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Predicting parton energy loss in small collision systems
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Medium induced parton energy loss is not conclusively established either in very peripheral heavy-ion
collisions or in proton-ion collisions. However, the standard interpretation of azimuthal momentum anisotropies
in these systems implies some partonic rescattering. The upcoming light-ion runs at the Large Hadron Collider
(LHC) provide a unique opportunity to search for parton energy loss in different systems of similar size. Here,
we make predictions for the expected parton energy loss signal in the charged hadron spectra in a system
size scan at LHC. We test a large set of model assumptions against the transverse momentum and centrality
dependence of the charged hadron nuclear modification factor in lead-lead and xenon-xenon collisions at the
LHC. We then attempt to make a model agnostic prediction for the charged hadron nuclear modification factor
in oxygen-oxygen collisions.
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I. INTRODUCTION

The observed factor 5 suppression of the charged hadron
nuclear modification factor Rh

AA in central
√

sNN = 130 GeV
Au-Au collisions at the Relativistic Heavy Ion Collider
(RHIC) marked the start of experimental energy loss studies
two decades ago [1,2]. Pb + Pb collision data from the Large
Hadron Collider (LHC) showed that this quenching increases
mildly with center-of-mass energy, and that nuclear modifi-
cations remain visible in hadron spectra up to the transverse
momentum p⊥ ≈ O(100 GeV) [3–6]. An important early
finding at RHIC was that (within experimental uncertainties)
quenching disappears in d + Au collisions where no dense
medium was expected to interact with high-p⊥ partons in
the final state [7–9]. This finding was later corroborated at
LHC where quenching is absent in TeV-scale pPb collisions
[10–13].

A reassessment of the conclusions drawn from these data
in small systems may be needed in the light of the recent LHC
discovery of strong collectivity (“flow”) in soft multihadron
correlations [14–17], and its confirmation in the subsequent
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analysis of small collision systems at RHIC [18,19]. Ac-
cording to the standard phenomenological interpretation, vn

measurements indicate significant final state interactions be-
tween colored degrees of freedom in small collision systems.
This raises the questions of why high-p⊥ energy loss effects
have escaped so far experimental detection in small systems
and how such effects could be revealed in future experiments.
To address this, our paper develops and documents parton en-
ergy loss models that extend to the smallest hadronic collision
systems.

Parton energy loss in the QCD medium was predicted
in the pioneering works of Bjorken [20] and of Gyulassy,
Pluemer and Wang [21,22]. It was given a first QCD-based
treatment by Baier, Dokshitzer, Mueller, Peigné, and Schifff
(BDMPS) [23,24], and by Zakharov (Z) [25,26], with later
refinements by others [27–29]. These works calculate, for
an arbitrary number of interactions with the medium, the
non-Abelian Landau-Pomeranchuk-Migdal (LPM) effect that
underlies medium induced parton splitting. The same LPM
effect was found independently by Arnold, Moore, and Yaffe
when developing an effective kinetic transport formulation
of hard degrees of freedom in QCD finite temperature field
theory [30,31]. Spurred by the measurement of quenched jets
(as opposed to quenched high-p⊥ hadrons) at the LHC, much
subsequent theoretical work aimed at extending the BDMPS-
Z formalism to multiparton final states, either by encoding jet
quenching in Monte Carlo simulations [32–38] or by extend-
ing the BDMPS-Z formalism to higher order in αs and thus
to higher number of medium induced gluons in the final state
[39–42].

In the present paper we focus on modeling the suppression
of high-momentum hadron spectra. Our starting point is a
particularly clean and simple reformulation of the BDMPS-
Z formalism due to Arnold [43] from which we determine
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the probability distribution of parton energy loss (“quench-
ing weight”) and the resulting hadron nuclear modification
factor following Ref. [44]. There have been several model
comparisons to quenched hadron spectra with the systematic
study of the centrality dependence of the nuclear modification
factor [45–52]. These works focus on the centrality in PbPb
and XeXe (AuAu) collisions at the LHC (at RHIC). Our
aim is to validate an energy loss model on this centrality
dependence and to use it for predicting nuclear modification
factors in the foreseen TeV-scale minimum bias collisions of
lighter nuclei, i.e., in oxygen-oxygen (OO) and argon-argon
(ArAr) collisions [53]. For the heavy quark nuclear modifica-
tion in small systems, a similar approach has been followed in
Ref. [54]. For the nuclear modification of jets, several studies
of pPb at the LHC [55–58] (see also Ref. [59]) arrived at
quenching effects that are larger than the current bounds set
by experiments. A community-wide study of future physics
opportunities for high-density QCD at the LHC [53] asked
for further modeling efforts, noting that current Monte Carlo
models of parton energy loss [34] may somewhat overpredict
medium effects in argon and xenon collisions.

Theoretical uncertainties in applying the BDMPS-Z for-
malism to quenched hadron spectra have been analyzed in a
community-wide study [60], and they have been included in
subsequent extractions of the jet transport coefficient q̂ from
data [47,61]. In addition, there are known event selection and
geometry biases that in peripheral AA collisions complicate
the model comparison of nuclear modification factors [62].
One qualitative conclusion of the present paper will be that
an energy loss model based on the BDMPS-Z formalism and
consistent with experimental data in PbPb and XeXe colli-
sions can result in sufficiently small nuclear modifications in
OO collisions that a high accuracy baseline is needed to detect
medium induced energy loss. In our companion paper [63] we
show that this is indeed possible.

In Sec. II, we shall provide a description of different build-
ing blocks of a parton energy loss model. We also comment
on the system size dependence of theoretical uncertainties.
Section III presents our results on momentum and system size
dependence of the charged hadron nuclear modification factor.
Because our simplified model does not take into account all
the details of modeling soft QCD medium evolution in heavy-
ion collisions, we vary various model assumptions to test the
robustness of our predictions. Although it is not the main
focus of our paper, we also checked the model predictions for
high-momentum hadron v2(p⊥). Our conclusions are given in
Sec. IV.

II. SIMPLE PARTON ENERGY LOSS MODEL

Most formulations of parton energy loss for single inclu-
sive hadron production start from the framework of collinearly
factorized perturbative QCD. In this framework, a generic
hadronic cross section can be schematically written as

σ h = PDFs ⊗ σ vac
g/q ⊗ FFs, (1)

where the perturbatively computable hard partonic [gluon (g)
and quark (q)] cross sections σ vac

g/q are convoluted with the
universal process-independent parton distribution functions

(PDFs) that describe the parton content of the hadrons and
with the hadronic fragmentation functions (FFs). This starting
point provides a systematically improvable baseline for calcu-
lating the spectra in the absence of medium effects.

Nuclear effects in Eq. (1) enter in two ways. First, the par-
ton distribution functions in ultrarelativistic colliding nuclei
differ characteristically from those in free protons, and hence,
the PDFs are replaced by nuclear PDFs (nPDFs) [64–68]. Sec-
ond, the partons leaving the high-momentum transfer vertex
of a nucleus-nucleus collision enter a dense QCD medium
that affects their parton shower. In the description of single in-
clusive hadron spectra, this is typically modeled by replacing
the hard partonic vacuum cross section by a medium-modified
differential parton cross section:

dσ med
g/q

dyd p2
⊥

=
∫

dεPg/q(ε)
dσ vac

g/q (p⊥ + ε)

dyd p2
⊥

. (2)

Here, Pg/q(ε) denotes the probability for a gluon (quark) with
momentum p⊥ + ε to lose ε of its transverse momentum prior
to being convoluted with the fragmentation function.

The nuclear modification of centrality averaged hadron
spectra is expressed as the ratio of charged hadron cross
sections in nucleus-nucleus (AA) collisions and pp collisions
scaled by A2, where A is the total number of neutrons and
protons in the nucleus:

Rh
AA(p⊥, y) = 1

A2

dσ h
AA/dyd p2

⊥
dσ h

pp/dyd p2
⊥

. (3)

The hadron nuclear modification factor is the main deliverable
of our simple energy loss model. We work at midrapidity |y| <

1 and drop the explicit y dependence in the following.
In the subsequent sections we describe in detail different

model assumptions entering Pg/q(ε) and how Eq. (3) is com-
puted in the presence of medium modifications.

A. Medium induced gluon radiation

Inelastic processes provide the most efficient mechanism
for degrading the energy of high-momentum partons. In mod-
els of radiative parton energy loss, these are described by
calculating the medium induced gluon emission rate dIg/q

med/dω

[21–29]. Following Ref. [44], the probability Pg/q(ε) is given
as a sum over the probability to emit n medium-induced
bremsstrahlung gluons ε = ∑n

i=1 ωi:

Pg/q(ε) =
∞∑

n=0

1

n!

