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Investigating the Polar Code’s function-based requirements
for life-saving appliances and arrangements, and the
performance of survival equipment in cold climate conditions
– test of SOLAS approved desalting apparatus at low
temperatures
Espen Engtrøa and Ane Sæterdalb

aUniversity of Stavanger, Stavanger, Norway; bThe Arctic University of Norway, UiT, Narvik, Norway

ABSTRACT
As the sea ice extent steadily decreases, the Arctic region is
simultaneously experiencing extensive growth in commercial
shipping activities, in areas which previously were considered
inaccessible for most ships during large periods of the year,
increasing the probability of accidents or incidents occurring. The
International Code for Ships Operating in Polar Waters (The Polar
Code) states that resources shall be provided to support survival
following abandoning a ship; desalting apparatus is proposed for
the provision of the recommended amount of freshwater.
However, previous studies have shown that the expected
performance criteria for survival equipment are significantly
reduced in cold climate conditions. In this paper, we present and
discuss the results of testing SOLAS approved desalting apparatus
at low temperatures in a controlled and enclosed environment,
studying the equipment’s performance capabilities.

KEYWORDS
The Polar Code; cold climate
operations; function-based
requirements; performance
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Introduction

The Arctic region has experienced extensive growth in commercial shipping activities,
while, simultaneously, the sea ice extent is steadily decreasing, enabling extended
seasons and voyages in areas previously considered inaccessible for most ships during
large periods of the year (Protection of the Arctic Marine Environment [PAME] 2020;
Silber and Adams 2019). The total increase in ship traffic experienced in the Arctic
region, driven by fisheries, shipping and tourism (Protection of the Arctic Marine Environ-
ment [PAME] 2020), substantiates the probability of accidents or incidents occurring and
puts pressure on the requirements for emergency response, dependent on limited
resources covering vast areas (Hill, LaNore, and Véronneau 2015). The International
Code for Ships Operating in Polar Waters (The Polar Code)was adopted in 2017 by the Inter-
national Maritime Organization (IMO) and is applicable to the Arctic and Antarctic Oceans
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(International Maritime Organization [IMO] 2017). The Polar Code supplements existing
IMO instruments, in order to increase the safety of ships’ operations, and mitigates the
impact on the people and environment in the remote, vulnerable and potentially harsh
polar waters (ibid.). Mass tourism and the presence of large cruise ships operating in
remote areas in the Arctic region represent the main concern (Solberg and Gudmestad
2018; Marchenko et al. 2018; Andreassen et al. 2018). In the event of an abandonment
of ship situation, requiring thousands of passengers to muster to either lifeboats or life
rafts, the Polar Code states that resources, including the means to provide sustenance,
shall be provided to support survival, whether on the water, ice or land, for the
maximum expected time of rescue, defined to be at least five days (International Maritime
Organization [IMO] 2017).

The provision of suitable and sufficient life-saving appliances (LSA) and arrangements
on ships intended for polar voyages can be a demanding task for ship owners and oper-
ators (Solberg, Gudmestad, and Kvamme 2016; Solberg, Gudmestad, and Skjærseth 2017;
Solberg and Gudmestad 2018), considering the total assembly of equipment that consti-
tutes the entire emergency response system found on a ship. In the process of selecting
LSA and arrangements, the enforcement of companies’ safety philosophies and policies,
established to comply with the Polar Code, could be challenged for both economic and
practical reasons (Solberg, Gudmestad, and Skjærseth 2017). LSA and arrangements
intended for polar water operations imply an additional budgetary cost (ibid.), compared
to emergency equipment found on ships in tropical climates, due to the winterisation
measures required in the design, preservation and packaging process. At the same
time, in order to withstand the harsh polar environment, additional and winterised LSA
and arrangements require space for storage and impose added weight on rescue craft.
A reduction in the number of passengers could therefore emerge as a result of the
additional equipment (Solberg, Gudmestad, and Kvamme 2016).

