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SUMMARY

Microbes are  everywhere  and contribute  to  many essential  processes relevant  for  planet

Earth,  ranging  from biogeochemical  cycles  to  complex  human  behavior.  The  means  to

achieve these colossal tasks for such small and, at first glance, simple organisms rely on

their ability to assemble in heterogeneous communities in which populations with different

taxonomies  and  functions  coexist  and  complement  each  other.  Some  microbes  are  of

particular interest for human civilization and have long been used for everyday tasks, such

as the production of bread and wine. More recently, large-scale industrial and civil projects

have taken advantage of the transformative capabilities of microbial communities, with key

examples being biogas reactors, mining and wastewater treatment.

Decades of classical microbiology, based on pure culture isolates and their physiological

characterization,  have  built  the  foundations  of  modern  microbial  ecology.  Molecular

analysis of microbes and microbial  communities has generated an understanding that for

many microbial populations cultivation is hard to achieve and that breaking a community

apart impacts its function. These limitations have driven the development of technical tools

that bring us directly in contact with communities in their natural environment. In the mid

2000’s the recently established “omics” techniques were quickly adapted to their  “meta-

omics” version, enabling direct analysis  of the microbial  samples without culture.  Every

class of molecules (DNA, RNA, protein, metabolite, etc.) can now theoretically be analyzed

from the entire community within a given sample. Metagenomics uses community DNA to

build the phylogenetic picture and the genetic potential, whereas metatranscriptomics and

metaproteomics employ RNA and proteins respectively to inquire the gene expression of the

community.  Finally,  meta-metabolomics  can  close  the  loop  and  describe  the  metabolic

activity of the microbes.

Here, we combined the four aforementioned major meta-omics disciplines in a gene- and

population-centric  perspective  to  re-iterate  the  same  Aristotelian  question  underlying

microbial ecology: how is it possible that the whole is more than the sum of its parts? Along

the detailed answers provided by the individual communities in various environments, we

also tried to learn something about biology itself. We first addressed in a saccharolytic and
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methane-producing minimalistic consortium (SEM1b), the strain-specific interplay engaged

in (hemi)cellulose degradation, explaining the ubiquity of Coprothermobacter proteolyticus

in biogas reactors. We showed through the genetic potential of the C. proteolyticus-affiliated

COPR1 population, the putative acquisition via horizontal gene transfer of a gene cassette

for  hemicellulose  degradation.  Moreover,  we showed how the  gene  expression  of  these

COPR1 genes were both coherent with the release of hemicellulose by another population of

the community (RCLO1) and synced with the gene expression of the orthologous genes of

an  already known hemicellulolytic  population  (CLOS1).  Conclusively,  we demonstrated

how the same purified COPR1 protein (Glycosyl  Hydrolases 16) showed endoglucanase

activity on several hemicellulose substrates.

Secondly, we explored the combined application of absolute omics-based quantification of

RNA and proteins using SEM1b as a benchmark community, due to its lower complexity

(less than 12 populations) and relatively resolved biology. We subsequently demonstrated

that the uncultured bacterial populations in SEM1b followed the expected protein-to-RNA

ratio (102-104) of previously analyzed cultured bacteria in exponential phase. In contrast, an

archaeon population from SEM1b showed values in the range 103-105, the same as what has

been reported for eukaryotes (yeast and human) in the literature. In addition, we modeled

the linearity (k) between genome-centric transcriptomes and proteomes over time and used

it  to  predict  the  essential  metabolic  populations  of  the  SEM1b  community  through

converging and parallel k-trends, which was subsequently confirmed via classical pathway

analysis. Finally, we estimated the translation and the protein degradation rates, coming to

the  conclusion  that  some  of  the  processes  in  the  cell  that  require  a  rapid  tuning  (e.g.

metabolism and motility) are regulated (also) post-transcriptionally.

Thirdly we sought  to  apply our approach of  collapsing  complex datasets  into  simplistic

metrics in order to identify underlying community trends, onto a more complex and “real-

world” microbiome. To do this, we resolved more than one year of weekly sampling from a

lipid-accumulating  community  (Shif-LAO)  that  inhabits  a  wastewater  treatment  in

Shifflange  (Luxembourg),  and  showed  an  extreme  genetic  redundancy  and  turnover  in

contrast to a more conservative trend in functions. Moreover, we demonstrated how the time

patterns  (e.g.  seasonality)  in  both  gene  count  and  gene  expression  are  linked  with  the

physico-chemical parameters associated with the corresponding samples. Furthermore, we
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built the static reaction network underlying the whole community over the complete dataset

(51 temporal samples). From this, we characterized the sub-network for lipid accumulation,

and showed that its more expressed nodes were defined by resource competition between

different taxa (deduced via inverse taxonomic richness and gene expression over time). In

contrast,  the nitrogen metabolism sub-network instead exhibited a dominant  taxon and a

keystone  ammonia  oxidizing  monooxygenase,  the  first  enzyme  of  ammonia  oxidation,

which may lead to the production of nitrous gas (a powerful greenhouse gas).

Overall, our results presented in this thesis build a comprehensive repertoire of interactions

in microbial communities ranging from a simplistic (10’s of populations) consortium to a

natural complex microbiome (100’s of populations). These were ultimately uncovered using

an array of techniques, including unsupervised gene expression clustering, pathway analysis,

reaction  networks,  co-expression  networks,  eigengenes  and  linearity  trends  between

transcriptome and proteome. Moreover, we learnt that to achieve a full understanding of

microbial ecology and detailed interactions, we need to integrate all the meta-omics layers

quantified with absolute measurements. However, when scaling these approaches to real-

world  communities  the  massive  amounts  of  generated  data  brings  new  challenges  and

necessitates simplifying strategies to reduce complexity and extrapolate ecological trends.
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SAMMENDRAG
Mikroorganismer er overalt og de bidrar til mange essensielle prosesser som er viktige for

planeten vår, alt fra biokjemiske sykluser til kompleks menneskelig oppførsel. Midlene disse

små, og ved første øyekast enkle organismene bruker for å oppnå så betydelige oppgaver på,

ligger  i  deres evne til  å forenes i  et  heterogent  samfunn der ulike populasjoner  med en

forskjellig taksonomi og funksjoner sameksisterer og utfyller hverandre. Noen mikrobielle

samfunn  er  av  særlig  interesse  for  oss  mennesker,  og  har  i  lang  tid  blitt  utnyttet  i

hverdagslige gjøremål, slik som produksjon av brød og vin. I senere tid har også stor-skala

industri og kommunale anlegg, for eksempel biogass reaktorer og renseanlegg, dratt nytte av

mikrobesamfunns evne til å transformere. 

 

Tiår  med  klassisk  mikrobiologi,  basert  på  dyrking  og  fysiologisk  karakterisering  av

renkulturer har bygget grunnlaget for moderne mikrobiell økologi. Molekylære analyser av

mikrober  og  mikrobielle  samfunn  har  resultert  i  forståelsen  om  at  mange  mikrobielle

populasjoner er vanskelige å kultivere, og at en oppdeling av  samfunnet vil påvirke dens

funksjoner. Disse begrensningene har vært en drivkraft for utviklingen av tekniske verktøy

som kan bringe oss i direkte kontakt med mikrobesamfunnet i deres naturlige miljø. I midten

av 2000-talles ble de nylig etablerte  «omikk»-teknikkene raskt adoptert  til  også å gjelde

«meta-omikk», som muliggjør direkte analysering av mikrobielle samfunn uten kultivering.

I dag kan i teorien hver molekylerære klasse (DNA, RNA, proteiner, metabolitter, osv.) bli

analysert  fra  hele  mikrobesamfunn  i  en bestemt  prøve.  I  metagenomikk  benyttes  DNA-

innholdet til å konstruere et fylogenetisk bilde av samfunnet og det genetiske potensiale,

mens metatranskriptomikk og metaproteomikk bruker henholdsvis RNA og proteiner for å

se på gen-uttrykket i samfunnet. Meta-metabolomikk kan slutte sirkelen ved å beskrive den

metabolske aktiviteten til mikrobene.  

I arbeidet  som ligger  til  grunn for denne avhandlingen,  kombinerte  vi fire av de nevnte

fagfeltene innen meta-omikk i et gen- og populasjons-orientert perspektiv for å gjenta det

samme Aristoteliske spørsmålet bak mikrobiell økologi: hvordan er det mulig at helheten er

større enn summen av enkeltdelene? Sammen med de detaljerte svarene som ble gitt av de

enkelte mikrobesamfunnene i ulike miljøer, forsøkte vi også å lære noe om biologi i seg
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selv.  Først  adresserte  vi  det  stamme-spesifikke  samspillet  involvert  i  (hemi)cellulose

degradering i et sakkarolytisk og metan-produserende minimalistisk konsortium (SEM1b),

som belyser omfanget av Coprothermobacter proteolyticus i biogass reaktorer. Gjennom det

genetiske potensiale til COPR1-populasjonen tilknyttet C. proteolyticus, viste vi den antatte

ervervelsen,  via  horisontal  gen-overføring,  av  en  gen-kassett  for  nedbrytning  av

hemicellulose. Videre viste vi hvordan genuttrykket til disse COPR1-genene var i samsvar

med  frigivelsen  av  hemicellulose  av  en  annen  populasjon  i  samfunnet  (RCLO1),  og

synkronisert med genuttrykket av de ortologe genene fra en allerede kjent hemicellulolytisk

populasjon (CLOS1). Avslutningsvis demonstrerte vi hvordan det samme rensede COPR1-

proteinet  (glykosid-hydrolase  16)  viste  endoglukanase-aktivitet  på  flere

hemicellulosesubstrater. 

På grunn av lavere kompleksitet (færre enn 12 populasjoner) og en relativt kjent biologi,

benytte  vi  SEM1b  videre  som  et  referansesamfunn  for  å  utforske  den  kombinerte

anvendelsen av absolutt omikk-basert kvantifisering av RNA og proteiner. Vi demonstrerte

deretter at de ukultiverte bakterie-populasjonene i SEM1b fulgte en protein-til-RNA ratio

(102-104) som var forventet basert på tidligere analyser av bakteriekulturer i eksponentiell

fase. I kontrast til dette viste en arkeonpopulasjon fra SEM1b verdier i området mellom 103-

105,  som  er  det  samme  som  tidligere  rapportert  i  litteraturen  for  eukaryote  (gjær  og

menneske). I tillegg modellerte vi lineariteten (k) mellom genom-orienterte transkriptomer

og proteomer over tid, og brukte dette til  å forutsi de essensielle metabolsk populasjon i

SEM1b-samfunnet gjennom konvergerende og parallelle k-trender, som senere ble bekreftet

via  klassiske  analyser  av  metabolske  synteseveier.  Til  slutt  estimerte  vi  frekvensen  av

translasjon og protein degradering, hvorpå vi konkluderte med at noen av prosessene i en

celle som krever rask innstilling (som for eksempel metabolisme og bevegelse) er regulert

(også) post- transkripsjonelt.

Til slutt ønsket vi å anvende vår tilnærming for å sette komplekse datasett inn i forenklede

matriser for å identifisere underliggende trender i mikrosamfunnet, på et mer komplekst og

virkelighetsnært  mikrobiom.  Til  dette  benyttet  vi  et  mer  enn  ett  år  med  ukentlige

prøvetakninger fra en lipid-akkumulerende mikrobesamfunn (Shif-LAO) i et renseanlegg i

Shifflange  (Luxembourg),  og  avdekket  en  ekstrem  genetisk  redundans  og  turnover,  i
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motsetning  til  en  mer  konservativ  trend  i  funksjoner.  Videre  demonstrerte  vi  hvordan

tidsavhengige  mønstre  (som  for  eksempel  sesongvariasjoner)  i  både  antall  gener  og

genuttrykk er knyttet til fysisk-kjemiske parameter assosiert med de tilsvarende prøvene. I

tillegg rekonstruerte vi det underliggende statiske reaksjonsnettverket til mikrobesamfunnet

over hele datasettet (51 prøver over tid). Basert på dette, karakteriserte vi sub-nettverk for

lipid-akkumulering, og demonstrerte at mer uttrykte noder var definert av konkurransen om

ressurser mellom ulike taksonomiske grupper (antatt via reversert taksonomisk diversitet og

genuttrykk over  tid).  I  motsetning  til  dette,  viste  nettverket  for  nitrogen-metabolismen i

stedet et dominerende taxon og en keystone ammoniakk-oksiderende monooxygenase, det

første enzymet i ammoniakk oksidasjon, som fører til produksjonen av lystgass (en svært

sterk klimagass).

Resultatene presentert i denne doktorgradsavhandlingen bygger på et omfattende repertoar

av  interaksjoner  i  mikrobielle  samfunn  som spenner  fra  et  forenklet  konsortium (titalls

populasjoner)  til  et  naturlig  komplekst  mikrobiom  (hundretalls  populasjoner).  Disse

mikrobiomene ble til slutt kartlagt ved hjelp av en rekke teknikker, blant annet unsupervised

gruppering av genutrykk, analyser av metabolisk synteseveier, nettverk av reaksjoner og co-

uttrykte gener,  eigengener  og lineære trender  mellom transkriptom og proteom. I  tillegg

erfarte vi at for å oppnå en full forståelse av mikrobiell økologi og detaljerte interaksjoner

må vi integrere alle lagene av meta-omikk, kvantifisert med absolutte målinger. Når man

oppskalering disse tilnærmingen til  virkelige mikrobesamfunn,  bringer imidlertid  enorme

mengder generert data til nye utfordringer som nødvendiggjør en forenkling av strategier for

å redusere kompleksiteten og ekstrapolerer økologiske trender.
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1 INTRODUCTION

1.1 Microbial ecology
The lineages of Microorganisms are dispersed everywhere on planet Earth1 and make up to

~17% of the carbon biomass2. Among microbial ranks we count Bacteria, Archaea, Viruses,

Protists  and Fungi,  with  the  last  two belonging  to  the  kingdom Eukarya.  Not  only  are

microbes ubiquitous, but they took part in the mastodontic biogeochemical processes that

shaped our planet, such as the Great Oxidation Event in which the Cyanobacteria increased

the oxygen level causing the largest extinction event so far3. Microbes still control important

cycles today, such as the carbon and the nitrogen ones in soil4,5. Some of them live in inside

other organisms, such as plants and mammals, augmenting their metabolic capabilities and

generally contributing to their health6,7.

1.1.1 A mechanistic view of microbial cells and populations
Biological cells are populated by a multitude of molecules that scientists seek to describe,

both as their individual components and how they interact with one another. Moreover, how

life  itself  is  founded  can  be  thought  of  via  two  central  pillars:  the  propagation  of

information and maintaining homeostasis. Information is the set of directives on how an

organism should be and function, and commonly takes the name of genotype. To propagate

information  is  to  propagate  life.  Homeostasis  is  the  ability  of  an  organism to  maintain

certain properties, in the context of their surrounding environment. The implementation of

the biological information to propagate and maintain the homeostasis gives shape to the

phenotype of the organism.
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Fig1: a The Central Dogma of molecular biology from Crick 19708. The solid arrows are the conventional

paths of biological information: DNA replication, transcription and translation. Dashed arrows represent the

unconventional paths: RNA replication, reverse transcription and direct translation from DNA. b Kinetics of

the conventional paths of the biological information flow. DNA is transcribed with rate r1 into RNA, which is

then translated into protein with  r2. Both RNA and protein are subject to degradation, with rates  d1 and  d2

respectively.  Measured  degradation  of  those  molecules  was  shown  to  be  an  “apparent  measurement”,

comprising both molecular dilution through cell division and actual degradation. The fine tuning of these four

rates allows the cell to reach and maintain the functions needed to express its phenotype.

The central dogma of molecular biology is the core rule of life as we know it. It states the

direction of the information flow in the cell among DNA, RNA and proteins (Fig. 1a). The

underlying  dynamics  have been studied for decades  using absolute  quantification  of the

molecules  involved,  characterization  of  the  molecular  machinery  and  inference  of  the

regulatory  network.  The  most  schematic  representation  of  the  central  dogma  sees  the

information stored in the DNA transcribed into RNA that is then translated into proteins.

However, during the formulation by Crick in 19589 and the restatement in 19708, it has been

predicted that information could flow “backward” from RNA to DNA, which was proved

real in the viral process of  retrotranscription10. Also, the direct translation from DNA to

protein had to be added among the possible paths11,12. Moreover, the dogma states that DNA

and  RNA  can  replicate themselves  and  both  can  be  used  as  storage  for  biological

information. While this statement seems obvious for DNA, it was proved true for RNA only

decades after when RNA-based viruses were discovered13.

Certain regions of DNA called genes can be used to produce gene products, i.e. RNAs and

subsequently  proteins,  according  to  the  central  dogma14.  These  processes  are  often
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collectively referred to as gene expression. Gene expression is the dynamic tool that the cell

uses  to  modify  its  internal  status  and  interact  with  the  environment.  RNA  levels  are

controlled by the regulation of transcription and degradation. In Bacteria the average half-

life of RNA molecules is 2-10 minutes, which implies a quick recycle of nucleotides into

new transcripts15. This makes the control of transcription the main target of regulation of

gene  expression  in  Bacteria15.  Both  in  Prokaryotes  and  Eukaryotes  the  control  of

transcription can happen with a cis or a trans mechanism. Cis control is mediated by a DNA

region placed in proximity of the gene which is targeted by  transcription factors. More

than one gene can be influenced by the same cis element. A common group of cis elements

are the promoters that control one or more downstream genes. A group of genes under the

regulation of the same promoter is called an operon. Translation can be also regulated at the

RNA Polymerase level, in a phenomenon called trans regulation16. A classic example is the

set Bacterial σ-factors which associate with the Polymerase and have different affinity for

separate groups of promoters17,18.

Similar  to  RNA,  protein  levels  are  controlled  via  regulation  of  translation,  “control  by

dilution”19 (dispersal  of  proteins  via  subsequent  cell  divisions)  and  rarely  by  protein

degradation. A notable exception is the presence of pupylation, a mechanism to tag proteins

for degradation in some bacterial taxa20. Like transcription control, translation can also be

controlled by a dynamic pool of  translational factors, such as initiation, elongation and

ribosome components. Nevertheless, the control of transcription is believed to be the most

important factor in the overall control of protein levels in Bacteria21.
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Fig 2. a. A typical bacterial colony growth curve. After inoculation the community strives to grow (lag), then,

after adapting to the new environment its number grows exponentially (exp.) until resource depletion (stat.),

finally it reduces (death).  b. Double-growth colony curve. In case of injection of new substrate or shift to a

secondary one, it is possible to ignite a second exponential growth of the community (exp.II), followed by

another plateau when the resources are reduced again (Stat.II) until the community collapses at the end (death).

The complexity of the internal machinery of the microbial cell is however only one level of

microbial  life.  Indeed, many microbial  cells live in the same physical space and share a

common ancestry (e.g. they are descendants of the same cell). In case of prokaryotic cells,

when they also share the same taxonomy, this is commonly referred to as a  population.

Thus, in most cases in microbiology the unity of inquiry is the population rather than the

individual cell,  which also facilitates easier experimental approaches (as discussed later).

When favorable conditions are present (e.g. temperature, pH, substrate, etc.) the cells will

consume essential substrates to create new constituent molecules and replicate themselves.

This process is simply called growth at the population level. The study of the growth curve

is probably the most rudimentary element of every microbiology course. The parameters

describing the curve may vary depending on the culturing conditions, but four main phases

are usually present (Fig. 2a).
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1. Lag phase: after the population is inoculated in a fresh space (e.g. plate or flask) with

the appropriate  medium, the number of cells  drops as a result  of the inoculation

stress (Fig 2a: Lag.).

2. Log phase: the population activates the primary metabolism, starts to consume the

necessary  substrates  to  sustain  their  metabolism  and  replicates  at  the  maximum

speed allowed by the culturing conditions, which results in exponential growth (Fig

2a: Exp.).

3. Stationary phase: when the available substrate decreases significantly the number of

cells remains constant (the number one of division is the same as the number of

deaths) and the population activates the secondary metabolism (toxins, spores, etc.)

to deal with resource scarcity (Fig 2a: Stat.).

4. Death phase: when the substrate is completely depleted the population collapses (Fig

2a: Death).

In general, the log phase is the most studied among the phases and it is described by the

growth rate (also known as doubling time) which measures the replication time of a cell.

There are some main variations on the standard growth curve worth mentioning here. If

more substrate is added to the medium during the stationary phase, the population will start

growing again following a new log phase (Fig 2b: Log.II) and reaching another stationary

phase (Fig 2b: Stat.II) before declining (Fig 2b: Death). In the case of two substrates being

present from the beginning,  but with a population with different  affinities  for them, the

growth curve resembles the previous case. The most palatable substrate is consumed first

and the population has to adjust its metabolism (first plateau) before switching to the second

one  (Fig  2b).  In  the  latter  case,  if  more  substrate  is  constantly  added  and  part  of  the

population (and catabolites and toxins if produced) is removed, the population is maintained

in log phase.  This technique is commonly performed with a dedicated machine called a

chemostat22. Following generations of cells in log phase, the growth rate fluctuates until it

reaches a stable value. The use of the chemostat is the only way so far known to measure the

true growth rate of a population with given growth conditions.

Biological systems are dynamic, which means that the parameters that describe them are

changing over time. However, some of these systems possess special dynamic equilibria in
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which the variations of certain parameters are zero (or really close to it),  a phenomenon

known as Steady State (SS). In microbiology a population is considered to be in SS during

the log phase of the growth curve, because its growth rate remains constant. This implies

that both the flow of metabolites in the population and the reaction rates are constant. Since

the reaching of a stable value of the growth rate requires the extensive use of a chemostat,

we must remember that the assumption that log phase = SS is an approximation.

The phenotype implemented by a cell can be summarized as its cell status. A population is a

group of cells of the same species, and when we take a measurement on it the result is an

averaged value. It is however known that specific sub-groups of cells may have different

cell  statuses  in  the  same population,  forming  two or  more  subpopulations23.  A typical

example  is  the  coexistence  of  a  subpopulation  of  actively  replicating  cells  and  one  of

sporulating/quiescent cells. Diversification of functions is a convenient way to overcome

environmental challenges and increase the chances of survival for the population.

1.1.2 A society of microbes
Like larger organisms, microbes often live in the same physical space as other microbes.

Sharing  the  same  environment,  they  are  brought  to  interact  with  each  other.  Such  an

ensemble  of  microbes  is  called  a  (microbial)  community or  consortium  and has  more

recently  also  been  termed  a “microbiome”.  The  interactions  that  pairs  of  microbial

populations may form follow the classical schemes of ecological  interactions24 (Fig 3a).

The outcome of the interactions are “positive”, “neutral” and “negative”, which leads to 32 =

9 possible combinations (considering only pairs). A common example of such interactions

in microbial communities is a form of metabolic commensalism in which the first microbe

uses the substrate to grow and releases another compound used as substrate by the second

microbe (Fig 3b). In this case the first microbe could thrive regardless the second one, but

the latter would not be able to sustain itself without its partner. Sometimes the compound

produced by the first  microbe inhibits  its  growth. In this  case a second microbe,  whilst

benefiting directly form consuming its substrate, allows the first one to grow, establish a

mutualistic relationship (Fig 3b).
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The piling-up of pairwise metabolic relationships in a microbial community can lead to the

formation  of  a  complex  metabolic  network.  Exploiting  such  arrangements,  microbial

communities can perform wider community functions (or community processes) as multi-

step substrate conversion and even shape their environment25. Consortia usually exhibit a

certain level of tolerance to stress due to functional redundancy of the species involved. In

case of a change in the physico-chemical  parameters  the decrease in relative abundance

and/or  gene  expression  in  one  or  more  populations  is  balanced  by  one  or  more  other

populations. When the conditions allow for it, we can expect the community to reach a SS

and  carry  out  its  overarching  function  at  capacity.  Consortia  that  present  high  level  of

resilience  and  stability  have  been  exploited  for  industrial  purposes  as  cheap  matter

processors such as in biogas reactors or in wastewater treatment plants.

Fig 3. a. Wheel of pairwise ecological interactions from Faust et al.24. Two interacting microbes (green and red

bands) and three one-sided outcomes (positive, negative and neutral) generate nine possible interaction types:

parasitism/predation(x2), amensalism(x2), competition, commensalism(x2), mutualism and null interaction. b.

Compounds (C1-3) are shared in a bacterial community (B1-3) outlying a metabolic network. B1 consumes C1

and produces C2, however it is inhibited by the latter.  B2 consumes C2 and secretes C3, which is finally

consumed by B3. In this case B1 and B2 have a mutualistic interaction because B1 is the only producer of C2

(its inhibitor) whilst (B2) is the only degrader of C2, allowing B1 to maintain its growth. B3 and B2 have a

commensalistic interaction because B3 needs the activity of B2 to generate its substrate, whilst the activity of

B3 is uninfluential to B2.
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Of  note  are  communities  that  live  in  association  with  (or  even  in  symbiosis  with)

multicellular organisms which function as a  host. A common example is the root nodule

microbiome in the legumes which is  responsible  for the assimilation  of nitrogen by the

plant. Another example is the human gut microbiome which was known to complement the

metabolic  needs  of  the  human  (e.g.  through  vitamin  synthesis).  Recently  the  human

microbiome has been linked to central aspects of humans’ lives such as their metabolism

(e.g. predisposition to obesity26 and diabetes27) and mental condition (e.g. pathological ones

like depression28 and schizophrenia29).

1.1.3 A brief history of microbial ecology
If microbiology started with the observation of “animalcules” (Bacteria)  by Antoine van

Leeuwenhoek at the microscope in the 17th  century, it became a field of experimentation

with Ferdinand Cohn, Louis Pasteur and Robert Koch during the 19 th century. A student

from  Koch’s  lab,  Julius  Petri,  standardized  the  cultivation  of  microbes  on  a  medium

solidified using agar: The Petri dish. The new technology led to the isolation of individual

microbial populations from mixed colonies.

With  the  passing  of  time it  became clear  that  something  was  missing  from the  greater

picture of microbiology. An environmental sample observed directly under the microscope

shows ~100 times  more  cells  than  colonies  on  the  Petri  dish  inoculated  with  the  same

sample. This discrepancy was called “the great plate anomaly” and demonstrated that the

vast majority of microbes could not be cultivated30. From the anomaly started the idea of

culturing the microbes in conditions as close to their habitat as possible, if not accessing

them directly from it.

