
Received January 1, 2020, accepted January 15, 2020, date of publication January 21, 2020, date of current version February 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968469

Strict Minimal Siphon-Based Colored Petri Net
Supervisor Synthesis for Automated
Manufacturing Systems With
Unreliable Resources
ABDULRAHMAN AL-AHMARI 1, HUSAM KAID 1, ZHIWU LI 2,3, (Fellow, IEEE),
AND REGGIE DAVIDRAJUH 4, (Senior Member, IEEE)
1Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
2Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
3School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
4Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway

Corresponding authors: Abdulrahman Al-Ahmari (alahmari@ksu.edu.sa) and Husam Kaid (yemenhussam@yahoo.com)

This work was supported by the King Saud University through Researchers Supporting Project Number under Grant RSP-2019/62.

ABSTRACT Various deadlock control policies for automated manufacturing systems with reliable and
shared resources have been developed, based on Petri nets. In practical applications, a resource may be
unreliable. Thus, the deadlock control policies proposed in previous studies are not applicable to such
applications. This paper proposes a two-step robust deadlock control strategy for systems with unreliable
and shared resources. In the first step, a live (deadlock-free) controlled system that does not consider the
failure of resources is derived by using strict minimal siphon control. The second step deals with deadlock
control issues caused by the failures of the resources. Considering all resource failures, a common recovery
subnet based on colored Petri nets is proposed for all resource failures in the Petri net model. The recovery
subnet is added to the derived system at the first step to make the system reliable. The proposed method has
been tested using an automated manufacturing system deployed at King Saud University.

INDEX TERMS Automated manufacturing system, colored Petri nets, deadlock prevention, siphon.

I. INTRODUCTION
An automated manufacturing system (AMS) is a collection
of buffers, machines, robots, fixtures, and automated tools.
There are different products types enter AMS at separate
points in time; the system has the ability to handle these
products according to the specific sequence of processes and
resources sharing. The resource sharing causes deadlocks,
in which the local or global system is disabled [1]–[4].
Therefore, in order to prevent deadlock in AMS, an effective
deadlock control algorithm is needed.

Petri nets are graphical and mathematical tools that are
convenient for modeling, analysis, and control of deadlocks
in AMSs [5]–[7]. It utilized to represent the characteristics
and behaviors of AMS, such as confliction, synchroniza-
tion, and sequencing. Moreover, Petri nets can be applied to
provide the behavioral characteristics such as boundedness
and liveness [8]. In order to solve the deadlock issue in

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

AMSs, several approaches based on Petri nets are proposed
in the literature. These methods have been classified into
three strategies: deadlock detection and recovery, deadlock
avoidance, and deadlock prevention [8]. In addition, three cri-
teria were proposed for evaluating and designing a supervisor
for AMS control, namely, computational complexity, struc-
tural complexity, and behavioral permissiveness [8]. There-
fore, deadlock prevention policies are the objectives of many
researchers and can provide liveness-enforcing supervisors
with the mentioned criteria [8]. The deadlock control tech-
niques available in the literature were developed for AMSs
with reliable and unreliable resources.

For an AMS with reliable resources, there are two tech-
niques used to prevent deadlock involving the use of Petri
nets: reachability graph analysis [9]–[12] and structural anal-
ysis [13]–[16]. The reachability graph analysis requires list-
ing all or part of the reachable markings; hence, it suffers
from a state explosion problem. The reachability graph can be
classified into two parts: the live zone (LZ) and the deadlock
zone (DZ). First-met bad markings (FBMs) are defined and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 22411

https://orcid.org/0000-0002-3079-0141
https://orcid.org/0000-0003-3608-013X
https://orcid.org/0000-0003-1547-5503
https://orcid.org/0000-0003-0013-5274
https://orcid.org/0000-0001-6829-2263

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

extracted from the DZ. In this case, deadlocks are eliminated
by designing and adding monitors to prevent FBMs from
being reached. This process requires iterations to identify all
FBMs [17].

Various approaches have been introduced to prohibit dead-
lock situations, which are the siphon control and theory of
region based approaches [3], [10], [14], [17]–[24]. Structural
analysis is implemented to structural objects in Petri nets such
as resource transition circuits and siphons. The control steps
in this technique are simple: any empty minimal siphon needs
an added monitor to prevent itself from being non-empty.
Nevertheless, the drawbacks of this technique are that the
number of control places is linearly dependent on the net size,
and the corresponding controlled system is generally subopti-
mal. Recently, Guo et al. [25] developed an iterative approach
for synthesizing a supervisor for an S3PR that enforces live-
ness. First, two types of emptiable siphons were described
and two updated formulations of mixed-integer programming
were proposed to calculate these siphons. A three-stage iter-
ative deadlock prevention policy is then proposed, which
determines the order of siphon control. The research results
indicate that the proposed strategy can obtain a supervisor
with lower computational complexity, higher behavioral per-
missiveness, and simpler structure. In addition, the reacha-
bility analysis and the exhaustive siphon enumeration are not
needed.

Various deadlock control methods and fault detection have
been developed for different classes of Petri nets under unre-
liable resources [26]–[36]. Lawley and Sulistyono [26] inves-
tigated the allocation of resources to a manufacturing system
with unreliable resources by designing supervisory control
policies that allocate buffer space. This system can manufac-
ture all kinds of products without requiring the use of a failed
unreliable resource. Hsieh [27] suggested nominal supervi-
sory algorithms to evaluate the suggested controlled assem-
bly/disassembly Petri net (CADPN) for unreliable resource
operations. In addition, Hsieh [27] addressed the conditions
under which a system can always operate in the case of
resource failures.

Wang et al. [28] proposed two policies for single-unit
resource allocation systems with unreliable resources. The
first policy is for robust operation of one unreliable
resource, and the second for several unreliable resources.
Chew et al. [29] ensured robust operations for systems
through the development of two-controller supervisors,
in which part types can use a central buffer to handle various
unreliable resources. In a study of Liu et al. [30], resource
failures and deadlocks were considered. First, control places
were added to prevent deadlocks in the system model based
on a policy of divide-and-conquer. Second, for unreliable
resources, recovery subnets were added. Finally, normal and
inhibitor arcs were inserted between the recovery subnets and
monitors.

Yue et al. [31] developed a deadlock controller policy
for an AMS class with multiple unreliable resources using
Banker’s modified algorithm and a set of resource capacity

constraints. Another study by Yue et al. [32] presented a
policy of robust supervisory control in order to prevent the
stopping and deadlock of multiple unreliable workstations
in the AMS class. Wang et al. [33] proposed a deadlock
controller for an AMS with resource failures. The supervisor
comprises three controllers that ensure that AMS operations
with an unreliable resource can be strongly deadlock-free
while meeting the required properties.

In the work of Feng et al. [34], deadlocks were described
and established in the context of maximal perfect resource
transition circuits, where the authors exposed a novel con-
cept of powerful transition cover in order to develop a
deadlock controller with a simple structure. Liu et al. [37]
proposed two robust block control policies based on a reach-
ability graph with high behavioral permissiveness, strong
robustness, or simple design for an AMS. The technique of
reachability graph partition was used to analyze robust legal
and prohibited markings. Through this, an issue of deadlock
control was converted into a problem of preventing prohibited
markings. For a convex legal space of reachability, a robust
control methodwas provided. The robust legal space of reach-
ability, however, may be nonconvex.

Li et al. [37] developed a two-step deadlock control pol-
icy and a robust legal marking. In the first step, control
places are designed based on an elementary siphon policy
developed in [38], which ensures that the system model is
deadlock free if there is no failure in resource. The sec-
ond step addresses failure-induced deadlock control prob-
lems. The resource failures are modeled by recovery subnets
and recoveries are added into the first-step-derived system,
resulting in an unreliable controlled system. In previous
deadlock control methods, control places are developed to
prohibit deadlocks; recovery subnets are proposed to model
resource failures and recoveries and applied for each unre-
liable resource, resulting in high structural complexity of the
initial model. However, there is a need to propose a supervisor
to address all the unreliable resources in a system. This
supervisor does not require to introduce inhibitor arcs or enu-
merate of reachability graphs and leads to low computational
overheads.

