesson, Fung, and Proost (2017), our paper 
provides three key extensions to the framework, most notably multiple heterogeneous 
representative agents, a car choice module, and a more comprehensive set of transport 
patterns as occasional long car trips are included in addition to short daily trips by car 
and public transport (PT). Also, instead of being based on the length of a standardized 
trip, the agents in this model are calibrated on large sample travel survey data from the 
inhabitants of the Oslo metropolitan area. The prime purpose of this model is to look 
into the interactions between combinations of policies and inhabitants’ car purchase, 
car use, public transport use and urban externalities. As far as we know this is the first 
paper putting all these elements together in a fully transparent model where all effects 
can be checked and policies can be optimized in terms of welfare and/or reaching 
climate goals. Our model gives a very simplified but complete description of the urban 
transport market equilibrium, both with regard to transport patterns and car 
ownership. The main simplifications are the small number of representative agents and 
the car choices they can make. Despite these simplifications, the model allows us to 
analyze how different types of agents may respond to different transport policies. This 
approach also allows us to study how costs and benefits of polices are distributed 
among agents. This distribution is key to understanding political feasibility.  

Among other things, our simplified model shows that the welfare-maximizing urban 
transport policies in the greater Oslo area, at the recommended national reference 
value of CO2

4, lead to very small emissions reductions. Policies for achieving the 
ambitious goals of halving the emissions from personal transport may bring about 

                                                 
4 The Green Tax Commission recommended a reference value of 420 NOK (about €50) for one 
tCO2e (NOU 2015:15, 2016). This represents their judgement of the appropriate shadow price of 
reaching the short-term emission targets in Norway. There is large uncertainty regarding the “correct” 
CO2 price (see e.g., Nordhaus, 2019; Tol, 2005). A recent example is the IPCC (2018) special report, 
where they show that the estimated CO2 prices consistent with reaching the 1.5 oC target with high 
probability had an inter-quartile range of 179-658 USD2010 in 2030 (Huppmann et al., 2018). 
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substantial welfare costs. These costs accrue mainly through the higher resource costs 
of BEVs and PHEVs, which play a crucial role in reaching ambitious emissions 
reductions.  

As this paper is very policy-oriented, we have sought feedback from stakeholders in 
government agencies who advise policy makers. Earlier versions of the model and 
preliminary results have been presented and discussed at seminars at the National 
Public Roads Administration (both centrally and the eastern regional branch), and the 
Ministry of Transport. The stakeholders mentioned in the Acknowledgements have 
also been presented an earlier version of this paper. 

Section 2 presents a schematic analysis of how the promotion of BEVs affect 
congestion and other urban transport externalities. Section 3 discusses briefly the 
literature on EVs and reviews their potential role in policies for curbing CO2 emissions 
and externalities from urban transport. Section 4 presents the model. Section 5 
analyzes the model results, while section 6 provides discussion, caveats and 
conclusions. 

2 How does the promotion of BEVs affect 
congestion and other urban transport 
externalities?  

The various BEV-friendly polices described in the previous section, can give rise to 
policy goal conflicts. Before we introduce the urban transport model in Section 4, we 
illustrate some of these conflicts that arise from different policy instruments using a 
highly stylized textbook case. Consider Figure 1, where a fixed number of commuting 
trips are made to the city center and the population has the choice between using a car 
or public transport (PT). The average generalized cost of car use is upward sloping as 
the time cost increases with the number of cars on the road. The figure shows that the 
average social costs are lower than the marginal social costs, as the individual driver does 
not take into account the time cost he imposes on other drivers. We model the cost of 
PT by a constant marginal cost (i.e. marginal cost equals average cost) per passenger5. 
This is depicted by the flat line MCPT. 

In the optimum, the marginal social costs of private transport will equal the marginal 
social cost of PT (illustrated in the figure by “Optimal equilibrium”). In the absence of 
any policy measures we end up in user equilibrium A. In the absence of specific 
congestion tolls, the government often resorts to subsidies for PT. Subsidizing PT 
lowers the user cost of PT and leads to equilibrium B where congestion is mitigated 
and PT ridership has increased.  

Now introduce a BEV promotion policy. This reduces the composite cost of car use. 
Indeed, the population will only opt for BEVs in so far as they are a lower cost option 
than a conventional fossil car, so the composite cost can only decrease. This results in 
a new equilibrium C where car use has increased again and where part of the effects of 
                                                 
5 We assume that the crowding externalities in PT are addressed using increases in frequency so that 
the average generalized cost of PT is more or less constant. 
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second best PT pricing have been destroyed. Finally, we allow BEVs to drive in the 
bus lanes. This causes higher congestion levels in the bus lanes which increases the PT 
user costs. This leads to an equilibrium of type D, where the market share of BEVs 
has increased, but at the expense of PT users, and where the urban congestion levels 
have gotten worse. 

 
Figure 1: Promotion of BEVs and urban transport equilibria 
 

There is another subtle way in which the present BEV promotion leads to more 
congestion: the progressive CO2 taxation of fossil cars. Confronted with the 
introduction of a progressive CO2 tax on fossil cars, car drivers can react in four ways. 
They can abandon car use, opt for BEVs, choose a very fuel-efficient ICEV, or 
postpone buying a new car.  

The second and the third choice reduce the variable cost of car use, which then 
stimulates demand for travel by private car, and consequently congestion. The conflict 
between fuel efficiency promotion and urban road congestion is well known (Parry, 
Evans, & Oates, 2014). 

The fourth option, postponing buying a new car, does not lead to more BEVs and less 
CO2 emissions. However, it does not lead to more congestion either, as long as fuel 
prices remain high. 

In conclusion, if policy makers want to promote BEVs and address the urban road 
congestion issue, there is a need for other policies that complement the promotion of 
BEVs. We ask: What is a better mix of policies? 
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3 Literature Review 
3.1 Electric vehicles and policy 
The rapid in-phasing of EVs to the transport system and the current policies intended 
to promote EVs raise many interesting transport and energy economic issues. We like 
to organize them in terms of the supply side for EVs, the demand side for EVs, and 
EVs in the urban transport market. 

The supply side for EVs 

With regards to the choice of low carbon technology for cars, BEVs are one of the 
options, next to PHEVs as well as biofuels and hydrogen. This raises questions on the 
cost development of different competing technologies and their future market shares. 
This question is best addressed in technology models like the IEA-developed TIMES 
model (see Diaz Rincon, 2015), the Canadian-developed CIMS model (Jaccard, 
Nyboer, Bataille, & Sadownik, 2003) or the US-developed NEMS model (US Energy 
Information Association, 2019). There are also important R&D policy implications, 
where the effects of learning by doing and pure R&D development should be included 
in the model (Fischer & Newell, 2008; Jaccard et al., 2003). 

The demand side for EVs 

With regards to car purchase decisions, as EVs offer a different combination of car 
characteristics (e.g., range, refueling issues, and prices), one needs to study the 
consumer preferences with respect to these characteristics. For an early study one can 
consult Brownstone, Bunch, and Train (2000) which uses both stated preference  and 
revealed preference data, and uncover large heterogeneity in consumers’ preferences 
for alternative fuel vehicles. The EV adoption model in Langbroek, Franklin, and 
Susilo (2016) finds that some of the consumer heterogeneity can be explained by the 
differences in respondents’ stages-of-change towards EV adoption, from pre-
contemplation to action. Axsen, Bailey, and Castro (2015) investigate heterogeneity in 
consumer preferences with regards to EV purchasing using a latent-class discrete 
choice model, where classes differ significantly in vehicle preferences. Using cluster-
analysis and a discrete choice model, they also find that environmental and technology-
interested motivations has strongest association with an interest in EVs. Hidrue, 
Parsons, Kempton, and Gardner (2011) also used a latent class choice model to analyze 
heterogeneous preferences for EVs and different EV attributes. Other recent examples 
of EV adoption models include Javid and Nejat (2017) who estimate their model on 
Californian travel survey data, and Østli, Fridstrøm, Johansen, and Tseng (2017) who 
estimate a generic discrete choice model for automobile purchase on Norwegian 
disaggregate sales data from 1996 to 2011.  

There is a growing literature on consumer adaptation of EVs (both PHEVs and BEVs) 
and the effects of government policy on promoting EVs. Both W. Li, Long, Chen, and 
Geng (2017) and Coffman, Bernstein, and Wee (2017) provide literature reviews on 
factors that affect the consumers’ intentions or decisions to adopt EVs. The former 
review includes 40 papers, while the latter includes 50. They both conclude that 
multiple factors are at play in affecting EV adoption. Although their taxonomies of 
factors differ, they both cover EV-specific (e.g., technical features and cost of the EV) 
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and external factors (e.g., demographic and psychological factors of EV buyers or 
would-be buyers and government policy). An earlier review by Rezvani, Jansson, and 
Bodin (2015) includes 16 papers and covers many of the same factors, but focuses 
more narrowly on consumer intentions and behaviors regarding EV adoption. 
Hardman, Chandan, Tal, and Turrentine (2017) review 35 papers on the effectiveness 
of government policy in the form of financial incentives to purchase BEVs. They state 
that almost all these studies, using different methodologies, point in the direction that 
financial purchase incentives for BEVs and PHEVs have had a positive effect on sales. 

In the Norwegian context, Bjerkan, Nørbech, and Nordtømme (2016) analyze the 
importance of 7 different incentives to promote BEVs using a membership survey by 
the Norwegian Electric Vehicle Association. They find that purchase tax exemption is 
the strongest incentive to purchase a BEV, while VAT exemption is the second 
strongest. Previous findings by Figenbaum and Kolbenstvedt (2013) indicated that the 
strongest incentives were VAT exemption, toll exemption and access to the bus lanes. 
However, Bjerkan et al. (2016) find that to some BEV owners, access to bus lanes or 
toll road exemptions are the only decisive variables. Mersky, Sprei, Samaras, and Qian 
(2016) also find that closeness to the larger Norwegian cities, where toll exemption and 
access to bus lanes are strong advantages, have a strong correlation with EV sales per 
capita. While the incentives for choosing EVs in these areas are strong, there could be 
some element of a “neighbor effect” (Axsen, Mountain, & Jaccard, 2009; Mau, 
Eyzaguirre, Jaccard, Collins-Dodd, & Tiedemann, 2008), where the preferences for 
EVs in this area are endogenously strengthened over time as a function of the growing 
market share, feeding back to an even faster-growing market share. Mersky et al. (2016) 
also find that charging station availability is strongly indicative of EV sales per capita, 
although this relationship may not be entirely causal. 

Modeling the role of EVs in the urban transport market 

This market is characterized by many externalities. EVs may alleviate some of them, 
like CO2 and local pollution, but as we discuss in section 2, they may exacerbate others. 
Perhaps most costly externality in the urban setting is road congestion during peak 
hours (Small & Verhoef, 2007, pp. 97-105; Thune-Larsen, Veisten, Rødseth, & 
Klæboe, 2014). In addition to the mentioned externalities, we can also mention 
accidents, noise and crowding on public transport (PT). Urban transport policy should 
look for the optimal balance of social costs and benefits. This balancing requires a 
model that represents explicitly the functioning of the urban transport market (Proost 
& Van Dender, 2001). As finding this balance is our main research question, transport 
externalities and the urban transport market will be the main emphasis of this paper.  

This means that we in our modeling (which we will describe in the section 4) simplify 
some other dimensions. This includes the supply side for EVs, where we model a fixed 
selection of car types, and only address projected cost developments for BEVs in 
sensitivity analysis. This also includes parts of the demand side for EVs, where 
consumer tastes regarding attributes of different cars are largely ignored, there is no 
consumer learning, and the main driver of vehicle choice is the generalized cost of 
transport and total cost of ownership.  

Placing our model in the Norwegian family of transport models 
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It is worth noting that in the existing family of transport models in Norway, none of 
them bring together all the elements of car choice, choice of transport pattern by mode 
and time of day, congestion and crowding feedback and occasional long trips into the 
same model (examples documented in Flügel & Hulleberg, 2016; Flügel & Jordbakke, 
2017; Fridstrøm, Østli, & Johansen, 2016; Rekdal et al., 2014; Rekdal & Larsen, 2008; 
Østli et al., 2017). Our model does bring these elements together, though in a 
simplified way.  

These members from the family of Norwegian transport models can model either 
travel mode choice, transport flows or the vehicle fleet far more sophisticated than 
ours, and on those areas they provide a valuable service for policy makers. Our model 
has the advantage of bringing more elements together in a transparent, relatively 
noncomplex model, that serves purpose of analyzing the implications that policy has 
for car fleet composition, and the implications car fleet composition has for striking 
the optimal balance of urban transport policies. As pointed out in Rødseth (2017), 
citing among others Frisch (1964), there is a trade-off between a model’s physical 
realism, and its tractability and data requirements. 

3.2 Instruments for addressing CO2 emissions 
A standard “textbook” approach to addressing CO2 emissions is to prescribe 
implementing a CO2 tax (Perman, Ma, McGlivray, & Common, 2003). Taxes on 
gasoline and diesel are, in effect, taxes on CO2 as there is a fixed relationship between 
liters of fuel and kilos of CO2. It is also worth emphasizing that the entire tax per liter 
can be viewed as a tax on CO2, even if only a sub-component of the tax is explicitly 
called CO2 tax (which is the case in Norway). What matters is not what the tax is meant 
for but how consumers react to this tax. In many European countries, gasoline and 
diesel for car use is taxed at 200 to 300 Euro/ton of CO2 (OECD, 2016). This could 
be complemented by a CO2 tax on alternative fuels (i.e., natural gas, biofuels, fossil 
generated electricity and hydrogen) in function of their CO2 emissions. In theory, this 
instrument will make sure that we have the right mix of the four levers of reducing 
CO2 emissions in transportation: more fuel-efficient driving, reduced car use, more 
fuel-efficient vehicles, and alternative technologies. The CO2 tax can be complemented 
by an instrument to correct knowledge spillovers of new technologies that take the 
form of subsidies for learning by doing and pure R&D knowledge spillovers (Fischer 
& Newell, 2008).  

The EU and Norway pursue this option: there are high excise taxes in place on 
automotive fuels and there are tax exemptions/subsidies for the purchase and use of 
BEVs and for R&D.  

When we consider this first-best set of instruments focusing on CO2 emissions, we see 
that the potential use of these instruments is handicapped by several constraints. First, 
if one region or nation has more ambitious climate targets than its neighbors, its scope 
for varying gasoline taxes regionally or nationally is limited as this would induce 
tankering and tax competition (Mandell & Proost, 2016). The choice set is therefore 
largely limited to (given climate goals, too low) fuel taxes, complemented by 
discriminating taxes on car ownership and purchases according to emission standards, 
and specific R&D subsidies. Second, the use of instruments to correct knowledge 
spillovers has only limited effects as the market for new engine technologies is a world 
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market. Third, very fuel-efficient vehicles lead to more congestion. This could be 
considered a rebound effect that arises because improved energy efficiency reduces the 
generalized transport costs.  

Climate change is a global problem, where total global emissions of greenhouse gases 
are expected to bring about large social costs (unevenly distributed) globally. This is 
probably why in many countries there is a much larger emphasis on the promotion of 
EVs, mainly as a means to reduce CO2 emissions, than on the road congestion issue. 
The global total cost of greenhouse gas emissions are probably orders of magnitude 
larger than the global total costs of congestion, but we could still have the case that the 
marginal external cost of an extra conventional car contributing to congestion is higher 
than the marginal external cost of CO2 from the same car on the same distance. The 
marginal price of CO2 that a car user faces is reflected by the taxes on fossil fuels. In 
Norway, the current taxes on fossil fuels6 (excluding VAT) would imply a cost of about 
€2407 per ton of CO2. By contrast, the recommended reference value of CO2 in 
Norway (NOU 2015:15, 2016) is 420 NOK (about €50). However, even with a much 
higher value on CO2, the external CO2 cost may still be dwarfed by the external 
congestion or local air pollution cost of a km driven in a dense city during peak hours. 
In order for marginal cost of CO2 per km for a large diesel passenger car to match the 
marginal cost of peak congestion in Norwegian cities, the implicit price of CO2 would 
have to be more than 21 000 NOK per ton (more than €2300/ton) (Thune-Larsen et 
al., 2014). It is common in the transport economic literature to find that the per vehicle-
km external costs of congestion are substantially larger than those of CO2 at city-level 
(Anas & Lindsey, 2011; Small & Verhoef, 2007, pp. 97-105; Tscharaktschiew, 2014). 
Our first research question addresses the problem of finding the right balance in a 
transport system with multiple market failures, including both CO2 and congestion.  

3.3 How to address urban congestion and continue to 
promote the use of BEVs  

To address urban congestion, the number of vehicle-kms travelled by road during peak 
hours needs to be reduced and/or managed better, or the road capacity needs to 
increase. Additional road building is not really considered as an alternative in a country 
where one wants to limit overall car use in urban areas. After all, there is a large 
literature on how increasing road capacity over time will induce more demand for car 
travel and thus bring us back to a long-term equilibrium with high congestion. This is 
also known as “the fundamental law of road congestion” that has been verified 
empirically for the US, Europe and Japan (Downs, 1962; Duranton & Turner, 2011; 
Garcia-Lopez, Pasidis, & Viladecans-Marsal, 2017; Hsu & Zhang, 2014). 

The current peak hour traffic volume could be managed better through various ITS 
(Intelligent Transport Systems) solutions that could e.g. provide better utilization of 
the existing road network (de Souza, Yokoyama, Maia, Loureiro, & Villas, 2016). But 

                                                 
6 Weighted average for gasoline and diesel, where the former counts for 59 % of the car fleet’s fuel 
use, and the latter 41 %. 
7 The sub-component of the tax explicitly labeled CO2-tax reflects about 50 Euro per ton of CO2, but 
as we argue above, the entire tax per liter of fuel can be viewed as a tax on CO2.  
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in the end, this works like a capacity extension, generating its own new traffic flow and 
is therefore not really solving the congestion problem.  

Policy makers can pursue policies that “push” vehicle-kilometers travelled away from 
peak hours (e.g., through pricing), or “pull” them away (e.g., through improved PT 
pricing and quality). When applying “push”-policies, some drivers may adapt by 
rescheduling their trips to off-peak hours, some may choose to carpool/rideshare with 
others to split the increased toll cost, and some may choose PT, walking or biking. 
Pricing of all car use in the peak period is the most obvious instrument to be used. In 
2017 Oslo began differentiating (slightly) between peak and off-peak car use.8 BEVs 
started paying a peak toll in 2019.  

Car traffic volumes may be “pulled” away from peak hours by promoting the use of 
PT. This policy has already been pursued and current PT users pay some 50% of 
operation costs (Ruter, 2016). The effectiveness of this policy depends on the diversion 
ratio, i.e. the proportion of the new PT users incentivized by reduced generalized prices 
of PT, that are former car users. When the diversion ratio is close to 50%, this measure 
can still be effective (Parry & Small, 2009). If it is closer to 20%, the measure becomes 
very costly. The reason is that a price reduction for PT induces many additional riders 
that are not paying the true supply cost (i.e. the fare is subsidized), but still need to be 
accommodated by providing costly extra PT capacity. Flügel, Fearnley, and Toner 
(2018) find that the average diversion ratio for the Oslo area from car to PT varies 
from 29% to 44%, depending on the mode of PT. 

4 Model set-up 
The model is a stylized representation of the behavior of different groups of agents in 
the greater Oslo area, that is combined with supply costs. We use it to study how agents 
demand daily short trips by car and public transport (PT), either during peak or off-
peak hours, and how some agents demand a number long trips by car throughout the 
year. 

This is a very aggregated model that considers the transport of all inhabitants in the 
greater Oslo-area over the age of 18, where the overall population is represented by 
three representative agents. These three agents differ with respect to whether they are 
employed, and whether they go on occasional long car trips. The former criterion 
addresses important differences in transport patterns and income, while the latter 
addresses differences in range needs. These differences are relevant for policy makers 
in the transport sector. 

4.1 Model components 
The main components of this stylized model are; the gross utility derived from 
transport, the user costs of transport, PT supply costs and external costs of transport. 
These components are used to compute alternative urban transport equilibria and their 
welfare effects. The model is inspired by Börjesson et al. (2017) but adds a vehicle 
selection stage in addition to having three representative agents instead of one in the 

                                                 
8 https://www.fjellinjen.no/private/prices/ [Last accessed April 9th 2018] 
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numerical application. The agents also consume a larger set of “transport products”, 
as occasional long car trips are included in the agents’ transport patterns, in addition 
to short daily trips by car and PT. The distinction between long trips and short trips is 
important as BEV’s still have a range handicap for longer distances. 

4.1.1 Gross utility derived from transport 
The preferences of the agents in the model are represented by a quasi-linear utility 
function U. Here utility is derived from consumption of “other (non-transport) goods 
and services” (normalized to money m), and from consumption of kilometers travelled 
for short daily trips (by car, by PT, at peak, at off-peak) and the number of long car 
trips per year. The utility from transport is represented by a sub-utility function B, 
which is assumed to be quadratic. This quasi-linear form implies that there is no 
income effect, which can be justified since Norwegian household income shares on 
transport are relatively small (Boug & Dyvi, 2008) and because we use a different utility 
function for each representative population group. While the quadratic sub-utility 
function can be considered a simplified local approximation to agents’ behavior, it has 
some advantages. First, it can be calibrated easily with limited data (observed prices 
and quantities and direct and cross-price elasticities), and second, as it underpins linear 
demand functions it allows for clear interpretation and visualization. The following 
equations represents functions U and B  for a given representative agent: 
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t
jq stands for the number of daily kilometers travelled in period t using mode j. Peak 

and off-peak periods are represented by the superscripts p and o, respectively. The 
subscripts c and b represent the modes car and PT, respectively, while the subscript lc 
represent long car trip. Similarly, t

j� and t
j� are parameters of the sub-utility function 

for period t and mode j. The terms tt
jji  represents the interactions between periods 

and/or modes, for instance po
cbi represents the interaction between car mode in peak 

hours and the PT mode in off-peak hours. These terms are symmetric, in accordance 
with consumer theory, i.e. the symmetry of the Slutsky matrix. This representation of 
the utility function allows the derivation of inverse demand functions (willingness to 
pay – WTP), for the five types of transport. 
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4.1.2 User costs of transport 
We have standardized the consumer good daily short-trip transport to one kilometer, 
so the user costs are also on a per km basis. The user costs for daily car travel are given 
by: 

 � 	i i i i in
c c c c c c cuc dc c Nq VOT
 � � � �� � � � �� �   (4) 

The user costs comprise of the monetary distance-related costs i
cdc  (fuel, repairs, 

lubricants etc.), toll costs i
c� , parking costs cc
 and time costs � 	i in

c c cNq VOT� � ��� � , 

where c�  is travel time during free-flow conditions and � 	i
cNq  is the added time due 

to congestion caused by all (N) other road users. 

The user costs for daily PT travel is given by: 

 � 	 60
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The user costs comprise access time costs i
bac , fare costs i

b�  and time costs

� 	in i
b b bVOT Nq� �� �� � , where b�  is PT travel time and � 	i

bNq�  is a crowding factor that 
works as a weight on the agents’ value of in-vehicle travel time. The crowding factor 
is increasing in the number of other agents riding in the PT system.9 60

2 i
b

w
b f

VOT
represents the PT users’ waiting time cost, as a function of frequency. 