With the advent of Polymerase Chain Reaction (PCR)31 and the combination with DNA

sequencing,  microbes  could  be  “massively”  cataloged  in  their  environment  through

amplicon sequencing techniques. The ideal DNA region to exploit has to be highly variable

to easily identify different taxa, yet bordered by relatively conserved regions so that a single

pair of PCR primers with degenerate bases can pair to all the Bacteria (and/or Archaea) in a

given sample. This criteria led to 16S ribosomal gene becoming the keystone taxonomical
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marker gene, and subsequent collection of 16S rRNA gene sequences are constantly being

generated  and accumulated  in  huge databases.  As  a  consequence  of  the  new molecular

approach to microbiology, the phylogeny of Prokaryotes was deeply altered and allowed

microbial ecologists to efficiently barcode the microbial communities without cultivation.

The next leap in microbial ecology was brought to us in the omics era. Each different class

of  molecules  in  a  single  organism  was  interpreted  as  a  single  -ome.  For  example  the

collection of DNA material was referred as the genome of an organism. In this framework

the first large-scale sequencing endeavors took place, such as the whole genome sequencing

of many model organisms, human included (see section 1.1.3). The microbial populations

were  therefore  characterized  by  their  -omes,  in  technical  approaches  called  -omics

depending on their  targeted -ome,  such as  genomics,  proteomics,  lipidomics,  etc.  Every

class of molecules adds a new layer of information to the total picture of the microbe and its

functions. The new paradigm of studying the microbial communities in their entirety pushed

the adaptation of pre-existing technologies (such as sequencing) to be used on raw samples.

The ensemble of the new approaches were labeled meta-omics, because they extended the

previous techniques beyond the mere omics. With the two first metagenomics (MG) studies

in 200432,33, the idea of fully sequencing the DNA from environmental samples was born and

is  still  maturing  today  with  the  shift  from Second  generation  sequencing  to  the  Third

(section  1.2.1).  After  the  MG  revolution,  in  time  also  metatranscriptomics  (MT)34,

metaproteomics  (MP)35 and  meta-metabolomics  (MB)36 were  born.  At  this  historical

moment in microbial ecology we are facing the challenge to integrate the information from

the different omics technologies in order to understand even more the microbial world, its

components and their interactions.
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1.2 Meta-omics methods
The two main experimental techniques to access the molecules contained in a microbial

community are sequencing and mass spectrometry (MS). These techniques are profoundly

different and require dedicated preparatory steps and subsequent analysis. Commonly the

biological sample is separated into one batch for each omic layers that will be analyzed and

is  then  processed  with  dedicated  molecular  extraction  protocols  (Fig.  4)37,38.  However

recently there has been a discussion about how much the splitting of the sample impacts the

final reconstruction39. For instance, if the sample is divided in three to perform MG, MT and

MP analysis,  how can we know that  each  quantification  performed in  one third  of  the

original sample is representative of the whole?

Fig 4. Schematics of the main meta-omics from Vanwonterghem et al.40. The microbial community is broken

down into its constituent molecules (DNA, RNA, proteins and metabolites). From DNA it is possible to infer

the phylogeny (markers  genes) and the gene potential (metagenome).  Mapping the metatranscriptome and
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metaproteome on  the  metagenome-reconstructed  community  allows  to  quantify  the  gene  expression.  The

metabolites can be used to assess the metabolic fluxes in the community to gain insight of the actual metabolic

activity.

Another notable caveat of the omics technologies is their cost. The price of sequencing per

kilobase has become cheaper over time while MS has remained expensive. Also, the price of

extraction kits factors into the decision of how many and which omics to examine, with an

RNA extraction kit being commonly more expensive (and the extraction itself more labor

intensive) than the RNA-seq run itself.

1.2.1 Metagenomics
DNA constitutes the information template of the cell in the form of its genome. Usually

Bacteria  and  Archaea  have  one  single  circular  chromosome  and  they  may  possess

extrachromosomal elements known as plasmids. The aim of MG is to reconstruct the DNA

content  of  the  microbial  constituents  in  a  community.  Thereafter  we  can  retrieve  the

taxonomy of the inherent microbes and their genetic potential  (the genes encoded in the

genome).  Moreover,  we can predict  the collective functions of the community alongside

hypothetical metabolic niches of individual populations.

There  are  three  main  steps  to  take  into  account  when  producing  a  MG dataset:  DNA

extraction, fragmentation and sequencing. Although DNA extraction is nowadays almost a

trivial process, it is debated how much the differences/biases introduced in this initial step

are influencing the final MG results and hindering the ability to compare data from different

studies. It is good practice to adhere to the standards proposed for the microbial community

under scrutiny and if not possible to add quality control samples41. These samples should

come from either i) a complex sample (stool); ii) a chemostat culture of model community

(see section 1.1.1); or iii) a mock community. 

Fragmentation is the process of shredding the DNA into pieces of a chosen length.  The

length is  chosen according to the sequencing technique and since the shredding process

produces a distribution of length, the pieces are selected to be as close as possible to the

selected length. The selected pieces are usually referred as fragments or inserts. The length
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of the fragments can be used downstream to help the data processing (e.g. during binning or

read mapping).

DNA sequencing first started in 1977 with the Sanger and Maxam-Gilbert methods, in the

so-called “First generation of sequencing”. The Sanger method used a mix of normal and

chemically  modified  nucleotides  (dNTPs  and  ddNTPs)  during  the  synthesis  reaction  of

DNA. When integrated in the nascent strand, the ddNTPs blocked the synthesis reaction and

generated  a  DNA  fragment.  Four  different  reactions  were  run  with  the  four  modified

nucleotides and the resulting fragments were run in parallel lanes in a gel. In this way, the

length of the fragment and the gel lane indicated which nucleotide was occupying which

base and the DNA sequence could be read similarly to a punched card. This technique led to

historical results such as the sequencing of the lambda bacteriophage in 1980, Arabidopsis

thaliana in 2000 and Homo sapiens in 2001.

The  “Second  generation  of  sequencing”  changed  the  paradigm  introducing  massive

parallel reactions, increasing the throughput whilst slashing the costs and the time. Although

Roche  454,  based  on  pyrosequencing,  was  used  to  produce  the  first  MG  dataset32,33,

nowadays the standard technique is Illumina sequencing (originally developed by Solexa),

which similarly to Sanger, is based on DNA synthesis. In Illumina sequencing, the DNA is

firstly  fragmented  to  the desired length,  then the fragments  are  fixated  (expectedly  at  a

certain distance from one another) on a plate with a system of adapters. Here a “PCR bridge

amplification” is performed to create a cluster of clonal copies of the original fragment.

Finally,  the  synthesis  occurs  with cycles  of  reversibly-blocked nucleotides  in  which  the

blocker  is  also  a  fluorescent  (one  for  each  nucleotide  type),  florescence  readings  and

washings.

Illumina HiSeq (the most commonly used machine for MG) produces up to 5×109 reads per

run which are 150 nt long and with an error rate of 0.1% (one base out of 1000 is expected

to be incorrect). Moreover, the Illumina technology allows the sequencing of both ends of

the fragment, producing paired-end reads.

The  “Third  generation  of  sequencing”  introduced  the  idea  of  “single  molecule

sequencing”. The previous generations required amplification (PCR or a variant) to increase
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the signal and help the detection, which is time consuming, costly and prone to error. There

are two main technologies in use at the time being: SMRT from PacBio and the Oxford

Nanopore.  The SMRT technology uses  a  sequencing by synthesis  process  in  which  the

incorporated nucleotides are marked with a fluorescent. In this case however the synthesis

occurs in a microwell in which the DNA polymerase is fixed and the diameter of the well is

shorter than the wavelength of the emitted light, so that there is no backward propagation.

The bottom of the well is a glass plate, and the light emission is read from there. The reads

can be tens of kilobases in length but the error rate reaches up to 15%. The error rate can be

decreased by using a circular consensus strategy in which the fragment is circularized and

the  sequencing  continues  on  the  target  covering  it  several  times.  The  post-sequencing

processing reconstructs the original fragment with a reported error rate of 0.001%. With the

Oxford Nanopore, the fragment is forced to pass through a protein nanopore fixated on a

membrane  while  an  electric  current  is  applied.  The  steric  hindrance  of  the  nucleotide

occupying  the  pore  causes  a  change  in  the  amount  and  placement  of  water  molecules,

resulting in a characteristic  change in the current  passing through the pore.  The electric

current is constantly registered and the changes over time are interpreted to decode the DNA

sequence. A small device (minION) under 100g and connected to a mundane laptop can

produce up to 30Gb of DNA sequences with a 5% error rate (nanopore R10.3).

A very common issue during sequencing is to estimate the amount of reads necessary to

reconstruct the starting genome, commonly referred as sequencing effort. To compute this

value, it is necessary to know the length of the genome, desired coverage (number of reads

mapping at any given position of the genome) and length of the reads. However, in MG

studies we have to deal with many populations (up to 100’s-1000’s in soil or sea samples)

which  probably  possess  even  internal  variability  and  with  different  population-specific

abundance, hence the old-school approach is not a possibility. The obvious question being:

is it possible to estimate something like genome length and population abundance before a

MG study? It is not. The available options are to run a preliminary study to try to retrieve

this information in an indirect way such as rarefaction curves42 or to pool many different

samples and combine short and long reads43.
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1.2.2 Metatranscriptomics
RNA is the second molecule in the canonical path of the Central Dogma (section 1.1.1).

RNA is made of nucleotides like DNA, with the exception of Thymine swapped with Uracil,

it  is single stranded and usually has a short half-life.  It can form secondary and tertiary

structures  and some RNA molecules  have catalytic  properties.  One notable  RNA is the

ribosomal RNA (rRNA) which constitutes the core of the translation machine: the ribosome.

The RNA species we are commonly interested in are the messenger RNA (mRNA), which is

the product of gene transcription and awaits to be translated into a protein. Given the usually

short half-life of RNAs (section 1.1.1), the metatranscriptomic profiling allows to record

what are the current responses to stimuli (internal and external) of the community. 

Studying  the  MT  starts  with  the  RNA  extraction,  which  is  more  difficult  than  DNA

extraction since RNA is single stranded and hence a less stable molecule. Moreover, like for

DNA extraction, a sample-specific protocol is preferable. After this step, the unwanted RNA

species should be removed. In the case of Eukaryota it is possible to use the characteristic

poly-A tail of their mRNAs to select them. However, this is not possible in Prokaryota and

usually the rRNA (which make up to 80% of the RNA in a sample44) is removed and the rest

is  kept  for  downstream  analysis.  The  remaining  RNA  is  retrotranscribed  into

complementary DNA (cDNA) using a genetically modified viral retrotranscriptase (hence

bouncing back in one of the uncanonical paths of the Central Dogma). Finally, the MT can

follow the MG procedure for sequencing. Sequencing in this case is commonly called RNA-

seq. Other methods such as the microarrays have been the standard for RNA studies for

decades  and  pushed  the  development  of  the  computational  methods  associated  with

transcriptomics,  but  they  have  been  outcompeted  by  RNA-seq  over  time.  In  RNA

microarrays,  short DNA sequences called probes were designed to be complementary to

desired  RNA sequences  and  attached  (or  directly  synthesized)  in  clonal  clusters,  called

spots, to a chip (usually a glass slide). After retrotranscription the cDNAs from the sample

were  labeled  with  a  fluorescent  marker,  allowed  to  hybridize  with  the  probes  and then

excess one washed away. The chip was therefore excited and “read” with the appropriate

wavelengths recording the signal intensity per spot. The data were decoded linking each

spot to the known probe sequence and normalizing the light signal.
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A variant  to the standard procedure for MT is the introduction of one or more  spike-in

transcripts (custom RNA molecules in known amount) at the beginning of RNA extraction.

The addition  of spike-ins allows for  the absolute  quantification  of the transcripts  in  the

sample with some dedicated steps in the data processing (section 1.3.2).

1.2.3 Metaproteomics
As with both DNA and RNA, the first step of MP is the extraction of the protein molecules

of  interest.  However,  conversely  to  the  other  omics  technologies,  MP present  a  unique

problem: many proteins are encased in or associated to the cell  membrane (also briefly

addressed  in  Paper  II).  Therefore,  the  two  caveats  for  MP  extraction  become:

environment/sample specific method45,46 and optimization of membrane protein yield47.

In the most used approach to MP the proteins are digested (usually with the endoprotease

trypsin) and the mass of the peptides is measured with mass spectrometry (MS). A useful

subtype of bottom up MP called “shotgun” MP uses separation techniques such as high-

performance  liquid  chromatography  (HPLC)  on  the  digested  peptides  before  the  MS

measurements. Another technical improvement is the use of  tandem mass spectrometry

(MS/MS)  in  which  two  (orthogonal)  mass  analyzers  are  coupled  within  one  mass

spectrometer. The first mass analyzer (MS1) separates the peptides by their mass-to-charge

ratio (m/z)  and the  peptides  having a  mass  corresponding to  a  desired  interval  of  this

measure  are  selected  for  further  fragmentation  and  measurement  in  the  second  mass

analyzer (MS2). The output is a series of spectra recordings in three dimensions (m/z, time,

relative  abundance),  which  are  subsequently  matched  against  the  previously  computed

database in order to find which peptides they originated from (section 1.3.2).

Obtaining  absolute  measurements  in  proteomics  in  general  is  relatively  harder  than  in

sequencing-based  omics  and  several  techniques  require  the  use  of  isotopic  labeling48.

However,  it  is also possible to use an approach that does not require more instrumental

effort than measuring the amount of protein after extraction. This method is called “Total

protein approach”49, which we adapted herein to a microbiome setting in Paper II.
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1.2.4 Meta-metabolomics
While MG potentially predict the functions of the community, MT and MP quantification

assess how much the community is actively implementing the functions they can perform.

Both approaches can identify and quantify active  functions.  However,  these omic-layers

alone  cannot  be  considered  an  ultimate  proof  and  they  do  not  allow  to  compute  the

biochemical  rates at  which these functions are operating.  There are several reasons why

functional omics-based analysis can build a misleading picture of the community: a fully

folded enzyme may not be working or be inefficient, a competitive reaction may be using all

the substrate, post translational modification, etc. In this context, even when we have MG,

MT and MP data, we are still missing the last molecule class which stores this final piece of

the  puzzle:  the  metabolites.  Meta-metabolomics  (MB)  is  the  large-scale  study  of  the

metabolic  profile,  usually  compounds  smaller  than  1000  Dalton,  in  a  given  system.

However,  it  does  not  exist  as  an overarching technique  “to rule  them all”,  and often a

combination of technical  assets is used. For instance,  a chromatographic column can be

loaded with different stationary phase components in order to bind to various metabolites of

interest. Therefore, allowing the whole MB to be broken down into smaller experimental

tasks.

The  first  technique  to  be  used  for  metabolic  profiling  was  nuclear  magnetic  resonance

(NMR) during the 1940s,  and its  sensitivity  improved over  the decades  to  come,  being

applied in different biological systems50,51. More recently MS has been used more often and

with  better  results36,52.  As  seen  for  MP,  several  specialized  variants  of  MS’  have  been

applied in MB, such as MS coupled with separation techniques53,54. Moreover, the highest

quality  of  result  is  obtained  through  targeted  MB,  which  applies  sever  techniques  in

parallel for different molecules, optimizing the individual outputs55. We used targeted MB in

Paper  I and  Paper  II to  detect  short  chain  fatty  acids,  monosaccharides  and  gas

percentages.
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1.3 Meta-omics analysis and integration
The two first  aims  to  achieve  with  omics  are  to  characterize  and quantify.  In  order  to

characterize we need to reconstruct a qualitative picture of the molecules in the sample from

which  they  originated.  Sequencing-based  data  (reads)  can  be  used  to  build  a  set  of

contiguous  sequences  (contigs)  without  the  help  of  supplementary  data.  Contigs  may

represent fragments of DNA (MG) or RNA (MT) from which we can predict genes and

assign taxonomic groups according to sequence feature and coverage. MP and MB data are

usually not self-sufficient to characterize the molecule directly, but require a reference to be

used in concert.  However, some labor-intensive and time-consuming techniques exist for

reference-free identification, such as peptide de novo sequencing. Building the reference,

also called database, is a crucial step because the detection power of the dependent omic

layer will be greatly affected (section 1.3.2). The quantification of the molecules always

requires the use of a reference that  it  can be compared to.  In the case of MP and MB,

characterization and quantification are performed together since a reference is required from

the beginning, whilst in MG and MT the quantification is a separate manual procedure.
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1.3.1 Metagenomic assembly and binning
The common first step in multi-omic analyses of microbial communities is to reconstruct the

least dynamic part of the sample, i.e. the MG. The reads from community DNA sequencing

(section  1.2.1),  when  coming  from  the  same  genome  are  expected  to  hold  redundant

information, i.e. they are expected to overlap (the amount of overlap is usually linked to the

coverage,  section 1.2.1).  The reconstruction  of the community  exploits  this  feature in  a

process called assembly, of whose final aim is to produce the longest continuous sequences

possible according to the chosen assembly strategy and quality standard.

The first assembly method developed was the  string graph and was based on sequence

alignment (Fig. 5). In a very intuitive manner, all the pairwise alignments between reads

were computed and charted in a graph structure (intro to graph theory in section 1.3.3). The

paths in the graph that satisfy the user’s criteria are selected and provided as contig in the

output56. A string graph has an execution time that grows quadratically with the number of

reads57. For this reason, string graphs fell out of fashion with the increase in the amount of

reads  produced  by  more  modern  technologies  belonging  to  the  second  generation  of

sequencing.  However,  the  string  graph  has  seen  a  revival  with  the  expansion  of  the

extremely long yet less numerous reads produced in MG studies with the third generation of

sequencing technologies58.

The  most  used  assembly  strategy,  the  deBruijn  graph59,60,  boomed  with  the  second

generation  of  sequencing and elegantly  manages  and exploits  the  vast  number  of  reads

produced (Fig 5a). In this strategy the reads are broken into words of size k called k-mers.

These words are used as vertices in a graph structure (intro to graph theory in section 1.3.3)

and two of them are connected by an edge if the k-1 prefix of one of them is the same as the

k-1 suffix  of the other.  In the end the graph is  traversed to  find the contigs.  The main

advantage of using the deBruijn graph is that the time and space complexity scale linearly

with the number of k-mers in the reads. Moreover, in case of assembly of a single organism,

the time is bound to the length of the genome to reconstruct because the number of different

k-mers is approximately equal to the length of the genome. A typical problem for deBruijn

graphs is the reconstruction of repetitive regions because any repetition of length l<k will be

collapsed in the same k-mer61. Usually a workaround technique is to iterate several steps of
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assembly increasing k (limited by the length of the reads) and adding the contigs compute in

the previous step to the reads62.

Fig 5. Two types of  assembly,  from Diniz & Canduri63.  a. In  the deBruijn graph the reads  are  in  silico

fragmented  into  k-mers  and  arranged  on  a  graph  structure  in  which  they  are  the  nodes  and  their  k-1

suffixes/prefixes the edges. The deBruijn graph is then traversed to obtain the contigs.  b. The overlap graph

uses the whole reads, aligning them to each other and finding a path through the alignments in order to find the

contigs.

Assemblies  of  metagenomes  typically  result  in  highly  “hairy”  graphs  with  bifurcating

branches and some repeated regions that act as core for several arching contigs. Assemblers

implement  heuristics  to  traverse  these  complex  structures  and  return  linear  paths  (the

contigs); however, sometimes it is better to visualize the assembly graph and make human-

informed decisions.  The standard tool  to  do so is  bandage64,  which also allows plotting

additional information on the edges of the graph such as length, coverage, BLAST match

results,  etc.  Manual  curation  can  therefore  be  performed  easily  with  a  graphical

representation, for instance to recognize plasmids as circular elements with high coverage

compared to the rest of the graph’s elements.
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Fig 6. An example of binning procedure as performed in MetaBAT from Kang et al.65. In the MG pipeline the

genomes  are  sequenced  and the  resulting  reads  assembled  into  contigs.  The tetra-nucelotide  frequency  is

computed  for  each  contigs,  alongside  the  abundance  per  sample  (mapping  the  original  MG reads  on  the

contigs). Finally, these data are used to separate the contigs into the bins.

The  contigs  represent  segments  of  DNA  from  the  microbes  in  the  community,  which

ultimately we wish to piece together in order to reconstruct their  genome(s).  Unless the

retrieved contigs span the entire length of the genomes in the community, which is unlikely

unless using long reads, the contigs must be sorted to create coherent sets of contigs, ideally

representative of individual populations, called “bins” (Fig. 6). Binning is a general problem

in which data must be sorted into similarity buckets (the bins) in an unsupervised manner.

For MG binning the contigs features such as k-mer composition, coverage and presence of

marker genes are used in the clustering process.  The most popular binning tools, such as

MaxBin66, MaxBin267 and CONCOCT68 use the k-mer composition and the coverage across

sample,  whilst  MetaBAT65 and  MetaBAT269 use  the  tetranucleotide  (k-mer  with  k=4)
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composition, coverage and single-copy-genes. The quality of the bins are assessed according

to a set of taxon-specific single copy marker genes by the software CheckM70 which are

used to estimate completeness,  heterogeneity (similar concept to strain composition)  and

contamination  (mix  of  bins).  Bins  with  high  quality  are  used  as  proxy for  individually

sequenced genomes and take the name of  Metagenome-Assembled Genomes  (MAGs).

Additionally, it  is possible to use more binning tools and combine the results with DAS

Tool71 to improve the quality of the bins. The recent increase in MG data produced per

experiment and the observation that sample variability (when present) results in the most

abundant genomes to be reconstructed better, lead to the development of dRep72. With dRep

the samples are assembled and binned individually and the resulting bins are clustered and

one representative per group is selected.

1.3.2 Functional omics quantification
As  stated  in  the  introduction  to  this  section,  the  first  concept  to  deal  with  during

quantification is the set of objects (usually referred as reference or database) that we want

to quantify. The most intuitive idea is to take inspiration from the Central Dogma (section

1.1.1) and consider the gene as the fundamental unity of the quantification inquiry. If the

MAGs themselves have not been quantified or if we are interested in population-specific

variants  and/or  unbinned  material,  the  genes  predicted  from  the  MG  assembly  can  be

quantified using the MG reads. The quantification of the gene potential gives us an idea of

the scale of the processes the community can handle. The MT reads can be used with the

same gene dataset  to  quantify  the  amount  of  transcript  produced from every gene.  The

procedure of quantifying MG or MT data uses the fundamental action of aligning the reads

on the reference and find the best match in a process often referred as mapping. The reads

are mapped using aligner tools, among which the most popular are BWA73, Bowtie274, and

the more recent kallisto75, which is based on pseudoalingment. Pseudoalignment works on

k-mer matching and is a probabilistic method which allows for considerably speed up of the

mapping procedure without losing quality.

The quantification of the MP layer uses the mapping of the MP data on the selected protein

database. Each protein within the database is first in silico digested into a set of peptides and

theoretical fragmentation spectra are generated for each of these, which are subsequently

21



used for matching with the experimentally acquired MS spectra. In the first MP experiment,

and  many  to  follow,  the  protein  reference/database  was  a  subset  of  publicly  available

repositories35, curated to fit the expected organisms/environment. Nowadays it is becoming

more  common to  couple  the  MP with  MG or  MT in order  to  create  a  sample-specific

reference/database from the translation of the predicted genes. This approach has showed to

identify a greater number of proteins compared to using large public repositories76,77.

1.3.3 Biological networks
A common structure to put data in for further inquiry is that of a graph (a simple example in

Fig. 7a). Since we used this concept before without much explanation, we here provide a

quick definition. A graph G(V, E) contains two sets. The first, V, contains all the vertices

whilst the second, E, contains all the edges between pairs of vertices. The vertices of a graph

are  the  objects  of  the  system  we  want  to  describe,  e.g.  the  genes.  The  edges  are  the

relationships  between  pairs  of  objects,  e.g.  temporal  correlations,  physical  contact,  etc.

Some  baseline  assumptions  settled  in  the  scientific  community  about  the  topology  of

biological networks include that i) networks should have a certain degree distribution78 (Fig.

7b), ii) the biological role/importance of a node is related to its degree79 (Fig. 7c), and iii)

nodes cluster into modules with defined biological meaning80 (Fig. 7d). The use of these

assumptions (and derived ones) has proven fruitful to better understand biology and predict

its behavior81,82, even if the first one has been widely discussed and not believed true in most

biological systems83.

One particular type of biological networks, in which V=genes and E=correlations, is a very

common framework for biological knowledge inference from omics data: the co-expression

network.  In this network the gene expression (in form of quantified MT or MP) across

samples  (e.g.  over time,  space,  conditions,  etc.)  is  used to compute pairwise correlation

measurements. Therefore, the edges take a value between -1 and 1 (or 0-1 if the absolute

value is used instead). The general interpretation is that the gene expression of two genes is

similar  in  shape  (correlation  measures  are  scale-invariant)  for  high  values  of  the  edge

between them, is not similar at all for values around 0 and it is similar but mirrored the

closer it gets to -1. In a co-expression network, the modules represent sets of genes that are

expressed at the same time/condition (co-expressed), from which we can hypothesize that
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they may be involved in the same process or coordinated by the same regulators. One of the

most common tools to build and analyze co-expression networks is the R package WGCNA

(Weighted correlation network analysis)84.

Fig. 7. a. A simple example of network where two nodes are connected by an edge.  b. A particular case of

degree distribution: the scale-free distribution. When the plotted in log-log scale the distribution is represented

by a straight line. c. A simple network where the nodes with high degree are highlighted in red. d. A network

can  be  partitioned  in  tightly  connected  regions  called  modules,  here  an  example  where  the  modules  are

highlighted in green and blue.

Another particular graph is built using the reactions performed by the enzymes as nodes and

the shared metabolites as edges. In this way we have a network we can interrogate to find

patterns and topological features of interest in the metabolism under study. Moreover, not

only we can use the presence/quantification for the nodes (e.g. via MT or MP), but we can

directly use the MB data to validate the edges. For this thesis, we used a metabolic network

in Paper III to summarize the shared metabolism of a lipid-accumulating community from

a wastewater treatment plant.
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1.4 Model environments

1.4.1 Biogas reactors
A  widely  studied  process  performed  by  a  microbial  community  that  has  co-dependent

functions  is  anaerobic  digestion.  During  this  process  a  multitude  of  different  microbes

collectively break down organic matter in a series of concatenated metabolic steps which

culminates  with  the  release  of  methane  (CH4)  and  carbon  dioxide  (CO2).  The  whole

conversion can be broken into four major steps (Fig. 8a).