Therefore, the aim of this article is to design a two-
step deadlock control policy for systems with unreliable
resources. In the first step, a controlled system without con-
sidering the failures of resources is derived by using strict
minimal siphons (SMSs) proposed by Ezpeleta et al. [39] to
build a controlled Petri net model. The SMSs based policy can
obtain a maximal permissive liveness-enforcing supervisor
for larger sized systems [5] compared with previous deadlock
prevention methods [19], [40]. In the second step, one com-
mon recovery subnet based on colored Petri nets is designed
to model all resource failures, and recovery is added to the
derived system by the first step in order to make the system
reliable.

The paper is organized as follows. Section II describes
basic concepts of Petri nets and a deadlock prevention pol-
icy based on strict minimal siphon. The robust control of

22412 VOLUME 8, 2020

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

unreliable resources based on colored Petri nets and com-
putational complexity of the proposed policies are presented
in Section III. The General Petri Net Simulator (GPenSIM)
code and validation for the developed method is presented
in Section V. A real-world AMS case study is given in
Section VI, followed by the conclusions and future research
presented in Section IV.

II. PRELIMINARIES
This section presents the basics of Petri nets, strict minimal
siphons, a deadlock prevention policy based on SMSs, and a
GPenSIM tool.

A. BASICS OF PETRI NETS
Let N = (P, T, F, W) be a Petri net, where P and T are
finite non-empty sets of places and transitions, respectively.
Elements in P ∪ T are graphically named by nodes, where
P ∪ T 6= ∅ and P ∩ T = ∅; places are depicted by circles
and transitions are depicted by bars. F ⊆ (P× T) ∪ (T × P)
is said to be a set of directed arcs of N that join the places to
transitions or transitions to places. W :(P × T) ∪(T × P)→
IN is a mapping that assigns an arc’s weight, where IN ={0,
1, 2, ...}.
N = (P, T, F, W) is called an ordinary net if ∀(p, t) ∈ F ,

W (p, t)= 1. Let x, z ∈ P∪T be nodes in N = (P, T, F, W), N
is said to be a weighted net if there is an arc between x and z
such that W (x, z)>1. Assume that a and b are nodes in N =
(P, T, F, W), i.e., a, b ∈ P ∪ T . Then, •a = {b ∈ P ∪ T |
(b, a) ∈ F} is called the input (preset) of node a, and a• =
{b ∈ P ∪ T | (a, b) ∈ F} is called the output (postset) of
node a.

A marking M of N is a mapping M : P → IN and
represents the status of the system. (N ,Mo) is a marked Petri
net, expressed as (N , Mo) (P, T, F, W, Mo), where Mo is the
initial marking of N , Mo : P → IN. Suppose that M (p) is
the number of tokens in place p, a transition t ∈ T is enabled
at any marking M if for all p ∈• t, M(p) ≥ W (p, t), which is
expressed asM [t〉. When the enable transition t fires, it takes
W (p, t) token(s) from each place p ∈• t , and depositsW(t, p)
token(s) in each place p ∈ t•. Thus, it leads the system to
reach a new marking M′, expressed as M [t〉 M′ in short,
the new reachablemarking can be computed asM′(p) = M (p)
−W (p, t) +W (t, p). We call N = (P, T, F, W, Mo) self-loop
free if for all a, b ∈ P ∪ T , W (a, b) > 0 implies W (b, a) =
0. Let [N] be an incidence matrix that represents the Petri net
N structure, where [N] is an integer matrix that consists of
|T | columns and |P| rows and computed from the input and
output matrices, expressed as [N](p, t) = W (t, p) −W (p, t).
R(N, M) is a set of markings that are reachable from M

in a Petri net model (N , M). Let (N, Mo) be a marked Petri
net with N = (P, T, F, W, Mo). A transition t ∈ T is live
(deadlock free) if for allM ∈ R(N, M), there existsM′ ∈ R(N,
M) such that firing sequenceM′[t〉 holds. A transition is dead
at Mo if there does not exist t ∈ T such that Mo[t〉 holds.
M′ is called reachable fromM if there exist a finite transition
sequence δ = t1, t2, t3, . . . , tn that can be fired, and markings

M1, M2, M3, ..., and Mn−1 such that M [t1〉 M1[t2〉M2[t3〉M2
. . .Mn−1[tn〉M′, which is represented asM [δ〉M′, satisfy the
state equationM′ =M+[N] Eδ, where Eδ: T → INmaps t in T
to the number of occurrences of t in δ and is named a Parikh
vector.

Let (N,Mo) be amarked Petri net withN = (P, T, F,W,Mo).
A net N with initial markingMo is called k-bounded if for all
M ∈ R(N,M0), for all p ∈ P, M (p) ≤ k(k ∈ {1, 2, 3, . . .}).
A net N is safe if all of its places are safe, i.e., in each place p,
the number of tokens does not exceed one. A net N is k-safe
if it is k-bounded.

A place vector (P-vector) I : P→ Z indexed by P is called
a place invariant (P-invariant) if IT . [N] = 0T and I 6= 0,
a transition vector (T-vector)J : T →Z indexed by T is called
a transition invariant (T-invariant) if [N]. J = 0 and J 6= 0,
where Z = {. . . ,−2,−1, 0, 1, 2, ...}. A place invariant I is
said to be a place semiflow or P-semiflow, if each element of
I is nonnegative. Let us assume I is a P-invariant of a N =
(P, T, F, W,Mo) andM is a marking reachable from the initial
markingMo. Then, ITM = ITMo. The support of P-invariant
I is expressed as Let ||I || = {p |I(p) 6= 0}. The support of
T-invariant J is expressed as Let ||J || = {t |J(t)6= 0}. The ||I ||
are categorized into three types: (1) The positive support of
P-invariant I and expressed as ||I ||+ = {p |I(p)> 0}. (2) The
negative support of P-invariant I and expressed as ||I ||− =
{p |I(p) < 0}. (3) I is a minimal P-invariant if ||I || is not a
superset of the support of any other one and its components
are mutually prime. Let li be the coefficients of P-invariant I
if for all pi ∈ P, li = I (pi).
A colored Petri net (CPN) is expressed as a nine-tuple [16]

CPN = (P, T, F, SC, Cf , Nf , Af , Gf , If), where P, T, and F
are defined above.SC is a set of colors that comprises colors
ci and the operations on the ci. Cf is the color function that
traces pi into colors ci, pi ∈ P and ci ∈ SC. Nf is the node
function that traces F into (P × T) ∪ (T× P). Af is the arc
function that traces each flow (arc) f ∈ F into the term e.Gf is
the guard function that traces each transition ti ∈ T to a guard
expression g that has a Boolean value. If is the initialization
function that traces each place pi ∈ P into an initialization
expression.

B. STRICT MINIMAL SIPHONS
Definition 1 [38]:A simple sequential process (S2P) is a Petri
net model with N = ({p0}∪PA, T, F), satisfying: (1) N is
a strongly connected state machine and (2) each circuit N
contains place p0, where p0 is a process idle place and PA
is a set of operation places, PA 6= ∅.
Definition 2 [38]: A simple sequential process with

resources (S2PR) is a Petri net model with N = ({p0}
∪PA ∪ PR, T, F), satisfying:

1. The subnet created by Y = PA∪ {p0} ∪ T is an S2P.
2. PR 6= ∅ an (PA∪ {p0}) ∩PR = ∅, where PR is called a

set of resource places.
3. ∀p ∈ PA, ∀t ∈• p, ∀ t′ ∈ p•, ∃rp ∈ PR, •t ∩ PR =

t′• ∩ PR = {rp }.