The user costs for the occasional long car trip is given by: 

  i i in
lc lc lc lc cuc dc VOT� �� � �   (6) 

                                                 
9 The crowding factor has a lower bound of 1. The crowding factor does not start to increase before 
all seats on the PT ride are occupied. This is a simplified way of modeling crowding costs. The 
literature shows that there are many ways to model crowding costs (Z. Li & Hensher, 2011). De 
Palma, Kilani, and Proost (2015) argue that the most natural way to model discomfort from crowding 
is through a step-function, with a jump in costs when the last seat is taken, then flat for all standing 
passengers, until the cost rises almost vertically as crowding reaches the legal limit of the vehicle. This 
opens up a trade-off between seat availability, fares and frequencies around the desired arrival times. 
Another recent example includes Hörcher, Graham, and Anderson (2017), where crowding costs are 
modeled as a function of both crowding density and standing probability. Crowding assumptions in 
our numerical model are discussed in Appendix A. 
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If the long car trip is done by a BEV, and the trip back and forth is longer than the 
BEV’s range, we assume the agent will charge just enough to cover the remainder of 
the round trip. We assume that charging time gives the following disutility cost:  

 � 	2ch ch lc EV EVdisU VOT lcL r eff chCap�� �� �� �   (7) 

The charging time is thus determined by the range of the BEV and the length of the 
trip � 	2 EVlcL r� , the energy efficiency of the BEV EVeff , and the charging capacity 
chCap 10. The disutility cost of charging time is assumed to be the value of travel time 
times a disutility weight for waiting ch lcVOT� . 

4.1.3 Cost of public transport supply 
In the greater Oslo area PT is currently provided by metro, tram, city buses, commuter 
buses and ferries. While it would have been nice to model these different PT modes 
separately, we have, in the numerical model, for the sake of tractability and 
transparency constructed a cost function for the aggregate PT system. We assume that 
this is a linear function of annual frequency bf  with bFI  as a fixed cost component 
and � as the marginal unit operating cost. This is a simplification, but this function 
does seem to fit the aggregate data from the annual report of the PT company in the 
greater Oslo area quite well (Ruter, 2016). 

 b b bC FI f�� �   (8) 

Any change in the annual frequency of PT can then be interpreted as a change in a 
“composite” PT-mode with shares of bus, metro, tram and ferry. 

4.1.4 External costs of transport 
Section 4.1.2 has already covered the external cost of congestion. The other important 
external costs are local pollution, greenhouse gas (GHG) emissions, noise and accident 
risk. With regard to GHG emissions, our analysis will only focus on tank-to-wheel. 
Including all life-cycle emissions would require going through all the major 
components11. It is therefore considered out of scope for a paper focusing on urban 
transport policies in a world with electric vehicles. An example of a comparison of the 
life-cycle external costs between ICEVs and BEVs can be found in Jochem, Doll, and 
Fichtner (2016).  

As for the valuation of GHG emissions, our analysis applies the Norwegian reference 
value recommended by The Green Tax Commission (NOU 2015:15, 2016). Whether 
the recommended reference value is the “correct” price is debatable, but it has been 

                                                 
10 For example, with a semi-fast charger with a capacity of 22 kW, and the EV has a battery utilization 
rate of 0.2 kWh/km, it would take 1 hour to get 110 km of driving distance charged. 
11 Even well-to-tank emissions would not be straightforward to include, as it would require knowledge 
about where the fuel is coming from, know the corresponding emission factors and whether and to 
what extent the oil production and refining is covered by the European Emission Trading scheme. 
The tank to wheel approach is less complete but is consistent and this is important for a comparison 
of policy scenarios. Besides, since the focus of Norwegian policy makers, both national and local, is on 
tailpipe emissions, that would be the natural focus for this paper as well. 
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influential in the updating of Norwegian fuel taxes and guidelines for Cost-Benefit 
Analysis (CBA). It therefore gives a good approximation for how much welfare to 
forego in order to reduce emissions by one tCO2e in Norway.  

With regard to the rest of the external costs, we assume they are constant per km per 
vehicle, depending on where the agents drive. This is of course a simplification. There 
are non-linearities in damages from local emissions and noise, but assuming constant 
marginal damages is a usable approximation as long as changes in traffic volumes are 
not too large (Thune-Larsen et al., 2014). Since the focus of this paper is urban 
transport policy where both PT and electric vehicles are included, we consider the 
simplified damage functions for local pollution and noise to be appropriate. Previous 
papers on urban transport policy, including Parry and Small (2009) and Börjesson et 
al. (2017), have made similar assumptions.  

All the short daily trips are assumed to be in the city area, where population is relatively 
dense, thus having relatively high per-km external costs. The long car trips are assumed 
to be mostly on highways far from densely populated areas, thus having a fairly low 
per-km external cost (in addition to that we assume no congestion problems on the 
long trips). The external costs will also differ by the type of car. How the marginal 
external costs vary by car type and by area can be seen in Table 3. The simple 
relationship for total external costs E  is modelled in the following way: 

 
1

n

j j
j

E e q
�

��   (9) 

The marginal external cost per km driven is given by je  for mode j. 

4.2 Finding welfare optimum 
The aggregate welfare function consists of several components, as described by Eq. 
10. The first component is net consumption of other goods and the gross user surplus. 
The net consumption of other goods can be described as generalized disposable 
income after fixed and variable transport costs, the latter being the user costs described 
above. The second component is the net transport related deficit for the public sector 
(assuming the PT provider belongs to the public sector), i.e. the total revenue from the 
agents’ transport consumption (tolls, fares, gasoline and diesel tax, and purchasing tax 
and VAT on vehicles (annuity)) minus the total cost of providing PT. The third 
component consists of the parking company’s revenue priceP  (agent transferring 
money to parking company), while the fourth component represents the opportunity 
cost of occupying parking space costP . The fifth component consists of external non-
congestion costs. This way we account for all costs and transfers for the involved 
agents. 
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Here, g c cg q� is the fuel tax revenue, where g�  is the tax rate, and cg is the average fuel 

efficiency. We also have ann
c

k
k�� , which is the annuity of the purchase and VAT tax 

revenues, summed for all agents that own cars. 

For simplicity, we ignore labor market distortions and assume that any public-sector 
deficits are financed by lump-sum taxes, implying that the marginal cost of public 
funds (MCF) equals 1. 

We assume that, in user equilibrium, each agent adjusts her behavior so that her WTP 
(marginal benefit) i

j

B
q
�
�

equals the generalized cost (marginal cost) i i
j juc ��  for the use 

of a given mode in a given period. To derive optimal tolls and fares, we maximize the 
social welfare function w.r.t. the quantities of the different goods, subject to the 
constraints of user equilibrium for each period and transport mode. 
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We differentiate �  w.r.t. the transport quantities and equal the expressions to zero 
and rearrange. This gives us the expressions for optimal tolls and fares: 
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These equations express that the optimal tolls for cars equal the marginal external cost 
of congestion that they impose on other road users, plus the marginal external costs 
of road use not related to congestion. The optimal PT-fares for are set equal to the 
marginal external cost of crowding (which is affected by frequency). 

4.3 Constructing and calibrating the numerical model 
To calibrate the numerical model, we need three elements. First, we need a 
representation of the population by a limited number of representative user groups. 
For each of these user groups we observe their choices: type of car, use of different 
modes on different types of trips, and the associated user costs. This generates one 
observation for calibrating the utility function of each user group. Second, we need 
price and cross-price elasticities for each representative user. The first two elements 
complete the description of the utility function of each user. Third, we need the supply 
functions for road space (speed-flow relations) and PT.  

The Norwegian travel survey from 2013/2014, documented in Hjorthol, Engebretsen, 
and Uteng (2014), is important for the calibration. The survey had approximately 
60 000 respondents, and about 10 400 (18 years or older) of them lived in the Oslo 
metropolitan area. These respondents represent about 1.2 million inhabitants in the 
greater Oslo area (0.95 million over 18). The Institute of Transport Economics has 
constructed frequency weights for each respondent based on geography, sex, season 
and time of week. Applying these weights gives us a synthetic adult population of the 
Oslo metropolitan area represented by the travel survey respondents. Among this 
population, 85% respond that they own or have a car at their disposition, and 30% 
have two cars at their disposition. 

Using this synthetic population, we develop and calibrate a numerical model in 
MATLAB12 following the steps described in Table 1. 

  

                                                 
12 The applied MATLAB-scripts can be obtained on request by contacting the corresponding author. 
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Table 1: Model calibration, step by step 
Step Description 

1 Aggregate the National Travel Survey data for the counties Oslo and Akershus 
(that approximate “the greater Oslo area”) into 3 aggregate agents13 in terms 
of 

  Baseline travel pattern (PT and car). 
  Employment and incomes (which determine value of time). 
  Car ownership, access to parking at home, etc. 

2 Compute generalized transport costs of each agent for each mode and for each 
car type, for short and long trips 

3 Select own-price and cross-price elasticities for each type of agent for the 
“travel products” person-km per day by car and by PT, peak and off-peak, and 
long car trips per year (see Appendix A for more information). 

4 Calibrate the utility function using the data from steps 1, 2 and 3. 

5 Check the calibration of the utility function by simulating the choice of each 
agent (number of trips per mode) and cross-checking them with observed 
choices. This step completes the calibration of the agents’ utility functions. 

6 Construct the speed-flow function for peak car trips based on a piecewise 
linear approximation of peak and off-peak speeds (see Appendix A for more 
information). 

7 Construct the cost functions for PT in peak and off peak using a linear 
function with intercept (fixed costs), and an automatic frequency “rule-of-
thumb” optimization rule for peak and off-peak. A similar approach was used 
by Parry and Small (2009) and Kilani, Proost, and van der Loo (2014).  

8 Construct the crowding cost functions of PT (see Appendix A for more 
information). 

9 Construct linear cost functions for the non-congestion external costs; air 
pollution, noise and accidents. Values are given in Table 3, based on Thune-
Larsen et al. (2014). 

10 Construct a welfare function to represent equation (11), that consists of the 
sum of utility for each agent – user costs for agents (including taxes, tolls, fares 
and parking charges) – transfers to government and parking company – 
external costs other than congestion – the operational costs of PT – the 
opportunity cost of parking spaces. 

 
In this model, we have created the 3 representative agents X, Y and Z. The agents are 
classified according to whether they have taken any long car trips (+ 100 km) in the 

                                                 
13 Earlier versions of the model had a larger number of agents, but this made the model far less 
tractable and gave large difficulties in finding transport market equilibria. Having three agents allows 
for a tractable model, and allows for more insights than a single representative agent. 
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past month (whether the travel pattern includes occasional long trips may be important 
for the choice of car type) and whether they are employed or not. The key agent 
characteristics are shown in Table 2. 
Table 2: Key agent characteristics. Source: Norwegian travel survey from 2013/2014, survey documented in 
Hjorthol et al. (2014). 
Characteristic Agent X Agent Y Agent Z 

Estimated number of people 267 955 468 187 210 187 

Working/ Not working Working Working Not working 

Annual gross income (NOK) 591 183 500 972 320 821 

Any long trips by car per month Yes No Yes 

Number of short car trips per day 1.9 1.38 1.0 

Short car trip km per day 20.9 15.6 9.8 

Average length of long car trip (km) 191 N/A  175 

Number of long car trips per year 19.5 N/A  11.8 

Number of PT trips per day 0.4 0.7 0.4 

PT km per day 7.6 10.8 6.9 

Number of peak car trips per day 0.9 0.7 0.3 

Peak car km per day 10.5 7.7 2.8 

Number of off peak car trips per day 1.0 0.7 0.7 

Off peak car km per day 10.4 7.8 7.0 

Number of peak PT trips per day 0.29 0.43 0.14 

Peak PT km per day 4.5 6.9 2.3 

Number of off peak PT trips per day 0.15 0.32 0.26 

Off peak PT km per day 3.1 4.0 4.6 

Disutility markup from owning a small car, 
relative to price difference between small and 
large ICEV, cf. Table 3 (own assumption)  N/A N/A 10% 

 
Other important parameters for the calibration include generalized prices for car and 
PT travel, and own-price and cross-price elasticities. Description of and sources for 
these parameters are given in Appendix A, along with further details on the calibration 
procedure.  

In addition to the user costs of travel, we include the costs of ownership.14 We have 
found the average purchase prices (including VAT and purchase taxes) of new cars 
sold in Norway in 2015-2016 for the broad categories “conventional car” (diesel and 
gasoline), “hybrid”, “EV short-range” (range of 190 km) and “EV high range” (range 
of 528 km). The prices have been transformed to annuities over cars’ average lifetime 

                                                 
14 We have used data from The Norwegian Road Federation (OVF) 
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with a real interest rate of 2%15 to make annual comparisons. We summarize the key 
car-specific parameters for technology, user costs, and externalities in Table 3. 
Table 3: Car specific parameters for technology, user costs, and externalities, baseline 

Parameter 
ICEV 

small 

ICEV 

large 
PHEV 

EV 

short 

EV 

long 

Source: 

Purchase price 273 058 503 614 456 036 263 049 720 468 

Norwegian sales 
data compiled by 
the Norwegian 
Road Federation 

VPT cost 59 977 158 219 44 143     
VAT cost 42 616 69 079 82 379     
Producer price 170 464 276 316 329 514     
            
Annual tax 2 820 2 820 2 820 455 455 
Range (km on full battery)     47.8 190 528 
Fuel usage (liters per 100 km) 7.99 9.50 6.15     
Share of city trips in e-mode16 0 0 73% 100% 100% 

Figenbaum and 
Weber (2017) 
Figenbaum (2018) 

kWh-usage per km, summer       0.15 0.17 
kWh-usage per km, winter       0.20 0.22 
kWh-usage per km, average      0.28 0.17 0.20 
Non-fuel costs per km 
(including taxes, not tolls) 2.05 2.05 2.05 1.98 1.98 Cowi (2014) 

Non-congestion external cost 
per km in city (NOK) 0.70 0.70 0.36 0.36 0.36 

Thune-Larsen et al. 
(2014) Non-congestion external cost 

per km far from densely 
populated areas (NOK) 

0.16 0.16 0.16 0.15 0.15 

 

4.4 The model procedure for analyzing policies 
The model is ready for running policy scenarios when the utility functions of the 
representative agents are calibrated to fit the data, as explained in section 4.3. Solving 
the model for an alternative policy requires to find a new user equilibrium first for a 
given type of car ownership and second when all agents have chosen their preferred type 
of car. As the type of car determines car user costs, this requires an iterative process. 
The exact steps in the solution process are given in Table 4.  

                                                 
15 This corresponds to the recommended risk-free component in the real discount rate to be used in 
cost-benefit analysis in Norway (NOU 2012:16, 2012). Furthermore, car loans in Norway usually have 
a nominal interest rate of 4%-5% and the Norwegian inflation target is 2.5%. 
16 It is assumed that PHEVs run on electricity 73% of the distance on short daily trips, but long trips 
we assume that they run entirely on fossil fuels. 
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Table 4: Steps in the model procedure for analyzing transport policies 
Step Description 

1 Change one or more exogenous policy variable (tolls, fares, parking charges) 

2 Simulate a new equilibrium by  

a. Solving for new individual utility optimum for agent X  

Generating new utility-maximizing quantities for agent X (for each 
possible car option) 

Agent makes discrete car choice (large ICEV, small ICEV, PHEV, 
short-range EV, long-range EV, or no car) – the choice that gives the 
highest net utility for the user, i.e. utility from transport and net 
consumption of other goods (net income minus fixed costs, e.g. annuity 
for car purchase) 

Inserting the new quantities into the congestion and PT cost functions 

b. Solve for new individual utility optimum generating new quantities (and 
possible car choice) for agent Y, using the new congestion and crowding 
levels that are generated in step a 

c. Solve for new individual utility optimum generating new quantities (and 
possible car choice) for agent Z, using the new congestion and crowding 
levels that are generated in step b 

d. Iterate: Redo step a using the updated congestion and crowding functions 
of step c 

e. Iterate: Redo step b and c using the updated congestion and crowding 
functions of the previous step 

f. Stop updating congestion levels and car choice after 3 iterations to avoid 
convergence problems17 

3 Based on quantities in new equilibrium, calculate the total new social welfare 
levels and its components associated with the changed policy variable values 

 

We run the full model procedure for the most important scenarios, and a simplified 
version of step 2 in the procedure for a number of other scenarios. In the simplified 
version, the car choices are kept fixed for the different agents. This has at least two 
advantages: The first is that when discrete car choices have been fixed, the 
optimization procedure becomes simpler. In this case, it is easier to adjust the other 
policy variables in order to maximize welfare subject to behavioral constraints, and in 
some scenarios a CO2 constraint consistent with the policy target and ensure 
convergence to a unique transport market equilibrium. The nature of the full procedure 
with discrete choices by multiple agents implies a problem with non-convexities and 
does not guarantee a unique equilibrium. The second advantage is that there are 
important insights to be gained from studying optimal policies under different fixed 
                                                 
17 We tested the need for more iterations and found that in cases where there was convergence, it did 
not make much difference to have 3, 5 or 10 iterations. In order to save computing time, we settled 
for 3 iterations. 
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car combinations. The optimized policies are later run through the three steps 
described above to check for incentive compatibility, i.e. whether the agents will make 
the choice of vehicle combination the optimal policies are designed for. The 
robustness of the equilibrium found is then tested by redoing the simulations with a 
varying number of starting points. The model equilibrium can be considered a 
medium-run/long-run equilibrium for given land-use, where the time horizon 
corresponds to the average life-span of a car. This is about 17 years in the Norwegian 
case (Fridstrøm et al., 2016). 

5 Policy analysis and results 
This section presents the results from the modeling exercises, designed to answer the 
three stated research questions.  

We first investigate what medium-term effects the current policies might have. What 
is the welfare status of the current situation for the greater Oslo area? To what 
equilibrium are we heading if 2014 policies are continued, i.e., the business-as-usual 
(BAU) scenario? What equilibrium would we end up in if BEVs were treated the same 
as ICEVs with regard to tolls, parking and VAT (EV-SAME-scenario)? 

In a second step we explicitly optimize policies to maximize welfare under constraints. 
We do this again in two rounds. First, we calculate welfare-maximizing policies 
(adjusting tolls and fares) for all the possible car combinations. The best combination 
is then checked for incentive compatibility, here meaning that agents choose the 
optimal car combinations under optimal policies (i.e., tolls and fares) when given the 
full car choice set. If they are not incentive compatible, vehicle taxes18 are adjusted to 
make each user group choose its optimal car combination. This leads to the welfare-
maximizing, incentive compatible policy mix. 

Finally, we check whether the optimal car purchase and car use policies achieve the 
goals in terms of CO2 emissions reductions; cf. section 1. If necessary, we adjust the 
set of policies to reach the CO2-reduction target with the lowest social cost. 

What is the welfare status of the current situation for the greater Oslo area? 

The reference situation for the greater Oslo area is 2014, where “everybody” (98%) is 
driving an ICEV. Public transport (PT) fares and tolls are uniform across peak and 
off-peak. Only ICEVs pay for tolls and parking. The policies for the reference scenario, 
the BAU scenario (where car owners have had the option to adapt fully to the current 
policies) and for other key scenarios are given in Table 5. The main results for all these 
scenarios are given in Table 6. Results include total welfare, calculated at 644 bn NOK 
per year in the reference scenario. The main results further include total tank-to-wheel 
CO2 emissions from personal transport and kilometers driven in the city, which in the 
reference scenario is calculated to be 1.2 mill tons and 3.7 bn km, respectively. As 
explained in section 4, CO2 emissions are valued in the welfare calculations via a 
reference value of CO2. This is common practice in CBA in the Norwegian transport 
                                                 
18 For the general case, vehicle taxes are adjusted to ensure incentive compatibility, as these taxes are 
only considered transfers between agents and government. For difficult cases, policies are re-
optimized subject to incentive compatibility constraints where tolls, fares, parking charges and 
purchase taxes are instruments in the welfare maximization. 
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sector (Norwegian Public Roads Administration, 2018). The Norwegian reference 
value of CO2 represents the opportunity cost of not reducing emissions in the 
transport sector. If emissions are not cut in the transport sector in the greater Oslo 
area, then welfare needs to be foregone somewhere else in order to reduce emissions, 
up to the recommended shadow price of 420 NOK per tCO2e. 

To what equilibrium are we heading if 2014-policies are continued, i.e., the 

BAU-scenario? 

In our stylized model, we view the reference scenario as a result of historical choices 
before BEVs and PHEVs were widely available. In our BAU-scenario, we assess the 
choices of the agents when all five car types are widely available at current prices, and 
current polices remain constant. 

When all agents have adapted to the policies and found a new equilibrium, we have 
that Agent X (employed and makes occasional long trips) has switched to PHEVs, 
Agent Y (employed, but does not go on long car trips) has switched to a short-range 
BEV, and Agent Z (not employed, but makes occasional long trips) has remained a 
user of a small ICEVs. The result is a 64 % drop in CO2 emissions, exceeding the goal 
of a 50% reduction. However, due to lower user costs of both PHEVs and BEVs, the 
Oslo area becomes more congested with a 2.1 % increase in transport volume (for a 
constant population), thus failing to reach the zero-growth goals. Welfare is also 
reduced because of higher resource costs per car and higher congestion levels. 

What equilibrium would we end up in if BEVs were treated the same as ICEVs 
with regard to tolls, parking and VAT (EV-SAME-scenario)? 

Compared to the reference situation, Agent X switches to PHEV, while the two other 
agents stick to their small ICEVs. Agent X’s shift leads to CO2-emission reductions of 
about 30 %, as most of the city driving is assumed to be done in electric mode. While 
a large reduction, it is still not large enough to meet the stated policy goals. In addition, 
the lower user costs also lead to increases in total distance driven with 0.4 % in the 
city. Compared to the reference situation, welfare levels drop because of higher 
resource costs per car and higher congestion levels, though not as much as in the BAU-
scenario. 

What is the scope for welfare improvements? 

For the three agents in this stylized model, there are 20 relevant combinations of 
vehicle ownership. This gives us 20 scenarios, for which the model maximizes welfare 
(see description above) by eliciting optimal tolls, fares and parking charges under fixed 
vehicle combinations. 

Welfare maximizing policies imply drastic changes from the reference situation. In all 
scenarios, welfare is enhanced with higher tolls, especially during peak hours. This goes 
for BEVs and ICEVs alike. In addition, we find that higher fares during peak hours 
and lower fares during off-peak hours increase welfare. Finally, welfare-maximizing 
policies involve all cars paying the opportunity cost of parking space, so BEVs and 
ICEVs would pay the same price. 

The changes in welfare levels relative to the reference situation for all these scenarios 
(20 optimized scenarios plus the BAU- and EV-SAME-scenario) are given in Table 8 
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in Appendix B. The vehicle combination that achieves the highest welfare level when 
tolls, fares, and parking charges are optimized is the same as in the reference situation, 
with Agent X driving the large ICEV and the other agents driving small ICEVs. The 
changes in tolls and fares lead to a 0.7% decrease in city driving, a 1% increase in rural 
driving and a 0.2% decrease in CO2-emissions. The results indicate a 218 mill NOK 
increase in annual welfare from the reference situation, achievement of the zero-
growth goal, but failure to reach the CO2 emission reduction target. The goal of 
reducing CO2 emissions by 50% implies a shadow price of CO2 that is far higher than 
the nationally recommended reference value. 

With the optimal transport user policies in place, and the agents given the free choice 
of cars, some additional adjustments are needed to make the optimal car combination 
incentive compatible. These adjustments make sure that Agent X does not choose the 
PHEV and Agent Y does not choose the short-range EV. To avoid PHEVs, the 
purchase tax for PHEVs needs to be increased by at least 150% (which still implies a 
50 000 NOK lower purchase tax than the large ICEV). To avoid any short range EVs, 
tolls for EVs need to be imposed, at least amounting to 33% of the toll for ICEVs at 
peak, and EVs and ICEVs need to pay the same parking charge. 