[
n∏

i=1

∫ ∞

0
dωi

dIg/q
med

dωi

]
δ

(
ε −

n∑
i=1

ωi

)

× exp

(
−

∫ ∞

0
dω

dIg/q
med

dω

)
. (4)

The factorial accounts for an arbitrary ordering of the emis-
sions and the exponential normalizes the distribution to∫ ∞

0 dεP(ε) = 1.
Here, we use for the evaluation of the medium induced

gluon emission rate a particularly clean and transparent re-
formulation of the BDMPS-Z formalism due to Arnold [43].
For a high-energy parton of species s with energy E moving
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through a medium, we write [43]

ω
d
(
Is − Is

vac

)
dω

≡ ω
dIs

med

dω
= αs

π
xPs→g(x) ln |c(0)|, (5)

where x is the momentum fraction carried by the emitted
gluon, and s = g/q denotes the species of the emitting par-
ton. In the vacuum, this gluon emission is dictated by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi vacuum splitting
function Ps→g. The factor ln |c(0)| determines to what extent
the gluon emission rate dIs in the medium differs from that in
the vacuum. The entire BDMPS-Z formalism can be reduced
to the problem of determining |c(0)| from the function c(t ),
which satisfies the differential equation [43]

d2c

dt2
= −ω2

0(t )c(t ) (6)

with the boundary condition that c(t ) → 1 and c′(t ) → 0 for
t → ∞. Here, the complex frequency ω0(t ) is given in the
small x � 1 limit by

ω2
0(t ) = −i

(1 − x)CA + x2Cs

2x(1 − x)E
ˆ̄q ≈ −i

CA

2ω
ˆ̄q(t, �x(t )), (7)

where ω = xE is the energy of the radiated gluon. For small x
we have xPs→g(x) ≈ Cs.

All information about the interaction with the QCD
medium enters the formalism via the quenching parameter ˆ̄q
in Eq. (7). This parameter, multiplied by the Casimir Cs of
the corresponding color representation of the energetic par-
ton, characterizes the average transverse momentum squared
q̂ = Cs ˆ̄q that is transferred due to soft interactions from the
QCD medium to the energetic parton per unit path length.
To leading order (LO) in the weak coupling expansion, ˆ̄q is
independent of the particle species. It depends in general on
the local density that the medium has at time t at position
�x(t ), where �x(t ) is the trajectory of the hard parton through
the medium. In this way, information about the density of the
soft QCD medium and its time evolution enters the calculation
of modified high-p⊥ hadron spectra.

B. Background temperature parametrization

Many sophisticated hydrodynamic models exist for the
evolution of the bulk QCD medium that have been validated
phenomenologically against soft physics data in central and
semiperipheral collisions. In principle, any of these models
could be interfaced with the present formalism via a sim-
ple prescription that determines ˆ̄q(t, �x(t )) from the soft bulk
quantities evolved. However, in very peripheral collisions
of 90% centrality and light-ion collisions (with number of
participant nucleons 〈Npart〉 ≈ 10) the assumptions about the
fluid dynamic evolution of QCD matter may become more
questionable.

Without entering a detailed discussion about the system
size dependence of the soft physics modeling [69], we employ
a particularly simple setup of the QCD medium evolution
in which the system size dependence is given in terms of a
few parameters. We will subsequently vary the background
evolution to gain insight into the robustness of the parton
energy loss signal. For background temperature evolution

T (τ, �x⊥) we use a one-parameter (opacity γ̂ ) solution of a
conformal kinetic theory in relaxation time approximation
that interpolates between free streaming γ̂ = 0 and perfect
fluidity γ̂ = ∞ [70]. The spatiotemporal temperature profile
is given by

T (τ, �x⊥) = T∗T̄ (τ/R, �x⊥/R)θ (T − TF ), (8)

where T̄ is a scale invariant solution of the kinetic theory
and dimensionful constants T∗ and R define the temperature
normalization and radial size of the system. For different cen-
trality classes and collision systems the radius R is calculated
from the entropy density profile s(x⊥), which we obtain from
the TRENTO initial state model [71]:

R2 =
∫

d2x⊥(�x⊥ − 〈�x⊥〉)2s(�x⊥)∫
d2x⊥s(�x⊥)

. (9)

Furthermore, we fixed the temperature normalization T∗ to
reproduce the centrality dependence of the total entropy
dS/dy = ∫

d2x⊥s(x⊥), i.e.,

T∗ ∝
(

dS/dy

R2

)1/3

. (10)

As a reference value, we choose to set the temperature at the
origin in 0–10% PbPb collisions at time τref = 0.6 fm/c to be
T (τref, 0) = 485 MeV (corresponding to a typical temperature
in hydrodynamic simulations of 0–10% PbPb collisions at√

sNN = 5.02 TeV). We note that none of the predictions of
our models depend on the specific choice of T (τref, 0) as
it can be reabsorbed in the quenching parameter ˆ̄q. The θ

function in Eq. (8) implements the model assumption that the
medium modifications of hard partons cease at freeze-out at
TF = 175 MeV. We include interactions between hard partons
and the medium for τ > τ0 = 0.05 fm/c. Kinetic solution T̄
is given for times τ � 0.06R, so if needed the temperature
is back-extrapolated to τ0 = 0.05 fm/c using τ−1/3 scaling.
The centrality dependencies of dS/dy and R are tabulated
in Appendix A. We choose the kinetic theory solution with
an opacity γ̂ = 16 which corresponds to an almost perfect
(η/s ≈ 1/4π ) fluid in central

√
sNN = 5.02 TeV PbPb colli-

sions [70]. We compare this fluid limit to the case of free
streaming (opacity γ̂ = 0).

In addition to the azimuthally symmetric profile Eq. (8),
we model the elliptical deformation of the background profile
in off-central nucleus-nucleus collisions. This is achieved by
adding a linearized kinetic theory solution of an elliptic back-
ground perturbation [70]. The magnitude of such deformation
is fixed by the eccentricity in the initial conditions (see Ap-
pendix A).

The above formulation of background evolution clearly
aims at simplicity rather than completeness. However, we
checked by drastically changing the temperature evolution
in Eq. (8) that the main conclusions about the system size
dependence of the nuclear modification factor Eq. (3) do not
change significantly (see Sec. III B). Of course, this does not
mean that other observables are not sensitive to these details
(see Sec. III C), but we leave a more refined description of the
background evolution to future works.

054903-3



ALEXANDER HUSS et al. PHYSICAL REVIEW C 103, 054903 (2021)

FIG. 1. A typical background temperature profile at 15% cen-
trality at τ = 1 fm/c. The arrows correspond to the starting location
and direction of the sampled partons used to determine the nuclear
modification factor, Eq. (3).

C. Embedding hard partons in a medium

The quenching parameter ˆ̄q is determined by the temper-
ature profile along the trajectory �x(t ) of a particular particle:

ˆ̄q(t, �x(t )) = d [T (t, �x(t ))]3. (11)

Here, the proportionality factor d is a model parameter that
will be adjusted to reproduce the medium induced suppression
of single inclusive hadron spectra in central PbPb collisions
at p⊥ ≈ 50 GeV [we keep αs = 0.3 constant in Eq. (5)]. It
is Eq. (11) that relates the modeling of the QCD evolution
and the geometrical embedding of parton trajectories in that
medium to the actual dynamics of parton energy loss.

Hard partons are assumed to be produced in binary scatter-
ings and to follow eikonal trajectories in the plane transverse
to the beam:

�x(t ) = �x0 + �vt, with v2 = 1. (12)

For boost invariant medium evolution we can always find such
a frame. The distribution of production vertices �x0 is set to
reproduce the (hard) rms radius Rh of binary nucleus-nucleus
collisions obtained from the product of the nuclear thickness
functions of the two nuclei in the TRENTO model (see Ap-
pendix A). We discretize the velocity angle and initial radial
location of the hard particles as shown in Fig. 1. A linear grid
in radial coordinate ρ with

ρ = 1 − exp[−(r/Rh)2] (13)

leads to a Gaussian distribution of hard particles in the physi-
cal r coordinate. The values of Rh and 〈Ncoll〉 are documented
in Appendix A. For each collision system and centrality, the
nuclear modification factor Eq. (3) is obtained by averaging

FIG. 2. Green lines show the ratio of gluon and quark contri-
butions to the inclusive charged hadron cross section in pp, OO,
and PbPb collisions at

√
sNN = 5.02 TeV. Orange lines show the

corresponding gluon to quark ratios before fragmentation.

the energy loss of hard partons over the ensemble of starting
locations and velocities shown in Fig. 1. We obtain minimum
bias results by taking the Ncoll-weighted average over ten
centrality classes.