VOLUME 8, 2020 22413

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

4. ∀r ∈ PR, ••r ∩ PA = r•• ∩ PA 6= ∅ and •r ∩ r• 6= ∅.
5. ••(p0) ∩PR = (p0)•• ∩ PR 6= ∅.
Definition 3 [38]: A simple sequential process with

resources (S2PR) with N = ({p0} ∪PA ∪ PR, T, F), and
Mo is called an initial marking of net N. An S2PR is called
acceptably marked, satisfying: (1)Mo(p0)≥ 1, (2)Mo(p) = 0,
∀p ∈ PA, and (3) Mo(r) ≥ 1, ∀r ∈ PR.
Definition 4 [38]: Let S2PR a Petri net model with

N = ({p0} ∪PA∪PR, T, F) and called S3PR for abbreviation,
is repetitively defined as follows:

1. An S2PR is as well an S3PR
1. LetN1 andN2 be two S3PRs, whereN1 = ({p01}∪PA1∪

PR1, T1, F1) andN2 = ({p02}∪PA2∪PR2, T2, F2), such
tha ({p01} ∪PA1)∩ ({p

0
2} ∪PA2) = ∅, PA1 ∩PA2 6= PC ,

PR1 ∩ PR2 = PC and T1 ∩ T2 6= ∅. Then, the net N =
({p0} ∪PA ∪ PR, T, F) is an S3PR resulting from the
integration of N1 and N2 by the set of common PC and
expressed as: (1) p0 = {p01} ∪{p

0
2}, PA = PA1 ∪ PA2,

PR = PR1 ∪ PR2, T = T1 ∪ T2, F = F1 ∪ F2.
The integration of n S2PR N1-Nnvia PC , is expressed by
⊗
n
i=1Ni. Ni is used to indicate the S2P from which the S2PR

Ni is built.
Definition 5 [38]: Let N be an S3PR a Petri net model with

N = ({p0} ∪PA ∪ PR, T, F). Mo is an initial marking of
N. (N, Mo) is called acceptably marked, satisfying: (1)(N,
Mo) is an acceptably marked S2PR. (2) N = N1 ◦N2, where
(Ni, Moi) is called an acceptably marked S3PR and
• ∀i ∈{1,2}, ∀p ∈ PAi∪ {p0i }, Mo(p) = Moi(p).
• ∀i ∈{1,2}, ∀r ∈ PRi \ PC , Mo(r) = Moi(r).
• ∀i ∈{1,2}, ∀r ∈ PRi, Mo(p) = max {Mo1(r), Mo2(r) }.
Definition 6 [38]: Let N be an S3PR a Petri net model with

N = ({p0} ∪PA ∪ PR, T, F). A non-empty set S ⊆ P is
named a siphon in N if •S ⊆ S•. If a siphon contains no other
siphons, it is considered a minimal siphon.
Definition 7 [38]: Let N be an S3PR a Petri net model with

N = ({p0}∪PA∪PR, T, F). S is named aminimal siphon inN.
A minimal siphon S is named a strict minimal siphon if
S• (•S. Let 5 = {S1, S2, S3, . . . , Sk} be a set of strict
minimal siphons ofN.We have S = SA∪SR, SR = S∩PR, and
SA = S\SR, where SA and SR are sets of operations and
resources places, respectively.
Definition 8 [38]: Let N be an S3PR a Petri net model with

N = ({p0}∪PA∪PR, T, F), r∈ PR be a reliable resource place
in N . The operation places that use r are recognized as the set
of holders of r, expressed asH (r) = {p\p ∈PA, p∈•• r∩PA 6=
∅}. [S] is called the complementary set or stealing places of S
if [S]= (∪r∈SRH (r))\SA, where stealing places are operation
places that require resources places of siphon S, but are not
in the siphon S.

Consider the S3PR Petri net model displayed in Figure 1.
The Petri net model includes six places and four transitions.
The places can be expressed as the following sets: P0 = {p1},
PR = {p5, p6}, and PA = {p2, p3, p4}. Note that the
transitions in (P0)• are called source transitions that represent
the entry of raw materials when a manufacturing system is

FIGURE 1. S3PR Petri net model.

modeled with an S3PR. The transitions in •(P0) are called
sink transitions that represent the exist of finished materials
when a manufacturing system is modeled with an S3PR. The
Petri net model has four minimal siphons, one of which is
S = {p4, p5, p6} that is strict minimal S3 = {P3P7P9P10.
According to Definitions 7 and 8, we have

1) SA = {p4}
2) SR= {p5, p6}
3) H (p5) = {p3}, H(p6) = {p2, p4 }.
4) [S] = {p2, p3}.

C. DEADLOCK PREVENTION POLICY BASED ON STRICT
MINIMAL SIPHONS
This section introduces a deadlock-prevention approach
based on SMSs to build a controlled Petri net model. This
approach is derived from Ezpeleta et al. [39].
Definition 9 [38]: Let (N1, M1) and (N2, M2) be are two

Petri nets with Ni = (Pi, Ti, Fi, Wi), where i = 1, 2 . (N, M)
with N = (P, T, F, W) is named a synchronous net resulting
from the integration of (N1,M1) and (N2,M2), defined as (N1,
M1) ‖ (N2, M2), satisfying: (1) P = P1 ∪ P2 and P1 ∩ P2 =
∅.(2) T = T1∪T2, (3) F = F1∪F2, (4)W(e)=Wi(e), where
e ∈ Fi, i =1, 2, and (5) M(p) = Mi(p), p∈ Pi, i=1, 2.
Definition 10 [38]: Let (N, Mo) be an S3PR with N =

({p0}∪PA∪PR, T, F,Mo).The deadlock controller for (N,Mo)
proposed in Ezpeleta et al. [39] is defined as (V, MVo)= (PV ,
TV , FV , MVo), where (1)PV= {VS\S ∈ 5} is set of control
places.(2)TV = {t\t ∈ •VS ∪ V •S }. (3)FV ⊆ (PV × TV)∪
(TV × PV) is named a flow relation of N , denoted by an arc
with an arrow from control places to transitions or transitions
to control places. (4) For allVS ∈ PV ,MVo(VS) = MVo (S) - 1,
where MVo(VS) is an initial marking of a control place.
(NV , MVo) is named a controlled Petri net model resulting

from the composition of (V , MVo) and (N, Mo), defined as
(V , MVo) ‖ (N, Mo). A monitor or control place is added to
each SMS to fulfill the liveness of a Petri net and to make
sure that no SMSs can ever be emptied. The proposed policy
is easy and ensures success. Nevertheless, it leads to a more

22414 VOLUME 8, 2020

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

FIGURE 2. Controlled S3PR Petri net model.

Policy 1 (Deadlock-Prevention Algorithm Based on SMSs)

Input: An S3PR (N, Mo).
Output: A controlled net (NV , MVo)
Step 1: Compute the set 5 for N .
Step 2: for each S ∈ 5 do
• Add a control place VS . / By using Definition 10 . ∗/
• Add Vs output arcs that connected to the source tran-
sitions, which are led to the sink transitions of S, and
all arc weights are unitary. / By using Definition 10 .
∗/

• Add Vs input arcs that connected from the stealing
places of S, and all arc weights are unitary. / By using
Definition 10 . ∗/

• Compute MVo(VS). / By using Definition 10. ∗/
end for

Step 3: Output a controlled net (NV , MVo).
Step 4: End

complex Petri-net-controlled system than the original Petri
net model because the number of inserted control places is
equal to that of the SMSs in the target Petri net model, and
the inserted arcs are greater in number than the added control
places.

Based on the strict minimal siphon concept, the deadlock
prevention algorithm developed by Ezpeleta et al. [39] is
shown as follows:

Reconsider Figure 1. One siphon is S = {p4, p5, p6}. By
Definition 8, its complementary set is [S] = {p2, p3}. Based
on Definition 10 and Policy 1, monitor VS1 needs to be added
for S, with •VS1 = {t3}, V •S1 = {t1}, and MVo(VS1) = 1.
Figure 2 displays the controlled Petri net model after adding
the monitor.

D. GPenSIM TOOL
GPenSIM Petri net simulator is used in this paper as con-
ceived by Davidrajuh [41]. It is possible to run GPenSIM
on MATLAB platform. GPenSIM was developed to model,

simulate, control, and analyze discrete event systems. GPen-
SIM can integrate toolboxes in MATLABwith Petri net mod-
els (e.g., ‘‘Fuzzy logic’’, optimization tools, and ‘‘Control
systems’’). In GPenSIM the functions Cf , Nf , Af , Gf , and If
are integrated together and are coded in the preprocessor files.
In addition, logical expressions and constraints can only be
processed by transitions. GPenSIM uses three files to model,
simulate, analyze, and control the Petri net models, which
are [16]:

1. Petri net definition file (PDF) that used to describe the
structure of a Petri net model (places, transitions, and
arcs).

2. Main simulation file (MSF) that used to simulate a Petri
net model that defied in PDF file

3. Pre- and postprocessor files that used to inspect and
control the conditions of firing for a certain transition
are met, and execute post-firing activities if needed
after a certain transition has been fired during the
simulation.