We stress that this is a very stylized model where we optimize car choices for only 3 
representative agents. This is an important limitation but the small number of 
representative agents has allowed us to optimize toll, fare and car taxation policies. 
This joint optimization of private and public transport parameters is rather rare in the 
literature mainly because of the complexity that increases strongly with the number of 
representative agents. Given the limits of our modelling approach, we conduct 
sensitivity tests for optimal policies in all the 20 scenarios with fixed vehicle 
combinations. We test the following assumptions that may affect the welfare-ranking 
of vehicle combinations: 

  What if PHEVs could drive in e-mode for all of their city driving? (relevant for 
4 scenarios) 

  What if Agent X’s disutility markup (see Section 4.3) on driving small cars was 
only 1% and not 10%? (relevant for 8 scenarios) 

  What if the resource costs of BEVs was reduced by 25%?19 (relevant for 17 
scenarios) 

  What are the implications of assuming a higher discount rate? (relevant for all 
scenarios) 

In the four scenarios where Agent X drives a PHEV, allowing for 100% driving in e-
mode on short trips, adds 154-155 mill NOK extra in welfare. The emissions 
reductions also become larger as more than 62 000 additional tons of CO2 is abated. 
We see from Table 8 (cf. Appendix B) that one of the tested scenarios climbs in the 
welfare ranking, from 9th to 8th place. 

                                                 
19 This is roughly in line with assumptions by The Norwegian Environment Agency (2016), where 
they assume a 4% annual decrease in costs of EVs, and a 2% annual cost decrease for ICEVs, giving 
the EV a 25% cost decrease relative to ICEVs by 2030. 
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In the eight scenarios where Agent X drives a small car but his disutility markup from 
driving a small car is a lot smaller than initially assumed, welfare becomes about 389 
mill NOK higher per year. We see from Table 8 that six of the tested scenarios climb 
in the welfare ranking. The highest ranked scenario of the affected ones climbs from 
5th to 4th place. 

The change in assumptions that causes the largest changes in welfare is the 25% 
reduction in resource costs of BEVs. This change increases welfare by between 967 
mill NOK and 6 498 mill NOK per year in the affected scenarios. This causes several 
changes to the internal welfare ranking of scenarios. The highest ranked scenario with 
BEVs climbs from 7th to 5th place. 

As a final sensitivity analysis, we also tested the implications of higher discount rates, 
set at 7.5%. This is the implicit discount rate of European car buyers with a 15-year 
time horizon estimated in Grigolon, Reynaert, and Verboven (2018). As Table 8 in 
Appendix B shows, the same car combination as in the reference case maintains the 
highest welfare rank. We also see that car combinations with smaller, cheaper car 
variants climb ranks compared to the original optimization. 

It is worth noting that the scenario where policies are optimized under the same car 
combination as in the reference situation, still generates the highest welfare in all of 
the sensitivity tests. Within our stylized modeling framework; we see that the welfare-
maximizing vehicle combination finding is robust.  

How do we reach the CO2-reduction targets at least cost? 

In 9 of the 20 scenarios with fixed vehicle combinations, the 50% CO2 emissions 
reductions target is not reached, and the welfare-maximizing scenario does not even 
come close to the target. We next impose the CO2 target as a constraint in the welfare 
maximization in these scenarios. As noted in Section 3.2, the probably most efficient 
instrument for reducing tank-to-wheel CO2 emissions would be the fuel tax, but the 
use of this tax is limited due to fuel tax competition from neighboring 
regions/countries. Our approach then is to set the CO2 emissions reduction target as 
a constraint, and let the tolls, fares and parking charges be the instruments for 
maximizing welfare under this constraint. The CO2-cap is binding in all of the 9 
scenarios that in the original optimization did not reach the target, and welfare is 
consequently reduced in all of these scenarios. The scenarios that were furthest away 
from achieving the emissions reductions target incur the greatest cost. The vehicle 
combination from the reference situation, which yielded the highest welfare level in 
both the original optimization and the sensitivity tests, results in the lowest welfare 
levels under the CO2 constraint. This is because the policies necessary to achieve the 
target drastically decrease mobility, since the agents are stuck with their ICEVs. For 
instance, the necessary peak tolls would be 16 times their optimal levels, and off-peak 
tolls would be 33 times larger. 

The highest achievable welfare levels under the binding CO2-cap is with the 
combination of Agent X driving PHEVs, Agent Y driving small ICEVs and Agent Z 
driving a short-range BEV. Compared to the highest-ranking scenario in the initial 
optimization, the welfare reduction is of about 4 bn NOK per year. The average 
welfare cost per ton of CO2 for achieving the emissions reductions target is 6 671 NOK 
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(€682/ton). This comes in addition to the recommended reference cost of CO2 of 420 
NOK/ton, that was already internalized in the initial optimization. While this shows 
that achieving the ambitious climate goals requires a shadow price of CO2 far higher 
than the reference price, the shadow price we find is well within what IPCC (2018) 
displays as the interquartile range for the global price of CO2 needed by 2035 in order 
to stay on a path where global warming is limited to 1.5°C by 2100 with low probability 
of overshooting (Huppmann et al., 2018). 

The tolls, fares, and parking charges that bring us to target emission levels at least cost 
when car combinations are fixed, are not incentive compatible. Without further 
interventions, Agent Y would choose the short-range BEV and not the small ICEV 
and Agent Z would choose the small ICEV and not the short-range BEV. Policies 
need to be adjusted so that one car becomes more attractive for one type of agent, but 
less attractive for the other, which of course is a bit tricky. This requires another model 
run with an incentive compatibility constraint. To ensure incentive compatibility at 
least cost, both tolls and purchase taxes need to be adjusted. The purchase tax for small 
ICEVs needs to increase by 210%, and the BEV would get a full VAT of 25%. At the 
same time, city tolls for ICEVs are reduced, but tolls for driving in rural areas are 
increased. Tolls for BEVs driving in the city are increased, but tolls for BEVs driving 
in rural areas are eliminated. Agent Y and Z then end up choosing the welfare 
maximizing car combination. The annual cost addition of these policies is about 7 mill 
NOK, which implies that the average welfare cost for achieving the CO2 target 
increases up to 6 690 NOK per ton of CO2 (€684/ton). Hence, we see that incentive 
compatible policies adds new complexity to the policy regime for achieving the 
emissions reduction goal at least cost. However, these adjustments to ensure incentive 
compatibility do not change the ranking of car combinations.  

The second-ranking car combination has a more intuitive policy package. It achieves 
the CO2-goal when Agent X drives a PHEV, Agent Y drives a short-range BEV, and 
Agent Z drives a small ICEV under optimized policies. Ensuring incentive 
compatibility is more intuitive here. Before adjusting any purchase taxes, optimal 
policies would make both Agent Y and Agent Z choose the small ICEV. Getting Agent 
Y to switch to a short-range BEV under optimal transport user policies would require 
increasing the price difference between the small ICEV and the short-range BEV. This 
increase in price difference has to be at least as large as a 21% subsidy of the short-
range BEV. This achieves a welfare level that is 5.9 bn NOK lower than in the highest 
ranked scenario in the initial optimization (see Table 8 in Appendix B), resulting in an 
average welfare cost of 7 661 NOK per ton of CO2 reduced.  

In Table 5 and Table 6 we show the optimized policies and the transport- and welfare-
related results from the following scenarios: The reference situation, the business-as-
usual scenario, the EV-SAME-scenario, and the best and the worst scenario from the 
initial optimization and the optimization under the CO2-constraint. 
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Table 5:Policy combinations under different scenarios. ICl=Large conventional car, ICs=Small conventional 
car, Hy=Plug-in Hybrid, EVl=Long-range EV, EVs=Short-range EV, N/A=Not applicable to this 
scenario. X, Y and Z denotes the model agents. 
             Scenarios  
 

 
 
Policy  

variables 

Exogenous policies 
Maximizing welfare, 
no CO2-constraint 

Maximizing welfare, with CO2-
constraint 

Reference 
/BAU 

EV-
SAME 

Best:  
X: ICl  
Y: ICs  
Z: ICs 

Worst:  
X: EVs  
Y: EVs  
Z: EVs 

Best:  
X: Hy  
Y: ICs  
Z: EVs 

2nd Best, 
but 
simpler:  
X: Hy  
Y: EVs  
Z: ICs 

Worst:  
X: ICl  
Y: ICs  
Z: ICs 

Peak toll ICEV,  
NOK per km 0.31 0.31 1.47 N/A 2.23 1.44 23.02 

Off-peak toll ICEV, 
NOK per km 0.31 0.31 0.68 N/A 1.52 0.63 22.46 

Toll on long trips 
ICEV, NOK per km 0.16 0.16 0 N/A 1.05 0 14.83 

Peak toll EV,  
NOK per km 0 0.31 0.48 1.72 3.37 1.8 N/A 

Off-peak toll EV, 
NOK per km 0 0.31 0.48 0.92 1.73 1.02 N/A 

Toll on long trips EV, 
NOK per km 0 0.16 0.09 0.09 0 0.09 N/A 

Peak fare,  
NOK per average trip 33 33 52.36 51.84 51.69 52.08 77.47 

Off-peak fare,  
NOK per average trip 33 33 22.98 23.5 21.35 23.76 18.41 

Average parking cost 
ICEV, NOK per 
average roundtrip 

17.5 17.5 17.5 17.5 17.5 17.5 17.5 

Average parking cost 
EV, NOK per average 
roundtrip 

0 17.5 17.5 17.5 17.5 17.5 N/A 

EV VAT, % 0% 25% 0% N/A 25% -21% N/A 
Change in PHEV 
purchase tax for 
incentive compatibility 

    Add 150% N/A Un-
changed 

Un-
changed N/A 

Change in ICEV 
purchase tax for 
incentive compatibility 

    Un-
changed N/A Add 210% Un-

changed N/A 
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Table 6: Transport, environmental and welfare related results under different scenarios. Absolute levels shown 
in reference situation, and absolute differences relative to reference situation shown in the other scenarios. 
ICl=Large conventional car, ICs=Small conventional car, EVl=Long-range EV, EVs=Short-range EV. 
X, Y and Z denotes the model agents. 
        Scenarios 
 

 
 

 
Policy  
outcomes 

Exogenous policies 
 

Maximizing 
welfare, no CO2-
constraint 

Maximizing welfare, with CO2-
constraint 

Reference 
(level) 

BAU EV-
SAME 

Best:  
X: ICl  
Y: ICs  
Z: ICs 

Worst:  
X: EVs  
Y: EVs  
Z: EVs 

Best:  
X: Hy  
Y: ICs  
Z: EVs 

2nd Best, but 
simpler:  
X: Hy  
Y: EVs  
Z: ICs 

Worst:  
X: ICl  
Y: ICs  
Z: ICs 

City road use  
(mill vkm) 3 729 78.9 14.9 -24.7 19.5 -52.7 -35.9 -1 206.7 

PT use (mill pkm) 2 147 -113.3 -16.9 -1.1 -59.7 48.5 -23.5 1 487.0 

CO2 emissions 
(1000 tons) 1 198 -765.6 -378.1 -2 -1 198.50 -599.4 -764.3 -599.2 

Transport utility + 
general disposable 
income, Agent X 
(bn NOK) 

223 1.1 1.2 -1 -3.6 -2 0.2 -35.4 

Transport utility + 
general disposable 
income, Agent Y 
(bn NOK) 

324 2 0 -1.6 -2 -7.1 -0.4 -34.2 

Transport utility + 
general disposable 
income, Agent Z 
(bn NOK) 

88 0 0 -0.2 -0.9 -2.3 -0.2 -12.3 

Transport 
externality costs 
(bn NOK) 

3.3 -1.4 -0.6 0 -1.8 -0.9 -1.4 -1.3 

Net government 
surplus (bn NOK) 12.8 -8.9 -2.9 3 -10.7 6.6 -6.6 57.2 

Welfare (bn NOK) 644 -5.9 -1.1 0.2 -15.4 -3.8 -5.6 -23.5 

 

We see that our stylized model finds substantial welfare differences between car 
combinations, even when policies are set to maximize welfare within each 
combination. Under the initial optimization, the difference between the lowest- and 
highest-achieving combination is an annual welfare difference of almost 16 bn NOK. 
The discrepancy gets even larger under optimization with the CO2-cap, where it is 
almost 20 bn NOK. 

The key results can be summarized in Figure 2. Here we summarize the main outcomes 
city driving, CO2 emissions and welfare for the main scenarios compared to the 
reference situation: 
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Figure 2: Vehicle kms, CO2 emissions and welfare in four main scenarios compared to the reference situation 
 

6 Discussion, caveats and conclusions 
Our stylized model shows that highest welfare is found when policies induce optimal 
travel demand and optimal choice of car. Optimal travel demand is achieved by setting fares 
and tolls to strike an optimal balance between public transport (PT) and car travel 
during peak and off-peak hours. For cars this means pricing of congestion and other 
external costs. For PT, this implies peak load pricing. These tolls and fares will vary 
with the car combination in any given scenario because PT and car transport volumes 
will be different, as indicated by Table 5 and Table 6.  

We learn from the BAU-scenario that if BEVs do not face any tolls or parking charges, 
along with a favorable purchase tax system, we end up in an equilibrium with high 
BEV-penetration. This substantially reduces CO2 emissions, but leads to more city 
driving and congestion, which on the margin has a higher social cost. If BEV-driving 
remains unregulated, there is a clear goal conflict between reducing CO2 emissions and 
stopping the growth of passenger car transport in the city.  

The highest welfare levels are found when policies are optimized in the scenario where 
the agents use the same car types as in the reference situation; agent X drives a large 
ICEV and agents Y and Z drive small ICEVs. This means that utility-maximizing 
agents would not choose BEVs, and there are no welfare gains from policies 
supporting BEVs under the current Norwegian reference value of CO2. In our stylized 
modeling framework, this implies that the agents have made the socially optimal car 
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choice already. This scenario also implies non-significant CO2 emissions reductions. It 
is clear that an ambitious target of reducing transport emissions in the greater Oslo 
area is in conflict with welfare maximization at the recommended reference value of 
CO2. This also illustrates the mismatch between CO2 prices used in CBA, typically in 
the range €20-€60 in 2020, and the CO2 prices needed in order to reach ambitious 
climate goals, including the “well below 2°C” target from the Paris agreement (IPCC, 
2018). 

We set the CO2 target as a constraint, and let the tolls, fares and parking charges be 
instruments for maximizing welfare under this constraint. Once the CO2-cap becomes 
binding, the best car combination from the initial optimization becomes the worst. 
The best vehicle combination is a PHEV to Agent X, a small ICEV to agent Y and a 
short-range BEV to agent Z. It is clear here that BEVs (or other low- or zero emissions 
vehicles) play a role in reaching ambitious CO2 targets at least cost. With this vehicle 
combination and optimized policies, we also see a decline in car traffic volumes in the 
city, so those goals do not conflict in this scenario. 

However, there is a conflict between ambitious climate goals and welfare 
maximization. The policies that achieve the emissions reductions target at least cost 
still cause large reductions in welfare. Our stylized model finds an average cost per ton 
of CO2 reduced, compared to the welfare maximizing policies, that is about 16 times 
higher than the recommended reference value of CO2.  

It is likely that the optimized policies (CO2-cap or not) are going to be unpopular, as 
all agents get decreased transport utility because they have to pay higher peak fares and 
tolls. However, in the best scenario without a CO2-cap, the net increase in government 
revenue allows for redistribution to make all agents better off, without a need to raise 
taxes elsewhere. In the best scenario under the CO2-cap however, there is no such 
opportunity. Compensating agents would require more than the net increase in 
government revenue, thus requiring raising taxes elsewhere. Hence, reaching ambitious 
CO2 targets will require fairly large sacrifices from transport users and/or taxpayers. 
Politicians that are serious about reaching these targets would need a strong mandate 
from voters. Because it is not going to be painless. 

Putting findings in context 
Although the numerical results must be interpreted with caution, our stylized model 
gives some indication of areas where policy may strike a better balance between costs 
and benefits in the transport system. 

First, efficiency can be gained through more toll differentiation between peak and off-
peak hours. Oslo added a peak charge to its cordon toll system in October 2017, and 
BEVs have had to pay a modest toll in peak-hours since June 2019. The differentiation 
is an important step, but widening the gap between peak and off-peak would probably 
be beneficial. We can look to Sweden for comparison, where both the cities of 
Gothenburg and Stockholm have implemented congestion taxes with larger 
differences between peak and off-peak hours, and differences within the times of day 
with high traffic levels (Transportstyrelsen, 2019). 

Second, widening the gap between peak and off-peak fares in PT would also probably 
produce efficiency gains. The model finds that large increases in peak fares would be 



82 
 

welfare enhancing, but reducing the consumer price for riding off-peak seems like a 
promising first step. It could perhaps be framed as an “off-peak-discount” to give 
positive connotations. Oslo’s PT company Ruter proposed increasing fares in peak 
hours back in 2012. The proposal was hit by a wave of unpopularity in the media,20 
and the debate died. Framing the proposal in a different way could perhaps avoid this 
problem. To find that optimal policies entail increasing peak tolls and fares, and 
reducing off-peak tolls and fares, is fairly common in the transport economics 
literature (see e.g., Börjesson et al., 2017).  

Third, our model results illustrate how purchase taxes can be powerful instruments for 
achieving policy goals. As noted in Section 3.2, it is not the most efficient instrument 
to correct transport market failures, but it can serve a valuable purpose in a second-
best world where the potential for fuel taxes is limited by tax competition. This 
confirms the finding from Fridstrøm and Østli (2017) that there is a lot of potential 
for CO2 emission reductions by inducing the uptake of BEVs and PHEVs through 
vehicle purchase taxes and feebates. A useful way of viewing the problem is in terms 
of market correction and incentive compatibility. Tolls, fares and parking charges can 
incentivize optimal transport use, and thereby provide corrections in the transport 
market. Purchase taxes (and possibly their exemptions) on the other hand, can ensure 
incentive compatibility in the corrected transport market. It can ensure that agents 
actually select the car combination the optimal policies are designed for. This can serve 
as an argument for maintaining a purchase tax structure that discriminates according 
to CO2 emissions, if ambitious emission targets are to be achieved. The merits of the 
CO2-differentiated purchase tax are further strengthened when other countries, such 
as Sweden, Germany and South Korea provide subsidies to BEVs. The BEV price in 
Norway, though competitive with ICEVs, is higher than the subsidized BEV prices in 
these countries, leading to a sizeable export of slightly used BEVs to Norway 
(Fridstrøm, 2019).  

Caveats 

As the results of our analysis depend on our model assumptions, it is important to 
discuss some of the important caveats. First of all, the model we use is very stylized. 
Although it adds some layers of complexity to comparable models found in the 
literature, it contains many simplifying assumptions. An important simplification is that 
we only have five stylized car types. We thus ignore the range of car options and prices 
and thus the possibilities of even cheaper options. We also ignore that features like 
e.g., range and energy efficiency will change during the period from the reference 
situation to the new equilibrium, although we do a sensitivity test where the cost of 
BEVs is dramatically lowered relative to ICEVs, in line with expected cost reductions 
in BEV manufacturing in general and battery manufacturing in particular.  

We also underline the simplification that agents only care about the quantity and mode 
of transport, and thus care only about the generalized cost of transport for a given 
mode. We have a small exception, with high-income Agent X who has a disutility cost 
of driving a small car. The other attributes of the car, e.g., comfort or brand, or whether 

                                                 
20 https://www.nrk.no/ostlandssendingen/kan-bli-rushtidsavgift-pa-bussen-1.8079403 [last accessed 
April 9th 2018] 
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their neighbors drive a certain type of car, do not enter the agents’ utility function. We 
also limit the agents to owning only one car each.  

And finally, having three representative agents add more insights then only one, but 
the model still overlooks many relevant issues of heterogeneity. This could be issues 
related to income, travel patterns, age, employment, family situation, etc. Differences 
in environmental preferences, which our modeling cannot account for, could also be 
a driver of behavior. Stronger environmental preferences could drive agents towards 
choosing BEVs over conventional cars and/or having a higher share of their transport 
covered by PT (or walking and biking for that matter).  

It is worth noting that we assume no government budget constraint, and that the MCF 
equals 1. Optimizing policies under budget constraints and/or MCF higher than 1 
would most likely entail less government spending on PT (Parry & Small, 2009), and 
the setting of tolls, fares and purchase taxes would be influenced by their respective 
price elasticities. Later analysis using this model could test the implications of a MCF 
higher than 1, which could also serve as a “moral sensitivity analysis” (Mouter, 2016).  

Another caveat is that our stylized transport model does not consider the interactions 
between transport markets, housing markets and labor markets. Long run changes in 
generalized costs of travel for the different modes and different periods are small in 
our main scenarios, but can be expected to have second-order effects. There may be 
effects on the relative attractiveness of different work and residential locations that 
could potentially lead to both demand and supply shifts in these markets as well as to 
agglomeration effects (Proost & Thisse, 2019). Such interactions are better captured 
in a Land Use and Transport Integrated (LUTI) model. However, our model has the 
advantage of being less complex, more transparent and able to incorporate the car 
choice dimension (which is not common for LUTI models) and therefore serves our 
purpose better.  

A final category of caveats concerns behavioral parameters. For example, some price 
elasticity values have been obtained from different Norwegian transport models, and 
others have been obtained from Börjesson et al. (2017), which cover transport users 
in Stockholm. The elasticity values have also been assumed to be the same for all of 
the agents.  

Acknowledging the uncertainty in the model parameters, we have addressed some of 
the parameter uncertainty through sensitivity testing of the e-mode share of PHEV 
city driving, the disutility parameter for agent X related to driving small cars, the cost 
of BEVs and the discount rate. The scenarios with the binding CO2-cap can also be 
seen as sensitivity tests to how the model results change under a higher CO2 price. 

The exact numerical results should therefore be interpreted with caution. Still, we argue 
that our enhancement of the model from Börjesson et al. (2017) and the results provide 
insights into the different mechanisms at play, and what balances policies need to strike 
in order to be welfare improving. Future developments of this model will enable firmer 
numerical results, as some of the caveats of the current model can be addressed. Most 
notably, the model would benefit from a richer set of cars and a richer set of 
heterogeneous agents, as long as the reduction in tractability does not become too 
large. Further, the cars could differ in a larger number of attributes and the car choice 
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module could be made more sophisticated. With the goal of having a model that can 
give insights useful for policy making, future extensions of the model will be discussed 
with stakeholders in the National Public Roads Administration. 

Conclusions  

Extending the model of Börjesson et al. (2017) with car choice, heterogeneous agents 
and occasional long trips has proven to be valuable, as understanding both car 
ownership choices and transport patterns for different population groups is important 
in the search for welfare enhancing transport policies. The agents’ combination of cars 
matters for what the optimal policies are, and for the welfare levels achieved in any 
scenario. Optimal polices means providing the right incentives for both transport 
demand and for car choice. We find that optimal car choice often will differ for agents 
with different travel patterns. In particular, agents that demand occasional long trips, 
e.g., to their cabins, would often be better off with a different car than agents who do 
not have long trips in their transport consumption basket. 

The key question policy makers must ask themselves in this context is: what balance 
do they want to strike between welfare maximization and CO2-reductions; or in other 
words, how much welfare are they willing to sacrifice in order to reduce CO2 
emissions? Welfare-maximizing policies at the recommended Norwegian reference 
value of CO2 (about €50/ton), lead to very small emissions reductions. Policies for 
achieving the ambitious goals of halving the emissions from personal transport will 
inevitably bring about substantial welfare costs. These costs accrue mainly through the 
higher resource costs of BEVs and PHEVs, which play a crucial role in reaching 
ambitious emissions reductions. On the bright side, the cost of batteries for BEVs, 
one of the main cost disadvantages, have been falling markedly over the last years and 
is expected to continue to fall (Norwegian Environment Agency, 2016). If the world 
will look more like the sensitivity test with cheaper BEVs, then the cost of reaching 
ambitious climate goals will be reduced.  
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Appendix A: Details for calibration of the 
model 
For calibration we need quantities for each agent, generalized prices, and elasticities. 
The quantities used are kilometers travelled on short trips per day, in peak and off-
peak, by car and PT, and long trips (100 km+) by car per year. For short trips agents 
can substitute between PT and car, and peak and off-peak. For long trips, the agents 
can only choose the number of long trips per year. 