In the event of a survival situation, the provision of food and water is essential.
However, humans can survive for weeks without food but only a matter of a few days
without water (Piantadosi 2003), whether shipwrecked in the ice-infested and cold
Arctic Ocean or stranded in the dry Sahara desert. The IMO guidelines applicable to
LSA and arrangements (International Maritime Organization [IMO] 2019b) outline possible
means of mitigating hazards, to comply with the Polar Code. They recommend food
rations that provide a minimum of 5,000 kJ (1,195 kcal) per person per day and at least
2 litres of freshwater to be available per person per day for the maximum expected
time of rescue (min. five days). The guidelines propose the use of desalting apparatus
to provide the recommended amount of freshwater, and this could be a choice favoured
by operators and ship owners equipping ships for voyages in the Arctic region.

The development and implementation of the above-mentioned guidelines on LSA and
arrangements for polar waters (International Maritime Organization [IMO] 2019b) were
driven by findings and experience from three survival exercises, performed in northern
areas around Svalbard between 2016 and 2018 (Solberg, Gudmestad, and Kvamme
2016; Solberg, Gudmestad, and Skjærseth 2017; Solberg and Gudmestad 2018). These
exercises led concerns being raised regarding the gaps explored between the expected
performance requirements for SOLAS approved LSA and arrangements and the actual
performance of related emergency equipment when tested in cold climate conditions
(ibid.; Norwegian Maritime Authorities [NMA] 2019). The objectives for this experiment
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were, therefore, to verify the newly implemented guidelines and test the functionality of
SOLAS approved desalting apparatus at low temperatures; to study the equipment’s
capacity to produce freshwater from seawater at various temperature readings; and to
explore the salt rejection capacity at low temperature readings, by measuring salinity
in the produced freshwater.

First, this paper presents the IMO regulatory framework applicable to ships operating
in the Arctic region and regarding requirements for LSA and arrangements. Then, ship-
ping in the Arctic region is discussed, considering environmental conditions, related
hazards and mitigating winterisation measures associated with voyages in the harsh
polar climate. The last part of the paper presents and examines the experiment of
testing SOLAS approved desalting apparatus at low temperatures in a cold climate
laboratory.

International maritime conventions and regulations applicable in the
Arctic region

The International Convention for the Safety of Life at Sea (SOLAS) (International Maritime
Organization [IMO] 2001) is reckoned to be the most important of all international treaties
concerning the safety of merchant ships. The first version was adopted in 1914, in
response to the Titanic disaster, later updated and amended on numerous occasions.
The main objective of the SOLAS Convention is to specify minimum standards for the con-
struction, equipment and operation of ships, compatible with their safety (International
Maritime Organization [IMO] n.d.). The SOLAS Convention consists currently of 14 chap-
ters, of which Chapter 3 (Life-Saving Appliances and Arrangements) and Chapter 14
(The Polar Code) are of interest in this paper.

Chapter 3 of the SOLAS Convention contains provisions for LSA and arrangements,
including requirements for lifeboats, rescue boats and life jackets, according to the
type of ship (International Maritime Organization [IMO] 2001). Chapter 3 makes further
reference to The International Life-Saving Appliance Code (LSA Code), providing specific
technical requirements for LSA and arrangements (International Maritime Organization
[IMO] 1998a). The performance requirements in the LSA Code can be supported by test
or evaluation requirements as put forth in the Revised recommendation on testing of
life-saving appliances (International Maritime Organization [IMO] 1998b), for defined sur-
vival equipment.

Chapter 14 of the SOLAS Convention (The Polar Code) (International Maritime
Organization [IMO] 2017), amended in 2017, contains safety and environmental pro-
visions for ships operating in defined geographical areas around the South and
North Poles. The Polar Code’s geographical area of application in the Arctic is
shown in Figure 1 below.