In Petri net model, inside any place p, all tokens are homo-
geneous, does not matter which token was first or last to
arrive at the place, and which transition a token is deposited at
the place. Nevertheless, in GPenSIM each token can become
unique with identification number (tokID). In addition, it can
assign some identifiers (‘‘colors’’) to each token. The colors
of the output tokens can be added, changed, or deleted in the
preprocessor file by only transitions T . When a transition t
fires, all colored tokens from the input places transfer to
the output places. However, colors are inherited and can be
avoided by overriding. Moreover, transition can select spe-
cific color-based input tokens [16].

Finally, in GPenSIM each token has the following struc-
ture: (1) tokID: a single token identifier (integer value); (2)
t_color (text string set) is a color setting. Several GPen-
SIM functions are used to manipulate the colors. One
of the functions used in this paper is tokenEXColor that
can be described as follows: [set_of_tokID, nr_token_av]=
tokenEXColor (place, nr_tokens_wanted, t_color), where
the function requires three input arguments and returns two
output values. Input arguments are Place(from which place
the tokens are to be chosen), nr_tokens_wanted (the required
number of tokens that have a specified color), and t_color (a
colors set). Output values are set_of_tokID (a set of tokIDs
that satisfy the color requirements) and nr_token_av (the
number of tokIDs existing in set_of_tokID) [16].

III. ROBUST CONTROL FOR UNRELIABLE RESOURCES
BASED ON COLORED PETRI NETS
This section describes a novel robust two-step control policy.
In the first step, the system’s resources are generally assumed
to be reliable. Several monitors are added after applying a
strict minimal siphon-based control strategy to such a system.
In the second step, by considering that resources may fail,
a common recovery subnet is added to model all resource
failures in a system. As a result, a robust controlled system

VOLUME 8, 2020 22415

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

FIGURE 3. Unreliable Petri net model by definition 11.

is developed. Section II presents the method used in the
first step. This section concentrates on the relevance between
resource failures and the controlled system in the first
step.

A. COMMON RECOVERY SUBNET BASED ON COLORED
PETRI NETS
Definition 11 [30]: Let ru ∈ PR be an unreliable resource.
A recovery subnet of ru is a PN Nri= ({pi, pri}, {tfi, tri},
Fri), where Fri= {(pi, tfi), (tfi, pri), (pri, tri), (tri, pi)}, and
an unreliable resource may fail when it is idle ru or in a
busy state (its holders), pi ∈ {ru} ∪H (ru). (Nri, Mrio) is
called a marked recovery subnet, where Mrio(pi) ≥ 0 and
Mrio(pri) = 0.
In Definition 11, pri is called the recovery place of all pi.

Transitions tfi and tri indicate that an unreliable resource ru
fails in pi and recovers through pri, respectively. By Defini-
tion 11, for Figure 2, we can add a recovery subnet for each
unreliable resource ru in each case an idle or busy state results
in an unreliable Petri net model as depicted in Figure 3.

The main weakness of the Definition 11 in [30] is that
many recovery subnets are added for all unreliable resources,
which leads to high structural complexity of the initial model.
However, an efficient approach is developed in this section to
minimize the computational overhead.
Definition 12: Let ru ∈ PR be an unreliable resource.

A colored common recovery subnet of ru is a PN Ncri=
({pi, pcombined}, {tfi, tri}, Fcri, Ccri), where Fcri= {(pi, tfi),
(tfi, pcombined), (pcombined , tri), (tri, pi)}, and an unreliable
resource may fail when it is idle ru or in a busy state (its
holders). Thus, we define PRH= {ru} ∪ H (ru) as a set of
places, where H (ru) is a set of holders of ru, indicated by
H (ru) ={p\p ∈ PA, p∈•• ru ∩PA 6= ∅}, pi ∈ PRH . Ccri is the
color that maps pi ∈ PRH into colors Ccri ∈ SC. (Ncri, Mcrio)
is called a colored common marked recovery subnet, where
Mcrio(pi) ≥ 0 and Mcrio(pcombined) = 0.
In Definition 12, pcombined is called the recovery place of

all pi. Transitions tfi and tri indicate that an unreliable resource
ru fails in pi and recovers through pcombined , respectively.
If an unreliable resource fails in pi, then the token in pi flows
into pcombined by firing tfi. When transition tfi fires, it adds

a color Ccri to the tokens from pi and deposits them into the
common place pcombined . After the failed resource is repaired,
the colored token in pcombined flows into pi by firing tri. When
transition tri fires, it selects only the tokens with color Ccri
from pcombined and deposits them into pi, indicating that a
resource recovery is finished. Note that by default, colors
are inherited: when a transition tri fires, it collects all colors
from the consumed (pcombined) tokens and passes them to
the deposited (pi) tokens. However, color inheritance can be
prevented by overriding.
Definition 13: Let (NV , MVo) be a controlled S3PR, and

PRu be the set of unreliable resources. For all ru ∈ PRu,
adding one common recovery subnet for all pi ∈ PRH
results in a colored controlled unreliable Petri net defined as
(NC ,MCo) = (NV ,MVo) ‖ (Ncri,Mcrio) that is the composition
of (NV , MVo) and (Ncri, Mcrio).
Definition 14: Let NC = (P0 ∪ PA ∪ PR ∪ PV ∪

pcombined , T∪TF∪TR,F∪FR,CR,MCo) be a colored controlled
unreliable marked S3PR, and R(NC , MCo) be its reachable
graph, where T, TF , TR, CR, andMCo are the operation transi-
tions, failure transitions, recovery transitions, failure colors in
failure transitions, and the initial marking ofNC , respectively.
FR ⊆ (TR × PRH) ∪ (PRH × TF).
Theorem 1: The colored controlled unreliable Petri net

(NC , MCo) is live.
Proof: There is a need to prove that all transitions in T,

TF , and TR in (NC , MCo) are live. It does not matter how a
controlled system develops, and there are no strict minimal
siphons being emptied. In addition, there is no new strict
minimal siphon being created, which indicates that the net
(NC , MCo) is live when there is no failure in an unreliable
resource ru ∈ PRu because all t1 ∈ T are live. The net
(NC , MCo) is live when at least one unreliable resource fails
but at least one part type can still be processed by the colored
controlled unreliable Petri net (NC , MCo).
Moreover, if a failure in the unreliable resource ru ∈ PRu

occurs, then the failed resource ru will be repaired success-
fully, the system may be returned to operate without causing
a deadlock, and the colored controlled unreliable Petri net
(NC , MCo) will remain live for all t2 ∈ TF if for all pi ∈•

t2, MC (pi)> 0. Then, tfi can fire in any case because it is
uncontrollable, leading to MC (pcombined) > 0 for all t3 ∈ TR.
IfMC (pcombined) > 0, then t3 can fire. It can therefore be said
that the colored controlled unreliable Petri net (NC , MCo) is
live.

Based on strict minimal siphons, unreliable resources, and
colored Petri nets, the developed policy is shown as follows:

Considering an unreliable marked S3PR net shown
in Figure 2, assume that the index set that may be used is
NA = {i|pi ∈ PRH}. TF = ∪i∈NA{tfi}, TR = ∪i∈NA{tri},
and CF = ∪i∈NA{Ccri}, where tfi, tri, and Ccri are
defined by using Definitions 11 and 12. In the net shown
in Figure 2, we have PRu= {p5, p6}, H(p5) = {p3}, and
H (p6) = {p2, p4}. Adding a common recovery subnet for
p5 and p6 by Definition 12 results in an unreliable S3PR
net model, as depicted in Figure 4. NA = {2, 3, 4, 5, 6},

22416 VOLUME 8, 2020

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

FIGURE 4. Colored controlled unreliable Petri net model by Policy 2.

FIGURE 5. (a) Reachability graph of case 1 and (b) Reachability graph of case 2.