A way to visualize this stylized world is a greater Oslo area where agents travel by car 
and PT every day, and a couple of times a month/year, some of them take a longer 
drive to their cabin, relatives etc.  

Generalized prices are described in Section 4.3. The own-price elasticities for short car 
trips are taken from the newest version of the regional transport model RTM23, 
documented in Rekdal and Larsen (2008). Own-price elasticities for PT and the cross-
price elasticities between car transport and PT are taken from the transport model for 
the greater Oslo area MPMM23, documented in Flügel and Jordbakke (2017). The 
cross-price elasticities for shifting between peak and off-peak, and cross-price 
elasticities for shifting between both modes and travel time, are the same as those 
applied in Börjesson et al. (2017). We apply the aggregate elasticity from the National 
Transport Model, documented in Rekdal et al. (2014) for long car trips. The elasticity 
values are given in Table 7. 
Table 7: Elasticity values 
Elasticity Parameter Value 

Own money price elasticity, peak car trips -0.152 

Own money price elasticity, off-peak car trips -0.152 

Own money price elasticity, peak PT trips -0.255 

Own money price elasticity, off-peak PT trips -0.284 

Cross money price elasticity between peak and off-peak car trips 0.100 

Cross money price elasticity between peak car trips and peak PT trips 0.100 

Cross money price elasticity between off-peak car trips and off-peak PT trips 0.086 

Cross money price elasticity between off-peak car trips and peak PT trips 0.096 

Cross money price elasticity between off-peak car trips and off-peak PT trips 0.050 

Cross money price elasticity between peak and off-peak PT trips 0.050 

Own money price elasticity, long car trips -0.172 

 

With all these values, MATLAB solves a system of 16 equations with 16 unknowns to 
complete the calibration of the utility function for each agent. This means we obtain 
the various parameter values of � , �  and i  (cf. Eq. 2) for the various agents.  

The generalized prices for short car trips are the distance-based costs (fuel, repair, 
lubricants etc.), toll and time costs. Distance-based costs are the same as those applied 
in the National Public Road Administration’s (NPRA) tool for CBA, documented in 
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Cowi (2014). Toll costs are based on reporting from the toll companies to NPRA. The 
value of time is based on the Norwegian valuation study, documented in Samstad et 
al. (2010). For long car trips, the generalized prices are distance and time costs for the 
average long car trip, for a given agent. For BEVs there is an added cost to the trip 
related to charging the car to fill the gap between the range and the length of the 
average trip times two (assuming back and forth). The time cost of charging is assumed 
to be VOT for long leisure trips, weighted by the same disutility weights as applied for 
waiting time for PT on long trips (0.6). 

The generalized prices for PT is given by ticket costs and time costs (on board time, 
access time and waiting time). Samstad et al. (2010) also provide the basis for VOT for 
PT trips, waiting time and access time. In the presence of a large share of PT users 
having either 30-day tickets or 12-month tickets, and different price zones, we apply 
the method for calculating average ridership payment used in Dovre Group and 
Institute of Transport Economics (2016). 

Additional costs: If agents were to buy EVs, a fixed cost is also added for charging 
equipment, and for renting parking close to home for the share of agents who do not 
have easy access to parking at or close to their home. Charging cost equipment is 
assumed to have an up-front cost 10 000 NOK (Norwegian Environment Agency, 
2016). Parking rental is assumed to cost 1 400 NOK per month (median rent for 
parking space in Oslo in October 2017 on website finn.no).  

With regard to the rest of the transport system, we have cost functions for PT and 
speed-flow functions for car transport. The cost function for PT is simply the annual 
aggregated operating costs for Ruter, the PT company for Oslo and Akershus, as a 
linear function of annual frequency. In addition, there is a crowding cost function, 
where the travel time cost is weighted by a crowding factor. The crowding factor has 
been calibrated to be a piecewise linear function where the current peak ridership per 
hour gives a crowding factor of 1.3, same as in Minken (2017), and current average 
off-peak ridership gives a crowding factor of 1. The crowding factor will not get 
smaller if ridership falls below this level, so 1 serves as a lower bound for the crowding 
factor. 

The speed-flow functions are based on model simulations from RTM23 on aggregate 
car travel and travel speed in Oslo and Akershus for a range of scenarios, but with 
constant road capacity. The result is an aggregate piecewise linear speed-flow function. 
The linearity simplifies the model calculation, but as shown in Arnott, De Palma, and 
Lindsey (1993), it also serves as a good approximation for a traffic bottleneck model. 
The aggregation of the speed-flow functions over a whole area is useful as we analyze 
policies that are not spatially differentiated, so we assume implicitly that the city is 
homogeneous in terms of response to the general policies we study here.  
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Appendix B: Sensitivity analysis table 
 
Table 8: Difference in welfare relative to reference situation for all car combinations for agents X, Y and Z 
under different scenarios. ICl=Large conventional car, ICs=Small conventional car, Hy=Plug-in Hybrid, 
EVl=Long-range EV, EVs=Short-range EV. X, Y and Z denotes the model agents. 

Welfare rank 
under 
original 
optimization 
and BAU 
and EV-
SAME 
scenario 

Scenarios: Fixed car 
combinations and BAU 
and EV-SAME 
scenario 

Welfare 
difference 
under 
original 
optimization 

Welfare 
difference 
under 
sensitivity 
test: PHEV 
e-share 

Welfare 
difference 
under 
sensitivity 
test: Agent 
X less 
disutility of 
small cars 

Welfare 
difference 
under 
sensitivity 
test: Cost of 
EVs 

Welfare 
difference 
under 
sensitivity 
test: 
Higher 
discount 
rate 

Welfare 
difference 
under CO2-
cap 

1 X: ICl Y: ICs Z: ICs 218 218 218 218 -6 616 -23 494 

2 X: Hy Y: ICs Z: ICs -894 -739 -894 -894 -8 338 -6 561 

3 EV-SAME -1 108 -954 -1 108 -1 108 -8 833 N/A 

4 X: ICl Y: ICs Z: EVs -2 588 -2 588 -2 588 -1 620 -10 199 -15 223 

5 X: ICs Y: ICs Z: ICs -2 802 -2 802 -2 413 -2 802 -8 614 -22 212 

6 X: Hy Y: ICs Z: EVs -3 700 -3 545 -3 700 -2 732 -11 921 -3 766 

7 X: ICl Y: EVs Z: ICs -4 524 -4 524 -4 524 -2 370 -13 089 -8 168 

8 X: ICs Y: ICs Z: EVs -5 608 -5 608 -5 219 -4 641 -12 197 -14 905 

9 X: Hy Y: EVs Z: ICs -5 637 -5 482 -5 637 -3 483 -14 811 -5 637 

10 BAU -5 880 -5 726 -5 880 -8 929 -15 334 N/A 

11 X: ICl Y: EVs Z: EVs -7 330 -7 330 -7 330 -4 209 -16 672 -7 355 

12 X: ICs Y: EVs Z: ICs -7 545 -7 545 -7 156 -5 391 -15 088 -8 972 

13 X: EVl Y: ICs Z: ICs -7 606 -7 606 -7 606 -4 229 -18 825 -7 606 

14 X: EVs Y: ICs Z: ICs -7 811 -7 811 -7 422 -6 578 -14 614 -7 811 

15 X: Hy Y: EVs Z: EVs -8 443 -8 289 -8 443 -5 322 -18 395 -8 443 

16 X: ICs Y: EVs Z: EVs -10 351 -10 351 -9 962 -7 230 -18 671 -10 351 

17 X: EVl Y: ICs Z: EVs -10 412 -10 412 -10 412 -6 068 -22 408 -10 412 

18 X: EVs Y: ICs Z: EVs -10 617 -10 617 -10 228 -8 417 -18 196 -10 617 

19 X: EVl Y: EVs Z: ICs -12 350 -12 350 -12 350 -6 818 -25 299 -12 350 

20 X: EVs Y: EVs Z: ICs -12 554 -12 554 -12 165 -9 167 -21 087 -12 554 

21 X: EVl Y: EVs Z: EVs -15 156 -15 156 -15 156 -8 658 -28 882 -15 156 

22 X: EVs Y: EVs Z: EVs -15 361 -15 361 -14 972 -11 006 -24 671 -15 361 
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Abstract 
We observe a rapid increase in the share of electric vehicles (EVs) in Norway, as policy makers 
have reduced the costs of purchase and use of EVs relative to conventional vehicles. 
Electrification of transport will make the transport and energy systems more intertwined: EV 
friendly transport policies increase the demand for electricity, which in periods of high demand 
could challenge the distribution grid’s capacity, while electricity policies immediately impact on 
the generalized costs of driving EVs. This paper develops a stylized economic model for 
passenger transport in the greater Oslo area, in which the agents’ choices of car ownership, 
transport pattern, and EV home charging are jointly determined. If enough EV-owning agents 
charge during power peak hours, costly grid expansions may be needed. We examine how the 
distribution grid companies can mitigate these costs with different pricing schemes and how this 
in turn affects the transport market equilibrium. We find that applying power tariffs 
differentiated between peak and off-peak periods will help strike a better balance between grid 
investment costs and EV-owners’ disutility of charging during off-peak hours. Most importantly, 
we find that imposed grid cost from EV home charging amounts to relatively small extra costs to 
other electricity users, and relatively small additions to the cost necessary to reach ambitious CO2 
targets in the greater Oslo area. 

Keywords: electric vehicles, climate policy, urban transport policy, transport modeling, electricity 
distribution costs 

JEL classification: H71, Q41, Q48, Q54, Q58, R41, R48 
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1 Introduction 
The Paris agreement was adopted in 2015 and came into force in 2016 as a response to the 
imminent threat of climate change. It aims to limit the global temperature increase in this century 
to well below 1.5°C above pre-industrial levels. The transport sector accounts for approximately 
one quarter of global energy-related greenhouse gas emissions (International Energy Agency, 
2017) and about one third of Norway’s greenhouse gas emissions2. It is therefore required to 
deliver major emissions cuts in this sector to meet the objectives of the Paris agreement.   

The electrification of transport is viewed as a potent measure to reduce greenhouse gas emissions 
(IEA, 2017). Norway’s strategy is to ensure that all new passenger vehicles are zero emission 
vehicles by 2025. EV-friendly transport policies – including low vehicle taxes, toll road exemptions, 
and access to bus lanes – have therefore been put in place, which has resulted in the highest 
penetration of EVs worldwide. By January 2020, there were about 260 000 battery electric vehicles 
(BEVs) and 115 000 plug-in hybrids (PHEVs) in Norway, a country with only 5.3 million 
inhabitants. In 2019, BEVs accounted for 42 percent and PHEVs for 14 percent of all new vehicles 
(Norwegian Electric Vehicle Association, 2020).  

According to the Norwegian energy regulator, 1.5 million EVs in Norway in 2030 would only 
amount to a 3 percent increase in the domestic electricity consumption (Skotland, Eggum, & 
Spilde, 2016). Hence, the main challenge is not expected to be that of aggregate electricity 
generation. However, while an EV’s energy consumption may be modest, its power consumption 
could be quite high. The current power demand per electricity consuming unit in a household is 
normally of the order of from 2.3 to 7.3 kW (Skotland et al., 2016). The power demand from fast-
chargers (currently up to 350 kW) will come in addition to that.  

Uncoordinated charging (also known as dumb charging) will increase the electricity consumption 
during the morning and evening peaks (Graabak, Wu, Warland, & Liu, 2016). De Hoog, Alpcan, 
Brazil, Thomas, and Mareels (2015) and Neaimeh et al. (2015) point out that if vehicle charging is 
not controlled, adverse impacts on the distribution network are expected: power demand may 
exceed distribution transformer ratings; line current may exceed line ratings; phase unbalance may 
lead to excessive current in the neutral line; and voltages at customers’ points of connection may 
fall outside required levels. 

Several studies examine the effects that low-carbon technologies such as BEVS and PHEVs (in 
this paper we will group them together as PEVs – Plug-in Electric Vehicles) can have on the 
electricity market. Hattam and Greetham (2017) look at how PEVs affect load profiles on 
neighborhood level in low voltage networks. Azadfar, Sreeram, and Harries (2015) asses charging 
behavior of PEV users in terms of time of day, duration, frequency, and electricity consumption, 
and its implication for electricity network management. Barton et al. (2013) study the challenges 
for grid balancing when PEV charging and heat pumps become more prominent. They stress the 
importance of demand side management with time-shifting of electricity loads from periods of 
peak demand to off-peak, and from periods of low renewable energy supply to periods of high 
supply. However, in some areas it may be difficult to shift away from periods of peak demand and 
at the same time avoid periods of high emission intensity in the electricity supply (Fang, Asche, & 
Novan, 2018). Other studies also argue for demand side management (see e.g., Haidar, Muttaqi, & 
Sutanto, 2014; Masoum, Deilami, Moses, Masoum, & Abu-Siada, 2011), and many argue for 
pricing schemes that disincentivize charging during off-peak hours (see e.g., Barton et al., 2013; 
Clement-Nyns, Haesen, & Driesen, 2011; Masoum et al., 2011; O’Connell et al., 2012), as an 
alternative to costly upgrades of distribution transformers.  

                                                 
2 Statistics Norway: “Emissions to air”, https://www.ssb.no/en/klimagassn. 
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In the future, vehicle to grid3 (V2G) may provide also a means to mitigate capacity problems in 
electricity distribution (see e.g., Barton et al., 2013; Clement-Nyns et al., 2011; Green II, Wang, & 
Alam, 2011; Hagem, Greaker, & Proost, 2019; Mwasilu, Justo, Kim, Do, & Jung, 2014), but 
bidirectional PEV charging is in its infancy (Haidar et al., 2014), and seem to come at a relatively 
high cost due to energy losses, changes in infrastructure, and extra communication between PEVs 
and the grid (Habib, Kamran, & Rashid, 2015). Drivers may also see a high inconvenience cost 
associated with committing to a V2G contract (Parsons, Hidrue, Kempton, & Gardner, 2014) 
and/or have a relatively low and variable willingness-to-pay for V2G capabilities (Noel et al., 2019).  

Most of the reviewed studies assume that transport demand, and therefore EV users’ demand for 
electricity, is exogenous (see also Daina, Sivakumar, & Polak, 2017a, 2017b). This paper 
contributes to the literature by looking at the mechanisms and outcomes in both the transport and 
energy market, and the feedback between them. We use a stylized transport and energy model for 
the greater Oslo area to study costs and benefits in both the electricity market and transport market 
jointly. The model allows the agents to choose type of car (or no car), their transport pattern and 
(if they own an EV) how much to home charge during power peak and off-peak hours. To our 
knowledge, it is the first time these features have been applied in the same modeling framework. 
The analysis will give insight into the feedback between the transport market and electricity market 
and how policies in one market can affect the equilibrium in the other. With this we can assess 
how polices can be optimized to reach policy goals at least cost. 

Sector-wise policy making implies that Norway’s EV-policies have paid little consideration the cost 
of enhancing the local grid to meet the demand for PEV-charging. The electrification of transport 
will make the transport and energy systems more intertwined: EV-friendly transport policies 
increase the demand for electricity and thus impacting the grid, while electricity policies 
immediately impact on the generalized costs of driving PEVs. In order to respond to this concern, 
our paper addresses the following research questions: 1) When we factor in the current uniform 
grid tariff system, what are the welfare impacts of today’s EV policies and polices for reaching 
CO2-targets at least cost? 2) How can these welfare costs be affected by a better pricing of 
electricity distribution?  

Section 2 briefly discusses policies and market distortions relevant for electromobility and power 
distribution. Section 3 presents the theoretical model. In section 4 and 5, we present the numerical 
model, and describe the scenarios we run. In section 6 we present and analyze model results. 
Section 7 provides discussion and conclusion.  

 

2 Policies for electromobility and power distribution 
2.1 The Norwegian power system and electrified transport 
The rapid rise in the number of EVs in Norway is to a large degree a result of incentives in 
Norwegian transport policy (Figenbaum & Kolbenstvedt, 2016; Fridstrøm & Østli, 2018). This 
growth will entail an increase in power consumption. The focus of this paper is solely on the lower 
end of the electricity sector value-chain, with the power consumption of households, and capacity 
in the low-voltage distribution grid. As will be subsequently explained, owners/operators of fast 
charging stations usually internalize the costs of transmission capacity, while households may not. 

The energy sector is preparing for the electrification of transport. The Norwegian energy regulator 
NVE (The Norwegian Water Resources and Energy Directorate) has produced two technical 
reports that assess the strain that electric cars put on electricity transmission. The first report 

                                                 
3 V2G involves using EVs as storage for electricity. 
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(Skotland et al., 2016) pays attention to how the diffusion of electric vehicles can impact the 
electricity distribution network. NVE estimates that 75 percent of the charging of EVs takes place 
at home, 15 percent at work, and 10 percent is fast charging. NVE finds that 70-80 percent of 
PEV drivers seldom use fast charging. However, NVE expects the demand for fast charging to 
increase in the future.  

NVE’s review indicates that charging of electric vehicles primarily takes place at night, while some 
also charge their vehicle immediately after work. Figure 1 shows NVE’s prediction of a power 
consumption profile for an average household, with and without home charging of PEVs. 

 
Figure 1: Average household power consumption per hour on a cold day (blue line), and total household power consumption 
when the assumed pattern for home charging EV is included (green line). Source: Figure 4.3 in Skotland et al. (2016). 

NVE argues that the introduction of power-based tariffs will provide incentives to postpone 
charging until after peak-hours. They have recently submitted a proposal for a new electricity tariff 
based on the demand for power4. This is now technologically feasible after January 1st 2019, as 
smart meters are compulsory for all Norwegian households. The new meters will enable 
households to closely monitor their temporal electricity consumption profiles, and both 
distribution grid companies and electricity retailers to bill accordingly. 

NVE develops stress-tests for neighborhoods with high PEV-density. Assuming periods where 
70% of the residents charge their EVs simultaneously, it finds that the power demand can increase 
by up to 5 kW per household. This results in overload of more than 30 percent of the transformers 
currently servicing the Norway’s distribution network. NVE’s follow-up report (Skotland & 
Høivik, 2017) concludes that a full-scale electrification of transport (including also buses and 
ferries) is primarily a threat to the low-voltage grid and transformers. The upgrades of several of 
these components are planned today, which reduces the problem of overload in the future. Yet, 
NVE reports that, as of 2017, few of the electricity distribution companies account for the 
electrification of transport when forecasting the demand for power.  

On the local grid level, the capacity may need to be expanded for the transformer, or for the cable 
between the transformer and the households, or both. In a metropolitan area there will be large 
variations in neighborhoods’ ability to absorb increases in peak power demand with the current 
infrastructure. And given the need to invest in more capacity, the cost will also vary greatly between 
neighborhoods. It will depend on whether enhancements need to be done for the transformer 
and/or the cables between the households, the capacities that need to be installed, whether the 
new transformer fits in the old box that contained the old transformer, and the costs of digging 

                                                 
4 It is currently (first quarter of 2019) out on a public hearing 
http://publikasjoner.nve.no/rme_hoeringsdokument/2020/rme_hoeringsdokument2020_01.pdf [in Norwegian]. 

Household consumption on a cold day Household consumption + EV charging 
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(i.e. how many meters of cables need to be laid, and the costs per meter, which are generally higher 
in denser, urban areas).  

Grid expansion costs may or may not accrue to the household that demands higher capacity. Let’s 
say that some households increase their capacity demand so that total demand in the neighborhood 
exceeds the capacity of the local distribution transformer. The local grid company will invest in a 
higher capacity transformer, thus increasing its capital costs. Local grid companies (or Distribution 
System Operators – DSOs) are regulated under a revenue cap model, where they set their tariffs 
based on this revenue cap. The revenue cap is composed of 40% cost recovery and 60% cost norm 
based on benchmark modeling. This means that at least some of the increase in capital cost will 
lead to higher tariffs, and that these tariffs will have to be paid by all electricity consumers 
connected to the local grid company, and not just the households demanding more capacity. It can 
be viewed as a pecuniary external cost in an incomplete market (Greenwald & Stiglitz, 1986). That 
is, the households demanding more capacity do not face the full cost of the capacity expansion, 
and indirectly impose costs on other consumers5. 

The case becomes a little different if a household demands higher power capacity than currently 
installed in the household, and this increased capacity demand exceeds the capacity of the local 
distribution transformer. This household may be required to pay for some or all of the capacity 
expansion of the transformer through connection charges, in addition to paying for the 
household’s capacity expansion. Practices seem to vary between Norwegian DSOs, but the DSO 
in the Oslo metropolitan areas, Elvia, will in such a case charge the household that induced the 
new investment in proportion to the added installed capacity for that household6. For example, if 
a household wants to install 20 kW extra of capacity, and the DSO replaces a 315 kW transformer 
with a 500 kW transformer, the household has to pay 20/(500-315) = 11% of the cost of the 
capacity increase. Households that expand in-house capacity in the future will also have to chip in 
on this transformer upgrade in proportion to their in-house expansion7. This would mean that less 
or none of the investment cost will be dispersed to the other consumers. Instead the scheme 
provides a price signal to the very households that demand more capacity, informing their decision 
to whether or not the benefits of expanding their in-house capacity outweighs the cost. Such co-
payments also apply to firms and individuals who want to establish fast-chargers, as this in most 
cases will entail some expansion of local transformer capacity. Hence, the issue of externalities is 
less pronounced with regards to fast-chargers, which is why it out of the scope of this article. 

The scenario where increased PEV ownership leads to higher capacity demand that eventually 
exceeds the local transformer’s capacity, without any household expanding its in-house capacity, 
is expected to be most prevalent. The reason is that most households will have the possibility to 
charge an EV at 3.6 kW power without any in-house capacity expansion (conversation with the 
DSO Ringeriks-Kraft AS on April 5th, 2018). This will lead to situations where, over time, some 
neighborhoods could drive up grid company investment costs as PEV ownership increases, 
leading to higher tariffs for all customers.  

At the time of writing, no household has incentives to postpone charging until after peak hours: 
Both electricity prices and grid tariffs are the same throughout the day. And there are many reasons 
why PEV owners prefer to charge right away after coming home. First, it is convenient. They plug 

                                                 
5 Hoarau and Perez (2019) show that under the assumption of sunk grid costs and no need for capacity expansion, 
PEVs have the opposite effect, as the increased electricty consumption from PEV leads to lower tariffs needed for 
DSO cost recovery, benefitting non-PEV-owners. 
6 https://www.hafslundnett.no/artikler/bygge-og-grave/anleggsbidrag/6l51MrL1vyaCi0WsisqAQQ 
7 Other households in the neighborhood could have reinforced their household power capacity without having to 
pay a connection charge, as the total capacity demand would still be within the transformer’s capacity. This may look 
like a set-up for a strategy game between households, where early-moving households can expand their in-house 
capacity without having to pay extra, but we expect that such games are rare. 
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in, and there is no need to spend mental capacity on timing. Second, they maximize the probability 
of always having the battery charged for any activity later; planned, spontaneous or emergency.  

Many papers look at optimal ways for regulators to handle periods with high power demand and 
cost recovery for DSOs. Recent contributions include Brown and Sappington (2018) that look at 
Maximum Demand Charges (MDCs) and Time-of-Use (TOU) pricing for residential consumers. 
They find that TOU pricing in most cases secures higher aggregate welfare than MDCs. It can 
often be beneficial to apply some element of fixed charges in order to induce efficient consumption 
and at the same time ensure cost recovery to suppliers (Borenstein, 2016; Brown & Sappington, 
2017a, 2017b). This is a common feature in the billing of Norwegian DSOs. It is also worth 
mentioning that pricing schemes to shift demand away from peak hours (such as TOU pricing, 
MDCs, Critical Peak Pricing or Extreme Day Pricing) can have additional benefits such as 
increased reliability (Albadi & El-Saadany, 2008). As discussed above, peak grid tariffs could serve 
as an instrument to move some of the charging away from peak hours. The peak tariff would have 
to be large enough to incentivize at least some PEV owners to postpone their charging. The 
necessary peak tariff is driven upwards by the fact that Norwegian electricity prices and tariffs on 
average are lower than in most other European countries (Figenbaum et al., 2019), incomes on 
average are higher and average incomes of car owners are higher than those of non-car owners, 
and own-price elasticities for electricity are relatively small (see e.g., Ericson, 2007).  