D. Vacuum parton and hadron spectra

In the absence of parton energy loss, the single inclusive
hadron (parton) spectra can be calculated in collinearly fac-
torized perturbative QCD according to Eq. (1). For the proton
reference spectrum, we take PDFs provided by CT14 [72] and
for oxygen and lead nuclei we use nPDFs derived from EPPS16
global fit [64]. We convolute the PDFs with LO QCD scat-
tering matrix elements to produce the vacuum spectra dσ vac

g/q
of quarks and gluons (for the nuclear modification factor, the
difference between LO and next to leading order results is
negligible [63]). The charged hadron cross section is obtained
from the partonic one by the convolution with the quark and
gluon fragmentation functions Dg/q

h using Binnewies-Kniehl-
Kramer (BKK) parametrization [73]:

dσ h,vac
g/q

d p2
⊥

=
∫ 1

0

dz

z2
Dg/q

h (z)
dσ vac

g/q (p⊥/z)

d p2
⊥

, (14)

where z is the momentum fraction of the parton that is carried
by the leading hadron. We use the LHAPDF6 interpolator for
evaluating PDFs and FFs [74]. Details of the computation are
summarized in Appendix B.

In Fig. 2 we show the ratio of quark and gluon fragmen-
tation contributions to the inclusive charged hadron (parton)
cross section at

√
sNN = 5.02 TeV for different collision sys-

tems, i.e.,

r(p⊥) = dσ h,vac
g /d2 p⊥

dσ h,vac
q /d p2

⊥
. (15)

Although gluons dominate the partonic spectra at momenta
up to p⊥ ≈ 300 GeV, they fragment to softer hadrons than
quarks and therefore the hadron spectrum is dominated by
quark fragmentation already at p⊥ > 70 GeV. r(p⊥) does not
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FIG. 3. The blue lines show the hadron nuclear modification
factor Eq. (16) for OO (A = 16) and PbPb (A = 208) collisions in the
absence of parton energy loss. Deviations from unity indicate nPDF
effects (nPDF uncertainties not shown). We also show rescaled PbPb
modification with number of participant nucleons, where 〈NOO

part〉 ≈
10.4 and 〈NPbPb

part 〉 ≈ 114. Red lines show the corresponding partonic
nuclear modification factors before fragmentation.

change significantly between pp and AA collisions (in the
absence of energy loss), although the nPDF modifies the abso-
lute yields. We computed such “vacuum” nuclear modification
factor

Rh,vac
AA (p⊥) = 1

A2

dσ h,vac
AA /d p2

⊥
dσ h,vac

pp /d p2
⊥

(16)

for hadrons and partons in OO and PbPb collisions (see
Fig. 3). We emphasize that here we take the central values
of nPDFs [64]. Within current nPDFs uncertainties, the mod-
ifications shown in Fig. 3 are consistent with zero for most
of the kinematic range. Taking into account such uncertain-
ties (and constraining them with further data) is crucial for
disentangling the different sources of nuclear modification in
comparison to experimental data. We address this question in
detail in our companion paper [63], so we will not discuss
nPDF uncertainties further here.

We see that nPDF effects become smaller with decreasing
A. We find empirically that the nPDF contribution to the
nuclear modification scales well with (〈Npart〉 − 2)1/4, where
〈Npart〉 is the average number of participant nucleons. As
nPDF effects are expected to be smaller in peripheral colli-
sions [75], we use our empirical scaling to estimate the nPDF
effects in centrality selected events. For each centrality class
we take this factor to be

Rh,vac
AA (p⊥)

∣∣
cent − 1

Rh,vac
PbPb (p⊥)

∣∣
min bias − 1

= k( 〈Npart〉|cent − 2)1/4, (17)

where k = 0.25 is a normalization such that for PbPb the
Ncoll-weighted centrality average reproduces the minimum
bias nuclear modification factor.

FIG. 4. Top: The probability of medium-induced bremsstrahlung
ωdIg

med/dω for a hard gluon starting from the center of the collision
system for PbPb (solid lines), OO (dashed lines), and pPb (dotted
lines). The blue (steeper) and the red (more gradual) lines corre-
spond to asymptotic solutions Eqs. (21) and (23), respectively. The
frequency where the two asymptotic rates are equal defines ωkink

that is for these systems approximately at ωPbPb
kink ≈ 6.6 GeV, ωOO

kink ≈
1.0 GeV, and ω

pPb
kink ≈ 0.7 GeV. (Here we have chosen ˆ̄q/T 3 = 2.46.)

Bottom: Integrand of the shift function Eq. (33). The area under the
curves represents contributions to Sg by gluon emission at different
energy scales for the final hadron with p⊥ = 100 GeV (thin line,
p⊥ = 50 GeV) and 〈zn〉 ≈ 3. The vertical lines correspond to ωkink;
the shaded region corresponds to ω < 500 MeV.

E. System size dependence of parton energy loss

For any generic quenching parameter Eq. (11) associated to
a particular parton trajectory Eq. (12) through a QCD medium
of given temperature profile Eq. (8), we can solve numerically
the differential equation Eq. (6) and we can thus determine the

medium-modified gluon energy distribution ω
dIg

med
dω

in Eq. (5).
For trajectories starting in the center of central PbPb, OO,
and pPb collisions, the resulting medium induced gluon rates

ω
dIg

med
dω

are illustrated in the top panel of Fig. 4. The main
qualitative characteristics of these numerical results can be
understood by considering the following limiting cases [43].

(1) For transparent systems, i.e., small ˆ̄q, Eq. (6) can
be solved iteratively around the vacuum solution
cvac(t ) = 1:

ln |c(0)| = 1
2 |c1(0)|2 + c2(0), (18)
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where

c1(t ) = i
CA

2ω

∫ ∞

t
dt ′ (t ′ − t ) ˆ̄q(t ′, �x(t ′)), (19)

c2(0) = i
CA

2ω

∫ ∞

0
dt t ˆ̄q(t, �x(t ))c1(t ). (20)

The resulting emission rate is

ω
dI transp.

med

dω
∝ αs

ω2

[∫ ∞

0
dt t ˆ̄q(t, �x(t ))

]2

. (21)

(2) For large (opaque) slowly varying systems with
|ω̇0(t )| � |ω2

0(t )|, Eq. (6) can be solved using adia-
batic approximation c(t ) ≈ exp [i

∫ ∞
t dt ′ω0(t ′)]. The

solution is

ln |c(0)| =
√

CA

2
√

ω

∫
dt

√
ˆ̄q(t, �x(t )) (22)

for which

ω
dIopaq.

med

dω
∝ αs√

ω

∫ ∞

0
dt

√
ˆ̄q(t, �x(t )). (23)

Comparing the parametric estimates Eqs. (21) and (22),
one finds that the crossover between these two limiting cases
occurs at a frequency ωkink:

ωkink ∝
[∫ ∞

0 dt t ˆ̄q(t, �x(t ))
]4/3

[∫ ∞
0 dt

√
ˆ̄q(t, �x(t ))

]2/3 . (24)

In the upper panel of Fig. 4 we illustrate the characteristic
interpolation between the non-Abelian Landau-Pomeranchuk-
Migdal (LPM) ω−1/2 power law of Eq. (22) in the limit of soft
gluon energies, ω � ωkink, and the ω−2 power law Eq. (21)
of the opacity expansion for ω � ωkink. As the integrals in
Eq. (24) depend on the in-medium path length and the density
of the system, ωkink depends on the QCD medium produced in
the collision and is larger for systems of larger geometrical ex-
tent and/or larger density (see caption of Fig. 4 for numerical
details).

F. Quenching of the hadron spectrum

Having calculated for each trajectory Eq. (12) the medium-
induced gluon rate ω dImed

dω
as illustrated in the upper panel of

Fig. 4, we determine the corresponding probability P(ε) of
parton energy loss in Eq. (4). To characterize the impact of
parton energy loss, we consider the ratio of partonic medium
modified and vacuum cross sections, i.e., the quenching factor
[44]

Qg/q(p⊥) = dσ med
g/q (p⊥)/d p2

⊥
dσ vac

g/q (p⊥)/d p2
⊥

=
∫

dεPg/q(ε)
dσ vac

g/q (p⊥ + ε)/d p2
⊥

dσ vac
g/q (p⊥)/d p2

⊥
. (25)

FIG. 5. Top: Spectral index for gluons (upper curves) and quarks
(lower curves), Eq. (28). Bottom: The reduced exponent Eq. (30) for
fragmented gluons and quarks.

For ε � p⊥ we can approximate1

Qg/q(p⊥) ≈
∫

dεPg/q(ε)e−ng/q (p⊥ )ε/p⊥ (27)

where ng/q(p⊥) is the spectral index:

ng/q(p⊥) = −d log
[
dσ vac

g/q (p⊥)/d p2
⊥
]

d log p⊥
. (28)

Note that partonic spectra are falling steeply with n � 5 in the
kinetic regime 20 < p⊥ < 1000 GeV relevant for our study
(see Fig. 5).

In close analogy to Eq. (25), we define also the suppression
of charged hadrons due to parton energy loss by the ratio

Qh
g/q(p⊥) = dσ med

h,g/q(p⊥)/d p2
⊥

dσ vac
h,g/q(p⊥)/d p2

⊥
, (29)

where σ vac
h is the single inclusive charged hadron cross sec-

tion in vacuum, and σ med
h is the corresponding quantity with

1We employ an alternative rewrite of the Taylor series

f (x) = exp
∞∑

n=0

xn

n!