TF= {tf 2,tf 3,tf 4,tf 5,tf 6}, TR= {tr2,tr3,tr4,tr5,tr6}, and CR=
{Ccr2,Ccr3,Ccr4,Ccr5,Ccr6}.
If resource p5 fails in the busy state p3, i.e., tf 3 fires, then

it adds a color Ccr3 to the token from p3 and deposits it into
the common place pcombined . If resource p5 fails in idle state
p5, i.e., tf 5 fires, then it adds a color Ccr5 to the token from
p5 and deposits it into the common place pcombined . After the
failed resource p5 is repaired, the colored token in pcombined
flows into p3 or p5 by firing tr3 or tr5. When the transition
tr3 or tr5 fires, selects only the tokens with color Ccr3 or Ccr5
from pcombined and deposits them into p3 or p5, indicating that
a resource p5 recovery is finished.
If resource p6 fails in busy state p2 or p4, i.e., tf 2 or tf 4 fires,

it adds a color Ccr2 or Ccr4 to the token from p2 or p4 and
deposits them into the common place pcombined . If resource
p6 fails in idle state p6, i.e., tf 6 fires, then it adds a color
Ccr6 to the token from p6 and deposits it into the common
place pcombined . After the failed resource p6 is repaired, the

colored token in pcombined flows into p2, p4, or p6 by firing
tr2, tr4, or tr6 when the transition tr2, tr4, or tr6 fires, and
selects only the tokens with colors Ccr2, Ccr4, or Ccr6 from
pcombined and deposits them into p2, p4, or p6, indicating that
the recovery of resource p6 is finished.
The subnet designed in the second step cannot cause new

deadlocks. To prove that it needs only to examine the liveness
of a net system. Consider the colored controlled unreliable
Petri net model shown in Figure 4. There are two cases in a
model, which are:

1) If there is no failure in any unreliable resource ru ∈
PRu, thus, all t ∈ T are live (deadlock-free), where T=
{t1,t2,t3,t4} denoted as operation transitions. In addi-
tion, all failure transitions TF= {tf 2,tf 3,tf 4,tf 5,tf 6} and
recovery transitions TR= {tr2,tr3,tr4,tr5,tr6} are dis-
abled by developed preprocessor (COMMON_PRE
file in GePenSim tool). The COMMON_PRE file will
inspect if the conditions of firing for failure transitions

VOLUME 8, 2020 22417

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

Policy 2 (Robust Control for Unreliable Resources Based on
Colored Petri Net Algorithm)

Input: A controlled net (NV , MVo) by Policy 1
Output: A colored controlled unreliable marked Petri net
(NC , MCo)
Step 1: for each ru ∈ PRudo
• Add a transition to represent breakdown resource tfi. /
By using Definition 12 . ∗/

• Define colors Ccri for failure transition tfi. / By using
Definition 12. ∗/

• Add a recovery place pcombined . / By using Defini-
tion 12. ∗/

• Add a recovery transitions to represent that the failed
resource is repaired tri. / By using Definition 12. ∗/

• The pi output arcs are connected to the tfi transition,
and all arc weights are unitary. / By using Defini-
tion 12. ∗/

• The pcombined input arcs are connected from the tfi
transitions, and all arc weights are unitary. / By using
Definition 12. ∗/

• The pcombined output arcs are connected to the tri tran-
sitions, and all arc weights are unitary. / By using
Definition 12. ∗/

• The pi input arcs are connected from the tri transitions,
and all arc weights are unitary. / By using Defini-
tion 12. ∗/

end for
Step 2: Output a colored controlled unreliablemarked Petri
net (NC , MCo).
Step 3: End

are met (inspect time to failure). Figures 5(a) shows the
reachability graph of case 1, and the system is live.

2) The colored controlled unreliable Petri net (NC , MCo)
is live (deadlock- free) when at least one unreliable
resource fails but at least one part type can still be
processed by the colored controlled unreliable Petri net
(NC , MCo). Assume that if a failure in the unreliable
resource p5 occurs at busy state p3, then the failed
resource p5 will be repaired successfully, the system
may be returned to operate without causing a deadlock,
and the net (NC , MCo) will remain live. Figures 5(b)
shows the reachability graph of case 2. If resource p5
fails in the busy state p3, i.e., tf 3 fires, then it adds
a color Ccr3 to the token from p3 and deposits the
token into the common place pcombined . After the failed
resource p5 is repaired, the colored token in pcombined
flows into p3 by firing tr3. When the transition tr3 fires,
it selects only the token with color Ccr3 from pcombined
and deposits the token into p3, indicating that a resource
p5 recovery is finished. Then, t3 resumes to be fired.
Note that the conditions for the enabled failure and
recovery transitions to start firing based on mean time
to failure and mean time to repair, respectively.

FIGURE 6. PDF file of colored controlled unreliable Petri net model in
Figure 3.

FIGURE 7. MSF file of colored controlled unreliable Petri net model in
Figure 3.

B. COMPUTATIONAL COMPLEXITY
Policy 1 computes the control places to S3PR (N, Mo) with
N = (PA∪ {p0} ∪PR, T, F, Mo). Policy 1 is used to add a
control place VS to each SMS in S3PR (N, Mo) to fulfill
the liveness of a Petri net. Obviously, each VS is associated
with an SMS in S3PR (N, Mo). Let n is the number of SMSs
i.e., |SMSs| = n. The ‘‘FOR loop’’ loop is executed n times
to add VS for the SMSs in S3PR (N, Mo). Thus, the compu-
tational complexity of Policy 1 to add control places to S3PR
(N, Mo) is O(n). In Definition 11 [30], a recovery subnet is
computed for each unreliable resource in controlled S3PR
(NV , MVo). Based on the fact that each unreliable resource
is associated with the recovery subnet in S3PR (NV , MVo),
each unreliable resource ru ∈ PRu may fail when it is idle ru
or in a busy state H (ru). Thus, PRH= {ru} ∪H (ru) as a set
of places. Let the number of set of places that need recovery
subnets PRH be y, i.e., |PRH | = y. Moreover, each recovery
subnet requires failure transition, recovery place, and recov-
ery transition. Assume that the number of recovery subnet
items is 3. The ‘‘FOR loop’’ is executed 3y times to compute
the recovery subnets for all unreliable resource in controlled
S3PR (NV , MVo). Thus, the computational complexity is
O(3y). While in the proposed Policy 2, the recovery subnet
requires failure transition and recovery transition for each

22418 VOLUME 8, 2020

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

FIGURE 8. Part of COMMON_PRE file of colored controlled unreliable Petri net model
in Figure 3.

pi ∈ PRH , and only one common recovery place for all places
in PRH . Thus, the computational complexity of the proposed
Policy 2 is O(2y). For instance, consider an unreliable marked
S3PR net shown in Figure 2, by Definition 11, we have
PRu= {p5, p6}, H(p5) = {p3}, and H (p6) = {p2, p4}, PRH=
{p2, p3, p4, p5, p6}, |PRH | = 5, the computational complexity
is O(3∗5). While by the proposed Policy 2, the computa-
tional complexity is O(2∗5), which means that it has minimal
computational complexity compared with Definition 11 [30].
In general, the computational complexity of the proposed
method has polynomial time complexity.

IV. GPenSIM CODE AND VALIDATION
Implementing a Petri net model as shown in Figure 4 by
using GPenSIM code usually results in three files: PDF,
COMMON_PRE, and MSF. Figure 6 illustrates the proposed
PDF file and describes the structure of Petri net model by
defining the sets of places, transitions, and arcs. Figure 7 illus-
trates the proposed COMMON_PRE file and describes the
conditions for the enabled failure and recovery transitions to
start firing based on mean time to failure and mean time to
repair, respectively.

Figure 8 displays the MSF file used to compute the uti-
lization of robot and machine, the liveness of Petri net
model, and the throughput. To test and validate the pro-
posed GPenSIM code, the code is validated and com-
pared with Definition 11 [30]. The simulation is run for
480 min. After running and simulating the Petri net model,
the results of the MATLAB simulation can be summarized as
follows.

Table 1 lists the results in terms of the number of recov-
ery places, failure transitions, recovery transitions, recovery
arcs, liveness, utilization of robot and machine, and through-
put. It is observed that the proposed approach provides a
colored controlled unreliable marked Petri net with only a

TABLE 1. Performance comparison of some deadlock control policies.

FIGURE 9. Automated manufacturing system at King Saud University.

single recovery place compared with five recovery places in
Definition 11 [30]. In terms of the utilization of robot and
machine and the throughput, both methods obtain the same
values. Therefore, the developed method is validated and can
give sufficiently accurate results so that it can be used for
other cases.

V. CASE STUDY
Figure 9 shows the AMS considered in this article. This
system is available in the laboratory of Computer Inte-
grated Manufacturing (CIM) at King Saud University [6].