 
2.2 Multiple market failures in uncoordinated sectors 
Electrification of transport introduces new challenges and opportunities, both for the transport 
and the electricity sectors. But these sectors consist of many different players, including policy-
makers for road transport, electricity sector regulators, electricity retailers, DSOs, and households. 
Without any coordination, the costs and benefits could be distributed quite unevenly. As shown 
in Wangsness, Proost, and Rødseth (2018), there are multiple market failures and policy parameters 
in an urban transport setting: Most of the policy parameters, be it road prices or public transport 
fares, are often sub-optimally assigned. Acknowledging the local grid capacity issue means bringing 
yet another market failure into the mix.  

This paper focuses on the greater Oslo area. This area is broadly made up by the municipality of 
Oslo and the county of Akershus, and has a population of about 1.2 million. Oslo aims to reduce 
CO2 emissions by 50% by 2020 (Oslo Municipality, 2016). The corresponding goal in Akershus is 
a 50% reduction by 2030 (Akershus County Council, 2016). Consequently, policy-makers for road 
transport have been mandated to reduce emissions from transport. As shown in Wangsness et al. 
(2018), in order to reach the emission reduction target at least cost, a large share of transport users 
would have to switch to PEVs. From transport policy makers’ point of view, the fact that grid 
companies need to invest in local grid capacity in certain places to accommodate a larger PEV 
share, is an added difficulty to reach their emission reduction target. The needed investments and 
the subsequent increases in tariffs drive up the cost of switching to PEVs, meaning that policy 
packages would have to become more radical in order to reach emission targets for road transport. 
This means higher welfare costs in the transport sector, not to mention overall higher abatement 
costs (see Figure 2). This is an argument for coordination and bringing in the electricity sector in 
on the cost-minimizing strategy. 

Electricity retailers benefit from policies for reducing emissions, as higher demand for EVs drives 
up demand for electricity, making the sector more profitable ceteris paribus. As for local grid 
companies’ profitability, this is determined by their costs and their regulated revenue cap. If 
policies drive up EV ownership and subsequently capacity demand, their capital costs will increase, 
most likely without a corresponding increase in the revenue cap. Since “PEV density” is not an 
external variable in NVE’s benchmarking model, the cost norm calculation will disfavor grid 
companies that face increased capacity demand from PEV users. A grid company facing such 
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demand increases, will see the policies for reducing emissions as a threat to their profitability. An 
exception would be a DSO that already is among the most productive and remains among the 
most productive in spite of the increase in capacity demand from PEV owners. Such a company 
would set the cost norm, and will be able to pass the entire investment cost over to consumers. If 
the cost norm is expanded, DSOs who are not exposed to this higher capacity demand will get a 
larger revenue cap, but no extra costs. 

Electricity regulators should take the new challenges into account. If capacity demand from PEV 
owners becomes a major cost driver for DSOs, there are at least two measures the regulator needs 
to consider. The first is to allow peak power tariffs and incorporate them in the revenue cap. This 
way, it becomes possible to pass on and signal the additional distribution costs of PEV charging 
to the owners. The second is to incorporate a measure of “PEV density” in their benchmarking 
model for calculating the cost norm for the sector, so that the relatively low costs for grid 
companies with low PEV density are not mistaken for efficiency. 

Before we introduce the numerical model, we give a simple illustration of how the abatement costs 
in the transport sector are affected by the issue of grid capacity. We use a traditional environmental 
economics framework with marginal damage cost and marginal abatement cost. In Figure 2, we 
consider a fixed vehicle stock in a metropolitan area, where the cars can either be ICEVs or BEVs: 
The overall stock is given by the line segment from the origin to Ashare, and allocation at the origin 
indicates that all cars are BEVs while allocation at Ashare indicates that all cars are ICEVs.  

For simplicity, we assume homogenous ICEV users and vehicles, and consequently a flat marginal 
external environmental cost curve due to air pollution (CO2, NOX, PM) from ICEVs. These 
external costs can be abated by switching to BEVs. The marginal abatement cost curve8 is assumed 
to be upward sloping as ICEVs are replaced by BEVs, ceteris paribus. This is because the lower user 
costs of BEVs relative to ICEVs will drive up total mileage and total congestion in the urban 
transport equilibrium9.  

The optimal allocation of car ownership when the model factors in the environmental cost of 
ICEVs is found at the intersection between the marginal environmental costs of ICEV ownership 
and the abatement costs of BEV ownership, respectively. In this case, the desired equilibrium 
would be B, with a small but positive share of BEVs. However, when normal use of BEVs entails 
some charging during power peak hours, each BEV will add some additional cost to the capacity 
expansion of the local grid. As costs of transformers are assumed to be linear in capacity for the 
relevant capacity interval, this implies a constant marginal cost mark-up for BEVs. Taking this into 
account lowers the optimal BEV-share of the area’s car stock to equilibrium C. 

Finally, we use the schematic model to look at the implications of a CO2 cap that is more ambitious 
than marginal abatement cost equaling marginal damage cost. This is shown as a situation where 
the government, through incentives or command-and-control regulations, pushes towards a new 
equilibrium with a higher BEV share in order to reach their climate goals, here illustrated by 
equilibrium Cap. The triangle CapCX illustrates the deadweight loss of imposing such a cap, 
compared to the equilibrium that is implied by reference prices for air pollution. 

                                                 
8 With this we refer to the social cost of removal of all air pollutants from one ICEV, as it is replaced by one BEV.  
9 One could also argue that the curve would be upward sloping in a model with heterogeneous agents. In one end of 
the distribution you have the early adopters of BEVs with a car usage pattern where BEVs imply a relatively low 
total cost of ownership (e.g. the marginal abatement cost curve could start (i.e. at Ashare in Figure 2) below the x-
axis). In the other end you have those with a usage pattern that implies a relatively high total cost of ownership (e.g. 
many long trips, the need for size, poor charging opportunities). This reasoning is also found in Bjertnæs (2016). 
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Figure 2: Optimal ownership distribution between ICEVs and EVs 

The market failure of inadequately being able to make PEV owners face the price of expanding 
local grid capacity complicates the problem of maximizing welfare for the citizens in the greater 
Oslo area, and it drives up the cost of achieving ambitious emission reduction targets. The 
modeling exercise will give an indication of how much. 

 

3 The stylized transport and electricity model 
3.1 Optimizing grid capacity expansion 
We use a theoretical model similar to that in Wangsness et al. (2018), where the social planner’s 
objective is to maximize the welfare of the model agents. We extend the model by accounting for 
the induced cost of demanding higher local capacity for charging PEVs. There is a cost of 
expanding local capacity that needs to be balanced against the agents’ preference for charging 
during peak hours, modelled as a disutility function of charging during off-peak hours. For the 
social planner, this can be considered a cost minimization problem. In this section, we solve this 
problem for a single representative agent. In the stylized first-best solution, the capacity expansion 
per PEV owner is set to strike the balance between incurred grid investment costs and the disutility 
of charging off-peak. This can be interpreted as if the PEV owner commits to a charging pattern, 
and the incurred investment cost in optimum can for the agent be considered a part of the fixed 
cost of getting a PEV. 

Let okWh be the amount of energy required in the off-peak period, and let pkWh be the energy 
required during the peak period. Assuming a fixed charging speed (3.6 kWh/h) and an exogenous 
daily charging need of o pkWh kWh� � � , the problem boils down to how the agent wants to 
divide her charging hours h kW� �  between peak and off-peak: If she wants to charge during 
periods with peak demand she must pay for capacity expansion.  

We introduce the following simple non-linear programming problem, where F is the fixed 
investment cost for any transformer, �  is the investment cost of additional peak capacity, where 
charging in the off-peak involves some disutility ( )odisU h  as a function of off-peak hours charged, 

and where the control variable is pkWh . We operate with annualized investment costs, denoting 
them annF  and ann� . We solve the problem for a representative day. 
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BEV ownership
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where "  is the Lagrange multiplier of the non-negativity constraint. We get three possible 
solutions, two corner solutions and one interior solution: 

1. Interior solution: Optimum is where the marginal disutility of charging time during off-peak 
hours (weighted by kW) equals the price difference between peak and off-peak electricity plus 
the share of the annuity of the marginal investment cost for expanding peak capacity. With the 
interior solution, we have that some charging is done during peak hours, 0< pkWh <� , when 
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We denote the cost minimizing choice of the agent *pkWh . Having established this, we can insert 
it into the social planner’s maximization problem below. We have depicted the optimal solution 
where the PEV owner faces the marginal investment cost that her charging pattern (which she 
commits to or is forced not to exceed) imposes on local grid. The fixed component of the 
investment costs is assumed to be financed through lump-sum taxation or a fixed component on 
the bill from the local grid company. This can be considered a first-best solution in this dimension. 
It could be interpreted as a “capacity subscription tariff” to all PEV owners that do not commit 
to only charge off-peak. This tariff will then optimize incentives not just for purchasing a PEV or 
not, but also the choice of charging pattern conditional on owning a PEV. The capacities chosen 
by the PEV owner then give the correct investment signal to the local grid company.  

PEV owners are not facing any capacity tariff in the current situation in Norway, but pay regular 
uniform grid tariffs, as described in section 2. In our model, this corresponds to a situation where 

p op p� . In addition, all fixed investment costs are spread across all DSO customers, so the PEV 
owner does not face the induced cost of capacity expansion. This leads to the corner solution 
where the PEV-owner always charges during peak hours, pkWh = � . In the following section, we 
explore numerically the importance of pricing charging capacity.  

 

3.2 Maximizing welfare 
The preferences of the modeled agents are represented by a quasi-linear utility function U . Here 
utility is derived from consumption of other (non-transport) goods and services (normalized to 
net generalized income v

netm  for a given vehicle choice v), and from consumption of transport. The 
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utility is expressed in monetary terms. The transport goods are car kilometers travelled for short 
daily trips at peak and off-peak ( p

cq and o
cq , respectively), public transport (PT) kilometers travelled 

for short daily trips and peak and off-peak ( p
bq  and o

bq , respectively) and the number of long car 
trips per year, lcq . The utility from transport consumption is represented by a sub-utility function 
B , which is assumed to be quadratic. U  and B , for a given representative individual, are 
represented by the following: 

(2) ( , , , , , ) ( , , , , )v o v o
net ne

p p o l p p o
c c b b c c c b bt lcU q q q q q B q q qm q qm� �   

The social planner’s task to maximize social welfare can first be broken down into two sub-tasks. 
For whichever car the agent chooses, policies must be adjusted to get the most efficient transport 
usage equilibrium. But given efficient transport policies for given car combinations, the social 
planner also needs to ensure that the agents choose the optimal car combination (i.e., fleet mix). 
In the case of a car combination where EVs are chosen, the planner also needs to factor in the 
social cost of charging the EV (cf. Figure 2).  

With the utility function consisting of transport consumption and normalized “other” 
consumption, costs are subtracted from gross generalized income v

grossm  in order to get net 
generalized income. We also subtract from gross generalized income the fixed costs of car 
ownership ,

ann
v fixedC , cost of non-transport electricity consumption (where pa  and oa represent 

annual consumption of electricity in peak and off-peak), and annuity of the capacity-independent 
part of the grid cost ann

F  paid equally among the n = 1,….,N agents. If the car chosen for at least 
one of the agents is a PEV, and the agents in question have * 0pkWh $ , this term will be greater 
than zero. If not, the term will be zero, and local grid capacity expansion will be unnecessary.  

If an agent owns a PEV, the subtracted costs also include the annuity of the required investment 
cost of the chosen charging pattern and any annual disutility of charging off-peak disU . Since we 
model annual welfare, the fixed costs are considered as annuities. Finally, the user costs of 
transport (monetary costs and time costs) for driving car during peak hours, p p

cn cnuc q , off-peak 
hours, o

cn cn
ouc q , and on long car trips, lcn lcnuc q , and for PT during peak hours, p p

bn bnuc q , and off-
peak hours, o o

bn bnuc q  are defined. The user costs for car includes distance related costs (fossil fuels 
and/or electricity, repairs, lubricants), toll costs, parking costs and time costs. If the long car trip 
is done by a BEV, and the trip back and forth is longer than the range of the car, the agent will 
need to charge enough to cover the remainder of the round trip. This adds a disutility cost as a 
function of the charging time. The user cost for PT travel includes access time costs, fare costs, 
waiting costs and in-vehicle time costs, weighted by crowding. We thus have  

(3) 
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Consider n=1,…,N agents that are differentiated by the number of long trips they want to make 
per year, employment situation and by their mode choice preferences. The social planner’s welfare 
maximization problem for all N agents can then be formulated as follows: Induce agents to choose 
vehicle � '(large), (small), , (short-range), (long-range)v ICEV ICEV PHEV BEV BEV�  and 

number of trips with car and/or public transport so that the following social welfare function vW  
is maximized: 
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The costs of operating the PT system is given by bC , which includes both the fixed and variable 
operating costs (so it depends on p

bq  and o
bq ). It is assumed to be a linear function of frequency. 

Environmental external costs of driving, for all cars, are given by E  (so it depends on p
cq , o

cq  and 

lcq ). The government gets revenue from tolls (peak, off-peak and rural), and fares (peak and off 
peak), and purchase, fossil fuel, and electricity taxes. All of these revenue sources are denoted by 
�  in the equation above. The component priceP  represents the revenue to the parking company 

(a transfer), and the component costP consists of the opportunity cost of occupied parking space.  

For simplicity, we assume constant marginal costs for electricity generation, and constant electricity 
prices. We also assume lump-sum taxes to finance any public sector deficits. Hence, we ignore 
labor market distortions, and have a marginal cost of public funds (MCF) equal to 1. 

For each combination of the N agents and V vehicles, tolls and fares are optimized. Optimal tolls 
for cars are equal to the marginal external congestion costs plus the marginal external non-
congestion costs of road use. The optimal fare for PT equal the marginal external crowding cost 
(which depends on frequency). This is shown in Wangsness et al. (2018). The resulting 
combinations of policies and vehicle types per agent will give us a range of welfare levels vW , 
where the social planner chooses the combination that leads to the highest welfare level. 

 

4 Numerical modeling 
Our numerical model is constructed to capture the most important aspects of vehicle ownership 
and transport choices for the population of the greater Oslo area. This population is based on the 
Norwegian travel survey (documented in Hjorthol, Engebretsen, & Uteng, 2014). Of the 
approximately 60 000 respondents in this survey, about 10 400 (18 years or older) lived in the 
greater Oslo area, representing about 0.95 million adult inhabitants. Applying frequency weights 
constructed by travel survey experts at The Institute of Transport Economics, travel survey 
respondents are extrapolated to a synthetic adult population of the greater Oslo area.  

Based on this synthetic population, we construct and calibrate a numerical model in MATLAB, 
using the steps described in in Table 1. 
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Table 1: Model calibration, step by step 
Step Description 

1 Aggregate the National Travel Survey data for the counties Oslo and 
Akershus (that approximate “the greater Oslo area”) into 3 aggregate 
agents10. The selection criteria for the agent groups were whether they were 
employed or not, and whether they occasionally went on long car trips or 
not. The groups we get capture important differences in the population in 
terms of: 
- Baseline travel pattern (PT and car). 
- Employment and incomes (which determine value of time). 
- Car ownership, access to parking at home, etc. 

2 Compute generalized transport costs of each agent for each mode and for 
each car type, for short and long trips. 

3 Select own-price and cross-price elasticities for each type of agent for the 
“travel products” person-km per day by car and by PT, for both peak and 
off-peak, and long car trips per year (more information in Appendix A). 

4 Calibrate each agent’s utility function using the data from steps 1, 2 and 3. 

5 Check the calibration of the utility functions by simulating the choice of each 
agent (person-km per day by car and by PT, for both peak and off-peak, and 
long car trips per year) and cross-check them with observed choices. This 
step completes the calibration of the agents’ utility functions. 

6 Construct the speed-flow function for peak car trips based on a linear 
approximation of peak and off-peak speeds in the greater Oslo area. 

7 Construct the cost functions for public transport using a linear function with 
intercept (fixed costs), and an automatic frequency “rule-of-thumb” 
optimization for peak and off-peak. A similar approach was used by Parry 
and Small (2009) and Kilani, Proost, and van der Loo (2014).  

8 Construct the crowding cost function for public transport (see Appendix A 
for more information). 

9 Construct linear cost functions for the non-congestion external costs; air 
pollution, noise & accidents. Values are given in Table 6 in Appendix A 
based on Thune-Larsen, Veisten, Rødseth, and Klæboe (2014). 

10 Construct a welfare function to represent equation (4), that consists of the 
sum of utility for each agent minus user costs for agents (including taxes, 
tolls, fares and parking charges) minus transfers to government and parking 
company minus external costs other than congestion minus the operational 
costs of PT minus the opportunity cost of parking spaces. 

The three aggregate agents go by the names of X, Y and Z. They are categorized by whether they 
are employed or not (agent Z is not employed), and among the employed whether they go on 
occasional long trips by car (agent Y does not go on long trips by car). Using this categorization 

                                                 
10 Earlier versions of the model had a larger number of agents, but this made the model far less tractable and gave 
large difficulties in finding transport market equilibria. Having three agents allows for a tractable model, and allows 
for more insights than a single representative agent 
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on the synthetic population of the greater Oslo area, we get agents with characteristics displayed 
in Table 2. 
Table 2: Key agent characteristics 
Characteristic Agent X Agent Y Agent Z 

Estimated number of people 267 955 468 187 210 187 

Working/ Not working Working Working Not working 

Annual gross income (NOK) 591 183 500 972 320 821 

Any long trips by car per month Yes No Yes 

Number of short car trips per day 1.9 1.38 1.0 

Number of short car trip km per day 20.9 15.6 9.8 

Average length of long car trip (km) 191 N/A  175 

Number of long car trips per year 19.5 N/A  11.8 

Number of PT trips per day 0.4 0.7 0.4 

PT km per day 7.6 10.8 6.9 

Peak trips car per day 0.9 0.7 0.3 

Peak km car per day 10.5 7.7 2.8 

Off Peak trips car per day 1.0 0.7 0.7 

Off Peak km car per day 10.4 7.8 7.0 

Peak PT trips per day 0.29 0.43 0.14 

Peak PT km per day 4.5 6.9 2.3 

Off Peak PT trips per day 0.15 0.32 0.26 

Off Peak PT km per day 3.1 4.0 4.6 

Once all the agents’ utility functions have been calibrated to fit the observed data, the model is 
ready for policy analysis. This is done according to the following procedure: 

1. Transport demand: The model’s objective function is to maximize welfare. For a given 
scenario we specify which of the policy variables (tolls, fares and/or parking charges) that 
can vary freely to maximize the objective function. In the optimum, the policy variables 
have driven agents to choose the transport consumption that maximizes social welfare, see 
eq. (4). The combination of agents and which car type they own is fixed so that we can 
find the optimal transport market equilibrium for a given combination (in Wangsness et 
al. (2018) this is done for 20 fixed combinations) 

2. Car choice: Of the combinations that yield the highest welfare, new simulations are done 
to ensure that the optimal transport equilibria are incentive compatible. This means that 
agents may need to be induced to choose the car combination that under optimized 
transport policies (cf. the paragraph above) yields the highest welfare level. The simulations 
will find the minimum differences in purchase taxes and VAT between the car types, so 
that agents, when choosing the car combination that maximizes their own utility, choose 
the car combination that is socially optimal. We then get the incentive-compatible optimal 
car ownership and transport market equilibrium. 

Compared to Wangsness et al. (2018), the model is extended to include agents’ choices regarding 
home charging, in the case where they end up owning a BEV or a PHEV (hereafter PEV). The 
demand for electricity from PEV-owners is determined by their travel demand (and other 
exogenous electricity consumption). In equilibrium, agents adapt so that private marginal transport 
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benefit equals private marginal transport cost. Among these costs we have the electricity expenses 
(electricity costs, grid tariffs and taxes).  

In the model, the demand for capacity (kW) for charging during peak hours, transforms into a 
need for the local DSO to replace the old transformer with a new one with higher capacity. The 
added cost stemming from this increase in demand depends on how much more additional 
capacity is needed, and how prematurely the old transformer is to be replaced. If it is to be replaced 
anyway since it has reached the end of its technical life, the latter cost component would be zero. 
The cost of replacing the transformer prematurely is assumed to be equal to the foregone interest 
income for the years that are left of the transformer’s technical life. 

As mentioned in section 2.1, the consequences of more PEVs will vary from neighborhood to 
neighborhood. In our stylized model we only have one representative neighborhood that we 
expect to represent the average case where more EV charging during peak hours leads to more 
investments from the DSO. The parameters for the average case can be considered fairly uncertain. 
The addition of the EV charging module, adds at least two key assumptions about uncertain 
parameters in the numerical model.  

1. How large is the disutility parameter for an PEV-owning agent to charge her car off-peak, 
i.e. how responsive will she be to peak tariffs? 

2. Given the need for new grid capacity, how many years has the investment been moved 
ahead, i.e., how much of the fixed investment cost can be attributed to the rise in peak 
power demand from PEV charging? 

In order to illustrate the uncertainty and give an idea of the variation in how costly the grid 
enhancements for accommodating EV home charging can be, we will provide sensitivity analysis 
for how the results change with changes in these key parameters. The table below shows our 
baseline assumptions for the model extensions regarding PEV-charging: 
Table 3: Parameter values for baseline assumptions regarding EV-charging and grid costs 

Parameter Value Comment/Source 

Cost of new transformer, fixed component (NOK) 190 000 Sidelnikova et al. (2015) 

Cost of new transformer, per kW capacity (NOK) 79 Sidelnikova et al. (2015) 

Return on capital applied for regulation (%) 6 NVE (2018) 

Expected years of technical lifetime for transformer station 30 Sneve, Stene, and Brekke (2005) 

No. of years premature the average transformer needs to be 
replaced due to home charging 

0.5 Discussion meetings with DSOs11 

Marginal disutility parameter � of charging off-peak (NOK 

per hour), from oh�  (i.e. quadratic disutility function) 

0.15 Calibrated from a cross-price elasticity 
of 0.2, which is applied in the 
LIBEMOD model12 

No. of agents per transformer 50 Approx. average for DSO Hafslund 
Nett in 2018 

Charging capacity at home (kW) 3.6 Standard for home charging wall box, 
see e.g., Figenbaum (2018) 

                                                 
11 We have had discussion meetings with representatives from the DSOs Ringeriks Kraft AS and Hafslund Nett. 
They state that unless households install more in-house capacity, they have not experienced having to replace 
transformers before schedule even with neighborhoods with high EV-shares. The choice of applying 6 months as 
our base case is a bit arbitrary, but illustrates the low occurrence of early replacement. We decide to dramatically 
stress test this number to see what happens if replacements happen 10 years ahead of schedule on average. 
12 The cross-price-elasticity parameters are a result of the model calibration. For more information, see 
https://www.frisch.uio.no/ressurser/LIBEMOD/ 



108 
 

The investment cost is transformed to an annuity over the new transformer’s life time. This annuity 
is what the DSO needs to recover through its tariffs. We will model different pricing schemes for 
the DSO. As shown in the solutions for eq. (1), the consumer adapts so that marginal disutility of 
charging off-peak equals the difference in electricity price (including taxes and tariffs). With 
uniform prices between peak and off-peak, the consumer will cover all charging needs during peak 
hours. If the DSO applies peak tariffs, the consumers will shift some of her charging to off-peak. 
We end up with an equilibrium with tariffs and quantities charged at peak and off-peak, and 
transport costs and amounts travelled. 