∂n log f (x)

∂nx
. (26)
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medium included modifications. Fragmented hadrons are pro-
duced at softer momenta, which results in the partonic cross
section effectively changing momentum by a factor of z ≈
0.5, i.e., σ vac

g/q (p⊥)/d p2
⊥ ≈ σ vac

h,g/q(0.5p⊥)/d p2
⊥. Analogously

we can write the result in exponential form Eq. (27) with
reduced exponent2

〈zng/q〉(p⊥) =
∫ 1

0
dz
z2 Dg/q

h (z)zng/q(p⊥/z)dσ vac
g/q (p⊥/z)/d p2

⊥∫ 1
0

dz
z2 Dg/q

h (z)dσ vac
g/q (p⊥/z)/d p2

⊥
(30)

where typically 〈zn〉 ≈ 3. In Fig. 5 we display the momentum
dependence of 〈zng/q〉 for hadrons produced by quark and
gluon fragmentation.

The exponential form of Eq. (27) allows for a particu-
larly simple evaluation of the integral over the probability
distribution Eq. (4). For large hadron momentum the medium
modification of the hadron spectra is proportional to the mean
energy loss:

Qh
g/q(p⊥) ≈ 1 − 〈znq/g〉

p⊥
〈ε〉 + · · · (31)

For generic p⊥, the result can be expressed with a shift func-
tion Sg/q(u) as

Qh
g/q(p⊥) = exp

[
−〈znq/g〉

p⊥
Sg/q(〈zng/q〉/p⊥)

]
, (32)

where Sg/q(u) denotes the energy loss due to multiple
medium-induced gluon emissions [44]:

Sg/q(u) = 1

u
log

∫ ∞

0
dεPg/q(ε)e−uε

=
∫ ∞

0
dω

1 − e−uω

uω
ω

dIg/q
med(ω)

dω
. (33)

As discussed in Sec. II E, the characteristic emission energy

ω
dIg/q

med
dω

has a UV cutoff at ωkink, Eq. (24), therefore if uωkink �
1 (which is usually the case) the energy loss Eq. (33) be-
comes proportional to the integral over the gluon emission rate
ω dImed

dω
. From Eq. (23) one finds for the quenching weight the

parametric form

log Qh
q/g ∝ −αs

〈zng/q〉
p⊥

√
ωkink

∫ ∞

0
dt

√
ˆ̄q(t, �x(t )). (34)

In the following, the quenching factor will be calculated using
the full integral Eq. (33).

Finally, the hadron nuclear modification factor can be com-
puted by multiplying the nPDF modification, Eq. (16), with
appropriately weighted quark and gluon quenching factors for
the hadron spectra:

Rh
AA = Rh,vac

AA (p⊥)

1 + r(p⊥)

[
Qh

q(p⊥) + Qh
g(p⊥)r(p⊥)

]
, (35)

where the r(p⊥) ratio is given by Eq. (15).

2The approximation amounts to assuming 〈zn〉 = 〈z〉n. By doing the
fragmentation of the quenched partonic spectra in Eq. (29) directly,
we verified that this does not qualitatively alter the nuclear modifica-
tion factor.

G. Model applicability in small collision systems

Parton energy loss models have been applied so far to
relatively large collision systems. Here we ask whether the
parametric range of applicability of the parton energy loss
model extends to smaller systems like inclusive OO collisions
or even pPb collisions.

The BDMPS-Z formalism was developed for the emission
of sufficiently energetic gluons to which a perturbative rea-
soning applies. To establish to what extent this condition is
met in our model calculations, we show in the lower panel
of Fig. 4 the integrand of the energy loss function Eq. (33)
for typical model parameters of collision systems of different
size, and for typical hadronic transverse momenta p⊥ = 50
and 100 GeV considered in the following. The integrand of
Eq. (33) depends only weakly on p⊥ in the kinematical range
of phenomenological interest, and the scale ωkink is seen to
characterize the peak of the integrand for all collision systems.
In calculations we consistently assumed ω � p⊥, which is
approximately fulfilled for p⊥ > 50 GeV in the largest colli-
sion systems and holds for much lower momentum in smaller
systems. The characteristic energy of medium induced gluon
radiation ωkink decreases with decreasing density and geomet-
ric extent of the system, and the integral Eq. (33) receives
an increasing contribution from very soft gluon emission for
which the validity of our model becomes questionable. We
note however that the extrapolation to small systems shown
in Fig. 4 is smooth and roughly half of the computed energy
loss can be attributed to radiation with ω � 1 GeV for OO
collisions. With these considerations we take a pragmatic
approach of basing a first exploratory study of the system size
dependence of parton energy loss on a BDMPS-Z formalism
that is not modified with additional assumptions for small
systems.

We mention as an aside that we have performed other
consistency checks of our model setup. In particular, the dis-
cussion above assumed x � 1. We checked that relaxing this
approximation has only mild effects on the results in Fig. 4
(data not shown). Within the model uncertainties quoted in the
present paper, these are negligible, and we do not discuss them
further. We also checked that the phenomenological practice
of mapping parton energy loss of a dynamically evolving
QCD medium onto a parton energy loss calculation for a static
brick of suitably chosen quenching parameter describes, over
the entire ω range, the energy loss curve in Fig. 4 within 5%
accuracy. We do not employ this observation to simplify our
calculation, but we note it here since it implies that our results
could be reproduced in other existing approaches.

III. RESULTS

We now compare results of the parton energy loss model
described above to the measured centrality and momentum
dependence of the charged hadron nuclear modification fac-
tor Rh

AA(p⊥) in PbPb and XeXe collisions at the LHC. We
then predict the nuclear modification factors in minimum bias
pPb, OO, and ArAr collisions, and centrality selected OO
collisions. We test the robustness of these results by varying
model assumptions. Finally, we discuss to what extent parton
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FIG. 6. The nuclear modification factor Rh
AA for different cen-

trality averaged collision systems (curves follow the ordering of the
legend). Normalization uncertainties in PbPb, XeXe, and pPb data
are shown as boxes [76,77].

energy loss can account for the observed azimuthal mo-
mentum anisotropy v2(p⊥) at sufficiently high transverse
momentum within our setup.

A. System size and momentum dependence

If the temperature profile of the QCD medium is fixed, the
only remaining unconstrained parameter of the parton energy
loss model of Sec. II is the proportionality factor d that sets
the value of the quenching parameter ˆ̄q in units of T 3 in
Eq. (11). We adjust d such that the model reproduces the mea-
sured centrality averaged hadron nuclear modification factor
Rh

AA(p⊥ = 54.4 GeV) = 0.658 ± 0.065 in
√

sNN = 5.02 TeV
PbPb collisions at the LHC (see Fig. 6). The resulting central
value is d = ˆ̄q/T 3 = 3.63. Variation of the model parameter
in the range d = ˆ̄q/T 3 ∈ [2.72, 4.54] spans the Rh

AA(p⊥ =
54.4 GeV) values within the 1-σ experimental uncertainties.

Once the overall normalization of ˆ̄q is thus fixed, the p⊥
dependence of Rh

AA(p⊥), its dependence on centrality, and its
dependence on the nucleon number A in centrality averaged
collisions are model predictions. Figure 6 shows that the
model describes well the observed p⊥ dependence in central-
ity averaged PbPb and XeXe collisions. Here the error bands
account only for the above mentioned variation of ˆ̄q/T 3. The
same figure also shows model predictions for minimum bias
OO and ArAr collisions at

√
sNN = 5.02 TeV.

In Fig. 6 we also compare the same model to measure-
ments of the nuclear modification factor in pPb collisions. At
p⊥ ≈ O(100) GeV the model predicts a slight enhancement
of Rh

pPb indicating that the nuclear modification of the PDFs in
the antishadowing region is numerically more important than
the small parton energy loss [64]. We note that within current
theoretical and experimental uncertainties no firm statement
about the discrepancy between data and model predictions for
pPb shown in Fig. 6 can be made.

Up to now we followed the standard assumption that parton
energy loss is negligible in pp collisions. To check the internal
consistency of our model we estimated the expected energy
loss in pp collisions. The yellow band in Fig. 6 shows the

FIG. 7. Comparison of the minimum bias hadron nuclear modifi-
cation factor in OO collisions at

√
sNN = 5.02 TeV (upper band) and√

sNN = 7 TeV (lower band).

ratio of hadron spectra with and without the medium effects.
In light of other model uncertainties, this assumption seems
justified.

In Fig. 7 we show how the nuclear modification factor
in centrality averaged OO collisions evolves from

√
sNN =

5.02 to 7 TeV—the projected center-of-mass energy of the
upcoming OO run at the LHC [53]. The effect of changing
collision energy is twofold. First, an increase in

√
sNN shifts

the nPDF effects to higher transverse momentum. Second, the
soft medium produced in the collision also depends on the
collision energy. Here, we model this by assuming T∗ ∝ s0.05

NN
in Eq. (8), which is motivated by the charged particle multi-
plicity dependence on center-of-mass energy [78].