1. Hydrolysis.  The  hydrolyzing  populations  colonize  and  attack  the  long-chain

polymeric substrate and break it into medium chain molecules or monomers.

2. Acidogenesis or  fermentation. The small molecules from hydrolysis are imported

into the cells and fermented into short chain fatty acids (SCFA), alcohols and CO2 +

molecular hydrogen (H2).

3. Acetogenesis or anaerobic oxidation. The SCFA produced during acidogenesis are

used by specialized syntrophic microbes to be oxidized and produce CO2 and H2.

4. Methanogenesis.  Archaeal  populations  of  the  community  can  take  the  Acetate

and/or H2/formate and produce CH4 and CO4.

Figure 8 illustrates some interesting cases that are explored herein. The conversion between

Acetate and CO2+H2 (Fig. 8a, arrows 4 and 5) is performed by the same pathway, the Wood-

Ljungdahl  (carbon fixation)  Pathway (WLP) which can be used in  the reverse direction

(oxidizing acetate) if the H2 pressure is maintained low enough. The reaction is therefore

usually  coupled  with  hydrogenotrophic  methanogenesis,  which  is  the  energy-yielding

metabolism of methanogens and is unique to the Archaea (Fig. 8a, arrow 6). This is the case

in  Paper  II where  a  syntrophic  acetate-oxidizing  bacterium  performs  the  reactions  on

arrows 3 and 4 (Fig. 8a) in syntrophy with the community’s Archaeon, which performs

reaction 6. The composition of the community depends on several factors, such as the main

substrate and the temperature, but a certain underlying structure and functional components

is always present as addressed in Paper I.

Anaerobic fermentation is widely used in industrial process to harness the residual potential

of other  industries.  For example,  it  is  possible  to build and maintain  biological  reactors

which feed on substrates such as food waste, wood leftovers and agricultural dispose. These
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materials, instead of being disposed inefficiently and in a possibly un-sustainable fashion

(e.g. burned directly), can be used for an efficient extraction of biochemical energy in the

form of alcohol or methane.  Methane-producing biogas reactors productivity depends on

substrate and condition, but it can reach 88% of biomass conversion rate85, however pushing

this number requires a deeper  knowledge of the mechanisms behind single populations’

metabolism  and  their  complementarity.  In  plant-based  substrates  the  largest  source  of

carbon is usually the cellulose, which is also the toughest to break down, and therefore we

examined in Paper I the enzymatic dynamics over time needed to degrade it.

Fig  8.  a. Anaerobic  digestion  diagram  adapted  from  Hagen86.  Organic  material  is  broken  down  via  (1)

hydrolysis into soluble monomers, which in turn are used in (2) fermentation to produce Acetate, Short chain

fatty  acids  (SCFAs)  and  H2+CO2.  During  acetogenesis  the  three  previously  produced  compounds  are

interconverted in three process: (3) syntrophic oxidation of SCFAs, (4) syntrophic acetate oxidation and (5)

hydrogen oxidation. Finally, acetate and H2/formate are converted into CH4+CO2 during methanogenesis via

(7)  acetoclastic  methanogenesis  or  (6)  hydrogenotrophic  methanogenesis  (respectively),  depending  on  the

substrate respectively. b. Schematic wastewater cycle. Urban areas produce wastewater which is collected,

filtered  for  solid matter  and staged in a  first  sedimentation tank. The wastewater  is  then treated with the

addition  of  the  activated  sludge.  This  step  is  usually  composed  of  one  or  more  tanks  in  one  or  more

physicochemical  conditions (e.g.  O2 saturation in the water).  The foam sampled for  Paper III is from an
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anoxic tank from this step. A second sedimentation tank allows to collect and recycle the sludge. Finally, the

water is disinfected and used for new civil purposes. 

1.4.2 Wastewater treatment plants
Wastewater produced by human settlements still contain a high energetic chemical potential

and  a  great  amount  of  water,  plus  it  cannot  be  simply  disposed  of  for  health  and

environmental concerns. Therefore, the solution is the use of a wastewater treatment plant

that can separate the useful compounds, neutralize the potential harmful sources and return

the clean water to the local system for other use. Depending on the amount of wastewater to

be treated there are guidelines for the implant to be in place. In case of small to medium

amounts, the biological process is a cheap and feasible option.

In a typical biological wastewater treatment plant (BWWTP), solid residual collected from

the water before further processing. The main steps take place in large tanks where the water

is subject to the work of bacterial communities in various oxygenation condition in order to

perform changes in the profile of the chemicals in the water, such as nitrogen or phosphorus.

The microbes have to coordinate their metabolism to perform multi-step process such as

nitrification and denitrification. Moreover, the treatment needs may change depending on

the starting conditions of the water, its source and destination, requiring a mix of physical,

chemical and biological treatments to be reclaimed. The presence of lipids in the wastewater

enables  the  growth  of  oleaginous  mixed  microbial  communities  (OMMCs),  which

accumulate on the surface of the tank resulting in a thick foam. The OMMC/foam moves the

lipids  from  the  water  in  a  more  accessible  form,  which  may  be  exploited  for  biofuel

production. On the other hand, the foam disturbs processes such aeration and moving the

water throughout pipes, decreasing the efficiency of the BWWTP, therefore the study of the

foam and its community becomes of great importance as we addressed in Paper III.
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2 OUTLINE AND AIM OF THE THESIS
Microbial communities are often enigmatic entities. We can observe their general phenotype

and manipulate them to identify their optima and boundaries (e.g. changing substrates or

physico-chemical parameters), but their inner mechanisms remain mostly elusive to direct

probing. This happens mostly because of the inability of many microbes to live outside their

environment, i.e. without their microbial partners, and in most of the cases we have not yet

elucidated what they require to stay alive (and functioning). To assist in these challenges,

meta-omic approaches allow us to bypass cultivability and collect, characterize and quantify

the  main  molecules  that  constitute  a  microbial  community.  We are  now equipped  with

flexible tools to unlock an unprecedented amount of information; however, this creates new

challenges such as how do we sort this data, and more importantly, what can we learn from

them?

In  Paper I we wanted to solve the duplicitous puzzle about bacterial complementarity in

(hemi)cellulose  degradation  and  the  inexplicable  ubiquity  of  Coprothermobacter

protelyticus in biogas reactors. We therefore used the gene potential reconstructed from the

metagenomes  and  isolated  strain  genomes  to  build  a  hypothesis  on  metabolic

complementarity  of  the  main  populations  in  the  community  and  the  acquisition  of

hemicellulolytic enzymes by C. proteolyticus. Consequently, we sought to corroborate our

hypothesis  in  vivo,  using  temporal  metatranscriptomics  paired  with  monosaccharide

measurements.  Finally,  we proved that  the  newly  acquired  genes  of  C.proteolyticus are

biochemically active in vitro using an enzymatic assay. 

Microbial ecology based on multi-omics misses one big thing: absolute quantification. We

therefore adapted our high-throughput approaches to obtain quantitative measurements of

RNA and proteins in Paper II. In doing so, we showed the first Archaeal protein-to-RNA

ratio, which matches Eukaryotic representatives in the literature. We then used the linearity

between  transcriptome  and  proteome  to  identify  phenotypic  complementarity  and

corroborated it  with traditional  pathway analysis.  Hence, we propose that a fundamental

biological feature such as the transcriptome-proteome linearity, can be used to highlight a

different biological feature such as metabolism. Thanks to the absolute quantification we
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also aimed to estimate the impact of post-transcriptional regulation of the protein levels to

identify the targeted functions.

The knowledge accumulated in the previous works, and the ones not included in this thesis,

led  to  the  benchmarking  of  a  real-world  complex  microbiome.  In  Paper  III we  used

metagenomes  and  metatranscriptomes  that  were  generated  over  a  one-year  period  from

weekly sampling of a lipid accumulating community from a wastewater treatment plant. The

fundamental  aim  was  to  understand  community-wide  taxonomy  and  function  and

interactions between constituent populations. Therefore, we used the eigengenes to reduce

the complexity of our datasets, so that we could evaluate their time patterns and link them

with the physico-chemical parameters of the system. Moreover, we analyzed two functions

(lipid accumulation and nitrogen metabolism) comparing the gene expression over time and

the taxonomic richness to discover competition for the substrate (lipid) and a keystone gene

(ammonia oxidizing monooxygenase).
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3 MAIN RESULTS AND DISCUSSION
Previous analysis on the Frevar biogas reactor (Fredrikstad, Norway) depicted the resident

microbial community as dominated by heterogeneous strains of C. proteolyticus87. Samples

taken  from  the  original  Frevar’s  reactor  were  further  enriched  for  cellulose-degrading

populations by serial dilution, resulting in SEM1b, which formed the community used for

MG analysis in Paper I and II. The preliminary 16S rRNA amplicon analysis on SEM1b

showed seven main populations, with strain variability (Paper I, Fig. 3). The consortium

appeared co-dominated by Clostridium (Ruminiclostridium) thermocellum and strains of C.

proteolyticus. Two individual strains of C. proteolyticus (BWF2A and SW3C) were isolated

and sequenced independently and the MG assembly was helped by the subtraction of the

reads mapping on the two strains. The co-assembly of two SEM1b MG samples produced

20,760 contigs (total 27 Mbp, longest 603 Kbp) which ultimately resulted in 11 MAGs, with

taxonomic profile and abundances similar to the ones observed with 16S rRNA (Paper I,

Fig. 2). The MAGs were analyzed using average nucleotide identity and Blastp, whereas the

MAGs  not  complete  enough  were  not  taxonomically  assigned.  MAGs  COPR1-3  were

affiliated with C. proteolyticus (alongside the isolates BWF2A and SW3C), RCLO1 with C.

thermocellum,  CLOS1  matched  a  MAG  from  Frevar  and  Clostridium  stercorarium.

Moreover, TEPI1-2 were affiliated to Tepidanaerobacter, SYNG1-2 to Synergistales, TISS1

to  Tissierellales and METH1 to  Methanothermobacter thermoautotrophicus. RCLO1 and

CLOS1,  both  associated  with  lineages  known  to  degrade  polysaccharides,  encoded

respectively 297 and 139 carbohydrate active enzymes (CAZymes), many of which were

annotated as Glycosyl Hydrolases (GHs).

The two C. proteolyticus strains presented some genomic differences from the Type strain

DSM 5265 obtained from the literature (Paper I, Fig. 3). Notably the species was reported

as non-motile but DSM 5265 contained a set of flagellar genes, which were not present in

the  strains  from  SEM1b.  In  addition,  BWF2A  and  SW3C  showed  acquisition  of  a

CAZymes’ cassette including GH16, GH3, and GH18-CBM35 (region-A, Paper I, Fig. 3).

GH16 is an endo-β-1,3-1,4-glucanase and GH3 a β-glucosidase, suggesting the ability to

degrade  the  hemicellulose  beta-glucan,  whilst  GH18  encodes  an  endo-β-N-

acetylglucosaminidase, conferring the ability to degrade the bacterial cell wall. Region-A

29



had  high  similarity  to  a  homologous  region  from  Firmicutes  (Thermoanaerobacter,

Clostridium  cellulolyticum,  and  C.  thermocellum)  and  Thermotogae  (Thermosipho

africanus, Fervidobacterium nodosum, and F. gondwanense) as summarized in Paper I Fig.

4. The genomic sequence flanking region-A contains an incomplete prophage composed of a

phage lysis holin and two downstream recombinases (Paper I, Fig. 3-4), which suggests

phage-mediated  horizontal  gene  transfer.  Moreover,  we  proved  biochemically  the

endoglucanase  activity  of  the  newly  acquired  GH16  on  β-1,3  (pachyman,  curdlan,

laminarin) and β-1,3-1,4 (Barley) substrates (Paper I, Fig. S2A). We further showed that

the activity of the GH16 showed a high production of glucose (Paper I, Fig. S2B), on which

the C. proteolyticus strains can directly metabolize.

In  order  to  understand the  concerted  work  of  SEM1b in  degrading  our  (hemi)cellulose

substrate,  we  analyzed  the  temporal  16S  rRNA  gene  abundance  and  functional  gene

expression data from the substrate inoculum (T0) up to 42 hours of SEM1b growth, with

samples being taken at 5-8 hour intervals.  The 16S rRNA gene data showed a dynamic

dominance  of  the  community  shared  by  Coprothermobacter- and  Clostridium-affiliated

populations (Paper I, Fig. 5a). For our metatranscriptome analysis of SEM1b, two or more

CAZyme-annotated ORFs were grouped in “expression groups” if all the MT reads mapping

on them were shared hits, therefore making explicit the taxonomic resolution limit of our

dataset.  This  resulted  in  274  singleton  and  8  multi-ORF  CAZymes.  In  case  of  close

taxonomic  relationships,  such as  for  the  C. proteolyticus strains,  it  was  not  possible  to

discern the exact origin of the expressed ORF (e.g. the GHs in the A-region). 

The total gene expression data for the SEM1b CAZymes revealed six clusters (I-VI) and

characteristic MAG/genome enrichments (Paper I, Fig. 5b). Clusters III and IV, accounting

for 10 and 11 expression groups, had similar time patterns (Fig. 5c), with an initial increase

(T2–3) followed by a later one (T6–8). Cluster III (alongside II and IV) was enriched in C.

proteolyticus-affiliated populations. However, cluster II, containing 10 expressions groups,

even if similar to III and IV, had a sharper upward trend in T2. These clusters contained N-

acetylglucosamine- (CE9) and peptidoglycan-targeting (CE4, GH23, and GH73) CAZymes,

both components of the bacterial cell wall. Therefore, we hypothesize they pertain to the

recycling of the cell wall from dead cells in lag and late-stationary/death phases. After 13
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hours (T2), the dominant phenotype of the community shifted toward cellulose degradation,

which can be seen with the inversion in 16S rRNA gene profiles between Clostridium- and

C. proteolyticus-associated populations, and returning toward the initial configuration over

time. This trend pairs with the increased levels in clusters II, III and IV, associated with cell

wall recycling by C. protelyticus (Paper I, Fig. 5b).

The  two  main  (hemi)cellulolytic-associated  clusters,  V  and  VI  (28  and  101  expression

groups), contained CAZymes active on cellulose (e.g., GH5, GH9, GH44, GH48, CBM3)

and hemicellulose (e.g., GH10, GH11, GH26, GH43, GH74) and were enriched in RCLO1

and CLOS1 (Table S5). The increase in exponential phase matches the surge in Clostridium-

associated populations in the 16S rRNA gene analysis and the shift in community substrate.

With 121 expression groups, Cluster I is the largest in the analysis and contains ORFs for

both hemicellulose degradation (e.g., GH3, GH10, GH29, GH31, GH43, and GH130) and

carbohydrate deacetylation (e.g., CE4, CE7, CE8, CE9, CE12, and CE15) (Paper I, Table

S5). Interestingly the newly acquired CAZymes GH16 and GH3 from the  C. protelyticus

strains were contained here, indicating that they were expressed with the same temporal

pattern of their homologous genes. Moreover, clusters V and VI (Paper I, Fig. 5) preceded

cluster  I,  indicating  that  the  cellulolytic  action  was  required  to  liberate  embedded

hemicellulose  fibres from the substrate,  before the hemicellulases  could act  upon it.  As

expected, we detected xylose (one of the products of hemicellulose hydrolysis) to increase

from T5 to T7 (Paper I, Fig. 5a), indicated hemicellulose degradation. We can therefore

summarize the life-cycle of SEM1b after substrate inoculum as: 1) lag phase and recycling

of  dead  cells,  2)  exponential  phase  and  cellulose  hydrolysis,  which  also  liberates

hemicellulose fibres 3) shortly after the previous step starts the hemicellulose hydrolysis and

4) the community goes back to recycling dead cells.

In  Paper  II we  used  the  already  reconstructed  SEM1b  community  to  characterize

RNA/protein  dynamics  in  a  microbiome  setting.  Here  we  generalized  the  concept  of

“expression group” as a set of ORFs that are indistinguishable in MT and MP data, calling

these sets ORF-groups (ORFGs), where a singleton ORFG is defined as a group with a

single ORF, and thus a single gene.  In this  context,  we obtained MT and MP data that

identified 12552 MT- (96% singleton) and 3235 MP- (78% singletons) highly transcribed
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and  translated  ORFGs  (respectively).  Most  of  the  ORFGs  that  contained  multiple

homologous ORFs were originating from strains of a single species. For instance, in the

MT, 444 non-singleton ORFGs (88% of the total) contained ORFs from different strains of

the same species, whilst this was the case for 294 ORFGs (32%) in the MP. Kegg Ontology

(KO) codes were found for 19070 (49%) of the ORFs from SEM1b. The most abundant

annotations  included Membrane transport,  Carbohydrate  metabolism,  Translation,  Amino

acid  metabolism  and  Replication  and  repair  (Paper  II,  Supplementary  Fig.  1).  These

functional categories were also among the top five most abundant for the MT, and top six in

the MP (plus Energy metabolism) The Membrane transport was poorly represented in the

MP  (2%  of  the  terms),  which  reflects  technical  issues  commonly  encountered  with

transmembrane  protein  extraction.  The  abundance  ranking  of  functional  categories  was

more conserved between MG and MT (Kendall τ: 0.77, p<10-8) and MT and MP (τ 0.74,

p<10-6) than between MG and MP (τ 0.68, p<10-5). This suggested that a more variable

gene arsenal is present in the genomes than that expressed in the transcriptomes and the

proteomes,  which  is  the  less  variegate  of  the  three.  Collectively,  this  hinted  to  post-

transcriptional regulation playing an important role in addition to transcriptional regulation

in prokaryotes.

More importantly in Paper II we wanted to assess if microbial RNA/protein dynamics vary

between  ecological  status  (isolate  vs  community),  metabolic  states  and/or  taxonomic

phylogeny.  We therefore  quantified  and  resolved  the  numbers  of  transcript  and protein

molecules per sample in our SEM1b community, which averaged 3.8×1012 (sd 3.0×1012) and

2.2×1015(sd 9.5×1014), respectively. SEM1b approximated the exponential growth phase in

t3 (18 hours), thus we used the protein-to-RNA ratio from this time point for comparison

against estimates from the literature.  The replicate-averaged protein-to-RNA ratio for the

bacteria in SEM1b ranges from ~102 to 104 (median = 949, Paper II Fig. 1a), agreeing with

the  previously  reported  range  for  a  pure  culture  of  Escherichia  coli88.  We  found  a

population-specific variation in the bacterial protein-to-RNA ratio (Paper II, Fig. 1a), with

the median ratios at 18h ranging from 658 in CLOS1 to 1137 in RCLO1. In contrast to

bacteria, the protein-to-RNA ratio for an Archaeal organism, which we report for the first

time, was approximately 10x higher at 12035 protein molecules per detected RNA (Paper

II, Fig. 1a: METH1). The values from literature for Eukaryotes are 4200-5600 in yeast and
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2800-9800 in Homo sapiens;  hence, bringing Archaeal and Eukaryotic translation dynamics

in closer alignment.

Building on these initial observations, we modeled the relationship between proteome and

transcriptome  using  a  monomial  function  (Paper  II,  Eq.  1),  which  for  our  log10-

transformed RNA and protein data can be fitted using a linear model. For the modeling we

used the reconstructed MAGs with the highest quality (RCLO1, CLOS1, COPR1, TISS1,

TEPI1,  TEPI2  and  METH1)  (Paper  II,  Fig.  1d).  The  linearity  parameter  k  can  be

interpreted  as  the  rate  of  which a  change in  RNA level  is  reflected  in  a  change in  the

corresponding protein level. With the exception of TEPI2, the linearity (k) between protein

and RNA levels was observed to start at values between 0.6 and 0.8 at 13 hours (t2) (Paper

II, Fig. 1d). The evolution of the MAGs’ k values over time is then divided in three groups:

one which is losing linearity rapidly (TISS1 and COPR1); one which is slowly declining

(RCLO1, CLOS1 and METH1) and one which is staying constant if not increasing (TEPI1

and  TEPI2)  (Paper  II,  Fig.  1d).  Notably  CLOS1,  METH1 and  TEPI1  are  converging

towards the same linearity values, while RCLO1 has a parallel trend to them. If these trends

can  be  used  to  retro-fit  the  steady  state  definition,  we  can  hypothesize  that  these  four

populations  possess  a  metabolic  equilibrium  and  that  this  equilibrium  is  approximately

reached within the 10 hour window between 33h and 43h (t6 and t7 respectively, Paper II,

Fig. 1d).

To  validate  if  the  changing  k-values  could  be  extrapolated  to  greater  interpretations  of

metabolic convergence and interlocking, we proceeded to investigate SEM1b with a more

traditional pathway-guided analysis. We used the KO annotation of the ORFs to explore the

metabolic modules’ completeness for SEM1b MAGs (Paper II, Fig. 2) and reconstructed

their  temporal  expression patterns  (Paper II,  Fig.  3).  As previously shown in  Paper I,

SEM1b is able to convert (hemi)cellulose to methane via the combined metabolism of its

seven major constituent populations (Paper II, Fig. 3a). Based on previous analysis that

showed that  RCLO1 is  closely  related  to  R.  thermocellum,  we predict  that  it  senses  its

growth substrate (cellulose) and moves towards it (Paper II, Fig. 3d). RCLOS1 then invests

in  the  production  of  the  cellulosomal  components,  such  as  scaffoldins,  dockerins  and

CAZymes,  which  assemble  into  a  dynamic  multi-proteins  complex  that  degrades  the
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substrate  to  smaller  carbohydrates.  Via  the  MG,  we  predicted  that  non-cellulosomal

CAZymes were also employed by the Clostridium-affiliated CLOS1, which acted upon the

hemicellulose fraction (mainly xylan) trapped in the spruce cellulose, which was supported

by observed release of its main monomer xylose (Paper II, Fig. 3a). Sugars generated via

the actions  of RCLO1 and CLOS1 are subsequently consumed by RCLO1, CLOS1 and

Coprothermobacter-affiliated populations  (COPR1, BWF2A and SW3C), which were all

observed to express sugar transporters (Paper II, Fig. 2).  Interestingly, BWF2A and SW3C

possess and express unique sugar transporters, likely gaining access to an undisputed pool of

arabinogalactan or maltooligosaccharide. The transporter for pentamers ribose/xylose were

the  most  common  and  possessed  by  RCLO1,  C.  proteolyticus populations  and

Tepidanaerobacter-affiliated  populations  (TEPI1  and  TEPI2).  Moreover  from Fig.  2  in

Paper II, it is clear that the proteins from the transporters are almost never found in the

samples,  even if  the  respective  RNAs are  abundant.  This  is  likely  due  to  the  technical

difficulties in extracting transmembrane proteins.

SEM1b  activity  of  cellulose  degradation  lead  to  the  formation  short  chain  fatty  acids

(SCFAs) which are  subsequently  metabolized  by the SCFA-oxidizing  population  TEPI1

(Paper II, Fig. 3a), which demonstrated a good linearity between protein and RNA levels

that increased over time (Paper II, Fig. 1d). TEPI1 was also found to encode a complete

Wood-Ljungdahl carbon fixation Pathway (WLP) that was detectable in both MT and MP

(Paper II, Fig. 2). Interestingly the closely related MAG TEPI2 was observed to lack the

WLP  and  to  express  ~10  times  more  transcripts  for  the  ribose/xylose  transporter  than

TEPI1;  relegating  it  to  the role  of  mere  sugar  degrader,  and probably  scavenger  in  the

community.  The  TEPI1  MAG  expresses  the  NAD+  (NADP+)-reducing  hydrogenases

complex, which reduces hydrogen ions to H2 using NAD(P)H as the electron donor. The

molecular hydrogen generated here would then be used by the syntrophic partner METH1 to

form methane (Paper II, Fig. 3a). However, this reverse WLP-mediated acetate oxidation is

thermodynamically unfavourable unless coupled with syntrophic hydrogenotrophs. Within

SEM1b, the METH1 population is a hydrogenotrophic methanogen, thus we hypothesize

that  the molecular  hydrogen generated by TEPI1 would then be used by the syntrophic

partner METH1 to form methane (Paper II, Fig. 3a). Overall, our more classical pathway-

wise exploration of the SEM1b populations supported that RCLO1, CLOS1, TEPI1 and
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METH1 indeed share functional co-dependencies and supported our predictions via protein-

RNA dynamics that they converge upon a dominant metabolic state.

The last part of Paper II explored the poorly understood aspect of microbiome protein-level

regulation. The absolute quantification of transcripts and proteins in SEM1b were used to

estimate the translation and protein degradation rates using PECA-R. The analysis found

305 significant changes in translation rate, accounting for 302 ORFs. Of the rate changes’,

94% were downregulated and 71% of the ORF were functionally annotated.  Among the

main results. RCLO1 was found to downregulate 28 ORFs between 13h and 18h (t2-t3),

mostly  from  complexes  involved  in  chemotaxis,  flagellum  assembly  and  shape

determination.  Whilst  in  the  following  five  hours,  several  systems  concerning  carbon

fixation were affected. In the next five hours, RCLOS1 downregulates the translation of the

cell  division  protein  ZapA  as  well.  The  reduction  protein  production  for  chemotaxis,

mobility and then cell division matches the idea that within 13h of the inoculation, RCLO1

sensed,  reached  and colonized  the  cellulose  fibers.  Contextually  the  release  of  medium

length  carbohydrates  enables  RCLO1  to  engage  in  the  more  energetically  favorable

fermentation metabolism. TEPI1 downregulated 60 ORFs between 13h-18h, accounting for

part  of  its  carbohydrate  metabolism,  the  amino  acid  transporters  and  the  NADH

dehydrogenase complex (HND). TEPI2 has 19 ORFs subject to downregulation in the 13h-

18h interval, including carbohydrate metabolism and related transporters. In the last interval

(33h-38h), RCLO1 upregulated the translation of 10 ORFs, including flagellar protein and

shape determination; seemingly starting to restore the functions downregulated in the 13h-

18h interval.