 

5 Scenario description 
We use the model for analyzing different scenarios with different policies. The policies can be 
either fixed or be determined endogenously as a way to achieve a policy objective at least cost. The 
starting point for the scenarios is the reference situation of 2014. This can be considered an 
equilibrium before EVs were made available on a large scale. In the travel survey, on which the 
model agents are based, 98% of the cars are conventional. The policies will take us from the 
reference equilibrium to a new equilibrium in each policy scenario.  

The main policy scenarios are the “Business-As-Usual”-scenario and the “CO2-cap”-scenario. The 
former scenario is where there is a continuation of the 2014-policies (which were already very 
friendly towards the purchase and use of EVs), while the latter is where the 50% CO2 target in the 
Oslo area is binding. These scenarios were analyzed in Wangsness et al. (2018) without any regard 
for the impact PEV charging may have on the local grid. We will briefly repeat the key insights 
from those scenarios:  

In the BAU-scenario, Agent X (who works and makes occasional long trips) adapted by switching 
to a PHEV, Agent Y (who works, but makes no long trips) to a short range EV, while Agent Z 
(who does not work, and makes occasional long trips) stuck to the small ICEV. In sum, this gave 
us large emissions reductions (64% reduction), but higher transport volumes (2.1% for a constant 
population). Compared to the reference situation there is a welfare loss due to higher resource 
costs for cars and more congestion.  

In the CO2-cap-scenario, policies are determined so that the target is reached at least cost leading 
to Agent X switching to a PHEV, Agent Y sticking to a small ICEV, and Agent Z switching to a 
small EV. The policies are characterized by; 1) higher tolls for all cars, in particular during peak 
traffic, 2) higher peak fares and lower off-peak fares for PT, 3) higher purchase taxes for ICEVs 
and 4) no tolls for BEVs driving in rural areas. These policies achieve the CO2-target, but the 
equilibrium has a lower welfare level than the reference equilibrium. The welfare cost of reaching 
the CO2-target amounts to 6690 NOK per tCO2. 

We revisit these scenarios, but now the impact of EV charging on the local grid is part of the 
modelling. We run the model for two different pricing schemes the DSO can apply to respond to 
increased demand for power for EV charging. 

  No ability for DSOs to peak price, i.e. the DSO continues with uniform tariffs 
  DSOs apply peak tariffs determined by the marginal increase in capacity stemming from 

charging EVs during peak hours, and covers the rest of the costs by a fixed component 
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6 Results 
We now present the results from the numerical modeling in a way that answers the research 
questions stated in section 1. We will also briefly describe the results from the sensitivity analysis, 
which is documented in Appendix B. 

When we factor in the current uniform grid tariff system, what are the welfare impacts of today’s EV policies and 
polices for reaching CO2-targets at least cost? 

This research question focuses on the pecuniary external cost of EV charging with BAU EV 
policies when there is an incomplete market for using grid capacity, i.e., uniform tariffs between 
peak and off-peak hours. As shown in Wangsness et al. (2018), the model simulations conclude 
that Agent X (working, long trips) switches from ICEV to PHEV and Agent Y (working, no long 
trips) from ICEV to a small BEV in the BAU-scenario without any concern of grid costs. These 
agents would then start home-charging their vehicles to cover their daily transport needs by car. 
Their choice of when to charge is reflected by the relative price between charging during power 
peak and off-peak hours, and their disutility of charging during off-peak hours. We test the impact 
of adding this charging behavior under the different pricing schemes the DSO can respond with, 
described in section 5.  

We find that the main features of the BAU-equilibrium remain the same as in Wangsness et al. 
(2018), even though the charging issues now have been added. Nevertheless, the added grid costs 
are tangible costs, and not including them overestimates the welfare in the equilibrium. Without 
any form of pricing of peak power consumption, there will be no incentive for the agents to shift 
any of their charging to off-peak hours. This spurs investment in transformer capacity that 
amounts to a welfare cost of 18 mill. NOK (approx. € 2 mill.) per year in the new BAU-equilibrium, 
compared to an equilibrium where these costs are not taken into account (as in Wangsness et al., 
2018). All agents see a reduction in their general disposable income as tariffs increase. In the new 
BAU-equilibrium, those who drive PEVs get somewhat higher transport costs, and all agents get 
higher household expenses on their non-car consumption of electricity. The model finds an 
increase of about 18 NOK (approx. € 2) per agent per year in increased household expenses in 
non-car electricity due to the increase in uniform tariffs. This is the cost we expect todays EV 
policies to impose on electricity users is the Oslo area. 

The cost increase is a result of some agents’ actions, while other agents have not changed their 
behavior at all: Agents X and Y are driving up their own costs, but they are also imposing costs on 
Agent Z as tariffs increase. This is a pecuniary external cost in the market for grid capacity, a 
market that can be considered incomplete as a uniform tariff structure does not give any signal 
about capacity scarcity and expansion costs. Of the total welfare cost addition of 18 mill. NOK, 
Agent Z has to bear a brunt of 4 mill. NOK. 

We show in Wangsness et al. (2018) that reaching a 50% CO2 reduction target at least cost implies 
that Agent X switches from ICEV to a PHEV and Agent Z switches from ICEV to a small BEV. 
Before considering any charging issues, we find a welfare cost of 6690 NOK (approx. € 700 or 
USD 850) per tCO2 for reaching this CO2-target. Adding these issues in the CO2-target scenario 
does not change optimal car combinations under policies for reaching the target at least cost. Like 
in the BAU-scenario, the changes in tariffs amount to so small changes in generalized costs that 
travel patterns hardly change at all. Consequently, the policy variables in the CO2-target scenario 
are close to unaffected by introducing charging issues.  

With uniform tariffs, the welfare cost increases by 16 mill NOK per year (approx. € 1.75 mill.), 
translating into an increase of 27 NOK (approx. € 3) per tCO2 (i.e., from 6690 to 6717) in order 
to reach the ambitious targets. The main results are summarized in Figure 3.  
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Figure 3: Main results from simulations with uniform tariffs 

How can these welfare costs be affected by a better pricing of electricity distribution? 

The welfare cost can be reduced by allowing the DSO to apply peak tariffs. This will cause some 
shifting of PEV charging to off-peak hours. While this reduces investment costs, it also increases 
the disutility cost of postponing some charging to off-peak hours. Consider the scheme where the 
added peak tariff is only determined by the marginal increase in capacity stemming from charging 
PEVs during peak hours, and where the rest of the costs are covered by a fixed component. In 
this case, the added welfare cost amounts to 12 mill. NOK pear year in the new equilibrium 
(approx. € 1.3 mill.), lowering the costs by a third compared to the uniform pricing scheme. Now 
the agents pay approx. 12 NOK more per year in non-car electricity expenses, with a fixed 
component of about 9 NOK and a 3 NOK increase in expenses due to higher peak tariffs.  

It is worth noting that even though the peak tariffs provide a price signal for grid capacity usage, 
we still get an equilibrium where PEV owners do most of their charging during peak hours. This 
implies that Agents Z still has to pay more in grid rent over her electricity bill, ceteris paribus, 
despite not owning an EV. The Agent Z group has to pay more for their non-car electricity 
consumption during peak hours, which is assumed to be inelastic. One can still consider this a 
pecuniary externality, but no longer in an incomplete market, as grid scarcity now has a price signal. 
However, Agent Z still has to pay a higher fixed component for the grid rent. This is a result of 
the PEV charging actions of the other agents, who still do not have to carry the full cost of their 
behavior. However, the burden imposed on Agent Z has been reduced to about 2.5 mill. NOK, 
compared to the case with uniform tariffs.  

We also see welfare improvements from applying a better pricing scheme in the CO2-target 
scenario. When applying peak tariffs only to the marginal capacity expansion induced by EVs and 
covering the rest with a fixed component, the added welfare cost is 17 NOK per tCO2. This is 
about 37% less than under uniform pricing. The main results are summarized in Figure 4. 

 
Figure 4: Main results from simulations with optimal peak tariff 
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Under both pricing regimes, the agents’ car choices are unaffected compared to the results in 
Wangsness et al. (2018), and the changes in tariffs never cause more than minor changes (less than 
0.1%) in generalized transport costs and subsequently in transport use.  

Sensitivity analysis 
These added welfare costs do not seem so large for an area with a population of 1.2 mill. people. 
In discussion meetings with the DSOs Ringeriks Kraft AS and Hafslund Nett, we were told that 
regular home charging has not spurred many new investments that would not have occurred 
otherwise (unless co-founded by households wanting to increase their own capacity), 
corroborating this story.  

Our base assumption is that DSOs need to replace the transformer on average 6 months ahead of 
its expected life span of 30 years (a shortening of less than 2%). We conduct sensitivity analysis 
where we assume the replacement of transformers on average has to be done 10 years ahead of its 
expected life span and additional 100 000 NOK (approx. € 11 000) needs to be spent on digging 
and replacing cables between the transformer and the household. This assumption entails far larger 
investment costs due to PEV charging, and subsequent changes in tariffs and welfare. With the 
10-year assumption, the additional welfare cost to the BAU-equilibrium is 304 mill. NOK per year 
(approx. € 34 mill.) under uniform pricing, compared to an equilibrium where grid costs are not 
taken into account (as in Wangsness et al., 2018). Further, the added cost is limited to only 193 
mill. NOK (approx. € 22 mill.) with peak tariffs for the marginal capacity increase and the rest of 
the cost covered by a fixed component. This also translates into a higher cost per ton of CO2 
abated in the CO2-cap scenario. In Figure 5, we compare the costs of reaching the ambitious 
climate goals when we disregard the costs to the local grid and when we include the costs to the 
local grid under the 6 month and 10-year premature replacement assumptions. This will be further 
discussed in the section 7. 

 
Figure 5: How grid costs affect the abatement costs of achieving ambitious climate goals under different assumptions 

The disutility function is a highly uncertain part of the model, so we test the impact of doubling 
the marginal disutility parameter. This will only make a difference where peak tariffs are allowed. 
Higher marginal disutility of off-peak charging leads to less load shifting under the relevant pricing 
scheme, thus driving up investment costs in transformer capacity. On the other hand, due to the 
assumption of a quadratic disutility function from charging in off-peak hours, the low levels of 
load shifting imply lower absolute disutility costs for PEV owners. The differences in investment 
costs and disutility costs seem to balance out, so there is hardly any difference in added welfare 
costs (less than 1 mill NOK per year) compared to the equilibrium under baseline assumptions. 
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7 Discussion and conclusion 
We find that as today’s policies drive up the PEV-share of the car fleet, they also drive up 
investment costs in the local grid as old transformers need to be replaced prematurely. Our model 
finds an equilibrium where the replacement leads to between 12 and 18 NOK (approx. € 1.3 - € 
2) in added non-car electricity costs per agent per year, depending on the DSO’s pricing scheme.  

Are these numbers large or small? We argue that such an increase in expenses is small, and would 
probably go unnoticed by most households as it represents less than a 0.1% increase in annual 
electricity costs (including tariffs and taxes) for households with normal consumption between 
10 000 and 20 000 kWh per year.  

The sensitivity analysis shows that the cost can get substantially higher if old transformers have to 
be replaced sooner than in the baseline. If the transformers need to be replaced 10 years ahead of 
their technical life and we assume higher cost for cables, non-car electricity costs per agent increase 
to between 205 and 310 NOK per year. While this may be a more noticeable expense for 
consumers, it is still a small number relative to overall electricity expenses, and well within 
fluctuations in such expenses due to normal year-to-year price fluctuations. 

The shift to PEVs is an integral part of reaching the ambitious goals of reducing CO2-emissions 
by 50% in the greater Oslo area at least cost. We find that adding the charging issues leads to 17-
27 NOK in additional costs per tCO2e under baseline assumptions. Before adding grid capacity 
costs, the welfare cost of reaching the emissions target amounted to 6690 NOK (about 700 Euro) 
per tCO2 (Wangsness et al., 2018), so adding the grid costs means 0.3%-0.4% extra cost per tCO2. 
If the policy makers have committed to the CO2-target and are willing to pay the cost of reaching 
it, accounting for the grid costs is not going to be very discouraging. 

Caveats 

There are several caveats that are worth mentioning. As discussed in Wangsness et al. (2018), the 
transport model we use is very stylized with some major simplifications, such as having only five 
stylized car types and three stylized agent groups. It gives more nuance and insight than single 
representative cars and agents, but there are still many issues of heterogeneity that go uncaptured. 
For example, if more heterogeneity is introduced in the users’ profiles, the penetration of electric 
vehicles could be affected more strongly. The added model features in this paper are also quite 
stylized, with identical neighborhoods with identical investment cost functions for transformers, 
and with the simplifying assumption of clean-cut differences between peak and off-peak periods.  

The model contains many parameters that can be considered fairly uncertain, which is also 
discussed in Wangsness et al. (2018). The model extension in this paper, accounting for the 
capacity of the distribution grid, also introduce new uncertain parameters, such as the investment 
cost function for transformers and the average number of years of premature replacement of 
transformers. The model is static, so it ignores the dynamics of DSOs over years continuously 
replacing old infrastructure according to schedule, along with the year-by-year growth in the 
number of EVs. While the model is consistent with experiences over the last few years and 
expectations for the next few years, the future developments contain a lot of uncertainty. We do 
sensitivity analysis to address some of this uncertainty.  

Given these caveats we advise that the exact numbers should be interpreted with some caution. 
However, we believe that this analysis helps understanding the mechanisms within and between 
the transport and electricity market as transport gets electrified. We also think it provides insights 
into what can be considered major issues and minor issues when designing optimal transport policy 
moving forward.  



113 
 

Concluding remarks 

This paper gives new insights into some of the ways the transport market and electricity market 
may affect each other when a large part of the car fleet is electrified. We find that the increase in 
demand for electricity and power from EV owners lead to some increase in grid investment costs 
and tariffs, but not too large. This corroborates the findings of a recent empirical study on the cost 
impact of local BEV density on DSO costs (Wangsness & Halse, 2020), although there is 
significant heterogeneity in these impacts. The cost impacts per BEV is found to be substantially 
higher for smaller DSOs in rural areas, than for larger DSOs in urban areas, such as the Oslo 
metropolitan area.  

Our results show that the added grid costs do not cause significant changes to the transport market 
equilibrium. For example, the conclusion that large differences between peak and off-peak tolls 
and fares are necessary to improve transport market efficiency, remains the same. This was also 
part of the conclusion from Börjesson, Fung, and Proost (2017), which the model in Wangsness 
et al. (2018) is an extension of. We find that the increase in grid costs leads to a relatively modest 
increase in the cost of reaching the Oslo area climate goals. However, the overall abatement costs, 
which would require a large penetration of EVs in order to be minimized, are many times higher 
than the Norwegian reference price of CO2. Several studies show that switching to EVs is a fairly 
costly form of CO2 abatement (Bjertnæs, 2016; Fridstrøm & Østli, 2017). However, these costs 
are well within the inter-quartile range of costs needed by 2035 in order to stay on a path that curbs 
emissions in line with the goal of limiting global warming to 1.5ºC (Huppmann et al., 2018), as 
found in the IPCC report on reaching the 1.5ºC goal (IPCC, 2018). 

Furthermore, our paper gives support to the literature that demand management, e.g. through peak 
grid tariffs, can be beneficial as the EV-owners demand for grid capacity increases (see e.g., Barton 
et al., 2013; Clement-Nyns et al., 2011; Masoum et al., 2011; O’Connell et al., 2012). That allowing 
for peak pricing in the electricity sector can improve efficiency, is a common finding in the 
extensive literature on peak-load pricing (see e.g. Decker, 2014, pp. 83-85 for an overview). As the 
transport sector gets increasingly electrified, and EV owners prefer charging after coming home 
from work, i.e., during evening peak hours, peak tariffs can help strike a better balance between 
investment costs and the EV owners’ disutility of charging during off-peak hours. With user-
friendly solutions for smart-charging that automatically adjust charging to minimize charging, the 
differences in peak and off-peak tariffs would not need to be very large in order to get load shifting 
from EV charging13. Within the realms of our model framework, this could be interpreted as a 
drastic reduction in the disutility14 of charging off-peak.  

From a policy perspective, our findings can be interpreted with cautious optimism. Ambitious 
climate goals will entail a relatively large shift to PEVs as a cost-minimizing strategy, but there is 
no way to escape high welfare costs. There will probably be some added abatement cost as local 
grids needs to be enhanced, but these cost additions can be expected to be relatively small 
compared to the welfare effects in the market for transport. And these cot additions can also be 
curbed by introducing a more efficient system for grid tariffs, which Norwegian regulators are 
working on at the time of writing. 

 

                                                 
13 An example: https://evblog.org/this-ev-charger-saves-up-to-50-on-your-electric-bill/ 
14 It is worth noting that there are multiple factors that affect consumers’ acceptance of smart charging, and not just 
monetary aspects (Will & Schuller, 2016).  
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Appendix A: Model details 
The cost parameters applied for replacing transformers are taken from the NVE report Sidelnikova 
et al. (2015). The table below reports the parameter values from that report: 

Rated supply 

voltage (kV) 

Cost for new transformer, capacity 

independent component (NOK) 

Cost for new transformer, capacity 

dependent component (NOK/kW) 

5-24 190 000 79 

66 1 125 000 91 

132 2 125 000 80 

300 6 250 000 90 

420 8 750 000 58 

Table 4: Cost parameters for new transformer. Taken from Table 9-4 in Sidelnikova et al. (2015) 

For calibration we need quantities for each agent, generalized prices, and elasticities. The 
quantities used are kilometers travelled on short trips per day, in peak and off-peak, by car and 
public transportation (PT), and long trips (100 km+) by car per year. For short trips agents can 
substitute between PT and car, and peak and off-peak. For long trips (e.g., to the cabin) , the 
agents can only choose the number of long trips per year. 

The own-price elasticities for short car trips are taken from the newest version of the regional 
transport model RTM23 (documented in Rekdal and Larsen (2008)). Own-price elasticities for 
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PT and the cross-price elasticities between car transport and PT are taken from the transport 
model for the greater Oslo area MPMM23 (documented in Flügel and Jordbakke (2017)). The 
cross-price elasticities for shifting between peak and off-peak, and cross-price elasticities for 
shifting between both modes and travel time, are the same as those applied in Börjesson, Fung, 
and Proost (2017). We apply the aggregate elasticity from the National Transport Model 
(documented in Rekdal et al. (2014)) for long car trips. The elasticity values are given in Table 5. 
Purchase costs and distance-based costs for the different car types are given in Table 6. 

 
Table 5: Elasticity values 

Elasticity Parameter Value 

Own money price elasticity, peak car trips -0.152 

Own money price elasticity, off-peak car trips -0.152 

Own money price elasticity, peak PT trips -0.255 

Own money price elasticity, off-peak PT trips -0.284 

Cross money price elasticity between peak and off-peak car trips 0.100 

Cross money price elasticity between peak car trips and peak PT trips 0.100 

Cross money price elasticity between off-peak car trips and off-peak PT trips 0.086 

Cross money price elasticity between off-peak car trips and peak PT trips 0.096 

Cross money price elasticity between off-peak car trips and off-peak PT trips 0.050 

Cross money price elasticity between peak and off-peak PT trips 0.050 

Own money price elasticity, long car trips -0.172 

 
Table 6: Car specific parameters for technology, user costs, and externalities, baseline 

  ICEV 

small 

ICEV 

large 

PHEV EV 

short 

EV 

long 

Purchase price 273 058 503 614 456 036 263 049 720 468 
VPT cost 59 977 158 219 44 143     
VAT cost 42 616 69 079 82 379     
Producer price 170 464 276 316 329 514     
            
Annual tax 2 820 2 820 2 820 455 455 
Range (km on full battery)     47.8 190 528 
Fuel usage (liters per 100 km) 7.99 9.50 6.15     
Share of city trips in e-mode15 0 0 72.7% 100% 100% 
kWh-usage per km, summer       0.15 0.17 
kWh-usage per km, winter       0.20 0.22 
kWh-usage per km, average      0.28 0.17 0.20 
Non-fuel costs per km (including taxes, not tolls) 2.05 2.05 2.05 1.98 1.98 
Non-congestion external cost per km in city (NOK) 0.70 0.70 0.36 0.36 0.36 
Non-congestion external cost per km far from 
densely populated areas (NOK) 

0.16 0.16 0.16 0.15 0.15 

                                                 
15 For PHEVs we assume that they run on electricity 73% of the time on short trips in the city area, and on fossil 
fuel when going on long trips. 
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With all these values, MATLAB solves a system of 16 equations with 16 unknowns to complete 
the calibration of the utility function for each agent. This means we obtain the various parameter 
values of � , �  and i  (cf. Eq. 2) for the various agents.  

The generalized prices for short car trips are the distance-based costs (fuel, repair, lubricants 
etc.), toll and time costs. Distance-based costs are the same as those applied in the National 
Public Road Administration’s (NPRA) tool for Cost-Benefit Analysis, documented in COWI 
(2014). Toll costs are based on reporting from the toll companies to NPRA. The value of time is 
based on the Norwegian valuation study, documented in Samstad et al. (2010). For long car trips, 
the generalized prices are distance and time costs for the average long car trip, for a given agent. 
For BEVs there is an added cost to the trip related to charging the car to fill the gap between the 
range and the length of the average trip times two (assuming back and forth). The time cost of 
charging is assumed to be VOT for long leisure trips, weighted by the same disutility weights as 
applied for waiting time for PT on long trips (0.6). 

The generalized prices for PT is given by ticket costs and time costs (on board time, access time 
and waiting time). Samstad et al. (2010) also provide the basis for VOT for PT trips, waiting time 
and access time. In the presence of a large share of PT users having either 30-day tickets or 12-
month tickets, and different price zones, we apply the method for calculating average ridership 
payment used in Dovre Group and Institute of Transport Economics (2016). 

Additional costs: If agents were to buy EVs, a fixed cost is also added for charging equipment, 
and for renting parking close to home for the share of agents who do not have easy access to 
parking at or close to their home. Charging cost equipment is assumed to have an up-front cost 
10 000 NOK (Norwegian Environment Agency, 2016). Parking rental is assumed to cost 1 400 
NOK per month (median rent for parking space in Oslo in October 2017 on website finn.no).  

With regards to the rest of the transport system, we have cost functions for PT and speed-flow 
functions for car transport. The cost function for PT is simply the annual aggregated operating 
costs for Ruter, the public transport company for Oslo and Akershus, as a linear function of 
annual frequency. In addition, there is a crowding cost function, where the travel time cost is 
weighted by a crowding factor. The crowding factor has been calibrated to be a piecewise linear 
function where the current peak ridership per hour gives a crowding factor of 1.3, same as in 
Minken (2017), and current average off-peak ridership gives a crowding factor of 1. The 
crowding factor will not get smaller if ridership falls below this level, so 1 serves as a lower 
bound for the crowding factor. 

The speed-flow functions are based on model simulations from RTM23 on aggregate car travel 
and travel speed in Oslo and Akershus for a range of scenarios, but with constant road capacity. 
The result is an aggregate linear speed-flow function. The linearity simplifies the model 
calculation, but as shown in Arnott, De Palma, and Lindsey (1993), it also serves as a good 
approximation for a traffic bottleneck model. 
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The impact of electric vehicle 
density on local grid costs: 
Empirical evidence from Norway 
Paal Brevik Wangsnessa,b,1, Askill Harkjerr Halsea 
a Institute of Transport Economics – Norwegian Centre for Transport Research, Gaustadalleen 21, 0349 Oslo 
b Norwegian University of Life Sciences, Ås, Norway 

Abstract 
While a rapid shift towards electric vehicles (EVs) will contribute to reducing carbon 
emissions from the transport sector, there are concerns that uncoordinated charging 
of EVs might impose challenges for the local electricity grid. Our study is the first to 
investigate this empirically in a country-wide analysis, using data from the country with 
the highest market share of EVs, namely Norway. We present the regulatory 
framework in which Norwegian grid companies operate and discuss the possible 
impact of EV charging. Using panel data on 107 grid companies over the period 2008-
2017, we then estimate the effect of local growth in EVs on local grid costs. We find 
that increases in EV stock are associated with increases in costs which are both 
statistically and economically significant. However, there is a lot of heterogeneity in 
these results, where the effect on grid costs are higher for small grid companies in rural 
areas. 