The Polar Code states that ships’ systems and equipment addressed in the regulation
shall satisfy at least the same performance standards as those referred to in the SOLAS
Convention (International Maritime Organization [IMO] 2017). The mandatory SOLAS Con-
vention for merchant ships, therefore, constitutes a standardised minimum of expec-
tations for the provision of safety measures for maritime design, equipment, systems
and operations. Nevertheless, SOLAS approved LSA and arrangements, for use in emer-
gency situations, can be found on ships in voyages all around the world, whether the
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climatic conditions are tropical or polar (Solberg and Gudmestad 2018). However, for the
Polar Code and the utilisation of its function-based requirements, the main principle is
based on the requirement to carry out an operational risk assessment of the ship and
its equipment, in order to establish procedures or operational limitations, based on
related risk factors in operating areas, such as ice conditions and temperature (Inter-
national Maritime Organization [IMO] 2017, Ch. 1.5).

After the Polar Code came into effect, the Guidance for navigation and communication
equipment intended for use on ships operating in polar waters was implemented (Inter-
national Maritime Organization [IMO] 2019a), in addition to the aforementioned guide-
lines on LSA and arrangements for polar waters (International Maritime Organization
[IMO] 2019b). Further, mandatory minimum requirements for the training and qualifica-
tion of masters and deck officers on ships operating in polar waters were amended to
the International Convention on Standards of Training, Certification and Watchkeeping
for Seafarers (STCW), applicable from 1 July 2018 (Norwegian Maritime Authorities
[NMA] 2018).

The applicability of the Polar Code, with its goal to increase the safety of ship oper-
ations and to protect the vulnerable polar environment, is under discussion (Engtrø,
Njå, and Gudmestad 2018; Engtrø, Gudmestad, and Njå 2020; Schopmans 2019); func-
tional requirements vs performance requirements for LSA and arrangements, as well as
the functionality of survival equipment and its capacity to perform adequately under

Figure 1. The maximum geographical extent of the Polar Code’s area of application in the Arctic
(International Maritime Organization [IMO] 2017).
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cold climate conditions, are being questioned (Solberg, Gudmestad, and Kvamme 2016;
Solberg, Gudmestad, and Skjærseth 2017; Solberg and Gudmestad 2018).

Shipping in the Arctic region – prevailing polar conditions and hazards

The Arctic region (Figure 2) extends to all the ice-covered Arctic Ocean and the surround-
ing land of Greenland and Spitsbergen and the northern parts of Alaska, Canada, Norway
and Russia (Trantzas 2017). Climate conditions are characterised by long, cold winters and
short, cool summers; the average winter temperatures range from −34°C to 0°C, and
average summer temperatures range from −10°C to +10°C. The wind speeds over the
Arctic Basin are between 4 and 6 m/s (7 and 12 knots) in all seasons. Stronger winds
do occur in storms, often causing whiteout conditions (ibid.; Cohen et al. 2017). Rapidly
developing low-pressure systems (polar lows) are common weather phenomena during
winter seasons. Polar lows are characterised by sudden strong winds and low tempera-
tures, heavy snow showers, thunder and lightning, choppy sea surfaces and increased
wave heights; they can be hard to forecast and predict due to the nature of their devel-
opment (International Standard [ISO] 2010; DNV GL 2015).

Some parts of the Arctic are covered by ice (sea ice and glacial ice) all year, and nearly
all parts experience long periods with some form of surface ice (Trantzas 2017). However,
the Arctic is not homogeneous with respect to prevailing environmental conditions. Con-
siderable differences exist between not only seasons but also geographic locations. The

Figure 2. Map of the Arctic region (U.S. Department of State n.d.).
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Beaufort and Chukchi Seas north of Alaska and Canada, for example, are covered with ice
every year, whereas the south-western part of the Barents Sea off the coast of Norway is
often said to be ice-free (DNV GL 2015).