In Paper III we took what we had learned in the previous works and scaled it up to a real-

world  community  (Schif-LAO)  from  a  wastewater  treatment  plant  from  Schifflange

(Luxembourg).   We used the weekly sampling between 2011-03-21 and 2012-05-03 (51

samples)  and combined  the  sample-wide  MG analyses  to  produce  a  total  of  ~19.8×106

different ORFs (extended dataset). A KEGG Orthology group was assigned to 40.4% of the

ORFs in the set, whilst taxonomic affiliations were designated to 38.5%. We quantified the

gene count and their expression over time for the extended dataset using the MG and MT

reads. The vast majority of the genes however were not found to be expressed over the
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entire dataset and were only detected in few samples alone, with as many as 16.8×106 in

only one,  hinting that  the community relies  on high gene redundancy. Subsequently we

generated  a  more approachable  dataset  retaining  only ORFs with a  gene count  or  gene

expression above 1 transcript per million (TPM) in at least one sample, obtaining 0.7×106

and 0.8×106 ORFs for the MG and MT respectively (core dataset).

In order to understand the temporal patterns underlying the core dataset, we reconstructed

six (EG1-6) eigengenes associated with the MG and six (EG1-5, EG8) with the MT data

(Paper III, Fig1a-b). The two sets of EGs however were highly correlated (Paper III, Fig

1c),  and intuitively the curves described by the MG are smoother than by the MT data.

Furthermore,  we  wanted  to  link  these  patterns  with  the  environmental  physio-chemical

parameters, which we filtered for collinearity (the linear dependence of variables) to seven

of  them:  conductivity,  dry  matter,  ammonium  (NH4),  nitrate  (NO3),  oxygen,  pH  and

temperature. The results show how the most relevant environmental factors are temperature

and NO3, linked with five EGs each, followed by dry matter with four EGs (Paper III, Fig

1d). Ammonium and pH were significant in explaining two EGs, whilst conductivity and

oxygen contribute significantly to one EG each. One of the main processes happening in

WWTPs  is  the  conversion  of  Ammonium into  Nitrate  (NH4 → NH3 → NO2 → NO3),

therefore it is hard to establish the causal direction of the link between these two compounds

and gene copy number/expression. The more intuitive causality is between temperature and

the EGs, especially for EG2 (from MG and MT). Indeed, we fitted both the MG derived

EG2 and the temperature with the sine function using a period (T) of 365 (days), giving

perfect fits with F-statistics of 181 and 269 (p-values < 1015), same phase and amplitude of

opposite sign. These results point to a seasonal composition and behavior of the microbial

community, with a set of genes whose presence in the Schif-LAO consortium depends on

the temperature and is supposed to reach the same values at yearly intervals.

 

To reduce the complexity of our massive temporal omic datasets so that we could study the

functional characteristic of Schif-LAO, we built a reaction network using the KO annotation

from the extended dataset, in which every node (collapsed KO, hence CKO) represented a

set of all the reactions using the same metabolites, and the edges the metabolites shared by

these sets. We obtained a reaction network of 1,984 nodes and 13,350 edges. The number of
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ORFs per  CKO varied  greatly,  with  a  maximum of  77,474  and a  median  of  284.  We

speculated that the taxa contributing to a given function in the Schif-LAO community at any

given point in the sampling time may change, thus we sought to taxonomically identify

those ORFs that are crucial in the carrying of their function. To do this, we computed the

normalized  information  entropy  of  the  MT  for  every  CKO  at  the  Family  level.

Subsequently, we focused the analysis on the fatty acid biosynthesis, which is believed to be

important in a LAO community, and nitrogen metabolism, which consequently is relevant in

all wastewater treatment plants.

In Schif-LAO there are 17 CKOs associated with the KO term “Fatty Acid Biosynthesis”,

connected  by  26  metabolites  (edges)  (Paper  III,  Fig.  2a),  accounting  for  fatty  acid

initiation,  elongation  and  termination.  The  most  expressed  reaction  node  is  CKO1295,

ranging between 695.3-1513.5 transcripts per million (TPM) and a median of 927.8 TPM

per time point (Paper III, Fig. 2b). CKO1295 embeds the two opposite reactions that attach

and detach the cofactor A (CoA) to the fatty acid chain. Interestingly the richness in taxa

contributing to the node is inversely proportional to the gene expression (Spearman’s ρ of

-0.35, p=0.01) with a quadratic trend (Paper III, Fig. 2c). The second largest expressed

node is CKO120 with a range of 539.6-1147.4 TPM and a median equal to 778.3 TPM per

time  point.  Similar  to  the  previous  case,  for  CKO120 the  gene  expression  is  inversely

proportional to the taxa richness (ρ=-0.38, p<0.01) but with a linear trend (Paper III, Fig.

2d). CKO1295 and CKO120 cover two fundamental aspects of FAS: activation/deactivation

of the fatty acid and its extension; however, our data would suggest that different taxa enact

a competitive takeover of these functions. The families detected at high MG abundance did

not  necessarily  correspond  to  high  MT  activity,  for  example  the  widely  abundant

Comamonadaceae  (24.8%)  was  observed  to  exert  lower  expression  (13.2%)  than

Leptospiraceae (32%). In CKO120 Leptospiraceae (28.3%) is again the most active, whilst

the most abundant (based on MG analysis) is the family Microthrixaceae (24.5%).

The  Nitrogen-related  metabolism  of  Schif-LAO  includes  21  reaction  nodes  and  71

metabolic  edges  (Paper  III,  Fig.  2e).  The  entropy  analysis  points  to  CKO3145  and

CKO3079 as potential keystone functions in the system (Paper III, Fig. 2f), having high

expression  and  low  taxonomical  diversity.  The  first  reaction  node  is  overwhelmingly
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dominated by the ORFs from the family Nitrosomonadaceae (MG 97.8%, MT 99.1%) and

contains the  amo gene subunits A-B. The second node is dominated again by transcripts

from  Nitrosomonadaceae  (MG  63.9%,  MT  91%)  and  encodes  the  hydroxylamine

dehydrogenases.  Given  the  crucial  importance  of  the  presence  of  the  gene  amo in  the

environment  to start  the assimilation of ammonia,  the main family producing transcripts

from it, Nitrosomonadaceae, must be held carefully tuned to the optimal size to optimize the

performance of Schif-LAO.
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4 CONCLUDING REMARKS AND 
PERSPECTIVES
As the meta-omics field matures, new technologies are being constantly introduced creating

larger and more resolute datasets, however we still have not reached any standardized way

to study microbial communities and every study is a unique piece of research. At the same

time, it is particularly challenging to work outside of the boundaries of model organisms to

try and chart new microbial interactions when the microbes involved are uncharacterized. In

our  case  we  first  covered  a  simplistic  community  with  the  greatest  resolution  possible

(Paper I,  II), retrieving a strain-level MG that included isolated genomes. In general, the

combination of MG sequencing and isolation is a promising way to increase the resolution

of the datasets, alongside the newly emerging strategies such as binning + dereplication of

the MAGs. However, as we pointed out in  Paper I, an increase in MG resolution, being

virtually  able  to  identify  many  strain-level  populations’  genomes  (e.g.  through  third

generation  of  sequencing),  does  not  equate  to  being  able  to  tell  which  are  the  strains

contributing to a given function if their genes are highly similar. This phenomenon is tightly

linked to phylogenetic affiliations, indeed, as addressed in Paper II, the distinction between

gene products (transcript and protein) is inversely proportional to the phylogenetic distance

of the microbes they come from. When adding the layers of annotations on the ORFs (KO,

taxonomy, etc…), every comparison becomes challenging and a statistical and computation

framework to address the task should be developed. In spite of its absence, we integrated

and adapted  methods  developed  for  individual  omics  and eukaryotic  data  to  render  the

highest resolution in molecular characterization and quantification.

In paper II in particular we addressed the need of absolute quantification in the meta-omics,

showing that  it  is  both achievable without increasing excessively the experimental  work

(nowadays commercial kits for RNA spike-in are widely available) and allows to answer

questions concerning molecular level regulation and, more widely, making the samples (and

different experiments) comparable. We introduced the novel idea of using the population-

wide  relationship  (i.e.  linearity)  of  the  transcriptome  and  proteome  as  a  proxy  for  the

population  activity.  Moreover,  when  the  relationships  are  compared  among  populations

from the same community,  the study of  their  trends  (e.g.  convergent,  parallel,  etc.)  can
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identify  metabolically  intertwined  microbes.  This,  of  course,  is  still  a  hypothesis  and it

should be tested in bigger and more varied communities.

Another important aspect of this thesis is the use of bioinformaitcs and data analysis as a

hypothesis generators to be used in other branches of biology. In paper I for instance we

coupled the prediction from the MG with bacterial culturing and the hypothesis from the

MT with enzymology. In  Paper III we developed the reaction network with the precise

intent  to  find  keystone  populations  and  genes  for  further  investigation  and  potential

exploitation. Most importantly, we learnt that to achieve a full understanding of microbial

ecology,  we  need  to  integrate  all  the  meta-omics  layers  quantified  with  absolute

measurements  and biochemical data from both the microbes and the environment. Moving

forward, big technical and computational hurdles must be overcome to handle, interpret and

visualize the massive amounts of generated data that will come from studying real-world

communities  at  this  proposed scale and resolution.  However,  we believe that it  must be

achieved if we are to truly and holistically appreciate naturally-occurring microbiomes at a

fundamental level.
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Abstract
Microbial communities that degrade lignocellulosic biomass are typified by high levels of species- and strain-level
complexity, as well as synergistic interactions between both cellulolytic and non-cellulolytic microorganisms.
Coprothermobacter proteolyticus frequently dominates thermophilic, lignocellulose-degrading communities with wide
geographical distribution, which is in contrast to reports that it ferments proteinaceous substrates and is incapable of
polysaccharide hydrolysis. Here we deconvolute a highly efficient cellulose-degrading consortium (SEM1b) that is co-
dominated by Clostridium (Ruminiclostridium) thermocellum and multiple heterogenic strains affiliated to C. proteolyticus.
Metagenomic analysis of SEM1b recovered metagenome-assembled genomes (MAGs) for each constituent population,
whereas in parallel two novel strains of C. proteolyticus were successfully isolated and sequenced. Annotation of all C.
proteolyticus genotypes (two strains and one MAG) revealed their genetic acquisition of carbohydrate-active enzymes
(CAZymes), presumably derived from horizontal gene transfer (HGT) events involving polysaccharide-degrading
Firmicutes or Thermotogae-affiliated populations that are historically co-located. HGT material included a saccharolytic
operon, from which a CAZyme was biochemically characterized and demonstrated hydrolysis of multiple hemicellulose
polysaccharides. Finally, temporal genome-resolved metatranscriptomic analysis of SEM1b revealed expression of C.
proteolyticus CAZymes at different SEM1b life stages as well as co-expression of CAZymes from multiple SEM1b
populations, inferring deeper microbial interactions that are dedicated toward community degradation of cellulose and
hemicellulose. We show that C. proteolyticus, a ubiquitous population, consists of closely related strains that have adapted
via HGT to presumably degrade both oligo- and longer polysaccharides present in decaying plants and microbial cell walls,
thus explaining its dominance in thermophilic anaerobic digesters on a global scale.

Introduction

The anaerobic digestion of plant biomass profoundly shapes
innumerable ecosystems, ranging from the gastrointestinal

tracts of humans and other mammals to those that drive
industrial applications such as biofuel generation. Biogas
reactors are one of the most commonly studied anaerobic
systems, yet many keystone microbial populations and their
metabolic processes are poorly understood due to a lack of
cultured or genome sampled representatives. Coprother-
mobacter spp. are frequently observed in high abundance in
thermophilic anaerobic systems, where they are believed to
exert strong protease activity, while generating hydrogen
and acetate, key intermediate metabolites for biogas pro-
duction [1]. Molecular techniques have shown that their
levels range from 10% to 90% of the total microbial com-
munity, irrespective of bioreactors being operated on lig-
nocellulose- or protein-rich substrates (Fig. 1). Despite their
promiscuous distribution, global abundance and key role in
biogas production, only two species have been described:
Coprothermobacter platensis [2] and Coprothermobacter
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proteolyticus [3]. These two species and their inherent
phenotypes have formed the predictive basis for the
majority of Coprothermobacter-dominated systems descri-
bed to date. Recent studies have illustrated that C. proteo-
lyticus populations in anaerobic biogas reactors form
cosmopolitan assemblages of closely related strains that are
hitherto unresolved [4].

Frequently in nature, microbial populations are com-
posed of multiple strains with genetic heterogeneity [5, 6].
Studies of strain-level populations have been predominately
performed with the human microbiome and especially the
gut microbiota [7, 8]. The reasons for strain diversification
and their coexistence remain largely unknown [9]; however,
several mechanisms have been hypothesized, such as micro-
niche selection [5, 10], host selection [11], cross-feed
interactions [12, 13], and phage selection [14]. Studies of
axenic strains have shown that isolates can differ in a
multitude of ways, including virulence and drug resistance
[15–17], motility [18], and nutrient utilization [19]. Strain-
level genomic variations typically consist of single-
nucleotide variants, as well as acquisition/loss of genomic
elements such as genes, operons, or plasmids via horizontal

gene transfer (HGT) [20–22]. Variability in gene content
caused by HGT is typically attributed to phage-related
genes and other genes of unknown function [23], and can
give rise to ecological adaptation, niche differentiation, and
eventually, speciation [24–26]. Although differences in
genomic features can be accurately characterized in isolated
strains, it has been difficult to capture such information
using culture-independent approaches such as metage-
nomics. Advances in bioinformatics have improved taxo-
nomic profiling of microbial communities from phylum to
species level but it remains difficult to profile similar strains
from metagenomes and compare them with the same level
of resolution obtained by comparison of isolate genomes
[27]. As closely related strains can also differ in gene
expression [28], being able to distinguish the expression
profiles of individual strains in a broader ecological context
is elemental to understanding the influence they exert
towards the overall community function.

In this study, a novel population of C. proteolyticus that
included multiple closely related strains was observed
within a simplistic biogas-producing consortium enriched
on cellulose (hereafter referred to as SEM1b). Using a
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combined metagenomic and culture-dependent approach,
two strains and a metagenome-assembled genome (MAG)
affiliated to C. proteolyticus were recovered and geneti-
cally compared with the only available type strain, C.
proteolyticus DSM 5265 [29]. Notable genomic differ-
ences included the acquisition of an operon (region-A)
encoding carbohydrate-active enzymes (CAZymes), which
inferred that C. proteolyticus has adapted to take advan-
tage of longer polysaccharides. Enzymology was used to
further support our hypothesis that the CAZymes within
region-A are functionally active. We further examined the
saccharolytic potential of our recovered C. proteolyticus
population in a broader community context, by examining
genome-resolved temporal metatranscriptomic data gen-
erated from the SEM1b consortium. Collective analysis
highlighted the time-specific polysaccharide-degrading
activity that C. proteolyticus exerts in a cellulolytic
microbial community.

Materials and methods

Generation of the SEM1b consortium

An inoculum (100 µl) was collected from a lab-scale biogas
reactor (Reactor TD) fed with manure and food waste and
run at 55 °C. The TD reactor originated itself from a ther-
mophilic (60 °C) biogas plant (Frevar) fed with food waste
and manure in Fredrikstad, Norway. Our research groups
have previously studied the microbial communities in both
the Frevar plant [4] and the TD bioreactor [30], which
provided a detailed understanding of the original microbial
community. The inoculum was transferred for serial dilution
and enrichment to an anaerobic serum bottle and containing
the rich ATCC medium 1943, with cellobiose substituted
for 10 g/L of cellulose in the form of Borregaard Advanced
Lignin technology (BALITM)-treated Norway spruce [31].
Our enrichment was incubated at 65 °C with the lesser
objective to study community biomass conversion at the
upper temperature limits of methanogenesis. After an initial
growth cycle, an aliquot was removed and used for a serial
dilution to extinction experiment. Briefly, a 100 µl
sample was transferred to a new 100 ml bottle contain-
ing 60 ml of anaerobic medium, mixed, and 100 µl
was directly transferred again to a new one (six serial
transfers in total). The consortium at maximum dilution that
retained the cellulose-degrading capability (SEM1b)
was retained for the present work and aliquots were
stored at − 80 °C with glycerol (15% v/v). In parallel,
continuous SEM1b cultures were maintained via regular
transfers into fresh media (each recultivation incubated for
~2–3 days).

Metagenomic analysis

Two different samples (D1B and D2B) were taken from a
continuous SEM1b culture and were used for shotgun
metagenomic analysis. D2B was 15 recultivations older
than D1B and was used to leverage improvements in
metagenome assembly and binning. From 6 ml of culture,
cells were pelleted by centrifugation at 14,000 × g for 5 min
and were kept frozen at − 20 °C until processing. Non-
invasive DNA extraction methods were used to extract high
molecular weight DNA as previously described [32]. The
DNA was quantified using a Qubit™ fluorimeter and the
Quant-iT™ dsDNA BR Assay Kit (Invitrogen, USA), and
the quality was assessed with a NanoDrop 2000 (Thermo
Fisher Scientific, USA).

16S rRNA gene analysis was performed on both D1B
and D2B samples. The V3–V4 hyper-variable regions of
bacterial and archaeal 16S rRNA genes were amplified
using the 341F/805R primer set: 5′-CCTACGGGNBGC
ASCAG-3′/5′-GACTACNVGGGTATCTAATCC-3′ [33].
The PCR was performed as previously described [30] and
the sequencing library was prepared using Nextera XT
Index kit according to Illumina’s instructions for the MiSeq
system (Illumina, Inc.). MiSeq sequencing (2 × 300 bp with
paired ends) was conducted using the MiSeq Reagent Kit
v3. The reads were quality filtered (Phred ≥Q20) and
USEARCH61 [34] was used for detection and removal of
chimeric sequences. Resulting sequences were clustered at
97% similarity into operational taxonomic units (OTUs) and
taxonomically annotated with the pick_closed_refer-
ence_otus.py script from the QIIME v1.8.0 toolkit [35]
using the Greengenes database (gg_13_8). The resulting
OTU table was corrected based on the predicted number of
rrs operons for each taxon [36].

D1B and D2B were also subjected to metagenomic
shotgun sequencing using the Illumina HiSeq 3000 platform
(Illumina, Inc.) at the Norwegian Sequencing Center (NSC,
Oslo, Norway). Samples were prepared with the TrueSeq
DNA PCR-free preparation, and sequenced with paired
ends (2 × 125 bp) on four lanes (two lanes per sample).
Quality trimming of the raw reads was performed using
cutadapt [37], removing all bases on the 3′-end with a Phred
score lower than 20 (if any present) and excluding all reads
shorter than 100 nt, followed by a quality filtering using the
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/).
Reads with a minimum Phred score of 30 over 90% of the
read length were retained. In addition, genomes from two
isolated C. proteolyticus strains (see below) were used to
decrease the data complexity and to improve the metage-
nomic assembly and binning. The quality-filtered metage-
nomic reads were mapped against the assembled strains
using the Burrows-Wheeler Aligner with maximal exact
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matches (BWA-MEM) algorithm requiring 100% identity
[38]. Reads that mapped the strains were removed from the
metagenomic data and the remaining reads were co-
assembled using MetaSpades v3.10.0 [39] with default
parameters and k-mer sizes of 21, 33, 55, and 77. The
subsequent contigs were binned with Metabat v0.26.3 [40]
in “very sensitive mode”, using the coverage information
from D1B and D2B. The quality (completeness, con-
tamination, and strain heterogeneity) of the bins (hereafter
referred to as MAGs) was assessed by CheckM v1.0.7 [41]
with default parameters.

Isolation of C. proteolyticus strains

Strains were isolated using the Hungate method [42]. In brief
Hungate tubes were anaerobically prepared with the DSMZ
medium 481 with and without agar (15 g/L). Directly after
being autoclaved, Hungate tubes containing agar were
cooled down to 65 °C and sodium sulfide nonahydrate was
added. From the SEM1b culture used for D1B, 100 µl were
transferred to a new tube and mixed. From this new tube,
100 µl was directly transferred to 10 ml of fresh medium,
mixed, and transferred again (six transfers in total). Tubes
were then cooled to 60 °C for the agar to solidify and then
kept at the same temperature. After growth, single colonies
were picked and transferred to liquid medium.

DNA was extracted using the aforementioned method for
metagenomic DNA, with one amendment: extracted DNA
was subsequently purified with DNeasy PowerClean Pro
Cleanup Kit (Qiagen, USA) following manufacturer’s
instructions. To insure the purity of the C. proteolyticus
colonies, visual confirmation was performed using light
microscopy and long 16S rRNA genes were amplified using
the primers pair 27F/1492R [43]: 5′-AGAGTTTG
ATCMTGGCTCAG-3′/5′-TACGGYTACCTTGTTACGA
CTT-3′ and sequenced using Sanger technology. The PCR
consisted of an initial denaturation step at 94 °C for 5 min
and 30 cycles of denaturation at 94 °C for 1 min, annealing
at 55 °C for 1 min, and extension at 72 °C for 1 min, and a
final elongation at 72 °C for 10 min. PCR products were
purified using the NucleoSpin Gel and PCR Cleanup kit
(Macherey-Nagel, Germany) and sent to GATC Biotech for
Sanger sequencing.

The genomes of two isolated C. proteolyticus strains
(hereafter referred to as BWF2A and SW3C) were sequenced
at the NSC (Oslo, Norway). Samples were prepared with
the TrueSeq DNA PCR-free preparation and sequenced
using paired ends (2 × 300 bp) on a MiSeq system (Illu-
mina, Inc). Quality trimming, filtering, and assembly were
performed as described in the aforementioned metagenomic
assembly section. The raw reads were additionally mapped
on assembled contigs using bowtie2 (–very-sensitive -X
1000 -I 350) and the coverage was retrieved for every

nucleotide with samtool depth –a. All the contigs with an
average coverage higher than 100 were selected and indi-
vidually inspected for coverage discontinuity. All the con-
tigs selected with the average coverage criterion (BWF2A:
11, SW3C: 13) looked continuous in coverage and, together
with the MAGs, they were submitted to the Integrated
Microbial Genomes and Microbiomes system [44] for
genomic feature prediction and annotation (pipeline version
4.15.1). Resulting annotated open reading frames (ORFs)
were retrieved, further annotated for CAZymes using the
CAZy annotation pipeline [45], and subsequently used as a
reference database for the metatranscriptomics (with
exception of glycosyltransferases). The genomes from both
strains and MAGs corresponding to C. proteolyticus were
compared with the reference genome from C. proteolyticus
DSM 5265. Using the BRIG tool [46] for mapping and
visualization, the different genomes were mapped against
their pan genome generated using Roary [47].

Phylogenetic analysis

A concatenated ribosomal protein phylogeny was per-
formed on the MAGs and the isolated strains using 16
ribosomal proteins chosen as single-copy phylogenetic
marker genes (RpL2, 3, 4, 5, 6, 14, 15, 16, 18, 22, and 24,
and RpS3, 8, 10, 17, and 19) [48]. The dataset was aug-
mented with metagenomic sequences retrieved from our
previous research on the original FREVAR reactor [4] and
with sequences from reference genomes identified during
the 16S rRNA analysis. Each gene set was individually
aligned using MUSCLE v3.8.31 [49] and then manually
curated to remove end gaps and ambiguously aligned
terminal regions. The curated alignments were concatenated
and a maximum likelihood phylogeny was obtained using
MEGA7 [50] with 1000 bootstrap replicates. The radial tree
was visualized using iTOL [51]. In addition, an average
nucleotide identity (ANI) comparison was performed
between each MAG and their closest relative using the ANI
calculator [52].

Heterologous expression and purification of the
GH16 enzyme

The C. proteolyticus BWF2A Ga0187557_1002 gene-
sequence without predicted signal peptide [53] was cloned
from isolated genomic DNA using the following primers;
GH16_Fwd: 5′-TTAAGAAGGAGATATACTATGCTCG
GCGTGAATGTGATG-AATATAAGTGA-3′; GH16_rev:
5′-AATGGTGGTGATGATGGTGCGCCTCATTTTCAA
GCTTGTATA-CACGGACATAATC-3′, and cloned into
the pNIC-CH plasmid in Escherichia coli TOP10 by
ligation-independent cloning [54]. The transformant’s
sequence was verified by sequencing before transformation
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into OneShot® E. coli BL21 Star™ cells (Thermo Fischer
Scientific, Waltham, MA, USA) for expression, where 200
ml Luria-broth containing 50 µg/ml kanamycin was inocu-
lated with 2 ml overnight culture and incubated at 37 °C,
200 r.p.m. Expression was induced when the culture
reached an OD600 of 0.6, by addition of isopropyl-β-D-1-
thiogalactopyranoside. The culture was incubated at 22 °C,
200 r.p.m. for 16 h, before collection by centrifugation
(5000 × g, 10 min) and storage of the pellet at − 80 °C. The
frozen pellet was transferred to 20 mL buffer A (20 mM
Tris-HCL pH 8.0, 200 mM NaCl, 5 mM imidazole) con-
taining 1 × BugBuster (Merck Millipore, Berlington, MA,
USA) and stirred for 20 min at room temperature to lyse the
cells. Cell debris was removed by centrifugation (30,000 ×
g, 20 min) and the protein was purified by immobilized
metal-ion chromatography using a 5 ml HisTrap FF column
(GE-Healthcare, Little Chalfont, UK) pre-equilibriated with
buffer A. The protein was eluted using a linear gradient to
Buffer B (Buffer A with 500 mM imidazole). The purity of
the eluted fractions were assessed by SDS-polyacrylamide
gel electrophoresis and the imidazole was removed from the
buffer by repeated concentration and dilution using a
Vivaspin (Sartorius, Göttingen, Germany) concentrator with
a 10 kDa cutoff. The protein concentration was determined
by measured A280 and the calculated extinction coefficient.