VOLUME 8, 2020 22419

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

FIGURE 10. Petri net model of AMS.

It comprises input and output buffers, two M1-M2 machines,
assembly and inspection stations, a conveyor to transfer the
parts between machines and stations, and three robots R1–
R3 for loading and unloading parts.

Each robot (machine) holds (processes) one part at the
same time. Two part types A and B are considered to be
processed in the system. The process route of part A and part
B is constructed by M1 andM2, respectively. Then, two parts
are assembled in an assembly station. The assembled part is
inspected at an inspection station, and then the final product
leaves the AMS.

Robots are working in a mutually exclusive manner.
R1 loads/unloads part A on M1 from the conveyor,
R2 loads/unloads part B into M2 from the conveyor, and
R3 loads/unloads parts A and B onto the assembly and
inspection stations from the conveyor. The Petri net model is
illustrated in Figure 10. The Petri netmodel is composed of 15
transitions and 23 places. The places can be described as the
following set partition: P0 = {p1,p23}, PR = {p15, . . . , p22},
and PA = {p2, . . . , p14}. The properties of the developed Petri
net models are obtained using the free GPenSIM tool [41].
It was found that the system is not live (deadlock).

The suggested deadlock prevention algorithm was applied
to this case study. Without considering recovery subnets,

the system model has five strict minimal siphons that can
be empty: S1= {p7, p16, p21}, S2= {p6, p15, p20}, S3=
{p10, p12, p13, p17, p22}, S4= {p12, p13, p17, p18, p22}, and
S5= {p8, p12, p13, p18, p22}. Based on the suggested deadlock
prevention algorithm (Policy 1), five monitors are added to
prevent the five strict minimal siphons from being emptied
such that the original net without considering resource fail-
ures is controlled. The required control places using Policy
1 are designed as follows:

1. •VS1 = {t6}, V •S1 = {t2}, and MVo(VS1) = 1
2. •VS2 = {t5}, V •S2 = {t1}, and MVo(VS2) = 1
3. •VS3 = {2t10}, V •S3 = {t7, t8}, and MVo(VS3) = 2
4. •VS4 = {t10, t12, t13}, V •S4 = {t7, t8},

and MVo(VS4) = 3
5. •VS5 = {t12, t13}, V •S5 = {t10}, and MVo(VS5) = 1
Figure 10 shows the controlled Petri net model after the

addition of the control places. In the net shown in Figure 9,
we have PRu= {p15, p16, p17, p18, p20, p21, p22}, H(p15) =
{p4}, H(p16)= {p5}, H(p17)= {p9}, H(p18)= {p11}, H(p20)=
{p2, p6}, H(p21)= {p3, p7}, and H (p22)= {p8, p10, p12, p13}.
Adding a common recovery subnet for p15, p16, p17, p18, p20,
p21, and p22 by Definition 12 results in the colored controlled
unreliable Petri net model depicted in Figure 11, and Table 2
lists the NA, TF, TR, and CR of an unreliable Petri net.

22420 VOLUME 8, 2020

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

FIGURE 11. Colored controlled unreliable Petri net of AMS by Policy 2.

VOLUME 8, 2020 22421

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

TABLE 2. PRu, NA, TF, TR, and CR of Unreliable Petri net.

If resource p15 fails in busy state p4, i.e., tf 4 fires, it adds
a color Ccr4 to the token from p4 and deposits it into the
common place pcombined . If resource p15 fails in idle state p15,
i.e., tf 15 fires, then it adds a color Ccr15 to the token from
p15 and deposits it into the common place pcombined . After the
failed resource is repaired p15, the colored token in pcombined
flows into p4 or p15 by firing tr4 or tr15. When the transition
tr4 or tr15 fires selects only the tokens with colors Ccr4 or
Ccr15 from pcombined and deposits it into p4 or p15, indicating
that the recovery of resource p15 is finished.

If resource p16 fails in busy state p5, i.e., tf 5 fires, it adds
a color Ccr5 to the token from p5 and deposits it into the
common place pcombined . If resource p16 fails in idle state p16,
i.e., tf 16 fires, it adds a color Ccr16 to the token from p16 and
deposits it into the common place pcombined . After the failed
resource is repaired p16, the colored token in pcombined flows
into p5 or p16 by firing tr5 or tr16. When transition tr5 or tr16
fires, selects only the tokens with colors Ccr5 or Ccr16 from
pcombined and deposits it into p5 or p16, indicating that the
recovery of resource p16 is finished.

If resource p17 fails in busy state p9, i.e., tf 9 fires, it adds
a color Ccr9 to the token from p9 and deposits it into the
common place pcombined . If resource p17 fails in idle state p17,
i.e., tf 17 fires, it adds a color Ccr17 to the token from p17 and
deposits it into the common place pcombined . After the failed
resource is repaired p17, the colored token in pcombined flows
into p9 or p17 by firing tr9 or tr17. When the transition tr9 or
tr17 fires, selects only the tokens with colors Ccr9 or Ccr17
from pcombined and deposits it into p9 or p17, indicating that
the recovery of resource p17 is finished.

If resource p18 fails in busy state p11, i.e., tf 11 fires, it adds
a color Ccr11 to the token from p11 and deposits it into the
common place pcombined . If resource p18 fails in idle state p18,

i.e., tf 18 fires, it adds a color Ccr18 to the token from p18 and
deposits it into the common place pcombined . After the failed
resource is repaired p18, the colored token in pcombined flows
into p11 or p18 by firing tr11 or tr18. When the transition tr11
or tr18 fires, selects only the tokens with colors Ccr11 or Ccr18
from pcombined and deposits it into p11 or p18 indicating that
the recovery of resource p18 is finished.

If resource p20 fails in busy state p2 or p6 i.e., tf 2 or tf 6
fires, it adds a color Ccr2 or Ccr6 on the token from p2 or p6
and deposits it into the common place pcombined . If resource
p20 fails in idle state p20 i.e., tf 20 fires, it adds a color Ccr20
on the token from p20 and deposits it into the common place
pcombined ; after the failed resource is repaired p20, the colored
token in pcombined flows into p2, p6 or p20 by firing tr2, tr6
or tr20, when the transition tr2, tr6 or tr20 fires selects only
the token with color Ccr2, Ccr6 or Ccr20 from pcombined and
deposits it into the p2, p6 or p20 indicating that a resource p20
recovery is finished.
If resource p21 fails in busy state p3 or p7 i.e., tf 3 or tf 7

fires, it adds a color Ccr3 or Ccr7 on the token from p3 or p7
and deposits it into the common place pcombined . If resource
p21 fails in idle state p21 i.e., tf 21 fires, it adds a color Ccr21
on the token from p21 and deposits it into the common place
pcombined ; after the failed resource is repaired p21, the colored
token in pcombined flows into p3, p7 or p21 by firing tr3, tr7
or tr21, when the transition tr3, tr7 or tr21 fires selects only
the tokens with color Ccr3, Ccr7 or Ccr21 from pcombined and
deposits it into the p3, p7 or p21 indicating that a resource p21
recovery is finished.
Finally, if resource p22 fails in busy state p8, p10, p12

or p13 i.e., tf 8, tf 10, tf 12, or tf 13 fires, it adds a color
Ccr8, Ccr10, Ccr12, or Ccr13 on the token from p8, p10, p12
or p13 and deposits it into the common place pcombined .
If resource p22 fails in idle state p22 i.e., tf 22 fires, it adds
a color Ccr22 on the token from p22 and deposits it into the
common place pcombined ; after the failed resource is repaired
p22, the colored token in pcombined flows into p8, p10, p12
or p13 by firing tr8, tr10, tr12, or tr13, when the transition
tr8, tr10, tr12, or tr13 fires selects only the tokens with color
Ccr8, Ccr10, Ccr12, or Ccr13 from pcombined and deposits it
into the p8, p10, p12, p13, or p22 indicating that a resource p22
recovery is finished.

VI. CONCLUSION
Various studies on the prevention of deadlocks have been
devoted to enforcing liveness on the premise that all resources
in a system work correctly. However, in practice, AMSs may
face unexpected resource failures. This research suggested a
robust deadlock-prevention controller for an AMS with all
unreliable resources. In the absence or existence of resource
failure, the proposed robust controller can ensure the required
properties, i.e., the liveliness of the controlled system.