Navigating in the Arctic region involves many challenges, due to the rapidly changing
landscape of sea ice, draft restrictions in many areas, lack of hydrographic data and
detailed surveys, less reliable navigation and satellite communication, and reduced visi-
bility due to fog or darkness for long periods of the year (Hill, LaNore, and Véronneau
2015; Ghosh and Rubly 2015; DNV GL 2015). The presence of ice represents one of the
greatest risks, with floating ice in many forms constituting an extremely hazardous con-
dition if colliding with a ship in voyage, involving the risk of damage to hull and structure
(Ghosh and Rubly 2015). Ice accretion caused by sub-zero temperatures and freezing of
sea spray coming into contact with the ship’s surfaces is the most hazardous form of
icing and also the most common, and uncontrolled sea spray icing can represent a
great risk regarding loss of ship stability, integrity and equipment failure (ibid.; Inter-
national Standard [ISO] 2010).

Shipping across the northern polar region is increasing, connecting Asia and Europe by
trans-Arctic routes along (Figure 3): the Northeast Passage (NEP) and the Northern Sea
Route (NSR), encompassing the route along the Norwegian and Russian Arctic coasts;
the North-West Passage (NWP), which follows Canada’s northern coastline; and the

Figure 3. Shipping routes in the Arctic region (Humpert and Raspotnik 2012).
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Transpolar Sea Route (TSR), which bisects the Arctic Ocean through the North Pole (Farré
et al. 2014; Ghosh and Rubly 2015). In addition, the Arctic Bridge Route (ABR), a shipping
route linking the Arctic seaports of Murmansk (Russia) and Churchill (Canada), could
develop into a future trade route between Europe and Asia (Humpert and Raspotnik
2012).

Measurements of the volume of shipping within the Polar Code’s geographical area of
application in the Arctic, taken between 2013 and 2019, show a substantial increase in
traffic, when counting both the number of individual ships (up 25 percent) and the
total nautical distance sailed during the six-year period in the same area (up 75
percent) (Protection of the Arctic Marine Environment [PAME] 2020). The increase in
ship traffic in recent years in the northern areas has been anticipated, especially due to
the reduced sea ice enabling shipping in open waters between the Atlantic and the
Pacific Oceans during short periods of the year (Grønnestad 2017). In 2016 and 2017,
the passenger ship, Crystal Serenity, sailed through the North-West Passage (NWP)
from Alaska to New York, with more than 1,000 passengers, on its first voyage (ibid.).

Search and Rescue (SAR) operations in the Arctic region can be extremely demanding,
and considerable risks are presented should a ship suffer ice or heavy weather damage,
grounding, or machinery failure, due to the extreme remoteness of the region and the
limited readily deployable SAR facilities (Hill, LaNore, and Véronneau 2015). The potential
for delays in emergency response and the lack of suitable emergency response equip-
ment (Solberg, Gudmestad, and Kvamme 2016; Solberg, Gudmestad, and Skjærseth
2017; Solberg and Gudmestad 2018), in addition to the relatively low traffic density in
the Arctic region, indicate that self-rescue is the core principle in the event of a maritime
casualty and abandonment of ship (Larsen et al. 2016). An emergency situation involving
thousands of passengers to be rescued from a cruise ship is deemed highly critical, as the
size and the capacity of SAR services in the Arctic region are not prepared for such a scen-
ario (Urke 2018).

Technical and operational winterisation measures capable of withstanding the harsh
and prevailing climatic conditions in the Arctic region are therefore required on ships
intended for polar water operations (DNV GL 2015). Winterisation measures are primarily
targeted at limiting and controlling the adverse effects of freezing, icing, low tempera-
tures and strong winds (wind chill). The main concerns are the protection of personnel
and material properties (DNV GL 2015). Active winterisation measures are functional,
addressing electrical or mechanical energy, e.g. heat-traced walkways and escape
routes, heat-insulated piping (e.g. fire water lines), keeping circulation in lines to
prevent liquid from being static (e.g. fire water mains and cooling water branch lines),
or lowering the freezing point of fluids by adding chemicals (e.g. glycol). Passive winter-
isation measures are characterised as measures in which no energy is addressed, but the
design, construction and packaging prevent the adverse effects of icing, freezing and
wind chill, e.g. shielded walkways, escape routes and enclosed muster areas; the elimin-
ation of pockets, dead-ended pipes and legs in piping; extra insulation and packaging;
and work clothing intended for low temperatures (DNV GL 2015; Ghosh and Rubly
2015; Engtrø and Gudmestad 2019).