Biochemical characterization of the GH16 enzyme

Assays were performed in triplicate in 96-well plates
and contained 1 mg/ml substrate, 20 mM BisTris, pH 5.8
(50 °C), and 1 µM enzyme in a volume of 100 µl. The
reactions were pre-heated to 50 °C before addition of
enzyme and were sealed before incubation for 1 h in a
Thermomixer C incubator with heated lid (Eppendorf,
Hamburg, Germany). The substrates used were as follows:
barley β-glucan, carboxymethyl-curdlan, carboxymethyl-
pachyman, carob galactomannan, tamarind xyloglucan,
wheat arabinoxylan, larch arabinogalactan (all from Mega-
zyme, Bray, Co. Wicklow, Ireland), and laminarin from
Laminaria digitate (Sigma-Aldrich, St. Louis, MO, USA).
Reactions were stopped by addition of DNS reagent (100 µl,
10 g/l 3,5-dinitrosalicylic acid, 300 g/L potassium sodium
tartrate, 10 g/L NaOH [55] for quantification, or NaOH to a
final concentration of 0.1 M for product analysis. Reducing
ends were quantified against a standard curve of glucose,
where reactions with DNS reagent were incubated at 95 °C
for 20 min before cooling on ice and the absorbance was
measured at 540 nm. For product analysis, the reactions
containing NaOH were further diluted 1:10 in water, before
analysis by high-performance anion-exchange chromato-
graphy with pulsed amperometric detection (HPAEC-PAD),
using a Dionex ICS3000 system with a CarboPac PA1
column (Sunnyvale, CA, USA). Oligosaccharides were

eluted using a multi-step gradient, going from 0.1 M NaOH
to 0.1 M NaOH–0.3 M sodium acetate (NaOAc) over 35
min, to 0.1 M NaOH–1.0 M NaOAc over 5 min, before
going back to 0.1M NaOH over 1 min, and reconditioning
for 9 min at 0.1M NaOH.

Temporal meta-omic analyses of SEM1b

A “meta-omic” time series analysis was conducted over the
lifetime span of the SEM1b consortium (≈45 h). A collec-
tion of 27 replicate bottles containing ATCC medium 1943
with 10 g/L of cellulose (60 ml total volume) were inocu-
lated from the same SEM1b culture and incubated at 65 °C
in parallel. For each sample time point, three culture-
containing bottles were removed from the collection and
processed in triplicate. Sampling occurred over nine time
points (at 0, 8, 13, 18, 23, 28, 33, 38, and 43 h) during the
SEM1b life cycle and are hereafter referred as T0, T1, T2,
T3, T4, T5, T6, T7, and T8, respectively. DNA for 16S
rRNA gene analysis was extracted (as above) from T1 to T8
and kept at − 20 °C until amplification and sequencing, and
the analysis was performed using the protocol described
above. Due to low cell biomass at the initial growth stages,
sampling for metatranscriptomics was performed from T2
to T8. Sample aliquots (6 ml) were treated with RNAprotect
Bacteria Reagent (Qiagen, USA) following the manu-
facturer’s instructions and the treated cell pellets were kept
at − 80 °C until RNA extraction.

In parallel, metadata measurements including cellulose
degradation rate, monosaccharide production, and protein
concentration were performed over all the nine time points
(T0–T8). For monosaccharide detection, 2ml samples were
taken in triplicates, centrifuged at 16,000 × g for 5 min and the
supernatants were filtered with 0.2 µm sterile filters and boiled
for 15min before being stored at − 20 °C until processing.
Solubilized sugars released during microbial hydrolysis were
identified and quantified by HPAEC with PAD. A Dionex
ICS3000 system (Dionex, Sunnyvale, CA, USA) equipped
with a CarboPac PA1 column (2 × 250mm; Dionex, Sunny-
vale, CA, USA) and connected to a guard of the same type
(2 × 50mm) was used. Separation of products was achieved
using a flow rate of 0.25mL/min in a 30min isocratic run at 1
mM KOH at 30 °C. For quantification, peaks were compared
with linear standard curves generated with known concentra-
tions of selected monosaccharides (glucose, xylose, mannose,
arabinose, and galactose) in the range of 0.001–0.1 g/L.

Total protein measurements were taken to estimate
SEM1b growth rate. Proteins were extracted following a
previously described method [4] with a few modifications.
Briefly, 30 ml culture aliquots were centrifuged at 500 × g
for 5 min to remove the substrate and the supernatant was
centrifuged at 9000 × g for 15 min to pellet the cells. Cell
lysis was performed by resuspending the cells in 1 ml of
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lysis buffer (50 mM Tris-HCl, 0.1% (v/v) Triton X-100,
200 mM NaCl, 1 mM dithiothreitol, 2 mM EDTA) and
keeping them on ice for 30 min. Cells were disrupted in 3 ×
60 s cycles using a FastPrep24 (MP Biomedicals, USA) and
the debris were removed by centrifugation at 16,000 × g for
15 min. Supernatants containing proteins were transferred
into low bind protein tubes and the proteins were quantified
using Bradford’s method [56].

As estimation of cellulose degradation requires analyzing
the total content of a sample to be accurate, the measure-
ments were performed on individual cultures that were
prepared separately. A collection of 18 bottles (9 time
points in duplicate) were prepared using the same inoculum
described above and grown in parallel with the 27-bottle
collection used for the meta-omic analyses. For each time
point, the entire sample was recovered, centrifuged at
5000 × g for 5 min, and the supernatant was discarded. The
resulting pellets were boiled under acidic conditions as
previously described [57] and the dried weights, corre-
sponding to the remaining cellulose, were measured.

mRNA extraction was performed in triplicate on time
points T2–T8, using previously described methods [58] with
the following modifications in the processing of the RNA.
The extraction of the mRNA included the addition of an in
vitro-transcribed RNA as an internal standard to estimate the
number of transcripts in the natural sample compared with
the number of transcripts sequenced. The standard was
produced by the linearization of a pGem-3Z plasmid (Pro-
mega, USA) with ScaI (Roche, Germany). The linear plas-
mid was purified with a phenol/chloroform/isoamyl alcohol
extraction and digestion of the plasmid was assessed by
agarose gel electrophoresis. The DNA fragment was tran-
scribed into a 994 nt-long RNA fragment with the Riboprobe
in vitro Transcription System (Promega, USA) following the
manufacturer’s protocol. Residual DNA was removed using
the Turbo DNA Free kit (Applied Biosystems, USA). The
quantity and the size of the RNA standard was measured
with a 2100 bioanalyzer instrument (Agilent).

Total RNA was extracted using enzymatic lysis and
mechanical disruption of the cells and purified with the
RNeasy mini kit following the manufacturer’s protocol
(Protocol 2, Qiagen, USA). The RNA standard (25 ng) was
added at the beginning of the extraction in every sample.
After purification, residual DNA was removed using the
Turbo DNA Free kit, and free nucleotides and small RNAs
such as tRNAs were cleaned off with a lithium chloride
precipitation solution according to Thermo Fisher Scien-
tific’s recommendations. To reduce the amount of rRNAs,
samples were treated to enrich for mRNAs using the
MICROBExpress kit (Applied Biosystems, USA). Success-
ful rRNA depletion was confirmed by analyzing both pre-
and post-treated samples on a 2100 bioanalyzer instrument.
Enriched mRNA was amplified with the MessageAmp

II-Bacteria Kit (Applied Biosystems, USA) following man-
ufacturer’s instruction and sent for sequencing at the NSC
(Oslo, Norway). Samples were subjected to the TruSeq
stranded RNA sample preparation, which included the pro-
duction of a cDNA library, and sequenced with paired-end
technology (2 × 125 bp) on one lane of a HiSeq 3000 system.

RNA reads were assessed for overrepresented features
(adapters/primers) using FastQC (www.bioinformatics.ba
braham.ac.uk/projects/fastqc/) and ends with detected fea-
tures and/or a Phred score lower than 20 were trimmed
using Trimmomatic v.0.36 [59]. Subsequently, a quality
filtering was applied with an average Phred threshold of 30
over a 10 nt window and a minimum read length of 100 nt.
rRNA and tRNA were removed using SortMeRNA v.2.1b
[60]. SortMeRNA was also used to isolate the reads origi-
nating from the pGem-3Z plasmid. These reads were
mapped against the specific portion of the plasmid con-
taining the Ampr gene using Bowtie2 [61] with default
parameters and the number of reads per transcript was
quantified and scaled to match the length of the standard
(x5.08). The remaining reads were pseudoaligned against
the metagenomic dataset, augmented with the annotated
strains, using Kallisto pseudo –pseudobam [62]. The
resulting output was used to generate mapping files with
bam2hits, which were used for expression quantification
with mmseq [63], and the results were scaled to match the
initial volume of the samples (x 10). Of the 40,046 ORFs
identified from the assembled SEM1b metagenome and 2 C.
proteolyticus strains, 17,598 (44%) were not found to be
expressed, whereas 21,480 (54%) were expressed and could
be reliably quantified due to unique hits (reads mapping
unambiguously against one unique ORF) (Figure S1A). The
remaining 968 ORFs (2%) were expressed but identified
only with shared hits (reads mapping ambiguously against
more than one ORF, resulting in an unreliable quantification
of the expression of each ORF) (Figure S1B). As having
unique hits improves the expression estimation accuracy,
the ORFs were grouped using mmcollapse, in order to
improve the precision of expression estimates, with only a
small reduction in biological resolution [64]. The process
first collapses ORFs into homologous groups if they have
100% sequence identity and then further collapses ORFs (or
expression groups) if they acquire unique hits as a group
(Figure S1C). This process generated 39,146 expression
groups of which 38,428 (98%) were singletons (groups
composed of single ORF) and 718 (2%) were groups con-
taining more than one homologous ORF. From the initial
968 low-information ORFs, 661 (68%) became part of an
expression group containing unique hits, 77 (8%) became
part of ambiguous group (no unique hits), and 230 (24%)
remained singletons (without unique hits). All expression
groups without unique hits were then excluded from the
subsequent analysis. A total of 21,480 singletons and 605
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multiple homologous expression groups were reliably
quantified between BWF2A, SW3C, and the SEM1b meta-
transcriptome (Figure S1C).

In order to normalize the expression estimates, sample
sizes were calculated using added internal standards, as
described previously [58]. The number of reads generated
from the internal standard molecule were calculated to be
2.4 × 104 +/− 2.1 × 104 reads per sample out of 6.2 × 109

molecules added. Using this information, the estimated
number of transcript molecules per sample was computed to
be 1.0 × 1013 +/− 7.3 × 1012 transcripts. The resulting
estimates for the sample sizes were used to scale the
expression estimates from mmseq collapse and to obtain
absolute expression values. During initial screening the

sample T7C (time point T7, replicate C) was identified as an
outlier using principle component analysis and removed
from downstream analysis.

The expression groups were clustered using hierarchical
clustering with Euclidean distance. Clusters were identified
using the Dynamic Tree Cut algorithm [65] with hybrid
mode, deepsplit= 1, and minClusterSize= 7. Eigengenes
were computed for the clusters and clusters with a Pearson’s
correlation coefficient > 0.9 were merged. The MAG/strain
enrichment of the clusters was assessed using the BiasedUrn
R package. The p-values were corrected with the Benjamini–
Hochberg procedure and the significance threshold was set to
0.05. Expression groups composed of multiple MAGs/strains
were included in several enrichment tests.
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Fig. 2 Phylogeny of C. proteolyticus strains and other MAGs recov-
ered from the SEM1b consortium. Concatenated ribosomal protein tree
of reference isolate genomes (green), MAGs from the previous Frevar
study (blue [4]), and MAGs and isolate genomes recovered in this
study (red). Average nucleotide identities (percentage indicated in

parenthesis) were generated between SEM1b MAGs and their closest
relative (indicated by dotted arrows). Bootstrap values are based on
1000 bootstrap replicates and the completeness of the MAGs are
indicated by green (> 90 %) and yellow (> 80 %) colored dots
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Results and discussion

The SEM1b consortium is a simplistic community,
co-dominated by Clostridium (Ruminiclostridium)
thermocellum and heterogeneic C. proteolyticus
strains

Molecular analysis of a reproducible, cellulose-degrading, and
biogas-producing consortium (SEM1b) revealed a stable and
simplistic population structure that contained approximately
seven populations, several of which consisted of multiple
strains (Fig. 2, Table S2–S3). 16S rRNA gene analysis showed

that the SEM1b consortium was co-dominated by OTUs
affiliated to the genera Clostridium (52%) and Coprothermo-
bacter (41%), with closest representatives identified as C.
(Ruminiclostridium) thermocellum, an uncharacterized Clos-
tridium spp. and three Coprothermobacter phylotypes
(Table S2). Previous meta-omic analysis on the parent Frevar
reactor, revealed a multitude of numerically dominant C. pro-
teolyticus strains, which created significant assembly and bin-
ning related issues [4]. In this study, multiple oligotypes of C.
proteolyticus were also found (Table S2). We therefore sought
to isolate and recover axenic representatives to complement our
meta-omic approaches, and using traditional anaerobic isolation

Fig. 3 Comparative genome content of C. proteolyticus representatives
including isolated strains, a recovered MAG (COPR1), and the
reference strain DSM 5265. The innermost ring corresponds to the pan
genome of the three C. proteolyticus spp. genomes and one MAG as
produced by Roary [47], and the second innermost ring represents the
GC content. Outer rings represent the reference strain DSM 5265

(purple), the isolated strains BWF2A (blue) and SW3C (green), and the
recovered COPR1 MAG (orange). Genes coding for carbohydrate-
active enzymes (CAZymes) and flagellar proteins are indicted in black
on the outermost ring. Genomic region-A is indicated by purple
shading
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techniques, we were successful in recovering two novel axenic
strains (hereafter referred to as BWF2A and SW3C). The gen-
omes of BWF2A and SW3C were sequenced and assembled,
and subsequently incorporated into our metagenomic and
metatranscriptomic analysis below.

Shotgun metagenome sequencing of two SEM1b sam-
ples (D1B and D2B) generated 290 Gb (502M paired-end
reads) and 264 Gb (457M paired-end reads) of data,
respectively. Co-assembly of both datasets using strain-
depleted reads with Metaspades produced 20,760 contigs
totalizing 27Mbp with a maximum contig length of 603
Kbp. Taxonomic binning revealed 11 MAGs and a com-
munity structure similar to the one observed by 16S analysis
(Fig. 2, Table S3). A total of eight MAGs exhibited high
completeness (> 80%) and a low level of contamination
(< 10%). Three MAGs, COPR2, COPR3, and SYNG2,
corresponded to small and incomplete MAGs, although
Blastp analysis suggest COPR2 and COPR3 likely represent
Coprothermobacter-affiliated strain elements.

All near-complete MAGs (> 80%), as well as BWF2A and
SW3C, were phylogenetically compared against their closest
relatives using ANIs and a phylogenomic tree was con-
structed via analysis of 16 concatenated ribosomal proteins

(Fig. 2). One MAG was observed to cluster together with C.
proteolyticus DSM 5265 and the two strains BWF2A and
SW3C, and was defined as COPR1. Two MAGs (RCLO1-
CLOS1) clustered together within the Clostridium; RCLO1
with the well-known C. thermocellum, whereas CLOS1
grouped together with another Clostridium MAG generated
from the Frevar dataset and the isolate C. stercorarium (ANI:
79.1%). Both RCLO1 and CLOS1 encoded broad plant
polysaccharide-degrading capabilities, containing 297 and
139 CAZymes, respectively (Table S4). RCLO1 in particular
encoded cellulolytic (e.g., glycosyl hydrolase (GH) families
GH5, GH9, and GH48) and cellulosomal features (dockerins
and cohesins), whereas CLOS1 appears more specialized
toward hemicellulose degradation (e.g., GH3, GH10, GH26,
GH43, GH51, and GH130). Surprisingly, several CAZymes
were also identified in COPR1 (n= 65), and both BWF2A
(n ×= 37) and SW3C (n= 34) at levels higher than what
has previously been observed in C. proteolyticus DSM 5265
(n= 29) (Table S4). Several MAGs were also affiliated with
other known lineages associated with biogas processes,
including Tepidanaerobacter (TEPI1-2), Synergistales
(SYNG1-2), Tissierellales (TISS1), and Methanothermo-
bacter (METH1).
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Fig. 4 Gene synteny of CAZymes within region-A encoded in BWF2A
and SW3C genomes. The gene organization of CAZymes within
region-A encoded in BWF2A and SW3C (see Fig. 3), as well as highly
similar operons found in the original Frevar metagenome and isolated
representatives from both phyla Firmicutes (Thermoanaerobacter, C.
cellulolyticum, C. thermocellum) and Thermotogae (T. africanus, F.
nodosum, F. gondwanense, and Thermotoga maritima). Grey shading

between individual ORFs indicates amino acid sequence identity cal-
culated between each query ORF (Frevar metagenome and isolates)
and the reference ORF encoded in region-A from BWF2A and SW3C
(identical in both strains). Asterisk denotes biochemically character-
ized GH16 enzymes, including the C. proteolyticus representative
from this study and a laminarinase from Thermotoa maritima MSB8
that has previously been reported [79]
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Novel strains of C. proteolyticus reveal acquisition of
CAZymes

Genome annotation of COPR1, BWF2A, and SW3C iden-
tified both insertions and deletions in comparison with the
only available reference genome, sequenced from the type
strain DSM 5265 (Fig. 3). Functional annotation showed
that most of the genomic differences were sporadic and are
predicted not to affect the metabolism of the strains.
However, several notable differences were observed, which
might represent a significant change in the lifestyle of the
isolates. Both isolated strains lost the genes encoding fla-
gellar proteins, although it is debatable that these genes
originally conferred mobility in the type strain, as it has
been previously reported as non-motile [3, 66]. Interest-
ingly, both strains acquired extra CAZymes including a
particular genomic region that encoded a cluster of three
CAZymes: GH16, GH3, and GH18-CBM35 (region-A,
Fig. 3). The putative function of these GHs suggests that
both BWF2A and SW3C are capable of hydrolyzing various
β-glucan linkages that are found in different hemicellulosic
substrates (GH16: endo-β-1,3-1,4-glucanase; GH3: β-glu-
cosidase). Regarding the putative GH18 encoded in both
strains, it could have a role in bacterial cell wall recycling
[67] as an endo-β-N-acetylglucosaminidase. Indeed, C.
proteolyticus has previously been considered to be a sca-
venger of dead cells, even though this feature was mainly
highlighted in term of proteolytic activities [68].

Taking a closer look, the region-A of CAZymes (GH16,
GH3, and GH18-CBM35) in BWF2A and SW3C was located
on the same chromosomal cassette but organized onto two
different operons with opposite directions (Fig. 4). Comparison
of the genes and their organization revealed a high percentage
of gene similarity and synteny with genome representatives
from both phyla Firmicutes (Thermoanaerobacter, Clostridium
cellulolyticum, and C. thermocellum) and Thermotogae
(Thermosipho africanus, Fervidobacterium nodosum, and F.
gondwanense). Both C. thermocellum and Fervidobacterium
populations were previously identified in the original Frevar
reactor [4]. Moreover, a truncated contig from the Frevar
metagenome (Scaffold Id:Ga0101770_1036339) exhibited
99.9 % nucleotide identity to the BWF2A and SW3C genomes
spanning 4.7Kb across the CAZymes and genomic sections
from both phyla (Fig. 4), suggesting the acquirement of region-
A preceded the SEM1b enrichment.

Examination of the flanking regions surrounding the
CAZymes in region-A reveals the presence of an incomplete
prophage composed of a phage lysis holin and two recom-
binases located downstream (Figs. 3, 4). Further comparisons
revealed that only the Firmicutes lineages encoded the same
prophage together with an additional terminase, phage-capsid-
like proteins, and more phage-related components on the

5′-region (Fig. 4). Because of the high sequence homology
and the presence of phage-genes in the surrounding, we
hypothesized that the origin of region-A in BWF2A and
SW3C is the result of phage-mediated HGT. Most likely, the
operon from Firmicutes-affiliated lineages (e.g., Thermo-
anaerobacter and C. thermocellum) was transferred first due
to the presence of its complete phage and generated a hotspot
for further HGT for the GH16-GH3-encoding operon origi-
nating from Thermotogae-affiliated lineages (Fig. 4). Inter-
estingly, T. africanus also encoded a syntenous region that
covered Region-A in both BWF2A and SW3C almost in its
entirety (Fig. 4), creating an alternative possibility that vertical
gene transfer may also have had a role toward the evolution of
this operon in Coprothermobacter. Gene transfer within
anaerobic digesters has been reported for antibiotic resistance
genes [69], whereas HGT of CAZymes have been detected
previously among gut microbiota [70–72]. As many microbes
express only a specific array of carbohydrate-degrading cap-
abilities, bacteria that acquire CAZymes from gene transfer
events may gain additional capacities and, consequently, a
selective growth advantage [73].

In response to our discovery of C. proteolyticus CAZyme
acquisition, we attempted to cultivate our axenic strains in
minimal media containing only hemicellulosic substrates
(pachyman, curdlan, barley β-glucan) as a sole carbon
source. However, no growth was observed for either BWF2A
or SW3C in polysaccharide-supplemented media that was
without yeast extract. These results were consistent with the
few available studies on type strain DSM 5265, which have
shown weak and slow growth on proteins and monomeric
sugars, and only in the presence of pluralistic organic
compounds found in yeast extract and rumen fluid [3, 66].
Growth was observed in BWF2A/SW3C cultures with
both yeast extract and polysaccharide substrates; however,
we detected no increased levels of growth, indicating
that in isolation our C. proteolyticus strains may require
specific undefined cofactor(s) or collaborative microbial
partners to support the activity encoded by their acquired
CAZymes.

In lieu of axenic C. proteolyticus cultivation data to
support a saccharolytic lifestyle, we biochemically inter-
rogated the GH16 encoded in region-A (Fig. 4). The cata-
lytic domain was synthesized and expressed in E. coli,
followed by protein purification. As expected the GH16
demonstrated endoglucanase activity on β-1,3 (pachyman,
curdlan, laminarin) and β-1,3-1,4 (Barley) substrates (Fig-
ure S2A), which supports our hypothesis that the CAZymes
in region-A have transferred the ability of BWF2A or SW3C
to degrade polysaccharides. Against all β-glucan substrates,
GH16 hydrolysis generated a large fraction of glucose
(Figure S2B), which has been shown to be readily fer-
mented by C. proteolyticus [3, 66].
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C. proteolyticus expresses CAZymes and is implicit in
collaborative polysaccharide degradation within the
SEM1b consortium

Although we confirmed that the acquired C. proteolyticus
GH16 is functionally active, we also sought to better
understand the role(s) had by it and other C. proteolyticus
CAZymes in a saccharolytic consortium, by analyzing the
temporal metatranscriptome of SEM1b over a complete life
cycle. 16S rRNA gene analysis of eight time points (T1–8)
over a 43 h period reaffirmed that C. thermocellum- and C.
proteolyticus-affiliated populations dominate SEM1b over
time (Fig. 5a). Highly similar genes from different MAGs/

genomes were grouped together, in order to obtain
“expression groups” with discernable expression profiles
(see Methods and Figure S1A/B). A total of 274 singleton
CAZyme expression groups and 8 multiple ORF groups
were collectively detected in the two C. proteolyticus strains
and MAGs suspected of contributing to polysaccharide
degradation (RCLO1, CLOS1, COPR1-3, and TISS1, Fig-
ure S1D, Table S5). In several instances, expressed
CAZymes from BWF2A and SW3C could not be resolved
between the two strains and/or the COPR1 MAG. For
example, all GHs within region-A could be identified as
expressed by at least one of the isolated strains but could not
be resolved further between the strains.
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Fig. 5 Temporal meta-analysis of the SEM1b consortium. a 16S rRNA
gene amplicon and metadata analysis was performed over a 43 h
period, which was segmented into nine time points. OTU IDs are
detailed in Table S2. Cellulose degradation rate, monosaccharide
accumulation, and growth rate (estimated by total protein concentra-
tion) are presented. b Gene expression dendrogram and clustering of
CAZymes from BWF2A, SW3C, and MAGs: RCLO1, CLOS1,

COPR1-3, and TISS1. Six expression clusters (I–VI) are displayed in
different colors on the outer ring. c Clusters I–VI show characteristic
behaviors over time summarized by the median (solid line) and the
shaded area between the first and third quartile of the standardized
expression. Bacteria that are statistically enriched (p-value < 0.05) in
the clusters are displayed in the subpanels
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From the CAZymes subset of expression groups, a
cluster analysis was performed to reveal six expression
clusters (I–VI, Fig. 5b). Clusters II, III, and IV were enri-
ched with C. proteolyticus-affiliated MAGs and isolated
strains. Clusters III and IV comprised 10 and 11 expression
groups, respectively, and followed a similar profile over
time (Fig. 5c), increasing at earlier stages (T2–3) and again
at later stationary/death stages (T6–8). Cluster II (10
expression groups) was slightly variant and increased more
rapidly at T2 and sustained high levels over the course of
SEM1b. All three clusters consisted of CAZymes targeting
linkages associated with N-acetylglucosamine (CE9) and
peptidoglycan (CE4, GH23, and GH73), suggesting a role
in bacterial cell wall hydrolysis (Table S5). This hypothesis
was supported by 16S rRNA gene data, which illustrated
that C. proteolyticus-affiliated populations (OTU2), were
high at initial stages of the SEM1b life cycle when cell
debris was likely present in the inoculum that was sourced
from the preceding culture at stationary phase (Fig. 5a). At
T2, the abundance of C. thermocellum-affiliated popula-
tions (OTU-1) was observed to outrank C. proteolyticus as
the community predictably shifted to cellulose utilization.
However, toward stationary phase (T6–8) when dead cell
debris is expected to be increasing, expression levels in
clusters II, III, and IV were maintained at high levels
(Fig. 5b), which was consistent with high C. proteolyticus
16S rRNA gene abundance at the same time points.

Clusters V and VI comprised 28 and 101 expression
groups (respectively), and were enriched with the RCLO1
MAG that was closely related to C. thermocellum. As
expected, numerous expressed genes in cluster V and VI
were inferred in cellulosome assembly (via dockerin
domains) as well as cellulose (e.g., GH5, GH9, GH44,
GH48, CBM3) and hemicellulose (e.g., GH10, GH11,
GH26, GH43, GH74) hydrolysis (Table S5). Both clusters
increased throughout the consortium’s exponential phase
(time points T1–4, Fig. 5a), whereas 16S rRNA data also
shows C. thermocellum-affiliated populations at high levels
during the same stages (Fig. 5a).