In Fig. 8 (Fig. 9) we compare the p⊥ and centrality de-
pendence of the charged hadron nuclear modification factor
in our model and measured data at

√
sNN = 5.02 TeV PbPb

(
√

sNN = 5.44 TeV XeXe) collisions. The p⊥ dependence
of Rh

AA(p⊥) mainly stems from the steeply falling particle
spectra, while the centrality dependence is driven by the in-
medium path length [see Eq. (34)]. As seen in Figs. 8 and 9,
the model reproduces without any parameter adjustment both
the p⊥ and centrality dependence of Rh

AA between 0 and 70%.
At very high p⊥ the fractional energy lost by the parton is
small and Rh

AA is dominated by nPDF effects. We note that sys-
tematic normalization uncertainties in the experimental data
are shown by blue (green) boxes, which increase to ≈15%
(≈30%) in the most peripheral bin. If these are taken into
account, the tension between data and model results visible
in the 70–90% (70–80%) centrality bin lies within the 2-σ
uncertainty band. We note however that no parton energy loss
model of BDMPS-Z type contains physics that could account
for a stagnation or an increase of the suppression as the system
size and the energy density reduce from the 50–70% to the
70–90% (70–80%) centrality bin.

We note that our model predictions of minimum bias in-
clusive nuclear modification factors in OO collisions address
the same 〈Npart〉 ≈ 10 range as 70–90% (70–80%) peripheral
PbPb (XeXe) collisions. Measuring Rh

AA in OO collisions is
a much wanted independent test of the expected system size
dependence of parton energy loss, that is free of assumptions
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FIG. 8. The charged hadron nuclear modification factor Rh
AA in

√
s = 5.02 TeV PbPb collisions shown in six centrality bins. Results of the

parton energy loss model of Sec. II are compared to data from Ref. [76]. Blue (red) boxes indicate systematic experimental uncertainties in
nuclear thickness 〈TAA〉 (luminosity) that affect the normalization of Rh

AA.

about the modeling of the soft physics that enter the baseline
of peripheral Rh

AA measurements. We scrutinize the potential
of discovering energy loss in small systems in our companion
paper [63].

B. Robustness of model predictions

In the previous section we showed the results of a simple
energy loss model based on the BDMPS-Z energy loss for-
mula of hard partons in a kinetically evolved background. The
system size dependence was modeled by the TRENTO initial

state model and we included nPDF and fragmentation effects.
Although this setup is well motivated, many of the model
assumptions have not been independently constrained. There-
fore we now stress test the robustness of model predictions by
varying different model assumptions in the same framework.

1. Summary of models considered

First, to understand the relative importance of nPDF, sys-
tem size modeling, and fragmentation effects on our results,

FIG. 9. The charged hadron nuclear modification factor Rh
AA in

√
s = 5.44 TeV XeXe collisions shown in six centrality bins. Results of the

parton energy loss model of Sec. II are compared to data from Ref. [77]. The green boxes indicate systematic normalization uncertainty in the
measurement of Rh

AA (as a fraction of Rh
AA).
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we consider four unphysical setups with some of these model
components switched off.

(1) Minimal. In this minimal implementation, the isotropic
background geometry is scaled according to optical
Glauber R and 〈Npart〉. Energy loss is modeled only for
gluons and no nPDF or fragmentation effects are in-
cluded. In essence, the gluon quenching factor Eq. (27)
with ng = 6 is used as a proxy for Rh

AA.
(2) Anisotropic. The same as Minimal, but the system size

dependence of R and 〈Npart〉 is now modeled using the
TRENTO initial state model and we include the average
elliptic deformation of the background.

(3) nPDF. The same as Minimal, but nPDF effects are in-
cluded. That is, the (partonic) gluon quenching factor
is multiplied by “vacuum” (partonic) Rvac

AA shown in
Fig. 3. The centrality dependence of nPDF effects is
scaled with ∝〈Npart − 2〉1/4 [see Eq. (17)]. No frag-
mentation is included.

(4) Fragmentation. The same as Minimal, but gluons are
fragmented into hadrons, i.e., the hadronic quenching
factor Eq. (32) is compared to Rh

AA. No nPDF effects
are included.

Next we study how our results depend on the assumed
background medium evolution. As explained in Sec. II B, by
default we use a particular simple parametrized temperature
profile. Here, we test to what extent our predictions depend
on this evolution. In all cases we include both nPDF and
fragmentation effects.

(1) Simple. This is our default model described in Sec. II
and with the results shown in Sec. III A. It includes
geometry scaling based on TRENTO, nPDF effects,
fragmentation, and energy loss for both quarks and
gluons.

(2) Simple τ0 = 0.5 fm/c. The same as Simple, but the
energy loss is calculated from the later starting time
of τ0 = 0.5 fm/c instead of τ0 = 0.05 fm/c.

(3) Simple TF = 120 MeV. The same as Simple, but en-
ergy loss is computed up to a latter time, namely, when
the temperature falls below TF = 120 MeV instead of
TF = 175 MeV.

(4) Lattice EOS. The same as Simple, but the temperature
profile is determined using lattice equation of state
Tlat(e) [79], where e ≈ 15T 4 is the energy density
in our (conformal) kinetic simulation. The freeze-out
temperature is again set to TF = 120 MeV.

(5) Bjorken. The same as Simple, but the kinetic temper-
ature evolution Eq. (8) is replaced by Bjorken scaling
T = T (τi, �x)(τ/τi )−1/3 with τi = 1 fm/c.

(6) Free Streaming. The same as Simple, but with the free
streaming (γ̂ = 0) solution of kinetic theory for an
azimuthally symmetric initial profile.

All model variations above used the parton energy loss
formula derived by Arnold [43] in BDMPS-Z formalism. Here
we use our simple framework to compare three characteristi-
cally different parametrizations of parton energy loss inspired
by recent phenomenological studies [48–51]. We calculate

FIG. 10. Comparison of time dependence of the temperature pro-
file at the origin of a central PbPb collision in different considered
temperature evolution scenarios. The freeze-out times ordered from
shortest to longest are Free Streaming (FS), Simple, Lattice, and
finally Bjorken expanding.

the shift function Sg/q for these parametrizations with free
normalization constant κ .

(1) A. Energy loss with weak path length and temperature
dependence dE/dL ∝ −L0.4T 1.2, leading to

Ss = Cs

∫ ∞

τ0

dτ
κ

6
τ 0.4 T (τ, �x(τ ))1.2. (36)

(2) B. Energy loss with linear path length dependence
and strong temperature dependence, dE/dL ∼ −LT 3,
leading to

Ss = Cs

∫ ∞

τ0

dτ
κ

3
τ T (τ, �x(τ ))3. (37)

(3) C. Energy loss implementing stopping with dE/dL ∝
−EinL2/(L2

stop

√
L2

stop − L2):

Ss = Cs

∫ ∞

τ0

dτ p⊥
4τ 2

πτ 2
stop

√
τ 2

stop − τ 2
, (38)

where τstop = 1
2(κ/5) p1/3

⊥,0T (τ, �x(τ ))−4/3.

2. Discussion

In Table I we summarize the model variations introduced
above. For each model we adjust the free parameter d =
ˆ̄q/T 3 or κ to reproduce the centrality averaged Rh

AA at p⊥ =
54.4 GeV in

√
sNN = 5.02 TeV PbPb collisions as it was done

in Sec. III A. We then compare these models in Fig. 11 to the
centrality dependence of charged hadron nuclear modification
factors measured in PbPb and XeXe collisions, and we extrap-
olate to OO collisions at

√
sNN = 5.02 TeV.

Before entering a more detailed discussion, let us note
that despite the dramatic approximations implemented in the
different models in Table I, most of the models reproduce the
p⊥ dependence of Rh

AA in central and semicentral PbPb and
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TABLE I. Values for the free model parameter d = ˆ̄q/T 3 or κ extracted from the minimum bias point at p⊥ = 54.4 GeV in
√

sNN =
5.02 TeV PbPb collisions (see Fig. 6).