A two-step policy was developed in this paper to address
the robust deadlock control of AMSs. The strict minimal
siphon-based policy in [39] was utilized in the first step
for a specific plant, resulting in a controlled net without

22422 VOLUME 8, 2020

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

considering resource failures. Then, resource failures were
considered by adding a common recovery subnet in a unified
modeling method using a Petri net. The controlled net can
work smoothly even if unreliable resources fail as long as
there is no failure of one unit of unreliable resource.

The main advantages of the proposed method are: (1) It
can be applied to an unreliable complex Petri net model
for AMSs; (2) It has less computational complexity for the
computation of the common recovery subnet; (3) It can obtain
one common recovery subnet to model all resource failures;
(4) It has a simpler structure compared to the technique used
in [30]; (5) It does not need to compute reachability graphs
compared to the policy developed in [35], which means
that it has small computational overhead; (6) It can easily
handle robust deadlock control problems with all unreliable
resources without using inhibitor arcs; (7) Simulation, valida-
tion, and performance comparison are provided to compare
the performance of the proposed method by using developed
GPenSIM code.

The main limitation of the proposed method is that the
proposed model may undergo changes of control specifica-
tions and requirements such as the processing routes of the
system are changed, addition of new product, and addition of
new machine. If a system has these issues, a system requires
to be reconfigurable. Then the proposed model can have
deadlocks. Therefore, our future research will investigate the
proposed method to improve efficiency for valid and rapid
reconfiguration of Petri net-based supervisory controllers for
reconfigurable manufacturing systems.

ACKNOWLEDGMENT
The authors would like to thank King Saud University for
funding and supporting this research through Researchers
Supporting Project Number (RSP-2019/62).

REFERENCES
[1] Z. Wu Li, M. Chu Zhou, and N. Qi Wu, ‘‘A survey and comparison of

Petri net-based deadlock prevention policies for flexible manufacturing
systems,’’ IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 2,
pp. 173–188, Mar. 2008.

[2] Z. Li, N.Wu, andM. Zhou, ‘‘Deadlock control of automatedmanufacturing
systems based on Petri nets—A literature review,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 437–462, Jul. 2012.

[3] A. M. El-Tamimi, E. A. Nasr, A. Al-Ahmari, H. Kaid, and Z. Li, ‘‘Evalua-
tion of deadlock control designs in automated manufacturing systems,’’ in
Proc. Int. Conf. Ind. Eng. Oper. Manage. (IEOM), Mar. 2015, pp. 1–10.

[4] Y. Chen, Z. Li, K. Barkaoui, and A. Giua, ‘‘On the enforcement of a class
of nonlinear constraints on Petri nets,’’ Automatica, vol. 55, pp. 116–124,
May 2015.

[5] E. Abouel Nasr, A. M. El-Tamimi, A. Al-Ahmari, and H. Kaid, ‘‘Com-
parison and evaluation of deadlock prevention methods for different size
automated manufacturing systems,’’ Math. Problems Eng., vol. 2015,
pp. 1–19, 2015.

[6] H. Kaid, A. Al-Ahmari, A. M. El-Tamimi, E. A. Nasr, and Z. Li, ‘‘Design
and implementation of deadlock control for automated manufacturing
systems,’’ South Afr. J. Ind. Eng., vol. 30, no. 1, pp. 1–23, 2019.

[7] M. Bashir and L. Hong, ‘‘Global supervisory structure for decentralized
systems of flexible manufacturing systems using Petri nets,’’ Processes,
vol. 7, no. 9, p. 595, Sep. 2019.

[8] Y. Chen, Z. Li, M. Khalgui, and O. Mosbahi, ‘‘Design of a maximally
permissive liveness-enforcing Petri net supervisor for flexible manufac-
turing systems,’’ IEEE Trans. Autom. Sci. Eng., vol. 8, no. 2, pp. 374–393,
Apr. 2011.

[9] A. Ghaffari, N. Rezg, and X. Xie, ‘‘Design of a live and maximally
permissive Petri net controller using the theory of regions,’’ IEEE Trans.
Robot. Autom., vol. 19, no. 1, pp. 137–142, Feb. 2003.

[10] M. Uzam and M. Zhou, ‘‘Iterative synthesis of Petri net based deadlock
prevention policy for flexible manufacturing systems,’’ in Proc. IEEE Int.
Conf. Syst., Man Cybern., Oct. 2004, pp. 4260–4265.

[11] M. Uzam, ‘‘The use of the Petri net reduction approach for an optimal
deadlock prevention policy for flexible manufacturing systems,’’
Int. J. Adv. Manuf. Technol., vol. 23, nos. 3–4, pp. 204–219,
Feb. 2004.

[12] D. Sun, Y. Chen, M. A. El-Meligy, M. A. F. Sharaf, N. Wu, and Z. Li, ‘‘On
algebraic identification of critical states for deadlock control in automated
manufacturing systems modeled with Petri nets,’’ IEEE Access, vol. 7,
pp. 121332–121349, 2019.

[13] D. Y. Chao, ‘‘Direct minimal empty siphon computation using MIP,’’ Int.
J. Adv. Manuf. Technol., vol. 45, nos. 3–4, pp. 397–405, Nov. 2009.

[14] D. Y. Chao, ‘‘Improvement of suboptimal siphon-and FBM-based control
model of a well-known S3PR,’’ IEEE Trans. Autom. Sci. Eng., vol. 8, no. 2,
pp. 404–411, Apr. 2011.

[15] W. Duan, C. Zhong, X. Wang, A. U. Rehman, U. Umer, and N. Wu,
‘‘A deadlock prevention policy for flexible manufacturing systems mod-
eled with Petri nets using structural analysis,’’ IEEE Access, vol. 7,
pp. 49362–49376, 2019.

[16] H. Kaid, A. Al-Ahmari, Z. Li, and R. Davidrajuh, ‘‘Single controller-
based colored Petri nets for deadlock control in automated manufacturing
systems,’’ Processes, vol. 8, no. 1, p. 21, Dec. 2019.

[17] M. Uzam, ‘‘An optimal deadlock prevention policy for flexible manu-
facturing systems using Petri net models with resources and the theory
of regions,’’ Int. J. Adv. Manuf. Technol., vol. 19, no. 3, pp. 192–208,
Feb. 2002.

[18] D. Y. Chao, ‘‘Fewer monitors and more efficient controllability for
deadlock control in S3 PGR 2 (systems of simple sequential processes
with general resource requirements),’’ Comput. J., vol. 53, no. 10,
pp. 1783–1798, Dec. 2010.

[19] Z. Li and M. Zhou, ‘‘Elementary siphons of Petri nets and their application
to deadlock prevention in flexible manufacturing systems,’’ IEEE Trans.
Syst., Man, Cybern. A, Syst. Humans, vol. 34, no. 1, pp. 38–51, Jan. 2004.

[20] Y.-L. Pan, C.-Y. Tseng, and T.-C. Row, ‘‘Design of improved optimal and
suboptimal deadlock prevention for flexible manufacturing systems based
on place invariant and reachability graph analysis methods,’’ J. Algorithms
Comput. Technol., vol. 11, no. 3, pp. 261–270, Sep. 2017.

[21] M. Zhao and M. Uzam, ‘‘A suboptimal deadlock control policy for design-
ing non-blocking supervisors in flexible manufacturing systems,’’ Inf. Sci.,
vols. 388–389, pp. 135–153, May 2017.

[22] X. Cong, C. Gu, M. Uzam, Y. Chen, A. M. Al-Ahmari, N. Wu, M. Zhou,
and Z. Li, ‘‘Design of optimal Petri net supervisors for flexible manufac-
turing systems via weighted inhibitor arcs,’’ Asian J. Control, vol. 20, no. 1,
pp. 511–530, Jan. 2018.

[23] S. Wang, D. You, andM. Zhou, ‘‘A necessary and sufficient condition for a
resource subset to generate a strict minimal siphon in S 4PR,’’ IEEE Trans.
Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017.

[24] Q. Zhuang, W. Dai, S. Wang, J. Du, and Q. Tian, ‘‘An MIP-based
deadlock prevention policy for siphon control,’’ IEEE Access, vol. 7,
pp. 153782–153790, 2019.