AUSTRALIAN JOURNAL OF MARITIME & OCEAN AFFAIRS 7



Test of SOLAS approved desalting apparatus at low temperatures

Low temperatures can be critical for the composition of material used in emergency and
survival equipment; steel and polymers become more brittle, and rubber sealing loses its
flexible function and properties (DNV GL 2015). Reliance on LSA and arrangements being
functional in an emergency situation is vital, and material weaknesses in survival equip-
ment, not discovered until the accident is unfolding, can have fatal consequences. Pre-
vious studies performed on SOLAS approved LSA and arrangements, and their actual
performance capacity under cold climate conditions, showed a discrepancy between
expected and actual performance in the tested equipment (Solberg, Gudmestad, and
Kvamme 2016; Solberg, Gudmestad, and Skjærseth 2017; Solberg and Gudmestad 2018).

The objectives of this experiment were therefore to verify the newly implemented
guidelines on LSA and arrangements for polar waters (International Maritime Organiz-
ation [IMO] 2019b) and test the functionality of SOLAS approved desalting apparatus,
to study the equipment’s capacity to produce freshwater from seawater within 60 min,
at the following water temperature readings: +2°C, +4°C, +7°C, +10°C, +23°C. The desalt-
ing apparatus’s salt rejection capacity was also explored by measuring salinity in the pro-
duced freshwater. The experiment was performed in a temperature controlled and
enclosed environment, in the facilities at The Arctic University of Norway in Narvik.

General considerations, instrumentation and setup

The seawater for the experiments was sourced by boat in the Ofotfjord close to Narvik, a
city in northern Norway. All required seawater was collected simultaneously, to provide
the various tests with identical initial conditions with respect to water quality. To avoid
a build-up of bacteria and algae, the seawater was collected in food-grade closed contain-
ers just in time to be acclimatised to the assigned test temperatures. The sealed contain-
ers also prevented evaporation and external contamination prior to the experiment.

The experiment was conducted in a temperature controlled and enclosed environ-
ment: an insulated room of about 40 m2, cooled to the required test temperatures. The
heating and cooling system is automatically regulated to sustain a given temperature.
As the maximum temperature regulating capacity for the test facility is +10°C, the test
performed at a room temperature of +23°C was conducted outside the insulated room,
in a regulated indoor area – heating, ventilation, and air conditioning (HVAC), capable
of maintaining a stable air temperature during the test, utilising the same measuring
equipment used inside the insulated room.

In order to secure accurate temperature measurements, different sources of high-
quality equipment were used: three sources of air temperature and two sources of
water temperature. The log system was set to measure at one-minute intervals, providing
61 measurements for each test, with four variables: air temperature 1, air temperature 2,
water temperature and relative humidity. In addition, measurements of water and air
temperature were manually provided every five minutes with a Fluke instrument
(Picture 7). The chosen sample interval provided an adequate set of information regarding
the test environment and revealed, for example, variations caused by the periodic cooling
system.
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The instruments used during the experiment were a Hioki memory HiLogger LR8400-
20 with two IEC code T – thermocouples and a Fluke 54 II B thermometer with 80PK-25
and 80PK-26 probes. During the tests, the instruments were situated close together to
minimise the effect of varying temperatures within the test room. Measurements were
also performed in close proximity to the test station, and care was taken to let the
probes hang freely in the medium, not connecting to a surface (floor, wall, inside of
the container, wires, etc.); see Picture 7. In addition, the relative humidity in the
room was monitored by a Hioki Z2000 humidity sensor. A scale was used to control
the amount of water, and the result was thereafter converted to litres by standard
density values. A list of equipment, including range and error specifications, can be
found in Table 1 below.

All equipment and infrastructure, except temperature sensitive equipment, was placed
in the insulated room prior to the experiment, to acclimatise. Before being placed in the
room, the containers with seawater were weighed and marked, to avoid disturbing the set
temperature at the start of a test. While entering the room, care was taken to minimise the
time the door was left open. Before starting a test, the temperature was verified to ensure
that the room had stabilised after entry. Further considerations, preventative measures
and challenges are described in Table 2 below.