Cluster I was determined as the largest with 121
expression groups and was particularity enriched with
CLOS1, which expressed many genes involved in hemi-
cellulose deconstruction (e.g., GH3, GH10, GH29, GH31,
GH43, and GH130) and carbohydrate deacetylation (e.g.,
CE4, CE7, CE8, CE9, CE12, and CE15) (Table S5). Genes
encoding CAZymes from both BWF2A and SW3C were also
expressed in cluster I including the functionally active
GH16- and GH3-encoding ORFs from region-A, which
reaffirms our earlier predictions that certain C. proteolyticus
populations in SEM1b are capable of degrading hemi-
cellulosic substrates. The expression profile of cluster I over
time was observed to slightly lag after cluster V and VI
(Fig. 5), suggesting that genes encoding hemicellulases in

cluster I are expressed once the hydrolytic effects of the
RCLO1 cellulosome (expressed in cluster V and VI) have
liberated hemicellulosic substrates [74]. Although C. ther-
mocellum cannot readily utilize other carbohydrates besides
glucose and longer glucans [75], the cellulosome is com-
posed of a number of hemicellulolytic enzymes such as
GH10 and GH11 endoxylanases, GH26 mannanases, GH74
xyloglucanases, and GH43 arabinanases/xylosidases [76],
which are involved in the deconstruction of the underlying
cellulose–hemicellulose matrix [74]. Interestingly, RCLO1
representatives of GH10, GH11, GH5, GH9, GH16, and
GH43 were all expressed in the additional RCLO1-enriched
cluster V and are presumably acting on the hemicellulose
fraction present in the spruce-derived cellulose [77]. Fur-
thermore, detection of hydrolysis products (Fig. 5a)
revealed that xylose increased significantly at T5–7, indi-
cating that hemicellulosic polymers containing β-1-4-xylan
were likely available at these stages. Cluster V exhibited a
similar profile to the other RCLO1-enriched cluster (Cluster
VI), however its high expression levels were extended to
T7, consistent with our observed levels of xylose release
(Fig. 5c).

An additional GH16 from RCLO1 was also expressed in
SEM1b cluster V, which has 99.5% amino acid sequence
identity to Lic16A, a biochemically characterized endo-
glucanase that exerts specific β-1,3 activity similar to the
BWF2A/SW3C GH16 that we report here. Notably, Lic16A
is a cell wall anchored, non-cellulosomal CAZyme that is
believed to enable C. thermocellum to grow exclusively on
β-1,3-glucans [78]. All in all, the SEM1b expression data
shows sequential community progression that co-ordinates
putative hydrolysis of cellulose and hemicellulosic sub-
strates as well as carbohydrates that are found in the
microbial cell wall. In particular, C. proteolyticus popula-
tions in SEM1b were suspected to have key roles degrading
microbial cell wall carbohydrates and hemicellulosic sub-
strates, possibly in cooperation or in parallel to other clos-
tridium populations at the later stages of the SEM1b growth
cycle.

Conclusions

Unraveling the interactions occurring in a complex
microbial community composed of closely related species
or strains is an arduous task. Here we have leveraged cul-
turing techniques, metagenomics, time-resolved metatran-
scriptomics, and enzymology to describe a novel C.
proteolyticus population that comprised closely related
strains that have acquired CAZymes via HGT and puta-
tively evolved to incorporate a saccharolytic lifestyle. The
co-expression patterns of C. proteolyticus CAZymes in
clusters II, III, and IV supports the adaptable role of this
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bacterium as a scavenger that is able to hydrolyze cell wall
polysaccharides during initial phases of growth and in the
stationary/death phase, when available sugars are low.
Moreover, the acquisition of biochemically verified hemi-
cellulases by C. proteolyticus and their co-expression in
cluster I at time points when hemicellulose is available
further enhances its metabolic versatility and provides
substantial evidence as to why this population dominates
thermophilic reactors on a global scale, even when sub-
strates are poor in protein.

Data availability
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analysis is available at: https://github.com/fdelogu/SEM1b-
CAZymes.git
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Abstract

Microbiology is founded on the study of well-known model organisms. For example, the

majority of our fundamental knowledge regarding the quantitative levels of DNA, RNA, and

protein  backdates  to  keystone  culture-based  studies.  Nowadays,  meta-omic  approaches

allow us  to  directly  access  the  molecules  that  constitute  microorganisms  and  microbial

communities,  however  due  to  a  lack  of  absolute  measurements,  many  original  culture-

derived  “microbiology  statutes”  have  not  been  updated  or  adapted  to  more  complex

microbiome  settings.  Within  a  cellulose-degrading  and  methanogenic  consortium,  we

temporally  measured  genome-centric  absolute  RNA  and  protein  levels  per  gene  and

obtained a  protein-to-RNA ratio of 102-104 for bacterial populations. In contrast, Archaeal

RNA/protein  dynamics  (103-105:  Methanothermobacter  thermoautotrophicus)  were  more

comparable  to  Eukaryotic  representatives  humans  and  yeast.  The  linearity  between

transcriptome  and  proteome  had  a  population-specific  change  over  time,  highlighting  a
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minimal subset of four functional guilds (cellulose degrader, fermenters, syntrophic acetate-

oxidizer and methanogen) that coordinated their respective metabolisms, cumulating in the

overarching community phenotype of converting polysaccharides to methane. Our findings

show that upgrading multi-omic toolkits with traditional absolute measurements unlocks the

scaling of core biological questions to dynamic and complex microbiomes, creating a deeper

insight into inter-organismal relationships that drive the greater community function.
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Introduction

The foundations of microbiology have been built within the constrained framework of pure

culture studies of model organisms that are grown under controlled steady state conditions.

However, we are constantly told that microorganisms grown in single culture behave in a

different manner to those in mixed natural communities. For example, when  Escherichia

coli  is grown axenically in steady state, we can expect that each RNA molecule results in

102 to 10⁴ of the corresponding protein (protein-to-RNA ratio) and the variation in the level

of cellular RNA explains ~29% of the variation in the amount of detectable protein1. Yet

does this notion hold true when a given bacterial population is part of a larger community

and subject to transitions from one state of equilibrium to another due to limiting and/or

confronting environmental  factors? In this  context,  the exploration of temporal  interplay

between populations with different lifestyles (comprising metabolism, motility, sporulation,

etc.) becomes of primary importance to interpret the changes in fundamental quantities in a

microbial  community,  such  as  the  protein-to-RNA  ratio  that  ultimately  impacts  the

overarching community phenotype(s). In order to perform studies of such design and test if

previously defined quantitative data about the functioning of microorganisms (i.e. protein-

to-RNA  ratio)  is  applicable  to  real  world  consortia,  we  must  first  sample  microbial

communities across transition events and employ quantification techniques that are absolute.

Meta-omics  techniques,  such  as  metagenomics  (MG)2,3,  metatranscriptomics  (MT)4 and

metaproteomics (MP)5 are routinely used to assess prokaryotes in the natural world, where

they  are  part  of  communities  that  are  frequently  dominated  by  as-yet  uncultivated

populations6. The quantities retrieved from the meta-omics are usually expressed in relative

terms, which makes comparison between samples and between omic layers inaccurate7,8.

Moreover, within dynamic data measurements, such as the MT or MP, the notion of steady

state becomes relevant as it is extremely rare that parameters (e.g. bacterial growth rate and

nutrient availability) are stable over time8.

Here,  we present  an  absolute  temporal  multi-omic  analysis  of  a  minimalistic  cellulose-

degrading and methane-producing consortium (SEM1b), which was resolved at the strain

level  and  augmented  with  two  strain  isolates9.  We  combined  both  a  RNA-spike-in  for
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MT10,11 and the  total  protein approach for MP12 for the absolute  quantification  of high-

throughput data. We not only demonstrate that temporal SEM1b samples were comparable

within the same omic layer, but also between the MT and MP. Indeed, the protein-to-RNA

ratio per sample of the bacterial populations matched previous calculations for the existing

example  from axenically  cultured  E.coli1.  For the first  time,  we present protein-to-RNA

ratios for an archaeon (Methanothermobacter thermoautotrophicus), which are similar to

those  reported  for  the  Eukarya,  and  support  crystallography  and  homology  studies  that

suggest the translation system of archaea more closely resembles eukaryotes13. Our approach

enabled us to explore the linearity of the  protein-to-RNA ratio and if it  is influenced by

changes in community state and/or specific population lifestyle. Finally, we estimated the

translation  and  protein  degradation  rates,  showing  that  a  downregulation  of  the  former

marks  main  lifestyle  changes  (e.g.  motility/chemotaxis  and  metabolism)  during  the

community development.

Results and Discussion

Taxonomic and functional resolution of the omics

In order to characterize RNA/protein dynamics in a microbiome setting, we first needed to

reconstruct our test community over time at the molecular level. Previous analysis of the

simplistic  SEM1b  community  genomically  reconstructed  and  resolved  11  metagenome

assembled genomes (MAGs) as well as two isolate genomes9, covering the taxonomic and

functional  niches  that  are  required  to  convert  cellulosic  material  to  methane/CO2 in  an

anaerobic  biogas  reactor14.  Taxonomic  analysis  of  SEM1b  inferred  population-level

affiliations  to  Rumini(Clostridium)  thermocellum  (RCLO1),  Clostridium  sp. (CLOS1),

Coprothermobacter proteolyticus (COPR1, BWF2A, SW3C),  Tepidanaerobacter (TEPI1-

2),  Synergistales (SYNG1-2),  Tissierellales (TISS1),  and  the  methanogen

Methanothermobacter (METH1)9. Herein we estimated that the total genomic potential of

SEM1b includes 39144 Open Reading Frames (ORFs) (Supplementary Dataset 1). Since

ORFs  with  very  high  sequence  similarity  may  produce  RNAs  and  proteins  that  are

indistinguishable  in  MT and  MP data,  we  instead  gathered  all  ORFs  into  ORF-groups

(ORFGs), where a singleton ORFG is defined as a group with a single ORF, and thus a

single gene. Using this approach, our MT and MP data identified 12552 (96% singleton) and
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3235  (78%  singletons)  highly  transcribed  and  translated  ORFGs,  respectively.  The

discrepancy  between  the  singleton  percentages  was  as  expected,  due  to  the  fact  that

variations in the DNA/RNA sequences are expected to be greater than in the protein since

different codons can code for the same amino acid (codon degeneracy). Degeneracy implies

that the chance to distinguish between homologous genes using MT is greater than using

MP. Previous MG analyses using assembly algorithms has shown that problematic genomic

regions in a given environmental contig can harbor variants from multiple, closely-related

strains, which can be further linked to normal strain-level variability within a population and

speciation15–17.  Within  SEM1b,  the  ORFGs  that  contained  multiple  homologous  ORFs

predominantly originated from several strains of a single species. For example, in the MT,

444 non-singleton ORFGs (88% of the total) contained ORFs from different strains of the

same species, whilst this was the case for 294 ORFGs (32%) in the MP.

All ORFs were annotated using Kegg Ontology (KO), and at least one term was found for

19070 (49%) representatives  from our complete  dataset  (Supplementary  Dataset  2).  The

predominant  ORF annotations  included  Membrane  transport,  Carbohydrate  metabolism,

Translation, Amino acid metabolism and Replication and repair (Supplementary Fig. 1). As

expected, these functional categories were also among the top five most abundant for the

MT,  and  top  six  in  MP  (plus  Energy  metabolism),  although  in  a  different  order.  The

Membrane transport category is extremely poorly represented in the MP (2% of the terms),

which  is  likely  explained  by  well-known  technical  issues  that  limit  the  extraction  of

transmembrane proteins18. The most abundant annotation categories mentioned above are all

in line with the community function of cellulose degradation. The abundance ranking of the

KO categories changes slightly from MG to MT (Kendall τ: 0.77, p<10-8) and from MT to

MP (τ 0.74, p<10-6) whilst moderately from MG to MP (τ 0.68, p<10-5), which means that

the  functional  potential  observed  in  the  genomes  is  more  preserved  in  the  diversity  of

produced transcripts than the one of proteins and thus hints to post-transcriptional regulation

playing an important role in addition to transcriptional regulation in prokaryotes.

Absolute quantification extends expectation from E.coli RNA/protein dynamics and 

positions Archaea alongside the Eukarya
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To determine  whether  or  not  microbial  RNA/protein  dynamics  vary  between ecological

status (isolate vs community), metabolic states and/or taxonomic phylogeny, we quantified

and resolved the numbers of transcript and protein molecules  per sample in our SEM1b

community, which averaged 3.8×1012  (sd 3.0×1012) and 2.2×1015(sd 9.5×1014), respectively

(Supplementary Datasets 3-4). Microbial cell volume and its transcriptome size has been

shown to change in yeast according to cell status (proliferation vs. quiescence), whilst the

proteome is  merely  reshaped in its  composition  between these states19.  In  our  case,  the

number of total transcripts per sample increased more than three-fold during the first 15

hours (from ~1.2×1012 in t1 to ~4.0×1013 in t4) in the SEM1b consortium’s life cycle and

then decreased sharply, whereas the number of proteins per sample reached a plateau after

18 hours  post-inoculation  at  ~2.7×1015 molecules.  SEM1b approximated  the exponential

growth phase in t3 (18 hours), therefore we used the protein-to-RNA ratio from this time

point  for  comparison  against  previously  reported  axenic  estimates1,20–23.  The  replicate-

averaged protein-to-RNA ratio for the bacteria in SEM1b ranges from ~102 to 104 (median =

949, Fig. 1a), which fits the estimated range reported for E.coli1. This means that for every

RNA molecule one can expect from 100 to 10000 protein molecules with a value of 949

being the most likely. Our results showed a population-specific variation in the protein-to-

RNA ratio within bacteria (Fig. 1a), with the median ratios for the bacteria in SEM1b at 18h

ranging from 658 in CLOS1 to 1137 in RCLO1. While the limited number of published

studies and data that enable estimation of protein-to-RNA ratios prevented our assessment

of  higher-resolution  taxon-specific  distributions  within  Bacteria,  clear  patterns  were

observed at a broader Domain level and are presented below (Fig. 1a).
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Figure  1.  Protein-to-RNA ratio  distributions  of  as-yet  uncultured bacterial  and archaeal  populations  within  a
microbial community. a. Comparison of protein-to-RNA ratio distributions of selected MAGs reconstructed from the
SEM1b community as well as those previously reported in the literature. The dots represent the median values and the bars
span from the first to the third quartiles (Bacteria: green, Archaea: red, Eukarya: blue). The protein-to-RNA ratios for
E.coli was retrieved from Taniguchi et al.1, Yeast1 from Ghaemmaghami et al.20, Yeast2 from Lu et al.21, Human1 from
Schwanhausser et al.22 and Human2 from Li et al.23.  b.  The distribution of the Pearson Correlation Coefficients (PCC)
between transcripts and their corresponding proteins computed across the time points. With a median PCC of 0.41, the
change in the amount of a given transcript over time seemingly does not translate into a change in the amount of the
corresponding protein.  c. Per-time-point scatterplots of the absolute protein and transcript levels for ORFs that produced
both detectable transcript and protein in SEM1b datasets. For simplicity, only four representative MAGs are shown, with
all MAGs depicted in Supplementary Fig. 2.  d. The plot shows how the linearity parameter k between RNA and protein
changes over time for the different MAGs. The linearity represents how a change in RNA level is reflected in a change in
the corresponding protein level.  The parameter ranges from 0 to 1, and increasingly smaller values translate in fewer
proteins being expected for the same level of RNAs. The populations CLOS1, METH1 and TEPI1 are converging towards
the same values, while RCLO1 has a parallel trend. Hinting to the existence, and the reaching of an equilibrium among
them.

In  contrast  to  bacterial  protein-to-RNA  ratios  that  were  relatively  comparable  to  one

another, the median protein-to-RNA ratio for an Archaeal organism, which we report herein

for the first time, was approximately 10x higher at 12035 protein molecules per detected
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RNA (Fig. 1a: METH1). The reported values for Eukaryotes are 4200-5600 for yeast20,21 and

2800-9800 for Homo sapiens22,23; therefore, we find that Archaeal translation dynamics are

closer to that observed within the Eukaryotic kingdom than that of Bacteria. Structurally, the

translation system of archaea more closely resembles eukaryotes13. Moreover, the RNA of

Eukarya and Archaea have been shown to exhibit longer half-lives than Bacteria24,25, with

Archaea found to contain a novel triphosphate structure at the 5’ end of the RNA molecule

that  is  involved  with  mRNA  stability26.  Also,  like  Eukaryotes,  it  has  been  shown  that

archaeal RNA is regulated by post-translational modification of the RNA molecule in order

to up-regulate protein expression27,28. Findings that show transcripts are present in archaeal

cells for longer than bacterial cells can be used to hypothesize that this feature could play a

greater  role  in  optimizing  efficient  production  of  protein  molecules.  In  a  microbiome-

setting,  the greater turnover of RNA molecules and lower protein-RNA ratio in bacteria

could potentially facilitate their faster adaption to changes in metabolic state and substrate

availabilities in their environment, at higher rates than their archaeal counterparts. However,

in  many  complex  microbiome’s  archaea  occupy  highly  specialized  niches  such  as  the

biological  production  of  methane  via  methanogenesis,  which  is  the  energy-yielding

metabolism of methanogens and is unique to the Archaea. In this context, proteins involved

with hydrogenotrophic methanogenesis have been shown to be the most highly detectable in

methanogens grown in co-culture with syntrophic acetate oxidizing (SAO) bacteria, when

compared to the same methanogen grown in axenic culture with higher concentrations of

supplemented H2
29. This discrepancy between H2 supply and protein levels suggests there is

a requirement for methanogens to maintain highly active protein expression levels in order

to  keep  H2 at  levels  that  are  low  enough  to  keep  SAO  energetically  favourable30.  We

therefore speculate that methanogens, via their molecular mechanisms of maintaining high

protein levels, are at an advantage to stably and efficiently maintain low H2-levels, a process

that is critical to the metabolic equilibrium of many microbial ecosystems31. 

In axenic culture, a microorganism is considered to be in steady state during the log phase of

its  growth cycle8,32,33,  specifically  when the changes in proteome size are believed to be

mainly  dictated  by  a  change  in  the  transcriptome34.  In  contrary  to  these  assumptions,

comparisons of RNA and protein levels between single cells of E. coli grown at steady state
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have not been shown to correlate, however patterns do emerge when the cells are considered

at the population level1.  In SEM1b, we wanted to see if  correlations between RNA and

protein levels exist in a larger microbial community, and if they are affected by changes in

time and life stages. We calculated gene-wise Pearson Correlation Coefficients (PCCs) of

protein and transcripts over time for all SEM1b populations and showed that the PCC value

varied greatly (Fig. 1b) with a median of 0.41, suggesting that no direct correlations between

RNA and proteins levels exist at any stage in a microbiome and that it is nearly impossible

to predict the level of the given protein based on the level of the corresponding transcript. 

Looking at  relationships  between proteome and transcriptome for  individual  populations

within SEM1b (examples form four populations in Fig. 1c) was observed to follow a more

predicable relationship, which can be described by the monomial function:

 protein=a⋅RNA k(eq.1)

The formula for log10-transformed RNA and protein levels takes the form of a linear model

(see methods) that was fitted to protein and RNA distributions per time point from MAGs

with the highest quality (RCLO1, CLOS1, COPR1, TISS1, TEPI1, TEPI2 and METH1)

(Fig. 1d). The linearity parameter k can be interpreted as the rate of which a change in RNA

level is reflected in a change in the corresponding protein level.  For example,  if k=1, a

doubling in RNA level means a doubling in protein level, whereas if k=0.5 a doubling in

RNA level means a ~40% increase in protein level. Ranging from 0 to 1, it implies that, in

the “perfect” condition where k=1, the number of proteins is linked to the number of RNAs

by the scalar constant a, whilst if k approaches 0, there will be much lower expected protein

levels for the same number of RNAs. With the exception of TEPI2, the linearity (k) between

protein and RNA levels was observed to start at values between 0.6 and 0.8 at 13 hours (t2)

(Fig. 1d). The evolution of the MAGs’ k values over time is then divided in three groups:

one which is losing linearity rapidly (TISS1 and COPR1); one which is slowly declining

(RCLO1, CLOS1 and METH1) and one which is staying constant if not increasing (TEPI1

and TEPI2) (Fig.  1d).  Notably CLOS1, METH1 and TEPI1 are converging towards the

same linearity values, while RCLO1 has a parallel trend to them. If these trends can be used

to retro-fit the steady state definition, we can hypothesize that these four populations possess
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a metabolic equilibrium and that this equilibrium is approximately reached within the 10

hour window between 33h and 43h (t6 and t7 respectively, Fig. 1d).

Interpretation of functional specialization in the light of RNA-protein dynamics

Using multi-omic data and the above described RNA-protein dynamics, we were able to

visualize that at least four populations within SEM1b converge upon a dominant metabolic

state  that  we speculate  to  strongly shape the overall  SEM1b community  phenotype and

suggest a functional co-dependence between the individual populations. To determine if this

was the case, we annotated the genes and metabolic pathways for SEM1b MAGs (Fig. 2)

and reconstructed their temporal expression patterns (Fig. 3). The SEM1b consortium is able

to convert  cellulose (and hemicellulose)  to methane via the combined metabolism of its

seven major constituent populations (Fig. 3a). Based on previous analysis that showed that

RCLO1 is closely related to R. thermocellum9, we predict that it senses35 its growth substrate

(cellulose) and moves towards it (Fig. 3d). RCLOS1 then transcribes, translates and secretes

the components of the cellulosome, such as scaffoldins, dockerins and carbohydrate-active

enzymes  (CAZymes)36,  which  assemble  into  a  dynamic  multi-proteins  complex  that

degrades  the  substrate  to  smaller  carbohydrates.  Via  the  MG,  we  predicted  that  non-

cellulosomal CAZymes were also employed by the  Clostridium-affiliated CLOS1, which

acted upon the hemicellulose fraction (mainly xylan) trapped in the spruce cellulose, which

was supported by observed release of its main monomer xylose (Fig. 3a). Sugars generated

via the actions of RCLO1 and CLOS1 are subsequently consumed by RCLO1, CLOS1 and

Coprothermobacter-affiliated populations  (COPR1, BWF2A and SW3C), which were all

observed to express sugar transporters (Fig. 2). Notably CLOS1 has the most diversified

transporters,  making it  a  flexible  consumer,  and for  the most  part  demonstrated  highest

levels of hydrolytic and fermentative gene expression after RCLO1, which again is likely

tied to xylose release at later stages of the SEM1b lifecycle (Fig. 3a). However, some of the

transporters,  such  as  the  one  for  oligogalacturonide,  raffinose/stachyose/melibiose  and

rhamnose, were not expressed, likely due to the absence of their substrates in the largely

cellulose and xylan dominated spruce wood used in this study. CLOS1 was also the only

population to possess the aldouronate transporter with  20 copies of gene lplA, 20 of lplB

and 16 of lplC (20/20/16) and expressing 0.4/0.7/3.8×1010 and 92.8/3.5/7.0/×1011 combined
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median transcripts and proteins per sample; making it one of the few transporters detectable

at the protein level. Similarly, the C. proteolyticus strains (BWF2A and SW3C) possess and

express  unique  sugar  transporters,  likely  gaining  access  to  an  undisputed  pool  of

arabinogalactan or maltooligosaccharide. The transporter for pentamers ribose/xylose were

the  most  common  and  possessed  by  RCLO1,  C.  proteolyticus populations  and

Tepidanaerobacter populations (TEPI1 and TEPI2). Notably from Fig. 2, it is clear that the

proteins from the transporters are almost never found in the samples, even if the respective

RNAs  are  abundant.  This  is  likely  due  to  the  difficulties  in  extracting  transmembrane

proteins18.
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Figure 2. Overview of the genetic potential and expressed modules in the seven populations of SEM1b.  Module
completeness denotes the level of detected RNA and proteins mapped to major genes/metabolic pathways that are critical
to the SEM1b lifecycle. Only MAGs with the highest quality reconstruction (RCLO1, CLOS1, COPR1, TISS1, TEPI1,
TEPI2 and METH1) are included as well as two isolated and genome-sequenced Coprothermobacter strains, for which the
transcriptome and the proteome were considered as the species level.

The process of degrading cellulose and simple saccharides via hydrolysis and fermentation

ultimately results in the production of short chain fatty acids (SCFAs) such as proprionate,

butyrate  and  acetate,  which  are  subsequently  metabolized  by  the  SCFA-oxidizing

populations  in  SEM1b (TISS1,  TEPI1,  TEPI2)  (Fig.  3a).  The  only  metabolically-active

SCFA-oxidizing population in SEM1b was predicted to be TEPI1, as it demonstrated good
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linearity between protein and RNA levels that increased over time (Fig. 1d) and harbored a

complete Wood-Ljungdahl carbon fixation Pathway (WLP) that was detectable in both MT

and MP (Fig. 2). It has been shown that oxidizers can improve oxidization of SCFAs (up to

double speed) when superior NADPH and ATP generators (e.g. glucose) are consumed in

small amounts to complement the stoichiometry through the Pentose Phosphate Pathway

(PPP) without triggering the shift of the entire cells metabolism toward another substrate37.

In this context, it  is interesting to note that TEPI1 was the only MAG that encoded and

expressed a hexose (allose) transporter (Fig. 2). Aldohexoses (such as D-allose, D-glucose,

D-mannose,  etc.)  are  imported  and transformed  into  fructose-6P in  two reactions  (both

expressed in TEPI1), which can then be fed into both the PPP or the Glycolysis pathways.

Xylose, is a product of the degradation of hemicellulose present in our system (Fig. 3a) and

can  be  converted  to  ribulose-5P  and  fed  to  the  PPP  in  three  reactions.  This  data,  in

combination with a highly expressed and detectable WLP over time (Fig. 3a), points to the

establishment of TEPI1 as the only SAO bacteria in the SEM1b consortium. We speculate

that  TEPI1’s  SAO-metabolism is  helped by the  other  SEM1b populations  that  generate

acetate  as a fermentation  end-product  and the supplement  of the sugars released by the

cellulosomal complex such as glucose and xylose. Interestingly the closely related MAG

TEPI2 was observed to lack the WLP and to express ~10 times more transcripts for the

ribose/xylose transporter than TEPI1; relegating it to the role of mere sugar degrader, and

probably scavenger in the community.