[25] X. Guo, S. Wang, D. You, Z. Li, and X. Jiang, ‘‘A siphon-based deadlock
prevention strategy for S3PR,’’ IEEE Access, vol. 7, pp. 86863–86873,
2019.

[26] M. Lawley and W. Sulistyono, ‘‘Robust supervisory control policies for
manufacturing systems with unreliable resources,’’ IEEE Trans. Robot.
Autom., vol. 18, no. 3, pp. 346–359, Jun. 2002.

[27] F.-S. Hsieh, ‘‘Robustness analysis of Petri nets for assembly/disassembly
processes with unreliable resources,’’ Automatica, vol. 42, no. 7,
pp. 1159–1166, Jul. 2006.

[28] S. Wang, S. Foh Chew, and M. Lawley, ‘‘Using shared-resource capac-
ity for robust control of failure-prone manufacturing systems,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 38, no. 3, pp. 605–627,
May 2008.

[29] S. Foh Chew, S. Wang, and M. Lawley, ‘‘Robust supervisory control for
product routings with multiple unreliable resources,’’ IEEE Trans. Autom.
Sci. Eng., vol. 6, no. 1, pp. 195–200, Jan. 2009.

[30] G. Liu, Z. Li, K. Barkaoui, and A.M. Al-Ahmari, ‘‘Robustness of deadlock
control for a class of Petri nets with unreliable resources,’’ Inf. Sci.,
vol. 235, pp. 259–279, Jun. 2013.

VOLUME 8, 2020 22423

A. Al-Ahmari et al.: Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis

[31] H. Yue, K. Xing, and Z. Hu, ‘‘Robust supervisory control policy for
avoiding deadlock in automated manufacturing systems with unreliable
resources,’’ Int. J. Prod. Res., vol. 52, no. 6, pp. 1573–1591, Mar. 2014.

[32] H. Yue, K. Xing, H. Hu, W. Wu, and H. Su, ‘‘Robust supervision
using shared-buffers in automated manufacturing systems with unreliable
resources,’’ Comput. Ind. Eng., vol. 83, pp. 139–150, May 2015.

[33] F. Wang, K.-Y. Xing, M.-C. Zhou, X.-P. Xu, and L.-B. Han, ‘‘A
robust deadlock prevention control for automated manufacturing sys-
tems with unreliable resources,’’ Inf. Sci., vol. 345, pp. 243–256,
Jun. 2016.

[34] Y. Feng, K. Xing, Z. Gao, and Y. Wu, ‘‘Transition cover-based robust
Petri net controllers for automated manufacturing systems with a type
of unreliable resources,’’ IEEE Trans. Syst., Man, Cybern., Syst, vol. 47,
no. 11, pp. 3019–3029, Nov. 2017.

[35] G. Liu, P. Li, Z. Li, and N. Wu, ‘‘Robust deadlock control for auto-
mated manufacturing systems with unreliable resources based on Petri net
reachability graphs,’’ IEEE Trans. Syst. Man Cybern, Syst., vol. 49, no. 7,
pp. 1371–1385, Jul. 2019.

[36] N. Ran, J. Hao, Z. Dong, Z. He, Z. Liu, Y. Ruan, and S. Wang,
‘‘K-codiagnosability verification of labeled Petri nets,’’ IEEE Access,
vol. 7, pp. 185055–185062, 2019.

[37] X. Li, G. Liu, Z. Li, N. Wu, and K. Barkaoui, ‘‘Elementary siphon-
based robust control for automated manufacturing systems with multiple
unreliable resources,’’ IEEE Access, vol. 7, pp. 21006–21019, 2019.

[38] Z. Li and M. Zhou, Deadlock Resolution in Automated Manufacturing
Systems: A Novel Petri Net Approach. London, U.K.: Springer-Verlag,
2009.

[39] J. Ezpeleta, J. Colom, and J. Martinez, ‘‘A Petri net based deadlock
prevention policy for flexible manufacturing systems,’’ IEEE Trans. Robot.
Autom., vol. 11, no. 2, pp. 173–184, Apr. 1995.

[40] Y. Chen, Z. Li, andM. Zhou, ‘‘Behaviorally optimal and structurally simple
liveness-enforcing supervisors of flexible manufacturing systems,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 42, no. 3, pp. 615–629,
May 2012.

[41] R. Davidrajuh,Modeling Discrete-Event Systems with GPenSIM: An Intro-
duction. Cham, Switzerland: Springer, 2018.

ABDULRAHMAN AL-AHMARI received the
Ph.D. degree in manufacturing systems engineer-
ing from the University of Sheffield, Sheffield,
U.K., in 1998. He worked as the Dean of the
Advanced Manufacturing Institute, Chairman of
Industrial Engineering Department. He is cur-
rently a Professor of industrial engineering with
King Saud University, Riyadh, Saudi Arabia.
He led a number of funded projects from different
organizations in Saudi Arabia. He has published

papers in leading Journal of Industrial and Manufacturing Engineering.
His current research interests include advanced manufacturing technologies,
Petri nets, analysis and design of manufacturing systems, computer inte-
grated manufacturing, optimization of manufacturing operations, flexible
manufacturing systems and cellular manufacturing systems, and applications
of decision support systems in manufacturing.

HUSAM KAID received the B.S. degree in indus-
trial engineering from the University of Taiz, Taiz,
Yemen, in 2010, and the M.S. degree in indus-
trial engineering fromKing SaudUniversity, Saudi
Arabia, in 2015. He is currently a Researcher and
a Ph.D. Student with the Industrial Engineering
Department, College of Engineering, King Saud
University, Saudi Arabia. His research areas and
specialties are design and analysis of manufactur-
ing systems, deadlock control in manufacturing

systems, supply chain, simulation, operations research, optimization tech-
niques, and bibliometric network analysis.

ZHIWU LI (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees in mechanical engineer-
ing, automatic control, and manufacturing engi-
neering from Xidian University, Xi’an, China,
in 1989, 1992, and 1995, respectively. He joined
Xidian University, in 1992. Over the past decade,
he was a Visiting Professor with the University of
Toronto, Technion (Israel Institute of Technology),
Martin-Luther University, Conservatoire National
des Arts etMétiers (Cnam),Meliksah Universitesi,

University of Cagliari, University of Alberta, andKing SaudUniversity. He is
currently with the Macau University of Science and Technology. His cur-
rent research interests include Petri net theory and application, supervisory
control of discrete event systems, workflow modeling and analysis, system
reconfiguration, game theory, and data and process mining. He is listed in
Marquis Who’s Who in the world, 27th Edition, 2010. He was a recipient
of an Alexander von Humboldt Research Grant, Alexander von Humboldt
Foundation, Germany, and Research in Paris, France. He is the Founding
Chair of the Xi’an Chapter of IEEE Systems, Man, and Cybernetics Society.
He serves as a reviewer for more than 90 international journals.

REGGIE DAVIDRAJUH (Senior Member, IEEE)
received the master’s degree in control systems
engineering and the Ph.D. degree in industrial
engineering from theNorwegianUniversity of Sci-
ence and Technology (NTNU), in 1993 and 2001,
respectively, and the D.Sc. (Dr hab) degree in
informatics from the AGH University of Science
and Technology, Poland, in 2016. He is currently
a Professor of informatics with the Department of
Electrical and Computer Engineering, University

of Stavanger, Norway. He is also a Visiting Professor with the Silesian
University of Technology, Poland. His current research interests include
discrete-event systems, Petri nets, and graph algorithms.

22424 VOLUME 8, 2020

	INTRODUCTION
	PRELIMINARIES
	BASICS OF PETRI NETS
	STRICT MINIMAL SIPHONS
	DEADLOCK PREVENTION POLICY BASED ON STRICT MINIMAL SIPHONS
	GPenSIM TOOL

	ROBUST CONTROL FOR UNRELIABLE RESOURCES BASED ON COLORED PETRI NETS
	COMMON RECOVERY SUBNET BASED ON COLORED PETRI NETS
	COMPUTATIONAL COMPLEXITY

	GPenSIM CODE AND VALIDATION
	CASE STUDY
	CONCLUSION
	REFERENCES
	Biographies
	ABDULRAHMAN AL-AHMARI
	HUSAM KAID
	ZHIWU LI
	REGGIE DAVIDRAJUH