After the five tests were completed, the salinity of the refrigerated samples was
measured with a Hanna HI98192 USP compliant EC, TDS, NACL, resistivity temperature
meter, with electrode HI763133. Between each sample, the probe was cleaned with dis-
tilled water.

Table 1. Equipment used in the experiment.
Equipment Product specification Comment

Salinity metre Hanna HI98192 USP compliant EC, TDS, NACL,
resistivity temperature metre, with electrode:
HI763133

Water sample
container

VWR Borosilicate 3.3 500 ml 215–1594 Used for storing water samples

Volumetric glass Schott Duran BlauBrand NS12/21 100 mL Used for weighing liquid
Bucket 16 L Product number Biltema: 86–2771 Used for wastewater
Bucket 40 L Product number Biltema: 86–898 Used for wastewater
Mercury
thermometer

Two glass mercury thermometers

Fluke Fluke 54 II B thermometer
Air probe for
Fluke

Fluke 80PK-26 SureGrip Tapered Temperature Probe Accuracy ± 2.2°C, range −40°C to 293°C

Water probe for
Fluke

Fluke 80PK-25 SureGrip Piercing Temperature Probe Accuracy ± 1.1°C, range 0°C to 350°C

Log system Hioki memory HiLogger LR8400-20 no: 141208749.
Temperature probes: T – thermocouple (IEC code).
Hioki Z2000 humidity sensor no. 150430107.

IEC Tolerance Class EN 60584-2; JIS C 1602,
class 1. Accuracy ± 0.5°C, range −40°C to
+80°C

Cold room PTG Kuldeteknisk AS Range −30°C to +10°C
Water container
20 L

Transparent PEHD, approved for drinking water.
Product number Biltema: 37–361

Used for transport and storing of seawater

Scale August Sauter GmbH D-7470 Albstadt 1-Ebingen.
Type AZ/N2E nr 0103016.

Range 2.5–120 kg. e =dd= 50g.

Desalting
apparatus

Katadyn Survivor-35. Article No.: 8013433 standard. Range water temperature +2°C to +45°C.
Average salinity 35 ppt TDS.

Distilled water Used to rinse the salinity probe
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Katadyn Survivor-35 desalinator

The Katadyn Survivor-35 desalinator (Picture 8), tested in the experiment, is specified by
the vendor as an approved desalting apparatus, as defined in the 1983 conditions of the
SOLAS Convention.

The desalinator is a hand-operated pump – intended for emergency situations, for the
provision of freshwater from seawater – whose materials consist of stainless steel and
plastics. The equipment utilises reverse osmosis and high pressure to remove dissolved
salts from seawater, which is filtered through a semipermeable membrane (Figure 4).
The semipermeable membrane acts as a molecular filter, and when the pump pressurises
seawater to 55 bar and forces it against the membrane, only the water molecules can pass
through; salt molecules are unable to pass and flow out of the system.

The desalting apparatus tested in the experiment was provided by a recognised Nor-
wegian shipbuilding company which designs and builds standardised – as well as highly
specialised – Polar Code-certified ships. The Katadyn Survivor-35 desalinator is part of the
survival equipment, making up the total assembly of LSA and arrangements, delivered by
the shipbuilding company to ships intended for polar water operations.

Operating instructions for the Katadyn Survivor-35 desalinator

The Katadyn Survivor-35 is designed to operate during conditions with seawater tempera-
ture specifications ranging from +2°C to +45°C and average salinity levels of 35 parts per
thousand (ppt) Total Dissolved Solids (TDS). The desalinator is specified to provide
4.5 litres of freshwater per hour (+/- 15%), with an average salt rejection capacity of
98.4% and a minimum of 96.8%. The manual specification states that degree of desalina-
tion depends on factors such as water temperature and salinity.