Model nPDF 〈R〉, 〈Npart〉, 〈Ncoll〉 〈ε2〉 T evolution Energy loss Fragmentation ˆ̄q/T 3 or κ

Minimal No Optical Glauber No Kinetic BDMPS-Z No 0.89 ± 0.26
Anisotropic No TRENTO Yes Kinetic BDMPS-Z No 0.85 ± 0.24
nPDF Yes Optical Glauber No Kinetic BDMPS-Z No 1.08 ± 0.27
Fragmentation No Optical Glauber No Kinetic BDMPS-Z Yes 3.5 ± 1.1
Simple Yes TRENTO Yes Kinetic BDMPS-Z Yes 4.3 ± 1.1
Simple, τ0 = 0.5 fm/c Yes TRENTO Yes Kinetic BDMPS-Z Yes 8.1 ± 2.8
Simple, TF = 0.12 GeV Yes TRENTO Yes Kinetic BDMPS-Z Yes 3.8 ± 0.9
Free Streaming Yes TRENTO No Free Streaming BDMPS-Z Yes 2.69 ± 0.70
Lattice EOS Yes TRENTO Yes Kinetic BDMPS-Z Yes 2.84 ± 0.70
Bjorken Yes TRENTO Yes ∝τ−1/3 BDMPS-Z Yes 3.59 ± 0.91
A Yes TRENTO Yes Kinetic dE/dx ∝ τ 0.4T 1.2 Yes 3.40 ± 0.71
B Yes TRENTO Yes Kinetic dE/dx ∝ τT 3 Yes 4.32 ± 0.95
C Yes TRENTO Yes Kinetic Stopping Yes 2.54 ± 0.17

XeXe collisions. They do so with values of ˆ̄q/T 3 or κ that
vary significantly with model assumptions. However the aim
of the present paper is only to estimate the expected signal
of parton energy loss in light-ion collisions. We can do this
extrapolation without judging the completeness of the differ-
ent model scenarios or the numerical value of the extracted
medium parameter ˆ̄q/T 3 or κ .

Now we discuss individual model variations listed in Ta-
ble I. In the first four, Minimal, Anisotropic, nPDF, and
Fragmentation, some of the model components were switched
off. The spread of model predictions in Fig. 11 (dotted lines)
informs us to what extent the detailed modeling of these com-
ponents is important for system size extrapolations. Moreover,
as fragmentation converts partons to much softer hadrons, the

FIG. 11. Charged hadron nuclear modification factors for different model scenarios in Table I for (top) PbPb, (middle) XeXe, and (bottom)
OO collisions in three centrality classes. Data points for PbPb and XeXe are the same as in Figs. 8 and 9.
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FIG. 12. Charged hadron nuclear modification factors for differ-
ent model scenarios in Table I for minimum bias pPb collisions. Data
points are from [76,80].

same Rh
AA is achieved with three times larger value of ˆ̄q/T 3.

We note in addition that doing fragmentation directly of the
quenched parton spectra in Eq. (29) instead of using Eq. (30)
increases ˆ̄q/T 3 by ≈20%.

Next we considered the parton energy loss dependence
on the variations of the background temperature evolution
(dashed lines). Starting energy loss at 0.5 fm/c requires a
twice larger value of ˆ̄q/T 3 than any other model variations in
Table I. This model scenario shows also a more pronounced
tension with experimental data in the midcentral PbPb and
XeXe data. This suggests that data favor early onset of en-
ergy loss. Other variations of the temperature evolution—such
as varying from Bjorken to Free Streaming, extending the
interaction down to TF = 120 MeV, or switching to Lat-
tice EOS (see Fig. 10)—seem to have only a mild effect
on Rh

AA.
We finally consider parton energy loss formulas that differ

significantly from BDMPS-Z (solid lines). Here, the formula
assuming full stopping (C) is arguably the most extreme
choice, and it is the one that shows the most significant tension
with the observed centrality dependence in PbPb and XeXe
collisions. We therefore do not include it in our extrapolation
to OO. The other two parametrizations (A and B) are compa-
rable to our Simple model.

Given the range of model assumptions explored, we regard
the envelope of the different predictions in Fig. 11 as a re-
alistic theory uncertainty for Rh

AA in OO collisions at
√

sNN =
5.02 TeV. In our companion paper [63], we use the same range
of model scenarios to compute the expected parton energy loss

signal and its uncertainty for the proposed
√

sNN = 7 TeV OO
collisions.

For completeness we show in Fig. 12 results for the same
set of model variations applied to minimum bias pPb. As there
are no mechanisms in the considered models (other than nPDF
effects) to produce larger than unity nuclear modification,
none of the models go through the experimental data points.

C. High-momentum hadron anisotropy

A more differential probe of parton energy loss is the high-
momentum anisotropy of the final particles. In a peripheral
collision with elliptical shape parton energy loss is expected
to depend on the orientation of the hard parton trajectory. This
dependence can be parametrized as cos(2φ) modulation of the
nuclear modification factor

Rh
AA(p⊥, φ) = Rh

AA(p⊥)[1 + 2v2(p⊥) cos(2φ − 2φ2)], (39)

where φ is the azimuthal momentum angle and φ2 character-
izes the event plane. Experimentally, v2(p⊥) is obtained from
the correlation between high-p⊥ hadrons and soft particles.

It has been long a challenge to simultaneously describe the
nuclear modification factor and the sizable high-momentum
anisotropy within the same model. Models that do not include
early time parton energy loss typically fare better [47], be-
cause they concentrate the energy loss at later times where
the background anisotropy is more relevant. Moreover, it has
been shown that including event-by-event fluctuations of the
underlying medium can increase the high-pT elliptic flow
[48].

Our simple framework does not model event-by-event fluc-
tuations of soft particle production and therefore we do not
expect it to accurately reproduce the experimentally measured
v2(p⊥). Nevertheless, it is interesting to check how different
model assumptions in Sec. III B affect the elliptic flow of high
p⊥. We determine v2(p⊥) from the energy loss modulation of
Eq. (39) with respect to the inputted background deformation.
In Fig. 13 we compare our model predictions of v2(p⊥) to
data in different centrality bins of

√
sNN = 5.02 TeV PbPb

collisions. We see that for most of the model scenarios v2(p⊥)
is underpredicted by a factor of ≈2. Possible exceptions are
the scenario with Bjorken temperature profile and energy loss
model with stopping C. The slow temperature evolution in
Bjorken and the concentration of energy loss towards the end

FIG. 13. Centrality and p⊥ dependence of elliptic flow coefficient v2 for high-p⊥ hadrons in different model scenarios, Table I, in
√

sNN =
5.02 TeV PbPb collisions together with the experimental data [81]. The Minimal (and not shown Fragmentation, nPDF, and Free Streaming)
scenario does not implement initial deformation of the geometry and v2 is zero.

054903-12



PREDICTING PARTON ENERGY LOSS IN SMALL … PHYSICAL REVIEW C 103, 054903 (2021)

FIG. 14. Left: Elliptic flow coefficient v2 in
√

sNN = 5.02 TeV OO collisions in several centrality classes for the Simple model (curves
are ordered from high to low centrality). As opposed to PbPb collisions the v2 is strongest in central collisions, as in these smaller systems
fluctuations are more important than in PbPb collisions. Right: Elliptic flow coefficient v2 in minimum bias pp (lower band) and pPb (upper
band) collisions for the Simple model at

√
sNN = 5.02 TeV.

of the evolution in model C presumably allow for stronger
correlation between initial state geometry and high-p⊥ energy
loss.

Finally in Fig. 14 we show the Simple model predictions
for v2(p⊥) in small collisions systems, i.e., centrality selected
OO collisions and minimum bias pp and pPb. The tendency of
our model to underpredict the experimental data prevents us
from making quantitative conclusions about high-p⊥ elliptic
flow in small systems. However, we can make the following
qualitative observations. First the large initial eccentricity in
central OO collisions [54,82] results in monotonically de-
creasing v2(p⊥) with centrality. Secondly, we find a small
elliptic flow in minimum bias pPb collisions and even smaller
in pp. Making more quantitative statements about the elliptic
flow magnitude in small systems is outside the scope of the
current paper.

IV. CONCLUSIONS

In the present paper we document a model for calculat-
ing the high-momentum charged hadron spectra modifications
due to the medium induced parton energy loss in small col-
lision systems. Our baseline calculation of hadron spectra
consists of the leading order QCD partonic cross sections
convoluted with (nuclear modified) parton distribution func-
tions and fragmentation functions. The parton energy loss is
modeled by small-x gluon emission and the dynamical tem-
perature profile is scaled to match the expected system size
and entropy.

After tuning a single model parameter to a single data point
of the charged hadron nuclear modification factor at p⊥ ≈
50 GeV in minimum bias PbPb collisions, we demonstrated
that our model is consistent—up to a 2-σ tension in the most
peripheral bin—with the p⊥ and centrality dependence of
Rh

AA in
√

sNN = 5.02 TeV PbPb and
√

sNN = 5.44 TeV XeXe
collisions. Validated against these data, the model provides
well-motivated predictions for the charged hadron nuclear
modification factors in the minimum bias pPb, OO, and ArAr
collisions and in centrality selected OO collisions.

To ascertain the systematic uncertainties we varied the dif-
ferent model components, medium evolution, and energy loss

formula. All modeling scenarios provide rather comparable
momentum and system size dependencies of Rh

AA once fitted
to the same point in the minimum bias PbPb collisions. These
model variations predict up to ≈15% modification of hadron
spectra in minimum bias OO collisions at p⊥ ≈ 50 GeV. Such
small nuclear modification could not be resolved within the
systematic experimental uncertainties present in the compa-
rable size peripheral PbPb or XeXe collisions. However, a
measurement of Rh

AA in inclusive OO collisions is free of
model dependent uncertainties entering the centrality selected
nuclear modification factor.