Keywords: Electric vehicles, Distribution System Operators, local grid costs, local grid 
capacity, fixed effects regression, peak power tariffs 
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1 Introduction 
Do electric vehicle (EV) owners impose a negative externality on other electricity 
consumers when they plug in their cars at home during peak hours for electricity? In 
the absence of any peak pricing scheme, if the high power consumption of EVs leads 
to higher local grid costs, the resulting increase in uniform grid tariffs will be shared 
among all customers. Simulation exercises suggest that uncoordinated EV charging 
might have an impact on the local grid (see e.g., De Hoog, Alpcan, Brazil, Thomas, & 
Mareels, 2015; Masoum, Deilami, Moses, Masoum, & Abu-Siada, 2011), but the 
empirical evidence is scarce. What can we learn from actual data in the country with 
the highest EV share, namely Norway? 

The high EV share must be viewed as a result of national climate policy, which aims 
to fulfill Norway's part of the Paris agreement. Norway has a goal of ensuring that all 
new passenger cars are zero emission vehicles by 2025. Incentives like low vehicle 
taxes, toll road exemptions, and access to bus lanes has resulted in the highest 
penetration of EVs worldwide. By January 2020, there were about 260 000 battery 
electric vehicles (BEVs) and 115 000 plug-in hybrids (PHEVs) in Norway, a country 
with only 5.3 million inhabitants. In 2019, BEVs accounted for 42 percent and PHEVs 
for 14 percent of all new vehicles (Norwegian Electric Vehicle Association, 2020).  

The Norwegian Water Resources and Energy Directorate (NVE) presents a scenario 
where the growth in BEVs in Norway continues and reaches 100 % of the new car 
sales after 2025. This implies 1.5 million BEVs in Norway in 2030, resulting in a 3 % 
increase in domestic electricity consumption (Skotland, Eggum, & Spilde, 2016). So 
even with rapid electrification of passenger transport, we can expect aggregate 
electricity generation to cope without major challenges.  

However, while a BEV’s energy consumption may be modest, its power usage could 
be quite high. Currently, power demand per electricity consuming unit in a household 
usually varies from 2.3 to 7.3 kW. Skotland et al. (2016) find through a survey that 
most BEV owners do their daily charging at home (almost 90 %). Charging at work or 
at public charging stations seems at this point to be mainly supplemental. NVE’s 
review indicates that most BEV owners start their charging late in the evening and 
cover most of their charging needs during night hours, while some start charging their 
vehicle immediately after work, which is a peak period for electricity consumption.  

Uncoordinated charging (or “dumb charging”) will increase electricity consumption 
during the morning and evening peaks (Graabak, Wu, Warland, & Liu, 2016). De Hoog 
et al. (2015) point out that if EV charging is not controlled, adverse impacts on the 
distribution network are expected: power demand may exceed distribution transformer 
ratings; line current may exceed line ratings; phase unbalance may lead to excessive 
current in the neutral line; and voltages at customers’ points of connection may fall 
outside required levels. A similar point is made by Neaimeh et al. (2015). Skotland et 
al. (2016) develop a stress-test for neighborhoods with high BEV density. If 70 % of 
the residents charge their BEVs simultaneously during peak hours, they find that 
power demand can increase by up to 5 kW per household. This results in overload for 
more than 30 % of the transformer stations currently servicing the distribution 
network. 
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Our motivation for this paper is as follows: The number of BEVs is growing fast, and 
there exists a literature that warns that BEV charging will cause substantial future costs 
to the local grid unless measures are put in place. If indeed the aggregate uncoordinated 
charging from BEV owners does induce higher costs to local grid companies 
(Distribution System Operators - DSOs), then Norwegian data would be the first place 
to investigate. Detailed data of all Norwegian DSOs and all registered BEVs during 
the last ten years gives a unique opportunity to analyze this relationship. To our 
knowledge, such an empirical analysis has not been done before on real data in a 
country-wide analysis. It will therefore push the knowledge frontier on a debated, but 
relatively unexplored topic empirically. Findings may have implications for how to 
regulate DSOs, how to price household power usage and how to assess the net social 
cost of achieving emission reduction targets through promoting EVs. 

This paper complements previous studies that look at the effects that BEVS and 
PHEVs can have on the electricity market. Our analysis covers a relatively long time-
period of real experiences with increasing BEV density (over 10 % of the car fleet in 
some areas), while most of the relevant literature up until now have been simulation 
exercises in numerical models of local grids. Hattam and Greetham (2017) analyze how 
EVs affect load profiles on neighborhood level in low voltage networks. Azadfar, 
Sreeram, and Harries (2015) look at charging behavior in terms of time of day, 
duration, frequency and electricity consumption in light of its implication for electricity 
network management. Barton et al. (2013) look at the challenges for grid balancing 
when EV charging becomes more prominent, and stress the importance of demand 
side management with time-shifting of electricity loads from periods of peak demand 
to off-peak, and from periods of low renewable energy supply to periods of high 
supply. 

Other studies also argue for demand side management (see e.g., Haidar, Muttaqi, & 
Sutanto, 2014; Masoum et al., 2011) as an alternative to costly upgrades of distribution 
transformer stations. Some of these studies also argue for pricing schemes that 
disincentivize charging during peak hours (see e.g., Barton et al., 2013; Clement-Nyns, 
Haesen, & Driesen, 2011; Masoum et al., 2011; O’Connell et al., 2012). In the future, 
smart-charging technology and vehicle-to-grid2 (V2G) and vehicle-to-building (V2B) 
solutions may also provide a means to mitigate capacity problems in both electricity 
generation and distribution (Barton et al., 2013; Clement-Nyns et al., 2011; Mwasilu, 
Justo, Kim, Do, & Jung, 2014; Sioshansi & Denholm, 2010), but bidirectional EV 
charging is in its infancy (Haidar et al., 2014), and seems to come at a relatively high 
cost due to increased battery degradation, energy losses, changes in infrastructure, and 
extra communication between EVs and the grid (Habib, Kamran, & Rashid, 2015).  

Exploiting local differences in the growth of the BEV fleet over time, we investigate 
how an increase in the number of BEVs affects the costs of the local DSO. We look 
at both total costs and individual cost components. We analyze data on 107 DSOs 
over the period 2008-2017 using fixed-effects estimation that account for time-
invariant characteristics of the DSO. We also control for growth in output indicators 
that could be correlated with growth in the BEV fleet.  

                                                 
2 V2G involves using EVs as storage for electricity. 
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The main finding is that increases in the BEV fleet are associated with positive and 
statistically significant increases in costs when controlling for other DSO outputs and 
year dummies. The point estimates also imply that the effect is economically 
significant. However, there is a lot of heterogeneity in these results, where the marginal 
cost estimates are a lot higher for small DSOs in rural areas, and a lot lower for larger 
DSOs in urban areas. 

Section 2 presents the regulatory setting for local grid operators in Norway, and why 
the growth in BEVs may exacerbate existing market failures. Section 3 presents the 
methods and data. In section 4 we present the results from our empirical analysis. 
Section 5 discusses the results and concludes. 

2 EVs and Norwegian DSO regulation 
Norwegian DSOs are regulated under a revenue cap model with benchmark (or 
yardstick) competition against other DSOs (see e.g., Decker, 2014, pp. 103-140), where 
they set their tariffs based on this revenue cap. The revenue cap is composed of 40 % 
cost recovery and 60 % cost norm based on benchmark modeling using data 
envelopment analysis (DEA) (NVE, 2015). This means that an increase in costs 
increases the revenue cap, which allows the DSO to raise its tariffs. However, the 
revenue cap, and therefore the tariffs, are constrained by the cost development of the 
other DSOs that comprise the benchmark competition. 

Still, at least some of the increase in capital cost will eventually lead to higher tariffs, 
and these will have to be paid by all consumers connected to the local grid, and not 
just the households demanding more capacity. It can be viewed as a pecuniary external 
cost in an incomplete market (Greenwald & Stiglitz, 1986). That is, the households 
demanding more capacity do not face the full cost of the capacity expansion, and 
indirectly impose costs on other consumers. 

We describe the mechanisms for how an increased number of BEVs may lead to higher 
costs to DSOs and subsequently to higher grid tariffs through the following steps: 

1. The BEV share increases in a neighborhood. 
2. Households will charge their BEVs at 3.6-7.2 kW, and the demand for power 

capacity will increase.  
3. With a certain size of the BEV share and a certain share of the owners charging 

simultaneously, the existing distribution transformer and/or the cables 
between the transformer and the household will not be able to handle the 
power capacity demand at certain times of day, certain times of year. This may 
lead to more inspection and maintenance before new investments need to be 
made. 

4. The DSO invests in capacity expansion in the local grid. The cost of such 
capacity expansion will depend on whether enhancements need to be done for 
the transformer and/or the cables, the amount of transformer capacity that 
needs to be installed, whether the new transformer fits in the old box that 
contained the old transformer, and the costs of digging.  
� The new investment increases the capital stock for the DSO.  
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5. Regulation then says that the DSO can charge higher grid tariffs to cover costs 
(subtracted any co-funding of upgraded infrastructure from consumers).  
� All of the DSO’s customers have to pay the higher tariffs. 

Currently, individual households do not have any incentive to avoid charging at peak 
hours3. Both electricity prices and grid tariffs are the same throughout the day. And 
there are many arguments for why BEV owners would want to charge the car right 
away after coming home. First, it is convenient. They can plug in, and there is no need 
to spend mental capacity on timing. Second, they maximize the probability of always 
having the battery charged for any activity later; planned, spontaneous or emergency.  

DSOs’ profitability is determined by their costs and their regulated revenue cap. If 
policies drive up BEV ownership and subsequently capacity demand, their costs will 
increase, most likely without a corresponding increase in the revenue cap. Since “local 
BEV stock” is currently not a variable in the benchmark competition analysis, the cost 
norm calculation will disfavor DSOs that face increased capacity demand from BEV 
users. A DSO facing such increases in power demand, will see BEV-favoring policies 
as a threat to their profitability. An exception would be a DSO that already is among 
the most productive and remains among them in spite of the increase in capacity 
demand from BEV owners. Such a company would set the cost norm, and will be able 
to pass the entire cost increase on to consumers. If then the cost norm is expanded, 
DSOs who are not exposed to higher capacity demand from BEV owners will get a 
larger revenue cap, but no extra costs. 

If capacity demand from BEV owners becomes a major cost driver for DSOs, there 
are at least two measures the regulator can take. The first is to incorporate a measure 
of “local EV stock” in their benchmarking model for calculating the cost norm for the 
sector, so that the relatively low costs for DSOs with low BEV density are not mistaken 
for efficiency. The second is to allow for peak power tariffs. NVE argues that the 
introduction of power-based tariffs will provide incentives to shift charging outside 
peak-hours. An official proposal has been drafted and is currently (first half of 2020) 
out on a public hearing4. Power-based tariffs have become technologically feasible after 
January 1st 2019, when smart meters became compulsory for all Norwegian 
households. This will enable households to closely monitor their temporal 
consumption profile of electricity, and both distribution grid companies and electricity 
retailers to bill accordingly. 

3 Methods and data 
3.1 Model concept 
The main objective of our empirical analysis is to identify the effect that changes in the 
BEV stock has on DSO costs. Parts of the data that we use to analyze this is the very 
same data that NVE uses for regulation by calculating the annual revenue cap for 
                                                 
3 Some DSOs are experimenting with hour-by-hour pricing experiments, where participating 
households will be informed about and charged according to hour-by-hour prices  
4 http://publikasjoner.nve.no/rme_hoeringsdokument/2020/rme_hoeringsdokument2020_01.pdf [in 
Norwegian - last accessed 13.05.2020]. 
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DSOs. The main outcome variable for our analysis is the DSOs annual total costs 
(tot_cost) as this is the main basis for calculating the revenue cap. The total costs are the 
sum of operational costs (opex), capital costs (cap_cost), depreciation costs (dep_cost), 
CENS - cost of energy not supplied (cens) and cost of energy network losses (eloss_cost). 

In the benchmarking competition DSOs performance is measured by the output 
variables number of subscribers (subscribers), number of transformer substations 
(substations) and kilometers of high voltage grid, including overhead lines, underground 
cables and subsea cables (voltline).  

In the regulatory DEA calculations, NVE controls for a set of contextual factors that 
can be seen as external cost-driving factors. This is in order not to mistake a difficult 
operating climate for some DSOs for inefficiency. All of the contextual variables are 
assumed to be time-invariant in NVE’s analysis. The applied variables are displayed in 
Figure 1. In the model below, all these variables are covered by the vector iX . 

To summarize, in NVE revenue cap calculation the DSO costs are assumed to be 
driven by three output measures and external cost-driving factors. In our analysis, we 
want to investigate whether the registered number of BEVs in their operational area is 
an external cost driving factor that currently is not accounted for. Figure 1 gives an 
illustration of how we expect the relationship between the variables to be. 

 
Figure 1: Direction of impacts from outputs and external cost-driving factors to costs 
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Due to substantial skewness in the distribution of DSO costs (see Table 1), we 
transform the model into a log-log format. Conceptually, our economic model looks 
like the following: 

(1) 31 2 4_ it it it it itot cost ASubscribers Voltline Substations BEV X�� � � �   

When we do a log-log transformation, we get: 

(2) 1 2

3 4

( _ ) ( ) ( )
( ) ( ) ( )

it it

it it i

log tot cost log subscribers log voltline
log substations log BEV log X

� � �
� � 

� � �

� � �
  

Here, ln( )A� �  and the beta coefficients can be interpreted as cost elasticities. We 
expect them all to be positive. A beta coefficient value of 1 implies a constant marginal 
costs in absolute terms from an increase of a given variable, whereas values above 1 
implies increasing marginal costs. Beta values between 0 and 1 implies decreasing 
marginal costs for a given variable. Our default assumption is that these elasticities are 
constant, but we will in section 4 investigate whether the beta coefficients could 
depend on the level of the explanatory variable, e.g., 1 10 11 ( )log subscribers� � �� � , 
by adding squared transformations of the variable. 

3.2 Data and variables 
We have combined 3 datasets. 1) NVE’s data for DSO costs and outputs applied for 
regulation, with 2) NVE’s data for the DSOs legal operational area, with 3) 
municipalities, which finally can be merged with Statistics Norway’s (SSB) data on 
registered cars at municipal level.  

NVE’s data for DSO costs and outputs applied for regulation 

The data is extracted by running an R-script according to instructions from NVE’s 
web pages (NVE, 2017). The data consists of cost measures and other characteristics 
of 134 grid companies operating in either the local grid or the regional grid. Our 
analysis will only focus on the local grid, with a dataset consisting of all DSOs that 
distribute electricity to households, as these are the ones that may be affected by home 
charging of EVs. That leaves us with 107 DSOs in total. 

Following NVE’s instructions, operational costs are adjusted to reflect 2015-prices 
using the consumer price index for the service sector. CENS is adjusted to reflect 2015 
prices using the consumer price index. Annual capital costs (or the regulator-allowed 
return on invested capital) are calculated by multiplying the value of the regulatory 
assets (regulat_assets), which is the value of the total capital stock excluding co-paid 
assets (co-paid_assets – which customers pay for themselves), with the NVE-calculated 
regulatory interest rate for each year. The contextual variables mentioned in the 
previous section also follows with this dataset. Since all the contextual variables in 
vector iX  are time-invariant, they drop out of the fixed effects regressions in this 
paper.  

NVE’s data for the DSOs legal operational area  

NVE’s hydrology department have given us access to data on DSOs’ legal operational 
area and matched this with municipalities. In total 149 companies have areas for grid 
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operation. Using the organizational number as a unique identifier, we can merge 
together cost data and operational area data.5 

Statistics Norway’s data over registered cars at municipal level 

The StatBank of SSB contains data on registered cars at municipal level categorized by 
fuel type. We have extracted the number of electric passenger cars for each of the years 
2008-2017 for all Norwegian municipalities. We have then merged this with the rest of 
the dataset.  

Not all municipalities and DSO operational areas match one-to-one. Where a 
municipality has its area covered by more than one DSO, it is assumed that the DSO’s 
share of the municipality reflects the share of households in the municipality and 
subsequently the share of EVs. Arguably, this introduces some measurement error into 
the data, but we expect this error to be small, as 90 % of the municipalities have 95 % 
or more of their area covered by a single DSO. This means that observed EVs at 
municipal level are aggregated up to DSO level and weighted by area to the variable 
we call BEVs. 
The variables 

For this analysis we will conduct separate regressions with the different dependent 
variables; tot_cost and its sub-components opex, cap_cost, dep_cost, cens, and eloss_cost. 
Descriptive statistics of these variables are given in Table 1.  

The independent variables will be the DSO output variables subscribers, substations, and 
voltline and our main variable of interest BEVs. We expect the coefficients for the three 
DSO output variables to be positive for total costs and all the sub-components, as 
more output should ceteris paribus drive up costs.  

We exclude the variable substations as there could be cases where DSOs would build 
more substations to meet local capacity demand increases stemming from BEV 
charging. In such cases, the variable substations could be considered what Angrist and 
Pischke (2008) call a “bad control”. When bad controls are applied the coefficient 
estimates of the independent variables will be biased and lose their causal 
interpretation. It is not clear whether we should expect increases in EVs to drive 
increases in the number of substations (as it probably would be more common to 
reinforce existing ones). However, in order to stay on the safe side, we only include 
the variable substations in robustness checks with alternative specifications (we find out 
that including this variable has little or no impact on the estimates of interest).  

A linear model in absolute terms would give the easiest interpretation. Then, the 
interpretation would be “For every new BEV registered among the customers of the 
DSO, we can expect a EV�  NOK increase in the DSO’s cost, ceteris paribus”. However, 
the cost variables have very high numbers for skewness and kurtosis (see Table 1), 
making it less suited for OLS. This is not surprising given that the Norwegian DSO 
sector consists of many small operators and a few very large ones. Transforming the 
main cost variable to a cost-per-customer variable, or taking the logarithm gets it closer 

                                                 
5 These two data sets have also been combined in Orea, Álvarez, and Jamasb (2018) for the purpose 
of efficiency analysis using a spatial econometric approach. 
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to a normal distribution. The log-transformed cost variable is somewhat closer to a 
normal distribution compared to the per-customer transformation. This can be seen 
in the two bottom rows of Table 1. We therefore proceed with the log-log6 model in 
this paper, and use a per-customer model as a robustness check (see Appendix A).  
Table 1: Descriptive statistics 

 Mean 1st percentile Median 99th percentile Skewness Kurtosis 

Tot_cost 120 048 7 652 42 935 909 365 5.05 35.39 

Opex 62 234 4 445 24 281 415 189 5.78 45.90 

Cap_cost 20 433 809 6 361 207 649 4.29 25.46 

Dep_cost 21 733 816 7 231 217 133 4.04 22.44 

CENS 4 861 61 1 271 58 898 4.02 21.65 

Eloss_cost 10 786 342 2 928 89 277 6.74 58.96 

Subscribers 26 980 999 6957 208 411 6.57 54.79 

Voltline 932 51 339 7138 3.87 21.16 

Substations 1177 59 377 10 626 4.47 27.38 

BEVs 367 0 6 7900 14.98 276.80 

       

Tot_cost_per 
subscriber 6.53 3.10 6.29 12.90 0.96 4.41 

Ln_tot_cost 10.86 8.94 10.66 13.72 0.83 3.66 

Note: Cost figures in 1000 NOK. All costs are in 2015-prices. N = 1070 (107 DSOs over 10 years; 2008-2017). 

With a log-transformations of the model, along with the included variables gives us 
the following preferred model specification: 

(3) 
( ) ( ) ( )

( )
1 it 2 it

4 it t i it

log tot_cost =α+β log subscribers +β log voltline
+β log BEV � � (� � �

  

This equation includes DSO fixed effects i� , year dummies t�  and the random error 
term it( . As discussed above, time-invariant contextual variables ( iX ) drop out of our 
fixed effects analysis, and substations is not included because it is considered a bad 
control. 

3.3 Fixed effects regression 
In this paper we conduct a panel data analysis using a fixed effects regression model 
on a panel with annual data for 107 DSOs over the time period 2008-2017. This gives 
us a balanced panel containing in total 1070 observations. 

The goal is to investigate how the time varying explanatory variable BEVs influence 
the time-dependent endogenous variable tot_cost. A good way to do this is applying 

                                                 
6 For variables for which some values are zero for some DSOs in some years, we add a constant of 1 
(e.g. log_ev = log(BEVs+1)). 
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fixed effects regression, as the fixed effects will capture all time-constant variation, 
both time-invariant explanatory variables and unmeasured time-invariant variables 
(Mehmetoglu & Jakobsen, 2016, pp. 241-242). There has been large variation in when 
and where the growth in BEVs has taken place, making it a suitable candidate for such 
analysis. In 2008, more than 25 % of the DSOs had zero BEVs registered in their area, 
which grew to between 1 and 625 by 2017. On the other end of the spectrum, the 
single DSO with over a 1000 BEVs in 2008 saw the BEV stock grow to over 55 000 
in 2017. To illustrate this variation in status and growth, we show the distribution of 
BEVs in 2008 and 2017 in Figure 2. Because of the large differences in scale, we display 
these differences in status and growth of BEVs across DSOs in the form of BEVs per 
subscriber. 

 
Figure 2: Large variation in BEV numbers across DSOs and over time 

The fixed effects model will capture the variation from the time-invariant variables 
that NVE uses for regulation, some of which may have a relatively strong correlation 
with the number of BEVs. Most notably are perhaps Latitude, which we expect is 
negatively correlated with the number of BEVs as most of BEVs are registered in the 
southern half of Norway, and Temperature, which we expect is positively correlated with 
the number of BEVs as colder winters have a negative impact on the range of the 
BEVs (Figenbaum & Weber, 2017). In addition, there are unmeasured time-invariant 
variables that we expect to have an effect on both our explanatory variable of interest 
and the endogenous variable, so controlling for it in the fixed effects model reduces 
the problem of omitted variable bias. An example of this could be distances between 
populated areas within a DSO’s operational area, i.e. how sprawled people live. This 
can be expected to drive up DSO costs (need for more infrastructure per customer) 
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and drive down BEV demand as such distances would indicate a need for driving range 
that would make most BEVs less favorable.  

As for the question of reverse causality, there are a priori reasons to believe that this is 
unlikely. As we discussed in the previous section we expect higher BEV density to 
drive up the cost for DSOs, but even if higher costs for DSOs would lead higher tariffs 
for their customers, dramatic price hikes would be needed to make noticeable changes 
in EV demand. In the calculations in Wangsness (2018), the cost of electricity 
comprises about 15 % of the distance-based cost for EVs. And grid rent makes up less 
than half of the total electricity bill before taxes. And it is not certain that the DSO can 
pass on all of their cost increase to their customers, as they are regulated by a revenue 
cap based on yardstick competition with other DSOs. In other words, we expect BEVs 
to affect grid costs, and have very little feedback the other way around. 

4 Results 
Table 2 shows the effect of the size of the local BEV fleet on the total cost of the 
DSO, based on six different specifications. Table 4 presents estimates for each of the 
cost components. All of the models use robust standard errors clustered at DSO level, 
acknowledging that even though observations are assumed to be independent across 
DSOs, there could be correlation between yearly observations for the same DSO. 