Figure 4. Reverse osmosis technology (Katadyn Fact Sheet n.d.).
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The hand-operated desalinator is to be placed on the lap, with one hand on the handle
grip and the other on the membrane housing, as shown in Figure 5. The intake and dis-
charge hoses, attached in a strainer, shall be fully submerged into the seawater, and the
freshwater hose is to be placed into a storage container (or directly into the mouth).
Optimum pump frequency is set to be 30 strokes (up and down) per minute. If the
pump frequency is too fast, a pressure indicating rod extends itself and, finally, water
sprays from the indicator.1

Operating criteria for the desalinator

Operating criteria established in the experiment for the desalinator directed the pumping
frequency and were monitored by observing the pressure indicating rod; it determined
that pumping should be as fast as possible but without water spraying out from the indi-
cator (Picture 9). If water sprayed out, the pump frequency was lowered. As soon as an
optimum pump frequency was established, a metronome was used to ensure that a
steady pump frequency was maintained during the 60-minute test. The same person
operated the desalinator in all the tests performed.

Discussion concerning measuring accuracy and deviations

Salinity

Ocean salinity is generally defined as the salt concentration (e.g. sodium and chloride) in
seawater and often described in units of ppt. Salinity can also be expressed in Practical
Salinity Units (PSU): a measure of the water conductivity at a constant pressure and temp-
erature that is about equivalent to ppt (CATDS – Ocean Salinity Expert Center n.d.).

The seawater samples from the Ofotfjord were measured to a salinity of 26.8 ppt,
whereas the average salinity of seawater is 35 ppt (International Standard [ISO] 2019).
The seawater samples were gathered less than 0.5 m below the surface. Collecting
water from the upper sea layer combined with the fjord location is assumed to give
the resulting deviation from average seawater salinity.

Presumably, lower salinity levels in the seawater could result in better test results for
the desalinator’s capacity to produce freshwater and reject salt molecules. Therefore,

Figure 5. Illustration of a person using the Katadyn-35 desalinator, sitting in a life raft (Katadyn
Manual n.d.).
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an additional test was performed with seawater gathered from Ornesvika, with a salinity
measured at 5.0 ppt. Compared with the test results from seawater with a salinity of 26.8
ppt, with otherwise comparable conditions, the processed water with initial lower salinity
levels also contained less salt; see Table 3. The low salinity test also yielded a higher
amount of cleaned water. However, the discrepancy in the amount could be due to a
watch being used to sustain the manual pumping rhythm in the low salinity test: a
method found to be somewhat inaccurate. The results are inconclusive, and a test of
the desalinator’s efficiency at different salinity levels could be explored. Nevertheless,
the results are within the prescribed margins of the desalinator.

The desalinator used in the experiment is designed to operate with an average sea-
water salinity of 35 ppt, expressed in TDS, and measurements of both salinity PSU and
TDS were performed. The concepts of salinity PSU and TDS are very similar, with TDS
being a measure of the total ionic concentration of dissolved minerals in water. Since
most dissolved solids in seawater typically consist of inorganic ions, which are the com-
ponents of salts, the concepts are sometimes considered to be synonymous (Fondriest
n.d.).

Temperature measurements

During the tests, different measuring instruments were used: three measures for air temp-
erature, and two temperatures for the liquid entering the desalting apparatus. Conse-
quently, some discrepancy between the measurements occurred.

Prior to the experiment, a point sample with two additional instruments was per-
formed for the crucial water temperature, as shown in Table 4 below. The Fluke 54 II B
thermometer with the appropriate water temperature probe, the Hioki HiLogger
LR8400-20 with T-thermocouple and two submergible mercury thermometers were
tested simultaneously.

The initial investigation with one sample is far from an adequate calibration of the
temperature instruments. However, it confirmed that differences in temperature would
occur as a result of using different measuring instruments. Moreover, the discrepancy
in the result was not alarming and did not discourage further use of the tools.

After the experiment, the results from all measurements were averaged to investigate
the difference between the individual instruments, as shown in Table 5 below.