The ability to identify parton energy loss also depends on
the accuracy with which the baseline without the medium
effects can be calculated. In the companion paper [63], we
show that the accuracy of the baseline Rh,vac

AA in inclusive OO
collisions is known with sufficient precision that the discovery
of the medium induced parton energy loss in small systems
with 〈Npart〉 ≈ 10 is possible.
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APPENDIX A: MODELING COLLISION GEOMETRY

Parton energy loss is sensitive to the spatiotemporal ex-
tension of the QCD medium and its density profile. In the
main text, we have described the physical picture underlying
our modeling of the collision geometry. For completeness, we
provide in this Appendix quantitative information.

The simplest way to determine the initial geometry for
PbPb, XeXe, and OO collisions is to use the standard optical
Glauber model [83]. In Table II we present, for each collision
system, the computed number of participants Npart, the number
of binary collisions Ncoll, the radius of the profile R, and the
rms radius Rh as a function of centrality defined by the impact
parameter b.
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TABLE II. The values describing collision geometry in PbPb,
XeXe, and OO collisions taken from the optical Glauber model with
σNN = 64 mb. The two parameter Fermi distribution was used for
the nuclear geometry of PbPb and XeXe, while for OO the three
parameter Fermi distribution was used.

PbPb,
centrality b (fm) Npart Ncoll R (fm) Rh (fm)

0.025 2.45919 375.375 1763.98 4.20174 3.60552
0.075 4.25642 321.194 1363.77 3.91481 3.34661
0.2 6.95066 203.666 720.981 3.4475 2.88248
0.4 9.82971 90.7868 219.436 2.83458 2.37449
0.6 12.0389 30.0211 44.2891 2.38618 2.08597
0.8 13.9018 6.00284 5.57849 2.16284 2.04995

XeXe,
centrality b (fm) Npart Ncoll R (fm) Rh (fm)

0.025 2.11583 232.567 908.333 3.59924 3.09502
0.075 3.66213 196.754 704.134 3.41962 2.89356
0.2 5.98019 129.546 372.711 2.99913 2.52769
0.4 8.45726 57.6395 115.241 2.51918 2.14456
0.6 10.358 19.7876 25.5844 2.19453 1.95756
0.8 11.9629 4.67246 4.12596 2.0568 1.96054

OO,
centrality b (fm) Npart Ncoll R (fm) Rh (fm)

0.025 1.04907 25.5465 45.5075 1.94378 1.66221
0.075 1.81576 22.9137 37.1249 1.87315 1.62262
0.2 2.9651 15.9454 22.1546 1.77075 1.54863
0.4 4.1933 8.44554 9.29498 1.63558 1.48786
0.6 5.14062 4.05636 3.67912 1.57844 1.48136
0.8 6.04545 1.61284 1.23164 1.5594 1.52022

The more sophisticated way to determine the initial ge-
ometry for each collision system is to use the TRENTO initial
condition framework [71]. In the TRENTO model, the initial
transverse entropy density profile is computed from

s(x, y) ∝
(

T p
A + T p

B

2

)1/p

, (A1)

where the parameter p controls the mixing of fluctuating
thickness functions TA and TB. In this paper, we use the fol-
lowing parameter values [84] to obtain the entropy density
for each collision system: (1) reduced thickness parameter
p = 0.013, (2) fluctuation parameter k = 0.93, (3) nucleon
width σ = 0.6, and (4) inelastic nucleon-nucleon cross sec-
tion σNN = 64 mb.

For all elements we used the standard settings in TRENTO,
except for oxygen where for the nucleon positions we used
the tables from Ref. [85] (see also Ref. [82]), as provided in
Ref. [86].

We take an ensemble of 20 000 events and for each cen-
trality (defined as a class of events ±5% from the midpoint
value) we obtain an average of all values used in the main
text, which is the radius of the entropy density (Table III),
the average entropy density [Table IV, used in Eq. (10)], the
radius of the hard parton scattering centers Rh (Table V), the
number of participating nucleons Npart (Table VI, used for

TABLE III. The rms radius R of entropy density Eq. (A1) as a
function of centrality for different collision systems (in fm).

Centrality PbPb XeXe OO ArAr pp pPb

0.05 4.274 3.659 2.153 2.762 1.08 1.431
0.15 3.847 3.31 2.026 2.561 1.087 1.416
0.25 3.504 3.036 1.904 2.394 1.083 1.412
0.35 3.205 2.804 1.787 2.242 1.082 1.383
0.45 2.937 2.572 1.663 2.093 1.059 1.35
0.55 2.701 2.375 1.521 1.913 1.06 1.287
0.65 2.444 2.132 1.361 1.684 1.034 1.242
0.75 2.148 1.827 1.187 1.432 1.013 1.149
0.85 1.813 1.392 1.03 1.144 0.984 1.05
0.95 1.503 0.975 0.899 0.926 0.925 0.921

nPDF corrections), the eccentricity ε2 (Table VII), and finally
Ncoll (Table VIII, used for weighting centrality classes).

APPENDIX B: PARTON AND HADRON PRODUCTION

In this section we summarize the LO computations of
inclusive parton and hadron cross sections including the dis-
cussion of parton distribution and fragmentation functions.

1. Single inclusive parton cross section

At LO in the strong coupling αs, the production of jets in
the collisions of hadrons A and B with momentum PA and PB

is given by the partonic 2 → 2 QCD scattering process:

a(pa) + b(pb) → c(p1) + d (p2), (B1)

where two incoming partons a and b are sampled from parton
distribution functions and the scattered partons c and d can be
identified as final state jets.

According to the factorization theorem, the total two-jet
cross section may be written as

σ AB
cd =

∑
a,b

∫
dxAdxB f A

a

(
xA, μ2

F

)
f B
b

(
xB, μ2

F

)
σ̂ ab

cd , (B2)

TABLE IV. The average entropy density per unit rapidity (in
arbitrary units), as defined by dS/dy/πR2, with dS/dy the transverse
integral of Eq. (A1) and R as given in Table III.

Centrality PbPb XeXe OO ArAr pp pPb

0.05 2.782 2.323 0.746 1.197 0.26 0.457
0.15 2.281 1.848 0.587 0.938 0.191 0.354
0.25 1.833 1.442 0.467 0.723 0.162 0.295
0.35 1.394 1.063 0.366 0.529 0.14 0.259
0.45 0.995 0.751 0.284 0.378 0.126 0.226
0.55 0.66 0.492 0.219 0.269 0.107 0.197
0.65 0.409 0.303 0.167 0.193 0.093 0.159
0.75 0.229 0.182 0.127 0.142 0.076 0.129
0.85 0.108 0.116 0.086 0.105 0.057 0.094
0.95 0.028 0.057 0.038 0.048 0.031 0.046
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TABLE V. The rms radius of the hard parton scattering centers,
Rh (in fm). TRENTO does not directly output the hard parton density,
but since for p ≈ 0 the entropy density is obtained from the thickness
functions TA and TB by ∝√

TATB, a good proxy for the hard scattering
center density ncoll ∝ TATB can be found by squaring the entropy
density.

Centrality PbPb XeXe OO ArAr pp pPb

0.05 3.541 3.005 1.732 2.232 0.821 1.138
0.15 3.131 2.695 1.632 2.068 0.827 1.124
0.25 2.802 2.457 1.534 1.939 0.825 1.122
0.35 2.53 2.274 1.446 1.83 0.824 1.099
0.45 2.294 2.093 1.346 1.722 0.796 1.064
0.55 2.097 1.957 1.221 1.582 0.794 1.006
0.65 1.874 1.769 1.074 1.375 0.772 0.964
0.75 1.618 1.508 0.913 1.141 0.753 0.879
0.85 1.34 1.1 0.765 0.871 0.728 0.788
0.95 1.09 0.718 0.648 0.673 0.671 0.669

where the partonic ab → cd cross section σ̂ ab
cd is convoluted

with parton distribution functions f A
a and f B

b (evaluated at fac-
torization scale μF ) describing the number density of finding
a parton with a given momentum fraction xA and xB inside the
hadron, i.e., pa = xAPA and pb = xBPB. In this paper, the CT14
parametrization [72] is used as the pp baseline PDFs, and the
nuclear modifications are taken from the EPPS16 [64] for the
O and Pb nucleus.