Main results 

Table 2: Fixed effects regression on the relationship between BEV stock (log_ev) in a DSOs operational area 
and DSO costs (log_tot)  

 (1) (2) (3) (4) (5) (6) 
log_ev 0.013*** 0.011 0.018** 0.019** 0.014* 0.019** 
 (0.004) (0.007) (0.008) (0.009) (0.008) (0.008) 
       
log_subscribe 0.383** 0.326 0.967 0.840 0.534 1.154 
 (0.193) (0.245) (0.917) (1.117) (1.049) (1.001) 
       
log_voltline 0.291** 0.280* 1.698*** 1.706*** 1.526** 1.539** 
 (0.147) (0.146) (0.628) (0.635) (0.713) (0.726) 
       
log_subscribe2   -0.036 -0.029 -0.019 -0.047 
   (0.049) (0.061) (0.060) (0.052) 
       
log_voltline2   -0.131** -0.132** -0.114* -0.118* 
   (0.058) (0.059) (0.067) (0.065) 
       
log_ev2    -0.000   
    (0.001)   
       
_cons 5.594*** 6.173*** -0.197 0.283 2.595 -0.546 
 (1.616) (2.217) (4.310) (4.908) (4.392) (4.558) 
Year dummies No Yes Yes Yes Yes Yes 
Removed 
outliers 

No No No No Removed 3 
largest DSOs 

Removed 3 
smallest DSOs 

N 1070 1070 1070 1070 1040 1040 
r2_within 0.200 0.276 0.291 0.291 0.299 0.289 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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In the first column we report the results where we only control for the size of the 
customer base and kilometers of high voltage line. The estimated effect of log_ev is 
positive, as expected, and significant at the 1 % level. This is the naivest regression 
model where we do not control for any time effects. We provide more controls by 
adding year dummies in column 2. The estimated coefficient for log_ev is similar to that 
in column 1, but is statistically insignificant.  

The coefficient becomes significant in column 3, where we add the squared terms 
log_subscribe2 and log_voltline2 as controls. There is a good theoretical argument for 
testing whether these cost elements display declining cost elasticities, as DSOs are 
expected to show increasing returns to scale. After all, they are regulated as natural 
monopolies. As expected, the squared terms are negative. There is some correlation 
between the growth in BEVs and growth in high voltage line and customers, probably 
because the growth in the BEV stock has been highest in cities, that have the largest 
DSOs with the largest customer base and network of high voltage line. When we 
control for the increasing returns to scale for network and customers, we are better 
able to isolate the cost impact from BEVs. We also improve the explanatory power of 
the model (larger within R2).  

In column 4 we use the same model as in column 3, but we add the squared term 
log_ev2 to see if the cost elasticity for BEVs change significantly with changes in BEV 
stock. The estimated coefficient for log_ev2 is negative but close to zero, and highly 
insignificant. The size and precision of the coefficient for log_ev does not change much. 
We therefore proceed with column 3 as our preferred specification.  

Finally, in column 5 and 6 we test if the preferred model is robust to the removal of 
outliers. In the former column we have removed the three largest DSOs in terms of 
annual costs during the period 2008-2017. In the latter column we have removed the 
three smallest DSOs in terms of costs. In the former column the coefficient becomes 
somewhat smaller and less precise. In the latter column both the point estimate and 
standard error remains largely unchanged. The confidence intervals for the coefficient 
in these models largely overlap both each other and the original model, implying that 
the original model is relatively robust to removal of outliers. 

The point estimates from our preferred specification indicates that a 1 % increase in 
the number of BEVs in a DSOs area is associated with a 0.018 % increase in cost. In 
order to translate this into monetary value, we look at the median values for DSOs in 
2017. The median values were 44 mill. NOK (about €4.4 mill.) in total costs for about 
7300 customers with in total 78 registered BEVs. If this DSO experienced a  
10 % increase in BEVs in 2018 (8 cars), ceteris paribus, the model would predict about 
80 000 NOK increase in costs. This would translate into a cost of about 10 000 NOK 
per BEV imposed on the DSO, which can be considered economically significant. 
However, if these estimates are applied to the DSO with the highest BEV stock in its 
area, the cost per BEV is about 600 NOK. Such scale effects follow naturally from a 
log-log model with a coefficient between zero and one, as this implies a positive but 
declining marginal cost per BEV in absolute terms. However, a constant cost elasticity 
is a fairly strong assumption. We therefore investigate the heterogeneity in the effect 
from BEVs in different parts of the sample. 
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Heterogeneity 

As the example above illustrates, there is substantial heterogeneity among the DSOs. 
We will use the regressors from column 3 when investigating the heterogeneity in the 
results, which is shown in Table 3. 
Table 3: Fixed effects regression on the relationship between BEV stock (log_ev) in a DSOs operational area 
and DSO costs (log_tot). Heterogeneity test with sample splits along 3 dimensions 

 (1) (2) (3) (4) (5) (6) 
 (lower half 

customers) 
(upper half 
customers) 

(lower half 
BEV 
density) 

(upper half 
BEV 
density) 

(lower half 
costs per 
customer) 

(upper half 
costs per 
customer) 

log_ev 0.036*** 0.005 0.032** 0.008 0.015 0.032*** 
 (0.012) (0.009) (0.014) (0.011) (0.009) (0.011) 
       
log_subscribe 0.408 2.576 0.445 2.333** 0.011 1.779 
 (2.247) (1.729) (1.882) (0.965) (1.093) (1.877) 
       
log_voltline 1.111 -0.628 1.920** 0.798 2.049 1.086 
 (1.075) (2.207) (0.930) (0.913) (1.424) (0.987) 
       
log_subscribe2 -0.002 -0.104 -0.018 -0.086* 0.018 -0.078 
 (0.140) (0.084) (0.112) (0.050) (0.056) (0.113) 
       
log_voltline2 -0.067 0.022 -0.135 -0.077 -0.166 -0.072 
 (0.104) (0.154) (0.092) (0.082) (0.108) (0.096) 
       
_cons 2.828 -0.279 1.399 -4.839 3.287 -2.775 
 (8.477) (8.117) (7.096) (4.843) (5.977) (6.676) 
Year dummies Yes Yes Yes Yes Yes Yes 
N 540 530 540 530 540 530 
r2_within 0.315 0.314 0.287 0.333 0.264 0.343 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

In Table 3 we show split-sample heterogeneity7 in the regression results along the 
following dimensions; DSO size as measured by the number of customers, BEV 
density in DSO areas (average over the period of analysis) and cost per customer. We 
see that there is considerable heterogeneity in the results. The effect of BEV stock on 
cost seems to vary considerably between different parts of the sample, underlying our 
point earlier that a constant elasticity is a fairly strong assumption. If anything, the cost 
elasticity for accommodating BEVs seems to be declining. 

We find effects of BEVs on cost that are statistically significant and with point 
estimates almost twice as large in the sample halves with the fewest customers, lowest 
BEV density and highest cost per customer, compared to the full sample. The 
strongest effect is found in the sample half with lower-than-median number of 
customers. However, it is worth noting that these 54 DSOs serve less than 7 % of the 
total customers in the sample.  

                                                 
7 We split the sample at the median at any chosen dimension (customers, BEV density etc.) in order to 
investigate split-sample heterogeneity with the largest possible sub-samples. When we tested splitting 
the sample in three, we got very imprecise results. 



135 
 

In the other halves of the sample the estimated coefficient are closer to zero and far 
form statistically significant. This could indicate that at the levels observed until now, 
the cost elasticity for accommodating BEVs may be declining rather than constant. 
Since a constant elasticity between zero and one already implies decreasing marginal 
costs in absolute terms, a declining elasticity implies that the marginal cost decreases 
even faster as the BEV stock increases.  

Another possibility which has been mentioned in conversations with representatives 
from DSOs may complement the explanation that it is costlier for small, rural DSOs 
to accommodate BEVs. It could be costlier to accommodate BEVs in some rural areas 
where the need for investing in high capacity in all parts of the distribution grid has 
historically been relatively low. In such areas, if there is a need to upgrade parts of the 
old high voltage network or a distribution transformer to accommodate a few dozen 
BEVs, it may be a noticeable increase in total costs. We will look closer at this in the 
last part of this section. 

Regressions for cost components 

In Table 4 we investigate through which cost components BEVs contribute to higher 
costs. The first five columns show the major cost components sorted from left to right 
according to their relative importance for total costs.  
Table 4: Fixed effects regression on the relationship between the number of BEVs registered in a DSOs 
operational area and 5 different cost components  

 (1) (2) (3) (4) (5) 
 log_opex log_cap log_cens log _depres log_eloss_cost 
log_ev 0.020* 0.011 0.024 0.017 -0.026* 
 (0.011) (0.012) (0.032) (0.013) (0.015) 
      
log_subscribe 2.790** -0.216 -2.184 0.294 2.261 
 (1.303) (1.226) (3.497) (1.399) (1.699) 
      
log_subscribe2 -0.138** 0.022 0.137 -0.009 -0.058 
 (0.065) (0.064) (0.170) (0.076) (0.086) 
      
log_voltline 2.101** 0.044 6.063** 2.167 1.844 
 (1.016) (1.064) (3.025) (1.369) (1.338) 
      
log_voltline2 -0.181* 0.036 -0.453* -0.175 -0.116 
 (0.094) (0.097) (0.257) (0.128) (0.113) 
      
_cons -9.309 7.462 -4.251 0.497 -14.087** 
 (6.231) (6.443) (15.417) (7.004) (6.697) 
Year dummies Yes Yes Yes Yes Yes 
N 1070 1070 1070 1070 1070 
r2_within 0.163 0.833 0.127 0.513 0.199 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

In column 1 we find that BEVs have a positive and significant relation (at 10 % level) 
with DSOs’ operational costs. We also find a positive relationship between BEVs and 
capital costs in column 2, but this is not significant at the 10 % level. Given the 
operational costs share of total costs (see Table 1), it looks like it would be through 
this component where BEVs would have the strongest impact on total cost. We are a 
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bit surprised that BEVs would have a stronger effect on operational costs than capital 
costs on average, but it matches the experience of one of the DSOs with whom we 
have talked8. This is a relatively small DSO on the west coast of Norway, and they have 
had a few incidents over the last few years where they have upgraded their 
infrastructure more than they would otherwise have, because of BEVs. In some of 
these incidents they have received co-payments from customers for the hardware to 
upgrade the infrastructure, but all other costs (in particular labor costs) were registered 
as operational costs.  

In column 3 and 4 we also find small positive but highly non-significant effects on 
log_depres and log_cens, respectively. The results in column 5 may require some more 
explanation. Here we find a negative and significant (at the 10 % level) relationship 
between EVs and grid energy losses. A drop in energy losses for DSOs with many EV 
owners in their operational area could be consistent with these DSOs upgrading their 
infrastructure faster, meaning a faster upgrade from a 230 Volts grid to a 400 Volts 
grid. The energy losses are lower in an electric grid with higher voltage (Haugen, 
Haugland, Vingås, & Jonhnsen-Solløs, 2004).  

Alternative specifications 

We test some alternative specifications of the model in order to assess the robustness 
of our findings. We show these in Table 5.  

  

                                                 
8 In total we have had discussions with representatives from six DSOs; two relatively large, and four 
relatively small. Only one of them, one of the small ones, could confirm that BEVs had caused 
noticeable costs. 
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Table 5: Alternative specifications on fixed effects regressions on the relationship between BEV stock in a 
DSOs operational area and DSO costs   

 (1) 
FE 

(2) 
FE 

(3) 
FE 

(4) 
Difference approach 
over sample period 

log_ev 0.039* 0.018** 0.018** 0.045*** 
 (0.023) (0.008) (0.008) (0.012) 
     
log_subscribe 0.338 1.035 0.994 1.714 
 (1.196) (0.873) (0.921) (1.279) 
     
log_subscribe2 0.000 -0.044 -0.039 -0.078 
 (0.065) (0.046) (0.049) (0.073) 
     
log_voltline 1.533** 1.667*** 1.677*** 2.361** 
 (0.649) (0.630) (0.629) (1.162) 
     
log_voltline2 -0.117* -0.129** -0.130** -0.196* 
 (0.061) (0.058) (0.058) (0.105) 
     
log_ev x log_voltline -0.003    
 (0.003)    
     
wintertemp  0.000   
  (0.005)   
     
event  0.004*   
  (0.002)   
     
log_hh_inc  -0.409   
  (0.327)   
     
log_substation   0.025**  
   (0.012)  
     
_cons 2.869 5.200 -0.336 -0.207*** 
 (5.682) (6.458) (4.328) (0.067) 
Year dummies Yes Yes Yes No 
N 1070 1070 1070 107 
r2_within 0.292 0.296 0.291 0.186 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

In column 1 we add an interaction term between log_ev and log_voltline in order to 
investigate whether the marginal cost of accommodating more BEVs is higher for 
small DSOs in rural areas with little grid capacity (measured as km with high voltage 
line). We find that the marginal cost of more BEVs is decreasing in the amount of high 
voltage line (though not statistically significant), supporting that more capacity makes 
it less costly to accommodate more BEVs. This corroborates our interpretation of the 
main results and heterogeneity tests, and also the conversations with representatives 
from DSOs.  

In column 2 we add three new control variables that can be expected to impact DSO 
costs, although some of this impact is probably captured by the year dummies. The 
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variable wintertemp is a measure of average winter temperature in a given year at county 
level9. We expect lower winter temperatures to drive DSO costs upwards, and perhaps 
capture some of the costs per BEV, as lower average temperatures would generally 
require more electricity per BEV-km. However, the effect of this control variable is 
far from statistically significant. Based on conversations with representatives from 
DSOs we have also included extreme weather events as a control variable10, as many 
spikes in costs for different DSOs at different times can be attributed to such events. 
We see that event has a statistically significant impact on costs. We also add average 
household income (aggregated from municipal level data, retrieved from Statistics 
Norway) as a control variable. BEV growth could be correlated with variations in an 
underlying growth in power usage and demand for modern appliances that require 
more power capacity, like induction stoves. If this is true, then our estimated 
coefficients for log_ev would be biased upwards, overstating the effect. Ideally, we 
would like to control for household ownership of modern appliances and their power 
usage, but it is reasonable to expect that this should correlate with income. Figenbaum 
and Kolbenstvedt (2016) show at least that most BEV buyers until now have generally 
higher-than-median income. However, the control variable log_hh_inc is highly 
statistically insignificant. The addition of all these control variables does not affect the 
coefficient estimate for log_ev. 
In column 3 we introduce the variable log_substations. As discussed in Section 3, 
substations are an important part of regulators DEA calculation, but it is potentially a 
bad control when trying to estimate the impact of BEVs of cost. Compared to the 
preferred model, the coefficient for log_ev is largely unchanged. There still may be a 
theoretical argument for leaving log_substations out of the regression, but it does not 
seem to make much difference in practice. 

Finally, in column 4, we estimate the impact from BEVs using data aggregated over 
several years. Here, we look at the change over the entire sample period instead of 
year-to-year changes. We want to minimize the year-to-year noise in the data, so we 
take the average of the first three years of the sample (2008-2010) and the last three 
years (2015-2017). We then take the differences between these two averages and run 
the regression. With this specification we find a stronger and somewhat more precise 
relation between differences in BEV stock and differences in DSO costs, compared to 
the preferred model in Table 2. We find comparable results when using this alternative 
specification on capital costs and operational costs. These findings imply that the main 
findings are robust. 

5 Discussion and conclusions 
In this paper, we have used a complete dataset of Norwegian DSOs outputs, costs and 
registered BEVs in their operational area over the time period 2008-2017 to analyze 

                                                 
9 Retrieved from https://www.yr.no/klima/  
10. County-level data on extreme weather events according to the definition from the Norwegian 
Meteorological Institute: https://no.m.wikipedia.org/wiki/Liste_over_ekstremvær_i_Norge [In 
Norwegian. Last accessed October 1st 2019] 
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the effect increasing BEV numbers have on DSO costs. We have also investigated 
through which mechanisms, i.e. cost components, do we see this effect. 

The results of our preferred model specification show that an increase in the BEV 
stock in the operational area of a DSO is associated with an increase in local grid costs. 
This finding is robust to the addition of several controls and removal of outliers. The 
estimated cost increases are also economically significant, as they imply additional costs 
of several thousand NOK per BEV when the BEV stock is low. With a constant cost 
elasticity of 0.018, the per-BEV cost becomes relatively low when the stock has 
reached the higher levels in the sample. 

The results indicate that there is fairly large heterogeneity in the effect of BEVs on 
DSO costs. In particular, the effect is a lot smaller for DSOs that have a higher-than-
median number of customers, and over the period has had a higher-than-median BEV 
density. We tested whether the effect of BEVs could be higher in areas with less 
installed capacity, usually rural areas. The point estimates gave some support to this, 
but they were not very precise.  

The costs imposed on DSOs can be contrasted with the reduction in environmental 
costs from a one-to-one replacement of a conventional car with a BEV. The annual 
tailpipe emissions of a typical diesel car in Norway driving on average 12 140 km per 
year amounts to 1.7 tons of CO2, 7.9 kg of NOX and 150 grams of PM2.5 (Rødseth et 
al., 2020). According to Rødseth et al. (2020) this would be valued at about NOK 1060 
if all the driving was done in rural areas (with little exposure). However, it would be 
valued at NOK 4460 if all the driving was done in larger cities. The external costs of 
pollution are highest where we find the imposed grid costs to be lowest, namely in 
urban areas, suggesting that these are the areas with the highest social benefit-cost ratio 
of BEVs. 

The heterogeneity also indicates that costs imposed on DSOs by BEV owners, is not 
a problem that will affect a large number of consumers. The half of the sample with 
largest DSOs serve over 93 % of the customers in the entire sample. The effect of 
BEVs on costs in that sample half is a lot smaller than the full-sample estimate, and 
statistically insignificant. If BEV owners are imposing pecuniary externalities in the 
incomplete local grid market, these externalities do not seem to be very large for most 
Norwegians. A minority of unlucky DSO customers may have to bear some cost as 
their DSOs seem to have a hard time accommodating BEVs.  

When looking closely at individual cost components, we see that increases in BEV 
numbers are associated with statistically significant increases in operational costs, but 
statistically insignificant increases in other major components. We found this 
somewhat surprising, but it does corroborate the experiences of one of the DSO 
representatives we contacted during this project. 

The analysis in this paper should be revisited in later years as the stock of BEVs in 
Norway continues to grow. In this dataset the highest level of BEVs in any of the 
DSOs operational area amounts to 8.3 per 100 customers. Even though the cost of an 
additional BEV seems to be positive but decreasing up until now, it could be that when 
we reach substantially higher levels in a matter of years we would detect larger cost 
impacts, unless measures are put in place. It has gone relatively painless so far, as the 
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current BEV stock – the most concentrated in the world – has not yet substantially 
stress-tested the local grid in most places. In Section 2 we referred to NVE stress-test 
that found that if 70 % of normal neighborhood simultaneously charged BEVs during 
peak hours, they would expect overload for more than 30 % of the current substations. 
Norway is not there yet.  

It is worth noting a few caveats at the end. The main caveat is that our model captures 
the statistical relationship between DSO costs and the number of BEVs registered in the 
DSOs area. We do not have data on the charging behavior of the BEV-owners, or 
what kind of equipment they have installed. In addition, the number of registered 
BEVs in one DSO operational area does not need to correspond completely to where 
the BEV charging is taking place. There could be cases where DSOs experience costs 
from BEVs charging, but these are not BEVs registered in their area. This could e.g., 
apply to municipalities with many cabins, which typically lie in areas where the local 
grid is not dimensioned for high capacity11. Our model would not be able to pick up 
any of that cost if it is there. However, to include cabin owners with BEVs to the 
analysis could be an interesting venue for future research, when more data is available. 

Several papers have documented that the CO2 abatement costs from policies that 
promote a shift from conventional to electric cars are fairly large (see e.g., Bjertnæs, 
2016; Fridstrøm & Østli, 2017; Wangsness, 2018; Wangsness, Proost, & Rødseth, 
2018). These costs may come in the form of higher costs for a given quality level of 
the car stock, a loss in government revenue that has to be funded by distortionary taxes 
elsewhere, and higher congestion levels in cities because of low energy costs and low 
tolls. Should we in addition to these costs worry about BEVs imposing higher costs 
on the local grid and passing on the cost to all customers, and subsequently want the 
regulators to take action?  

As many economists before us, we expect there to be efficiency gains if the regulator 
allowed for a well-designed peak pricing system. That would incentivize more efficient 
use of local grid capacity with regards to all electric appliances, including BEVs. And 
with a fast-growing number of BEVs, the gains from introducing such a pricing 
scheme would be even larger. Many BEV owners would probably respond by installing 
smart charging systems, which would ease the household cost minimization and ensure 
more efficient grid capacity utilization, even with small hour-to-hour price differences.  

With regards to including “BEV stock” as a variable in the regulatory analysis, our 
cautiously optimistic interpretation of the findings suggest that this would be a bit 
premature. Although we find a statistically significant relationship between BEV stock 
and DSO costs, the marginal cost is positive but decreasing, and for the half of the 
DSOs that serve more than 93 % of the Norwegian customers, the point estimates are 
actually quite close to zero. DSOs and regulators should keep an eye on developments, 
but for now grid costs stemming from higher BEV ownership rates do not need to be 
at the top of their list of worries. 

 

                                                 
11 https://www.distriktsenergi.no/artikler/2019/1/16/elbilene-gjor-at-stromnettet-i-hytteomradene-
ma-oppgraderes/ [Electric cars leads to a need to upgrade the electric grid in cabin areas (Article from 
DistriktsEnergi in Norwegian, last accessed 05.12.2019)]  
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Appendix A: Regressions with a per-customer 
model 

As discussed in section 3, there was a need to transform the data because of the very 
skewed distribution of DSOs. The log-log transformation was preferred because the 
dependent variable was closer to a normal distribution than was a per-customer-
transformation. Still, a per-customer model can work as a robustness check. Table 6 
below is the counterpart of Table 2, but with a per-customer transformation. The 
variable of interest is EV_percent, which is the number of BEVs per 100 customers. 
Table 6: Fixed effects regression on the relationship between EV density in a DSOs operational area and 
DSO costs per customer (measured in 2015-NOK) 

 (1) (2) (3) (4) (5) (6) 
     (removed 

3 largest 
DSOs) 

(removed 3 
smallest 
DSOs) 

EV_percent 61.94** 52.40 42.45 23.00 24.80 39.48 
 (30.46) (44.27) (46.74) (98.96) (48.85) (47.55) 
       
1000subscribers -15.64*** -20.11*** -20.18*** -20.93*** -31.99** -20.12*** 
 (4.36) (4.98) (5.18) (4.62) (12.76) (5.35) 
       
Meters of high 
voltage line per 
subscriber  

42.35*** 49.38*** 6.69 5.95 -15.11 -3.95 
(15.58) (15.55) (54.61) (54.93) (48.16) (53.99) 

       
Meters of high 
voltage line per 
subscriber^2 

  0.27 0.28 0.46 0.32 
  (0.37) (0.37) (0.30) (0.36) 

       
EV_percent2    3.68   
    (11.59)   
       
_cons 4453.49*** 4034.52*** 5431.13*** 5471.29*** 6044.53*** 5818.63*** 
 (917.65) (922.36) (1826.46) (1837.35) (1761.20) (1814.01) 
Year dummies No Yes Yes Yes Yes Yes 
N 1070 1070 1070 1070 1040 1040 
r2_w 0.03 0.13 0.13 0.13 0.15 0.13 

Standard errors clustered at DSO level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

We find that the coefficient for EV_percent is positive under all specifications, just like 
we find with the log-log model. However, with the exception of the most naïve 
specification in column 1, we do not find any statistically significant effects from 
registered BEVs (per customer) on DSO costs (per customer). However, compared to 
the log-log model, the per-customer model does a worse job explaining the variation 
in the data. Given a choice between specifications, it is clear that the log-log model is 
preferable. 
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