While TISS1 seems mostly to phase out of the community and lose linearity in its protein to

transcript  relationship  (Fig.  1d),  TEPI2  implements  an  exit  strategy  in  the  form  of

sporulation.  All  the  gram-positive  populations  from  the  SEM1b  consortium  (RCLO1,

CLOS1,  TISS1,  TEPI1 and TEPI2)  were  able  to  produce  spores  and express  the  spore

marker  spoIV,  an  ATPase  associated  to  the  surface  of  the  neospore  that  promotes  the

assembly of the coating and is common to all the spore forming bacteria38 (Fig. 3b). TEPI2

however increased the level of transcripts for spoIV by 1000 times within the 13h and the

18h time points, reaching the maximum at 23h, and having a production 10 times higher

than  the  phylogenetically  related  TEPI1.  All  SEM1b  populations,  except  the  C.

proteolyticus isolates and TEPI1, have the genetic potential for flagellar synthesis but the
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respective  transcripts  were  only  observed  for  RCLO1,  CLOS1,  TISS1 and  TEPI2.  The

filament  protein of RCLO1 is  by far the most abundant  protein in  the samples  with an

average of 2.8×1013 molecules per sample, which matches the idea of RCLO1 investing in

motility to reach the cellulose fibers and starting with the highest level of marker flgD in the

community (Fig. 3d). 
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Figure 3. Schematic representation of the temporal and co-dependent metabolism of SEM1b that converts spruce-
derived cellulose to methane. a. Within SEM1b, four major metabolic stages are required: Spruce → Hexoses/Pentoses,
Hexoses/Pentoses → SCFAs, SCFAs → CO2+H2 and CO2+H2  → methane. Metabolites (spruce, sugars, SCFAs, CO2+H2

and methane) involved in these processes were measured and the temporal analysis of the metabolic pathways involved in
their  interconversion  is  depicted  for  the  major  SEM1b  populations.  Other  metabolites  (for  which  abbreviations  are:
Nt=Nucleotides,  PRPP=Phosphoribosyl  pyrophosphate,  AA=Amino  acids,  PYR=Pyruvate,  OXA=Oxaloacetate  and
OXO=Oxo-glutarate) are shown to highlight the essential metabolism of the microbes. In the central metabolic network the
metabolites are linked by solid arrows if the interconversion requires one step or the link between them is addressed more
in detail (blue dot if in Fig. 2, red dot if in a pathway plot herein). Metabolic pathways are quantified via marker genes
(selection in methods section) in the scale of log10-transformed transcript molecules per sample whilst the solid lines in the
plots represent the qubic fitting of the data points. More metabolites’ abbreviations are CELL=Cellulose, CLB=Cellobiose,
GLU=Glucose,  XYL=Xylan,  XLB=Xylobiose  and  pathways’  abbreviations  are  WLP=”Wood-Ljungdahl  Pathway”,
PPP=”Pentose Phosphate Pathway”.  b. Sporulation is common to all Gram positive bacteria of the community and it is
quantified with the marker spoIVA. Notably TEPI2 is investing greatly in spore formation until 28h after the inoculum (t4).
c. The genes for the Ribose and xylose transporter (rbs) are expressed in four populations. Notably TEPI2 produces more
rbs transcripts than the closely related MAG TEPI1; indeed, the first has been predicted to be a mere fermenter whilst the
latter bases its metabolism on the WLP pathway (Fig. 3a). d. Microbial motility is represented by the marker gene flgD.
RCLO1 is the most active bacterium, producing less and less flagella over time after t4. It starts ahead of the others at t2,
presumably finishing the colonization of the substrate (Spruce-derived cellulose).

In microbial ecosystems, acetate is oxidized by secondary fermenters to CO2/H2 or formate,

a process that is mediated by the WLP in reverse. The oxidation of acetate associated with

the reverse WLP is coupled with the transition between NADH/NAD+, and translocates Na+

to  create  an  electrochemical  gradient,  which  is  then  used  by  the  type-V  ATPase  to

synthesize  ATP39.  Indeed  the  NAD+-Fdred-dependent  Na+ translocation  system  rnf is

expressed in both the fermenting and SAO bacteria of SEM1b, while type-V ATPase, which

produce  energy  by  exploiting  the  Na+/H+ gradient,  were  detected  by  all  the  SEM1b

populations  aside  from  METH1  and  C.  proteolyticus-affiliated  populations (Fig.  2).

Moreover, the TEPI1 MAG expresses the NAD+ (NADP+)-reducing hydrogenases complex,

which reduces hydrogen ions to H2 using NAD(P)H as the electron donor. The molecular

hydrogen generated here would then be used by the syntrophic partner METH1 to form

methane  (Fig.  3a).  However,  this  reverse  WLP-mediated  acetate  oxidation  is

thermodynamically unfavourable unless coupled with syntrophic hydrogenotrophs. Within

SEM1b, the METH1 population is a hydrogenotrophic methanogen and the methanogenesis

pathway, which is observed in the METH1 MG and MP, is the largest pathway in SEM1b

according  to  the  number  of  genes  involved  (n=112).  In  METH1,  we  also  observed

transporters  for  nickel,  the  metal  ion  found  in  the  F430 prosthetic  group  in  the  methyl-

coenzyme M reductase complex (McrABG), which is responsible for the terminal step in

anaerobic methanogenesis40. Transporters for another key metal, cobalt, which is utilized by

cobalamide-requiring  enzymes  such  as  the  energy  conserving  methyl-H4MPT:CoM-SH
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methyltransferase complex (MtrABCDEFGH), were also detected in the MG and MP of

METH1. Within hydrogenotrophic methanogens, electrochemical gradients generated Na+

ion exclusion by the Mtr complex allows for the inflow of Na+ through ATP synthases to

generate energy. Surprisingly, no H+/Na+ nha ion transporter which are commonly observed

in methanogens were observed in the METH1 MG, MT or MP. Only in the populations

TEPI1, TEPI2 and TISS1 were the Na+/H+ antiporter  nha encoded and expressed (Fig. 2),

which does point to an important role of these ions in the bacterial component of the SEM1b

consortium.  Overall,  our  more  classical  pathway-wise  exploration  of  the  SEM1b

populations supported that RCLO1, CLOS1, TEPI1 and METH1 indeed share functional co-

dependencies and supported our predictions via protein-RNA dynamics that they converge

upon a dominant metabolic state.

Translation control drives changes in cell status and source utilization

In addition to RNA/proteins ratio assessments, our collection of absolute multi-omic data

allowed  us  to  explore  the  crucial  aspect  of  protein-level  regulation,  which  is  poorly

understood in microbiomes. The control of protein levels in bacteria is believed to occur

predominately  via  transcription  control,  “control  by dilution”41 (dispersal  of  proteins  via

subsequent  cell  divisions)  and  rarely  by  protein  degradation42.  Similar  to  transcription

control, translation can also be controlled by a dynamic pool of translational factors, such as

initiation, elongation and ribosome components43. The processes targeted by these systems

require a rapid change in the number of proteins in the cell that cannot wait for a change in

RNA levels or a dilution effect. The absolute quantification of transcripts in SEM1b and

proteins was used to estimate the translation and protein degradation rates using PECA-

R44 (Supplementary Dataset 5). The analysis found 305 significant changes in translation

rate, accounting for 302 ORFs. Of the rate changes’, 94% were downregulated and 71% of

the ORF were functionally annotated. RCLO1 has 28 downregulated ORFs between 13h and

18h (t2-t3), mostly from complexes involved in chemotaxis (cheY,  cheW,  mcp), flagellum

assembly (flgG,  flgK,  fliD) and shape determination (mreB). In the following five hours,

several systems concerning carbon fixation are affected, such as phosphoglycerate kinase

(PGK), triosephosphate isomerase (TPI), phosphate acetyltransferase (EC 2.3.1.8), isocitrate

dehydrogenase  (IDH1)  and  pyruvate  orthophosphate  dikinase  (PPDK).  In  the  next  five
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hours  it  downregulates  the  translation  of  the  cell  division  protein  ZapA  as  well.  The

reduction protein production for chemotaxis, mobility and then cell  division matches the

idea that within 13h of the inoculation, RCLO1 sensed, reached and colonized the cellulose

fibers. Contextually the release of medium length carbohydrates enables RCLO1 to engage

in  the  more  energetically  favorable  fermentation  metabolism.  TISS1  has  a  decrease  in

translation  rates  of  ORFs  related  to  metabolic  processes  between  13h  and  18h,  mostly

involving cofactors (fhs,  folC,  folD,  lplA,  metH,  pdu0 and  nadE) and amino acids (aorQ,

hutI, LDH, metH, mtaD and pip). TEPI1 down-regulated 60 ORFs, accounting for part of its

carbohydrate  metabolism  (e.g.  PGK,  TPI),  the  amino  acid  transporters  and  the  NADH

dehydrogenase complex (HND). TEPI2 has 19 ORFs subject to downregulation in the 13h-

18h  interval,  such  as  Pyruvate  ferrodoxin  odidoreductase  (PFOR),  GK,  fructose-

bisphosphate  aldolase  (FBA),  tansaldolase  EC  2.2.1.2  and  the  ribose/xylose  transporter

subunit rbsB. In the last interval (33h-38h), RCLO1 upregulated the translation of 10 ORFs,

among  which  the  flagellar  FlbD  and  shape  determination  MreB;  seemingly  starting  to

restore the functions downregulated in the 13h-18h interval.

Conclusions

We present the reconstruction of a microbiome from a model environment and quantified

the number of RNAs and proteins over time in absolute terms. This approach enabled us to

assess  and  report,  for  the  first  time,  the  protein-to-RNA  ratio  of  multiple  microbial

populations simultaneously, which individually engage in distinct, yet integrative metabolic

pathways that ultimately cumulate into the community’s principal phenotype of converting

cellulose  to  methane.  We extended the  results  from Taniguchi  et  al.1,  showing that  our

populations had a varying protein-to-RNA ratio in the predicted interval of 102-104 while

presenting for the first time the same quantity for an Archaeal population (METH1): 103-

105,  which  resembled  the  previously  measured  values  for  Eukaryotes20–23.  The  greater

ecological significance of the seeming Archaeal capacity to generate higher protein levels at

a  lower  “RNA-cost”  is  of  interest,  as  many  Archaeal  populations  in  mixed-kingdom

microbiomes are known to occupy essential ecological niches and exert strong functional

influence,  despite  their  cell  concentrations  being  orders  of  magnitude  lower  than  their

bacterial counterparts (i.e. methanogens in the rumen microbiome45). 
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Moreover,  we  assessed  the  linearity  between  transcriptome  and  proteome  for  each

population  over  time  (Eq.1),  finding  that  three  major  populations  of  the  community,  a

fermenter (CLOS1), a SAO bacteria (TEPI1) and a methanogen (METH1), were converging

on the same values in parallel with the primary cellulose degrader (RCLO1) (Fig. 1d). The

highlight  of  their  seemingly  intertwined  protein/RNA  dynamics  matches  with  their

metabolic complementarity, starting from RCLO1 degrading cellulose to sugars and SCFAs,

CLOS1 fermenting sugars to SCFA, TEPI1 oxidizing SCFAs to H2 and METH1 converting

CO2 and  H2 to  methane.  Closer  examination  revealed  even  more  intricate  relationships

involving Na+ and H+  ions as well as secondary sugars (i.e. xylose) reiterating that each

population needs the metabolic activity and subsequent byproducts of the previous one to

provide a supply of growing metabolites (Fig. 3a). Moreover, the estimation of translation

and protein degradation rates pointed at a translational negative control for several ORFs

involved in chemotaxis/motility and central metabolism, marking important changes in the

community status.  In conclusion,  our data highlights  that simple modifications  to multi-

omics  toolkits  can  reveal  much  deeper  functional-related  trends  and  integrative  co-

dependent  metabolisms that  drive the overall  phenotype of microbial  communities,  with

potential to be expanded to more-complex and less-characterized microbial ecosystems.

Data availability

All  sequencing reads  have been  deposited in  the  sequence read  archive  (SRP134228),  with

specific numbers listed in Supplementary Table 6 in Kunath et al.9. All microbial genomes are

publicly available on JGI under the analysis project numbers listed in Supplementary Table 6 in

Kunath  et  al.9.  The  mass  spectrometry  proteomics  data  have  been  deposited  to  the

ProteomeXchange Consortium via the PRIDE46 partner repository with the dataset identifier

PXD016242.  The  code  used  to  perform  the  computational  analysis  is  available  at:

https://github.com/fdelogu/SEM1b-Multiomics.
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Materials and Methods

Multiomics data acquisition

Background  The  full  experimental  setup  and  the  methods  concerning  the  retrieval  of

biological samples and data preprocessing were performed during a previous study9 and can

be summarized  as  follows:  a  microbial  consortium called  SEM1b was  obtained  from a

biogas  reactor  using  serial  dilution  and  enrichment  methods  on  spruce  cellulose.  A

metagenomic  analysis  was  initially  performed  on  the  SEM1b  community  using  two

different generations that had consistent population structure, and was used as a supporting

database for a subsequent SEM1b time series experiment. The time series analyses consisted

of metabolomics, metaproteomics and metatranscriptomics over nine time points (at t0, 8,
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13, 18, 23, 28, 33, 38 and 43 hours) in triplicate (A, B and C), spanning the consortium life-

cycle.

Metagenomics For generation of metagenomic data, 6ml samples of SEM1b culture were

taken  and  cells  were  pelleted  prior  to  storage  at  -20°C.  Non-invasive  DNA  extraction

methods  were  used  to  extract  high  molecular  weight  DNA  as  previously  described  in

Kunath et al.47. DNA samples were prepared with the TrueSeq DNA PCR-free preparation,

and sequenced with paired-ends (2×125bp) on one lane of an Illumina HiSeq3000 platform

(Illumina Inc) at the Norwegian Sequencing Center (NSC, Oslo, Norway). Metagenomic

analyses comprising quality trimming and filtering, reads assembly, binning and annotations

were performed as previously described9. Resulting annotated open reading frames (ORFs)

were  retrieved  and  used  as  a  reference  database  for  the  metatranscriptomic  and

metaproteomic analysis.

Metatranscriptomics mRNA extraction was performed in triplicate on time points t2 to t8,

using previously described methods11. The extraction of the mRNA included the addition of

an in vitro transcribed RNA as an internal standard to estimate the number of transcripts in

the  natural  sample  compared  with  the  number  of  transcripts  sequenced.  For  further

normalization, total RNA was extracted using enzymatic lysis and mechanical disruption of

the  cells  and purified  with  the  RNeasy mini  kit  (Protocol  2,  Qiagen,  USA).  The  RNA

standard  (25ng)  was  added  at  the  beginning  of  the  extraction  in  every  sample.  After

purification, residual DNA, free nucleotides and small RNAs were removed. Samples were

treated to enrich for mRNAs and then amplified before being sent for sequencing at the

Norwegian  Sequencing  Center  (NSC,  Oslo,   Norway).   Samples  were  subjected  to  the

TruSeq  stranded  RNA  sample  preparation,  which  included  the  production  of  a  cDNA

library, and sequenced with paired-end technology (2×125bp) on one lane of a HiSeq 3000

system.

The  resulting  sequences  were  filtered  and  rRNA  and  tRNA  reads  were  removed  as

performed in Kunath et al.9. The reads mapping on the internal standard pGEM-3Z were

extracted using SortMeRNA48 v2.1b and their counts used as  IR in the “Functional omics
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absolute quantification” section of the material and Methods, whilst the not mapping reads

(the transcriptome in the sample) were used as ∑TR. The retained reads were mapped against

the predicted genes dataset using Kallisto pseudo -pseudobam49 and the mapping files were

produced with  bam2hits.  Transcripts  were  quantified  with mmseq50 and  collapsed using

mmcollapse51.

Metaproteomics Proteins were extracted from t1 to t8 in triplicate following a previously

described method52 with a few modifications. Briefly, 30ml of cultures containing cells and

substrate were centrifuged at 500x g for 5 minutes to pellet the substrate. The supernatant

was centrifuged at 9000 x g for 15 minutes to collect the cells. Cell lysis was performed by

resuspending the cells in 1ml lysis buffer (50 mM Tris-HCl, 0.1% (v/v) Triton X-100, 200

mM NaCl, 1 mM DTT, 2mM EDTA) and keeping them on ice for 30 minutes. Cells were

disrupted in 3×60 seconds cycles using a FastPrep24 (MP Biomedicals, USA). Debris were

removed by centrifugation at 16000 x g for 15 minutes. The supernatants containing the

proteins  were  kept  at  -20°C until  further  processing.  Extracted  proteins  were quantified

using the Bradford’s method. 50μg of each sample were denatured using SDS sample buffer

and loaded on an Any-kD Mini-PROTEAN gel (Bio-Rad Laboratories, USA) and separated

by  SDS-PAGE for  20  minutes  at  270V.  Each  gel  lane  was  cut  into  16  slices  and  the

reduction, alkylation and tryptic digestion of the proteins into peptides were performed in-

gel. The tryptic peptides were extracted from the gel and desalted prior to mass spectrometry

analysis. Peptides were analyzed using a nanoLC-MS/MS system connected to a Q-Exactive

hybrid quadrupole-orbitrap mass spectrometer (Thermo Scientific, Germany) equipped with

a nano-electrospray ion source. The Q-Exactive mass spectrometer was operated in data-

dependent  mode  and  the  10  most  intense  peptide  precursors  ions  were  selected  for

fragmentation and MS/MS acquisition. The selected precursor ions were then excluded for

repeated fragmentation for 20 seconds. The resolution was set to R=70,000 and R=35,000

for MS and MS/MS, respectively.

A total  of  384 raw MS files  (8  samples  × 3  biological  replicates  × 16  fractions)  were

analyzed using MaxQuant53 version 1.4.1.2 and proteins were identified and quantified using

the MaxLFQ algorithm54.  The data was searched against the generated MG dataset from
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Kunath et al.9 supplemented with common contaminants such as human keratin and bovine

serum albumin. In addition, reversed sequences of all protein entries were concatenated to

the database for estimation of false discovery rates. The tolerance levels for matching to the

database was 6 ppm for MS and 20 ppm for MS/MS. Trypsin was used as digestion enzyme,

and two missed cleavages were allowed. Carbamidomethylation of cysteine residues was set

as  a  fixed  modification  and  protein  N-terminal  acetylation,  oxidation  of  methionines,

deamidation  of  asparagines  and  glutamines  and  formation  of  pyro-glutamic  acid  at  N-

terminal  glutamines  were  allowed  as  variable  modifications.  The  ‘match  between  runs’

feature of MaxQuant54 was applied. All identifications were filtered in order to achieve a

protein false discovery rate (FDR) of 1%. Quantitative information was retrieved using the

LFQ intensities of each proteins.

Metabolomics For  monosaccharide  detection,  2  ml  samples  were  taken  in  triplicates,

filtered and sterilized with 0.2µm sterile filters and 15 minutes boiling. Soluble sugars were

identified and quantified by high-performance anion exchange chromatography (HPAEC)

with pulsed amperiometric detection (PAD). For quantification,  peaks were compared to

linear standard curves generated with known concentrations of selected monosaccharides

(glucose, xylose, mannose, arabinose and galactose) in the range of 0.001-0.1 g/L.

For the short chain fatty acids (SCFAs), 1ml was taken in triplicate from each time point,

they were centrifuged at 16000x g for 5 minutes and the supernatants were filtered with

0.2μm sterile filters. 5µL of Sulfuric Acid 72% were added to the filtrates and let at rest for

2 minutes before being centrifuged again at 16000 x g for 5 minutes, transferred in a new

tube and stored at -20°C until processing. SCFAs were then analyzed using a Dionex 3000

HPLC as described in Estevez et al.55.

Functional omics absolute quantification

Metatranscriptomics The absolute quantification of transcripts was taken from Mortazavi

et al.10 using the internal standard from Gifford et al.11 as reference to estimate the length of

the initial transcriptome. The number of reads produced in a given sample is proportional to

the total amount (in Nt) of starting material. With the addition of an internal standard we
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have the following proportion between the starting material  for transcripts  (TNt)  and the

internal standard (INt) and the reads they produce (TR and IR respectively):

∑T Nt

∑T R

=
∑ INt
I R

,

in which the sums are taken over a single sample. The formula can be rearranged as:

∑T Nt=∑ INt×
∑T R

IR
.

Since we know the number of molecules of internal standard added (IM) and its length (INt), 

we can substitute them in the equation as:

∑T Nt=IM×INt×
∑T R

IR
.

We can now use the estimation of the starting length of the transcriptome and the TPMK 

transcript measurements in the formula from Mortazavi et al.10:

TM=
T RPMK

109
×∑T Nt,

which becomes:

TM=
T RPMK

109
× IM× INt×

∑T R

IR
.

Metaproteomics The “Total protein approach” method from Wiśniewski et al.12 relies on

the  use  of  the  protein  mass  per  sample,  the  computed  Molecular  Weight  (MW) of  the

detected proteins to transform the LFQ values into absolute ones. Here we omitted the per-

cell quantification since SEM1b is a heterogeneous community and MG measurements were

not taken for the time series.

We computed the Total proteini as:

Total proteini=
LFQ intensity i
∑LFQintensity

Then the Protein concentrationi was obtained from the previous with:

Proteinconcentrationi=
Total proteini

MW i

The method was developed on the assumption that the reference proteome is complete and

that the total mass of the peptides detected is equal to the total mass of peptides processed
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by the machine. This is not necessarily valid in a microbiome for which the reference cannot

be completely reliable. Thus we computed the fraction of identified mass using the raw MP

files with the following formula:

Detectedproteinmass=
Totalproteinmass×∑

i=1

Pepid .

Base peak intensity i×Massi

∑
j=1

Peptot

Base peak intensity j×Mass j

Finally  the  copy  number  of  proteins  per  sample  was  computed  using  the  Avogadro’s

Number (NA) as:

Copynumber i=Proteinconcentrationi×Detectedproteinmass×N A

Multiomics dataset integration

Data preprocessing The MT and MP datasets estimate absolute abundance of ORFGs over

time. An expression group is defined in this study as a set of ORFs which cannot be further

resolved using the available data. When the analysis required the direct comparison of ORFs

(e.g. transcript-protein correlation) only the singleton subset of the ORFGs was considered.

The reliability of the expression estimation is linked to the number of unique hits (reads or

peptides) available for a given ORF, therefore all the entries with 0 unique hits were filtered

out.  The  datasets  were  then  log10-transformed  with  a  pseudocount  equal  to  one.  After

expression density plotting, the minimum expression thresholds of 5 and 9 were selected for

MT and  MP,  respectively,  and  the  data  was  filtered  accordingly.  Principal  component

analysis was used to screen the samples and t7C (time point 7, replicate C) was identified as

an outlier and removed before downstream analysis.

MP/MT linear fit We took the intersection of ORFs present in the MT and MP layers of the

dataset for each of the selected MAGs (COPR1, CLOS1, COPR1, METH1, RCLO1, TEPI1,

TEPI2, TISS1), and, for each sample, we performed a regression analysis in R. The values

span several orders of magnitudes, thus we decided to fit the monomial functional:

protein=a⋅RNA k

which can be rewritten as:

log (protein )=a+k⋅ log (RNA )
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to be more easily fitted as a linear model. The previously log10 transformed protein levels

were used as y while the log10-transformed RNA was used as x in a linear model using the

lm function.  The  slopes  of  the  models  were  then  used  to  fit  a  third  grade  polynomial

function to obtain the linearity change profile in Fig. 1d.

Functional annotation and module completeness The KEGG Orthology (KO) numbers

were assigned to the ORFs as a part of the annotation pipeline from IMG56. The ORF-wise

annotation was then translated into the MT/MP-ORFGs assigning to each ORFG a non-

redundant  set  of all  the terms assigned to all  the ORFs in the group. We used the KO

numbers to estimate the KEGG module completeness using the R package MetaQy57 v.1.1.0.

The Glycosyl Hydrolases annotation was retrieved from Kunath et al.9.

Metabolic marker genes selection The metabolic marker genes for Fig. 2 were selected

with  the  following  criterion.  Glycolysis/Gluconeogenesis:  enzyme  with  irreversible

reactions.  PPP:  genes  involved  in  the  main  interconversion  loop  between  Ribose-5

Phosphate  and  Fructose-6  Phosphate.  WLP:  marker  genes  from  Can  et  al.58.

Methanogenesis:  markers  genes  from  Scheller  et  al.40.  The  Glycosyl  Hydrolases  were

manually curated to assemble a set able to perform the substrate conversion.

PECA analysis We ran PECA-R44 to  estimate  translation  and protein  degradation  rates

using the absolute quantification tables for transcripts and proteins with default parameters.

The rates are estimated between two consecutive time points, therefore the sample from 8h

was not included because it is missing the corresponding MT data. We filtered the results to

identify the changing point using a score threshold of 0.9 and a FDR equal to 0.05. 

Figure legends

Figure  1. Protein-to-RNA  ratio  distributions  of  as-yet  uncultured  bacterial  and

archaeal populations within a microbial community. a. Comparison of protein-to-RNA

ratio distributions of selected MAGs reconstructed from the SEM1b community as well as
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those previously reported in the literature. The dots represent the median values and the bars

span from the first to the third quartiles (Bacteria: green, Archaea: red, Eukarya: blue). The

protein-to-RNA  ratios  for  E.coli was  retrieved  from  Taniguchi  et  al.1,  Yeast1  from

Ghaemmaghami et al.20, Yeast2 from Lu et al.21, Human1 from Schwanhausser et al.22 and

Human2 from Li et al.23. b. The distribution of the Pearson Correlation Coefficients (PCC)

between transcripts and their corresponding proteins computed across the time points. With

a median PCC of 0.41, the change in the amount of a given transcript over time seemingly

does not translate into a change in the amount of the corresponding protein.  c. Per-time-

point scatterplots of the absolute protein and transcript levels for ORFs that produced both

detectable transcript and protein in SEM1b datasets. For simplicity, only four representative

MAGs are shown, with all MAGs depicted in Supplementary Fig. 2. d. The plot shows how

the linearity  parameter  k between RNA and protein  changes over  time for the  different

MAGs. The linearity represents how a change in RNA level is reflected in a change in the

corresponding protein level.  The parameter ranges from 0 to 1, and increasingly smaller

values  translate  in  fewer  proteins  being  expected  for  the  same  level  of  RNAs.  The

populations CLOS1, METH1 and TEPI1 are converging towards the same values,  while

RCLO1 has a parallel trend. Hinting to the existence, and the reaching of an equilibrium

among them.

Figure  2. Overview  of  the  genetic  potential  and  expressed  modules  in  the  seven

populations  of  SEM1b. Module  completeness  denotes  the  level  of  detected  RNA and

proteins mapped to major genes/metabolic pathways that are critical to the SEM1b lifecycle.

Only  MAGs with  the  highest  quality  reconstruction  (RCLO1,  CLOS1,  COPR1,  TISS1,

TEPI1, TEPI2 and METH1) are included as well as two isolated and genome-sequenced

Coprothermobacter strains, for which the transcriptome and the proteome were considered

as the species level.