In the hadronic center-of-mass frame, the four-momenta of
the incoming partons, in the light-cone coordinates (+,−,⊥),
can be expressed in terms of the momentum fraction variables
xA and xB as

pa = xA

√
s

2
(1, 0, 0⊥), pb = xB

√
s

2
(0, 1, 0⊥), (B3)

where s ≡ (PA + PB)2 denotes the center-of-mass energy
squared. The jet four-momenta p1 and p2 can be parametrized
in terms of the transverse momentum p⊥ and rapidities
y1 and y2 as

p1 =
(

p⊥√
2

ey1 ,
p⊥√

2
e−y1 , p⊥1

)
,

p2 =
(

p⊥√
2

ey2 ,
p⊥√

2
e−y2 , p⊥2

)
, (B4)

TABLE VI. The number of participating nucleon collisions Npart

for several collision systems and centrality classes.

Centrality PbPb XeXe OO ArAr pp pPb

0.05 362.391 226.252 26.191 67.6 2.0 13.457
0.15 270.507 168.425 20.826 51.677 2.0 11.055
0.25 193.056 120.272 16.09 37.977 2.0 9.604
0.35 131.471 81.684 12.228 26.676 2.0 8.085
0.45 83.977 52.408 9.13 18.28 2.0 6.724
0.55 50.561 31.788 6.564 12.01 2.0 5.049
0.65 28.437 17.662 4.676 7.498 2.0 3.894
0.75 14.105 9.095 3.292 4.7 2.0 2.921
0.85 6.18 4.313 2.486 2.952 2.0 2.402
0.95 2.752 2.332 2.105 2.168 2.0 2.116

TABLE VII. The average ellipticity ε2, defined as the ratio of the
entropy weighted averages 〈(x2 + y2)e2i arctan(y/x)〉/〈(x2 + y2)〉.

Centrality PbPb XeXe OO ArAr pp pPb

0.05 0.124 0.111 0.206 0.155 0.325 0.337
0.15 0.231 0.211 0.257 0.216 0.328 0.34
0.25 0.305 0.281 0.295 0.264 0.32 0.349
0.35 0.352 0.339 0.33 0.321 0.332 0.342
0.45 0.391 0.375 0.364 0.372 0.317 0.351
0.55 0.413 0.414 0.38 0.41 0.317 0.343
0.65 0.416 0.449 0.392 0.439 0.312 0.359
0.75 0.366 0.47 0.371 0.429 0.315 0.35
0.85 0.266 0.432 0.324 0.357 0.309 0.328
0.95 0.093 0.297 0.262 0.275 0.276 0.277

where p⊥1 = −p⊥2 and |p⊥1| = |p⊥2| ≡ p⊥. The momentum
conservation fixes xA and xB:

xA = p⊥√
s

(ey1 + ey2 ), xB = p⊥√
s

(e−y1 + e−y2 ), (B5)

where 0 < xA/B < 1.
The partonic cross section σ̂ ab

cd can be evaluated in pertur-
bative QCD by the standard formula for massless partons:

σ̂ ab
cd = 1

1 + δcd

1

4pa · pb

∫
d3 p1

(2π )32Ep1

∫
d3 p2

(2π )32Ep2

× (2π )4δ(4)(pa + pb − p1 − p2)〈|M(ab → cd )|2〉.
(B6)

Here, the Lorentz invariant phase space elements are mul-
tiplied with 〈|M|2〉, which is the invariant matrix ele-
ment square averaged (summed) over initial (final) state
spin/polarization and color. The partonic cross section de-
pends on the partonic Mandelstam variables:

ŝ ≡ (pa + pb)2 = 2p2
⊥[1 + cosh(y1 − y2)],

t̂ ≡ (pa − p1)2 = −p2
⊥(1 + e−(y1−y2 ) ), (B7)

û ≡ (pb − p1)2 = −p2
⊥(1 + e+(y1−y2 ) ).

TABLE VIII. The number of binary collisions Ncoll for several
collision systems and centrality classes.

Centrality PbPb XeXe OO ArAr pp pPb

0.05 1358.26 718.43 32.498 121.841 1.0 12.457
0.15 810.928 412.007 22.298 75.182 1.0 10.055
0.25 468.292 235.183 15.196 46.276 1.0 8.604
0.35 254.072 126.544 10.319 27.488 1.0 7.085
0.45 126.224 64.936 6.99 16.211 1.0 5.724
0.55 59.738 31.91 4.578 9.481 1.0 4.049
0.65 26.932 14.715 3.024 5.284 1.0 2.894
0.75 11.019 6.515 1.958 3.008 1.0 1.921
0.85 4.066 2.663 1.363 1.709 1.0 1.402
0.95 1.529 1.238 1.082 1.128 1.0 1.116
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Neglecting quark masses, there are only eight flavor indepen-
dent 2 → 2 partonic processes at LO [87]:

〈|M̂(qq′ → qq′)|2〉 = 4

9

ŝ2 + û2

t̂2
, (B8a)

〈|M̂(qq → qq)|2〉 = 4

9

(
ŝ2 + û2

t̂2
+ ŝ2 + t̂2

û2

)
− 8

27

ŝ2

t̂ û
,

(B8b)

〈|M̂(qq̄ → q′q̄′)|2〉 = 4

9

t̂2 + û2

ŝ2
, (B8c)

〈|M̂(qq̄ → qq̄)|2〉 = 4

9

(
ŝ2 + û2

t̂2
+ t̂2 + û2

ŝ2

)
− 8

27

û2

ŝt̂
,

(B8d)

〈|M̂(qq̄ → gg)|2〉 = 32

27

t̂2 + û2

t̂ û
− 8

3

t̂2 + û2

ŝ2
, (B8e)

〈|M̂(gq → gq)|2〉 = −4

9

ŝ2 + û2

ŝû
+ ŝ2 + û2

t̂2
, (B8f)

〈|M̂(gg → qq̄)|2〉 = 1

6

t̂2 + û2

t̂ û
− 3

8

t̂2 + û2

ŝ2
, (B8g)

〈|M̂(gg → gg)|2〉 = 9

2

(
3 − t̂ û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

)
, (B8h)

where we factored out the coupling constant |M|2 =
(4παs(μ2

R))2|M̂|2. Here, the coupling constant is evaluated
at the renormalization scale μR (for partonic cross section
we take μR = μF = p⊥, where p⊥ is the transverse parton
momentum).

The single inclusive jet cross section at LO is then given as

dσ AB
j

dyinc p⊥d p⊥
= 1

8πs2

∑
a,b,c,d

∫ ymax

ymin

dy
f A
a

(
xA, μ2

F

)
xA

f B
b

(
xB, μ2

F

)
xB

× [
4παs

(
μ2

R

)]2〈|M̂(ab → cd )|2〉(y, yinc),
(B9)

where cosh yinc <
√

s
2p⊥

and the integration limits for ymin <

y < ymax are given by

− log

(√
s

p⊥
− e−yinc

)
< y < log

(√
s

p⊥
− eyinc

)
. (B10)

2. Single inclusive hadron spectra

The single inclusive hadronic cross section at LO in the
absence of medium modifications is given by the convolution
of the jet spectrum Eq. (B9) with the fragmentation function
Dk

h:

dσ AB
h

dyincd p⊥
=

∫
dq⊥dz

dσ AB
k

dyincdq⊥
Dk

h

(
z, μ2

F

)
δ(p⊥ − zq⊥),

(B11)
where the cross section for producing q⊥ momentum parton k
is convoluted with the probability to fragment to momentum
p⊥ = zq⊥ charged hadron.

Performing the integration over q⊥ and inserting the par-
tonic cross section formula, the invariant hadron spectra may
be rewritten as

Eh
dσ h

d3 p
=

∑
c,d

∫ 1

zmin

dz

z2

1

2

[
Dc

(
z, μ2

F

) + Dd
(
z, μ2

F

)]

× 1

16π2s2

∑
a,b

∫ ymax

ymin

dy
f A
a

(
xA, μ2

F

)
xA

f B
b

(
xB, μ2

F

)
xB

× [
4παs

(
μ2

R

)]2〈|M̂(ab → cd )|2(y, yinc)〉.
(B12)

In the expression above, the momentum fractions xA and xB

appearing in Eq. (B9) are evaluated at the rescaled momen-
tum p⊥ → p⊥/z and zmin = 2p⊥√

s
cosh yinc. The gluon and the

(averaged) quark fragmentation functions are given by BKK
parametrization [73] (for an implementation example see the
INCNLO computer code [88]). That is, for simplicity, in this pa-
per we use a single quark FF Dq(q) ≡ 1

2Nf

∑
a[Da(z) + Dā(z)]

with NF = 5. We checked that this has only small effect on the
Rh

AA in Fig. 3 for 20 < pT < 200 GeV.
Finally, conventionally the renormalization and factoriza-

tion scales for hadronic spectra are taken to be μR = μF =
p⊥, where p⊥ is the transverse hadron momentum. This is not
identical to first calculating the partonic spectra in Eq. (B9)
and then convolving it with FFs due to different choice of the
scale in PDFs and αS . We ignore this difference in the model
calculations where energy loss is calculated for quarks and
gluons and the resulting spectrum is convolved with FFs.
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