Figure 3.  Schematic representation of the temporal and co-dependent metabolism of

SEM1b that converts spruce-derived cellulose to methane. a. Within SEM1b, four major

metabolic stages are required: Spruce  → Hexoses/Pentoses, Hexoses/Pentoses  → SCFAs,

SCFAs → CO2+H2 and CO2+H2  → methane. Metabolites (spruce, sugars, SCFAs, CO2+H2
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and methane) involved in these processes were measured and the temporal analysis of the

metabolic  pathways  involved  in  their  interconversion  is  depicted  for  the  major  SEM1b

populations.  Other  metabolites  (for  which  abbreviations  are:  Nt=Nucleotides,

PRPP=Phosphoribosyl  pyrophosphate,  AA=Amino  acids,  PYR=Pyruvate,

OXA=Oxaloacetate  and  OXO=Oxo-glutarate)  are  shown  to  highlight  the  essential

metabolism of the microbes. In the central metabolic network the metabolites are linked by

solid arrows if the interconversion requires one step or the link between them is addressed

more in detail (blue dot if in Fig. 2, red dot if in a pathway plot herein). Metabolic pathways

are  quantified  via  marker  genes  (selection  in  methods  section)  in  the  scale  of  log10-

transformed transcript molecules per sample whilst the solid lines in the plots represent the

qubic  fitting  of  the  data  points.  More  metabolites’  abbreviations  are  CELL=Cellulose,

CLB=Cellobiose,  GLU=Glucose,  XYL=Xylan,  XLB=Xylobiose  and  pathways’

abbreviations are WLP=”Wood-Ljungdahl Pathway”, PPP=”Pentose Phosphate Pathway”.

b. Sporulation is common to all Gram positive bacteria of the community and it is quantified

with the marker  spoIVA. Notably TEPI2 is investing greatly in spore formation until 28h

after  the  inoculum  (t4).  c. The  genes  for  the  Ribose  and  xylose  transporter  (rbs)  are

expressed in four populations. Notably TEPI2 produces more rbs transcripts than the closely

related MAG TEPI1; indeed, the first has been predicted to be a mere fermenter whilst the

latter  bases  its  metabolism  on  the  WLP  pathway  (Fig.  3a).  d.  Microbial  motility  is

represented by the marker gene flgD. RCLO1 is the most active bacterium, producing less

and less flagella over time after t4. It starts ahead of the others at t2, presumably finishing

the colonization of the substrate (Spruce-derived cellulose).
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Abstract

Biological  wastewater  treatment  plants  exploit  microbial  consortia  to  perform important

chemical transformations (e.g. nitrification and denitrification) that are needed before water

reclamation.  In  particular,  the  lipid  fraction  in  wastewater  remains  an  untapped  energy

source,  although  it  is  also  the  perfect  substrate  for  lipid-feeding  bacteria  that  form an

inhibitive bulky foam. To characterize the community from such foam and to undercover

the temperature-driven seasonality and other physicochemical influence on the system, we

analyzed  temporal  meta-omics  data  that  was  generated  over  a  one-year  period  (weekly

samples). Our analysis rendered the overarching biochemical reaction network deployed by

the community and retrieved the critical components of fatty acid synthesis and nitrogen

metabolism. The gene expression of key components from fatty acid synthesis were found

to  be  inversely  proportional  to  taxa  richness,  suggesting  inter-species  competition  for

substrates.  Nitrogen  metabolism  instead  was  dominated  by  a  single  family:

Nitrosomonadaceae, which is linked to greenhouse emission (nitrous oxide) and therefore

should be controlled. Our findings suggest a cyclical and dynamic interaction of the taxa and

genetic pool in the community maintains certain metabolic functions, highlighting critical

nodes in the reaction network that should be considered when devising improvements and/or

direct  exploitation  of  these  (or  similar)  processes  for  lipid  harvesting  in  wastewater

treatment plants.
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Introduction

Microbes are ubiquitous on planet Earth1 and make up to 17% of its carbon biomass2. The

pervasiveness of microbes is the foundation for their ability to form complex communities

of  heterogeneous  taxonomy  and  function.  Different  microbial  lineages  are  continuously

evolving to fit the most diverse ecological niches1, which ultimately gives rise to communal

living that thrives on its metabolic complementarity. Humans have learned how to exploit

microbial  communities to perform complex tasks such as baking and brewing, and more

recently to process waste3. The latter activity has been coupled with the idea of reclamation

of resources and harnessing of residual chemical energy, making systems such as Biological

Wastewater Treatment Plants (BWWTPs) de facto model environments on which several

interests  converge.  It  is  known that  Lipid  Accumulating  Organisms (LAOs) accumulate

lipids  from the  environment  or  synthesize  them themselves4,  and  that  solid  fraction  of

domestic wastewater can contain more than 40% of lipids5. Moreover, the recovery of LAO

populations grown on wastewater to produce biofuel has been estimated to be profitable6.

Processes such as nitrification/denitrification are required to reclaim the water7, thus they

must be carried out alongside the lipid accumulation.  Therefore,  in order to exploit  and

improve the potential of BWWTP grown LAOs we must understand their communities and

concerted metabolism within their natural environment and range of physio/chemical factors

they are subject to.

Modern microbial ecology has been updated with newly developed meta-omics techniques

that  enable  direct  access  to  the  main  biological  molecules  that  constitute  a  microbial

community in its native environment.  Briefly,  metagenomics (MG) charts the taxonomic

composition  and genetic  potential  of  the community,  hence predicts  its  metabolism and

lifestyle8,9;  metatranscriptomics  (MT)  assesses  the  functions  in  which  the  microbes  are

investing  via  gene  expression10.  Here we present  a  temporal  reconstruction  of  the  LAO

surface  community  (Schif-LAO) from an anaerobic  tank at  the BWWTP in Schifflange

(Luxembourg). The sampling spans more than one year with 51 samples from which we

analyzed  the  MG,  the  MT  and  the  physio/chemical  factors  measured  at  the  site.  We

reconstructed the MG structure of the community, alongside its taxonomy, genetic potential

and gene expression, from which we extracted the time patterns (e.g. cyclicity). The patterns
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were  linked  with  the  environmental  parameters  to  build  an  explanatory  model  (e.g.

seasonality). Moreover, the entire metabolism of the community was represented as a single

network.  We  extracted  two  functions  relevant  for  LAO  ecosystem  in  particular  and

wastewater  treatment  plants  in  general:  lipid  biosynthesis  and nitrogen metabolism.  We

showed that in both metabolic subsystems there are some reactions that were performed

mainly  by  a  single  taxon  or  genes  from unknown  taxa.  The  reactions  (and  the  genes

enabling them) highlighted by our analysis are candidates to be “keystone” units that are

irreplaceable  to  the  entire  community.  We  therefore  integrated  the  exploration  of  the

operational boundaries of the system and its putative keystone components.

Results and Discussion

Functional composition and time patterns

The Schif-LAO community was firstly sampled in 2010-10-04 and 2011-01-25 and led to an

estimate of approximately 600 resident operational  taxonomic units  (determined via 16S

rRNA gene analysis)11 and accounted for a total of 23,317 open reading frames (ORFs) from

four samples (with four biological replicates each). From the following sampling between

2011-03-21 and 2012-05-03 we obtained 51 weekly samples, that we analyzed individually

to obtain 51 MGs and sets of ORFs. In order to form a coherent ORF set spanning the whole

time-series, we clustered them according to their sequence (see methods), which lead to a

total sum of ~19.8×106 different ORFs (extended dataset). A KEGG Orthology group was

assigned to 40.4% of the ORFs in the set, whilst taxonomic affilaitions were designated to

38.5%.  The  number  of  ORFs’  copies  as  well  as  their  detected  gene  expression  were

estimated over the extended dataset (see method). The vast majority of the genes however

were  not  found to  be  expressed  over  the  entire  dataset  and were  only  detected  in  few

samples alone, with as many as 16.8×106 in only one sample. This indicates that a large

share of the gene pool in Schif-LAO is not specifically required for the enduring well-being

of the community but rather their cumulative functional effort may be compartmentalized,

fitting the previous results from Roume et al.12. 

To reduce the complexity of the dataset and resolve the gene pool with the strongest signal

in the community, we first filtered for the “core set”, which contains all the genes with at

least 1 transcript per million TPM) in at least one sample. The core gene and transcript sets
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comprised  0.7×106 and  0.8×106 ORFs  for  the  MG  and  MT  respectively,  and  were

subsequently used to compute eigengenes; a set  of vectors that are associated to a gene

count/expression matrix  and summarize their  pattern over a set  of given samples13.  In a

time-series context, we reconstructed six (EG1-6) eigengenes associated with the MG and

six (EG1-5, EG8) with the MT data (Fig. 1a-b). When the set of eigengenes were compared

they formed five pairs with an absolute Pearson Correlation Coefficient (PCC) ≥ 0.7 and one

pair with an absolute PCC = 0.5 (Fig. 1c). The correlated eigengenes pairs indicate that the

pattern  of  change  in  gene  number  and  gene  expression  in  Schif-LAO  are  similar  and

intuitively  the  curves  described  by  the  MG  are  smoother  than  by  the  MT  data.  The

phenomenon is perhaps the reflection of the more transient characteristic of RNA molecules,

if not also an inferior extraction yield. The environmental parameters were measured often

in multiple different ways (e.g. online measurement form the WWTP, manual, air, etc.), so

we selected them in order to reduce the co-linearity,  resulting in a shrink from 15 to 7

parameters,  which  include:  conductivity,  dry  matter,  ammonium  (NH4),  nitrate  (NO3),

oxygen, pH and temperature.

In  order  to  understand  the  relationship  between  the  environmental  parameters  and  the

temporal MG/MT trends we fitted a multivariate linear model and assessed the relevance of

the explanatory variables. The results (Fig. 1d) show how the most relevant environmental

factors are temperature and NO3, linked with five EGs each, followed by dry matter with

four EGs. Ammonium and pH are more specific with two EGs and conductivity and oxygen

with one EG each. One of the main processes happening in WWTPs is the conversion of

Ammonium into Nitrate (NH4 → NH3 → NO2 → NO3), therefore it is hard to establish the

causal  direction  of  the  link  between  these  two  compounds  and  gene  copy

number/expression. On the contrary the direction of the relation between temperature and

the EG pattern is more intuitive, with the temperature acting as driver for the seasonality of

Schif-LAO. Moreover,  we fitted the MG-EG2 and temperature with a sine curve with a

period (T) of one year and we obtained a perfect fit with F-statistics of 181 and 269, p-

values  <  1015 same  phase  and  inverted  amplitude  sign.  The  sine  function  is  cyclical,

assuming the same values at a distance of 2π/T. The present fit, with a T of 365 days, points

out the seasonal composition and behavior of the microbial  community.  This means that

there  is  a  set  of  genes  whose  presence  in  the  Schif-LAO  consortium  depends  on  the

temperature and is supposed to reach the same values every year.
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Fig. 1. Functional composition and time patterns in Schif-LAO.  a. Non-stationary eigengenes (EG1-6)

computed over time from the MG ORF reduced data set. The y axis is in arbitrary scale.  b. Non-stationary

eigengenes (EG1-5,8) computed over time from the MT ORF reduced data set. The y axis is in arbitrary scale.

c. Pairwise correlations between the eigengenes from the MG (rows) and the MT (columns). Blue indicates a

high level of positive correlation, red a high level of negative correlation. Size/opacity represent the absolute

value of the correlation, with larger/opaque dots indicate values close to 1.  d. p-value plot of the variable

significance from the linear fit of the eigengene. Only the significant ones are shown (p<0.05), where orange

marks if the eigengene comes from the MG eigengenes and green from the MT ones.

Community reaction network

We proceeded to explore the collective enzymatic capability of Schif-LAO via the study of
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its  predicted biochemical  reaction  networks.  Every chemical  reaction  takes  one or more

reactants and releases one of more products. The same compound may be a reactant for

multiple  reactions  and  a  product  for  another,  becoming  the  bridge  between  the  two

independent reactions. Following this idea, we took all the known reactions (in the form of

KO numbers) and connected them to one another  if  they shared at  least  one associated

compound, building a comprehensive reaction network (details in methods). We refer to the

nodes of this network as “Collapsed KOs” (CKOs), which contain all the KO entries with

the same associated compounds (see methods for complete explanation). We customized the

general network for Schif-LAO using the list of annotated ORFs. We obtained a reaction

network of 1,984 nodes and 13,350 edges. The number of ORFs per CKO varied greatly,

with a maximum of 77,474 and a median of 284. Most functions are present in biological

systems  with  a  certain  degree  of  redundancy,  which  give  resilience  to  the  system14.

Nevertheless, it is known that sometimes certain functions are performed by irreplaceable

populations/genes15, which elect them to the status of keystone functions.

We speculated that the taxa contributing to a given function in the Schif-LAO community at

any given point in the sampling time may change, therefore we sought to taxonomically

identify  those  ORFs  that  are  crucial  in  the  carrying  of  their  function.  To  do  this,  we

computed  the  information  entropy  of  the  MT  for  every  CKO  at  the  Family  level.  In

information theory, entropy is used to quantify the amount of uncertainty in a message, such

that a high entropy score would indicate high uncertainty. Indeed, the maximum entropy is

the one associated with all the possible outcomes having the same probability and defined as

log(n),  where  n is  the  number  of  outcomes.  Therefore,  a  CKO  in  which  a  Family  is

contributing  with  the  vast  majority  of  the  transcripts  will  have  a  very  low entropy;  in

contrast, a widely shared CKO will have a high score. Moreover, we normalized the entropy

scores by the maximum entropy in order to make all the CKOs comparable.

Lipid biosynthesis hints to resource competition in Schif-LAO
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Fig  2.  Community  reaction  networks  in  Schif-LAO.   a. Metabolic  network  subset  for  the  “fatty  acid

biosynthesis”-related CKOs. The size of the node is proportional to their degree.  b. Boxplot of sum of gene

expression per “fatty acid biosynthesis”-related CKO over time (scale on the left y axis) and the family-level

taxonomic richness (normalized entropy) of the gene expression (scale on the right y axis). High values of

gene expression indicate a large investment of the community to the given reaction (CKO). A high entropy

score indicates that the reaction is performed in comparable amount among several taxonomic families, on the

contrary, the lower the score, the more unequal the gene expression is, with one ore few taxa producing more

transcripts than the others. c. Scatterplot of gene expression and entropy for each time point in CKO1295 with

the quadratic fit and 0.95 confidence interval. d. Scatterplot of gene expression and entropy for each time point

in CKO120 with the linear fit and 0.95 confidence interval.  e. Metabolic network subset for the “nitrogen

metabolism”-related CKOs. The size of the node is proportional to their degree. f. Boxplot of sum of gene

expression per “nitrogen metabolism”-related CKO over time (scale on the left y axis) and the family-level

taxonomic richness (normalized entropy) of the gene expression (scale on the right y axis).

Lipid biosynthesis hints to resource competition in Schif-LAO

Fatty acid synthesis of type I (FAS I) in mammals is a straightforward process, performed

by a single structure containing all  the catalytic  centers  required and originating from a

single peptide (two in case of other Eukaryotes, such as yeast)16. On the contrary, the second

type of FAS (FAS II) occurs in plants and bacteria and it is a complex task involving several

soluble enzymes encoded in different ORFs17. The complexity and centrality of FAS II in

those organisms is due to its ability to produce a wide array of lipids varying in length,

unsaturation(s), branching, alongside the intermediates for other cellular components17. The
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core of FAS II is the Acyl-Carrier Protein (ACP) which shuttles the new fatty acid between

several enzymes involved in the pathway18. In Schif-LAO there are 17 CKOs associated

with the KO term “Fatty Acid Biosynthesis”, connected by 26 metabolites (edges) (Fig. 2a),

accounting for fatty acid initiation, elongation and termination. The most expressed reaction

node is CKO1295, ranging between 695.3-1513.5 TPM and a median of 927.8 TPM per

time point (Fig. 2b). CKO1295 embeds the two opposite reactions that attach and detach the

cofactor  A  (CoA)  to  the  fatty  acid  chain,  accounting  for  the  following  KOs:  K01068,

K01074, K01076, K01897, K15013, K17360; which correspond to the genes ACOT1/2/4,

PPT,  ABHD17, ACSL, ACSBG, ACOT7 respectively.  Interestingly the richness in taxa

contributing to the node is inversely proportional to the gene expression (Spearman’s ρ of

-0.35,  p=0.01)  with  a  quadratic  trend  (Fig.  2c).  The  second  largest  expressed  node  is

CKO120 with a range of 539.6-1147.4 TPM and a median equal to 778.3 TPM per time

point. CKO120 encodes the fatty acid synthase reaction with the KOs K00059, K00665,

K00667  and  K11533;  representing  respectively  the  genes  fabG,  FASN,  FAS2 and  fas.

Similar to the previous case, in CKO120 the gene expression is inversely proportional to the

taxa richness (ρ=-0.38, p<0.01) but with a linear trend (Fig. 2d). CKO1295 and CKO120

cover  two fundamental  aspects  of  FAS: activation/deactivation  of  the  fatty  acid  and its

extension; however, our data would suggest that different taxa enact a competitive takeover

of  these  functions.  The  most  active  families  for  CKO1295  are  Leptospiraceae  (32%),

Comamonadaceae (13.2%) and Chitinophaga (7.3%) whilst the gene counts are different,

with  Leptospiraceae  (7%) followed by Comamonadaceae  (24.8%).  The gene  counts  for

CKO120  see  the  dominance  of  family  Microthrixaceae  (24.5%),  followed  by

Acidomicrobiaceae (10%) and Comamonadaceae (8.4). Yet again in the gene expression

Leptospiraceae  (28.3%)  contributes  the  most,  followed  by  Moraxellaceae  (11.8%)  and

Microthrixaceae (6.7%).

Nitrogen metabolism is monopolized by the family Nitrosomonadaceae

Nitrogen removal is a crucial feature in treatment of wastewater, carried out by ammonia-

oxidizing bacteria (AOB). Most of the nitrogen in the water is in the form of ammonia

(NH4)  which  is  converted  to  nitrite  (NO2)  during  the  two-steps  nitritation process.  The

enzyme responsible of the first conversion is the ammonia oxidizing monooxygenase (amo),

which is a close homolog to the particulate monooxygenase (pmo), which instead oxidizes

methane. Both enzymes use copper ions to perform the oxidization of their substrates and

they  share  the  same  KO  number:  K1094019.  Interestingly  pmo is  a  great  resource  in
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capturing the greenhouse gas methane, whilst on the other hand amo-encoding AOB, grown

in  sub-optimal  conditions,  tend  to  form  the  greenhouse  nitric  and  nitrous  gas20.  The

hydroxylamine produced by amo is then converted into nitrate (NO2) by the enzyme Hao.

Subsequently nitrite is used to produce nitrate (NO3) via nitratation with the enzyme NarG-

H. Both nitrate and nitrite can be transformed into nitrogen and oxygen gas (N2+O2) with the

denitritation and denitrification processes respectively. The Nitrogen-related metabolism of

Schif-LAO  includes  21  reaction  nodes  and  71  metabolic  edges  (Fig.  2e).  The  entropy

analysis  of  the  contribution  of  different  taxonomic  families  to  the  reactions  points

immediately to CKO3145 and CKO3079 as potential keystones in the system (Fig. 2f). The

first  reaction  node  is  overwhelmingly  dominated  by  the  ORFs  from  the  family

Nitrosomonadaceae  (MG 97.8%,  MT 99.1%)  and  contains  the  amo gene  subunits  A-B

(K10944-6, EC:1.14.16.3 and EC:1.14.99.39). The second node is dominated again by the

transcripts from Nitrosomonadaceae (MG 63.9%, MT 91%) and encodes the hydroxylamine

dehydrogenases (K10535, EC:1.7.2.6). Given the crucial importance of the presence of the

gene  amo in  the  environment  to  start  the  assimilation  of  ammonia,  the  main  family

producing  transcripts  from  it,  Nitrosomonadaceae,  must  be  held  carefully  tuned  to  the

optimal size to optimize the performance of Schif-LAO.

Conclusions

We present the temporal reconstruction of the surface microbial community of a BWWT

plant over 1.5 years of weekly sampling.  The gene count and gene expression show six

distinct  and linearly independent  patterns  (eigengenes)  across time (Fig. 1a-b),  many of

which were linked to the physiochemical parameters (Fig. 1d). In particular, the MG/MT

second eigengene show a cyclical behavior highly associated with the water temperature

(Fig. 1d) and both of them can be fitted with sine functions of same phase (365 days) and

opposite sign. Therefore, we can model the dynamics of the Schif-LAO community as a

yearly cycle dictated by the temperature variation.

We  reconstructed  the  enzymatic  network  of  the  community  and  inquired  two  specific

functions important for the community: lipid accumulation and nitrogen metabolism. For

lipid-associated functions, we show how there are no nodes that are both highly expressed

and dominated by a single taxon, and therefore apparently there are no keystone nodes that

dictate lipid accumulation. However, we show that the two higher expressed reaction nodes
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(CKO1295 and CKO120) encode fundamental  steps of  the FAS and their  expression is

negatively  correlated  with  taxa  abundance,  suggesting  a  competition  for  the  substrate.

Regarding nitrogen metabolism we found two more interesting reactions (CKO3145 and

CKO3079) which are performed de facto only by the bacterial family Nitrosomonadaceae.

In particular CKO3145 contains the amo gene, used in the first of the two-step reaction to

convert  NH4 in  NO2,  but  can  lead to  the formation  of  nitrogen-based greenhouse gases

depending on the oxygen level in the water and therefore must be taken into consideration

when planning to alter the community or the physicochemical parameters of the system.

Data availability

The  code  used  to  build  the  static  reaction  network  is  available  at:

https://github.com/fdelogu/kegg_net .

Materials and Methods

Sampling

Individual  floating sludge islets  within the anoxic tank of the Schifflange  BWWT plant

(Esch-sur-Alzette,  Luxembourg;  49°30'48.29"N;  6°1'4.53"E)  were  sampled  according  to

previously described protocols11. Samples are indicated as dates (YYYY-MM-DD).  More

frequent  sampling of 51 time points was performed from 2011-03-21 to 2012-05-03, of

which  data  from  three  samples  (2011-10-05,  2011-10-05  and  2012-01-11)  have  been

previously published11.

Concomitant biomolecular extraction and high-throughput meta-omics

Concomitant biomolecular extraction of DNA, RNA and proteins as well as high-throughput

measurements to obtain MG, MT, and MP data were carried out according to previously

established protocols11,12,21.  The raw MG and MT FASTQ files as well  as the assembled

contigs are available as NCBI BioProject PRJNA23056711,12,21. MP data has been deposited

in the PRIDE database under the accession number PXD013655.

Co-assembly of metagenomic and metatranscriptomic data

Sample-wise  integrated  MG and  MT data  analyses  were  performed  using  IMP version

1.322 with customized parameters, i.e. i) Illumina Truseq2 adapters were trimmed, ii) the

step involving the filtering of reads of human origin step was omitted for the preprocessing,
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and iii) the MEGAHIT de novo assembler23 was used.

Gene prediction, annotation and clustering

Open reading frames were predicted using Prodigal24 v2.6 with “meta”  and “incomplete

gene”  settings.  Predicted  genes  were  annotated  using  hmmsearch25 against  an  in-house

licensed  version  of  the  KEGG  KO  database26.  In  order  to  build  a  coherent  and  non-

redundant dataset of genes all ORF sequences (both complete and incomplete genes) from

the 51 samples were pooled and clustered using CD-HIT-EST27, with the parameters -c 0.95

-d 0 -s 0.9 -aS 0.9 -aL 0.3 -uS 0.1. A curated set of metagenome assembled genome (MAGs)

from the same samples was used to infer taxonomy as reference database for a blastn (blast

2.2.28+28) search of the ORFs. The MAGs were in turn annotated using AMPHORA229, as

previously described30.

MG and MT quantification and filtering

The filtered  MG and MT reads  were pseudoaligned to  the clustered  set  of  genes  using

kallisto  pseudo  -pseudobam31.  The  whole  dataset  was  then  filtered  to  create  the  “Core

dataset” containing only genes with at least 1 Transcript Per Million (TPM) in at least one

sample. 

Eigengenes and their analysis

The EG analysis was conducted in in R 3.5.3. Firstly we computed the EGs from the MG

and  MT  core  sets  as  the  principal  components  obtained  with  the  function  prcomp.

Subsequently  the  EGs  were  tested  using  the  Ljung-Box  test  (Box.test),  the  augmented

Dickey-Fuller test (adf.test) and the Kwiatkowski–Phillips–Schmidt–Shin (kpss.tests) tests

with null hypotheses “trend” and “level”. If at least two of the four tests were passed the EG

was  considered  non-stationary.  The  seven  physico-chemical  parameters  were  used  as

explanatory variables in linear models to fit the non-stationary EGs using the lm function.

Finally, we assessed the significance of the explanatory variables using ANOVA (anova).

Metabolic network construction

The construction of the metabolic network followed the steps from Roume et al. 201512,

using the most updated version of the KEGG26 rest repositories. Moreover, we released the

code  to  enable  other  scientists  to  generate  their  networks  locally,  or  as  alternative  to

download the premade one and subset it  to generate an experiment-specific  network. In
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brief,  we filtered  the  reaction  file  “rn”  to  remove those  reactions  which  do not  have  a

reaction  class  in  “rc”,  then  we  removed  the  most  common  cofactors  using  the  “cpd”

database (10-Formil-THF, Acetyl-CoA, ADP, AMP, ATP, Co-A, GDP, L-Glutamine,  L-

Glutamate, GTP, NADH, NADPH, NAD, NADP, Phospho-enol-pyruvate, Propyonyl-CoA,

Pyruvate, Suc-CoA, THF, Acceptor, Cytochromes-C-Reduced, Cytochromes-C, Donor-H2,

Oxidized-Flavodoxins, Reduced-flavodoxins). Then we mapped the KEGG Orthology (KO)

entries to the reactions and collapsed all the KOs with the same reactants into Collapsed

KOs (CKOs) to act as nodes of the metabolic network. Finally, we connected the CKOs that

share one or more compounds in their  reactions.  The final network is binary,  with only

entries accepted to be 0 and 1, where 1 indicates the existence of an edge between the nodes.
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