The difference in air temperature averaged from all measurements included in the
experiment shows a difference of approximately 0.6°C higher temperature from the

Table 3. Test results with lower salinity levels.
Seawater temperature [°C] 21.3 23.1
Seawater salinity [ppt] 5.0 26.8
Cleaned water salinity [ppt] 0.06 0.12
Cleaned water [kg] 6.8 5.3

Table 4. Test of measured seawater temperature one-point sample [°C].
Hioki memory HiLogger LR8400-20 with T – thermocouple 8.8
Mercury thermometer 1 9.5
Mercury thermometer 2 11
Fluke 54 II B thermometer with 80PK-25 probe 10
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Fluke instrument than the thermocouples connected to the Hioki system. Similarly, the
difference in water temperature was averaged to about 0.4°C higher with the Fluke
equipment.

The instruments were placed in close proximity to each other to avoid the effect of
location-dependent temperature variations. Some difference in temperature could be
explained, as the devices utilise different types of thermocouples. Types K (Fluke) and T
(Hioki) contain distinctive alloys as electrical conductors, respectively chromel vs alumel
and copper vs constantan. The standardised accuracy of the thermocouples is given in
Table 2. The difference in temperature is within the margin of required accuracy.

Standard deviations in the dataset from mean values give a sense of the data spread.
The largest standard deviation for water temperature, 0.29°C, occurred at room tempera-
ture with the Fluke instrument. The largest standard deviation for air temperature, 0.79°C,
was measured with the t-thermocouple when the cooling system was set to one degree
Celsius. As shown by the two green lines in Figure 6, almost indistinguishable from each
other, the air temperature varied in cycles. Additionally, Figure 6 shows the disturbance in
temperature caused by entering and exiting the test facility. The thermal capacity of water
is evident from the stable temperature illustrated by the lilac graph throughout the

Table 5. Difference between the individual measuring instruments.
Hioki T-

thermocouple 1,
air

Hioki T-
thermocouple 2,

air
Fluke B54,
80PK-26 air

Hioki T-
thermocouple 3,

water

Fluke B54,
80PK-25
water

Average of all
measurements [°C]

7.1 7.1 7.7 8.8 9.2

Difference from Fluke
[°C]

−0.6 −0.6 −0.4

Figure 6. Hioki logger plot output showing the disturbance in temperature caused by cooling cycles
and entering and exiting the test facility.
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repeated cooling cycles and opening the door. The red graph indicates the measurements
of relative humidity. The relatively larger standard deviation for air temperature can,
therefore, be explained by the continued cooling cycle in the test facility.

When comparing measurements performed with Hioki vs Fluke, the temperature vari-
ations followed a similar pattern or trend.

There is a correspondence between the different temperature measurements, and the
greater standard deviation in air temperature is mainly due to the heating/cooling cycles
of the environment. In the following chapter, the average results from the Fluke instru-
ment are chosen to represent the values for air and water temperature.

Results and discussion

The desalinator`s capacity to produce freshwater was significantly reduced at lower temp-
eratures, but minor variations in the salinity levels were observed at the same tempera-
ture readings; see Table 6 below.

In the test performed at +23°C, the desalinator produced 5.4 litres of freshwater within
60 min, which is above the maximum specification. At +10°C, the desalinator produced
4.5 litres of freshwater, which is the average specification. In the remaining tests per-
formed at +7°C, +4°C and +2°C, the desalinator produced less freshwater than the
minimum specification for the equipment. The pump frequency during the test at +2°C
was the same (17.5 bpm (bpm)) as in the test performed at +4°C; however, the frequency
could have been reduced to 15 bpm in the test at +2°C, as the indicator occasionally
sprayed out some water during this test, which did not occur at +4°C. Dividing the
amount of freshwater produced by the total number of pumps performed during a 60-
minute test gives an approximate 0.003 litres freshwater produced per pump. Reducing
the pump frequency to 15 bpm in the test performed at +2°C would have resulted in
2.7 litres of freshwater (15 bpm×60×0.003 litres), instead of the 3.2 litres produced in
the tests performed at +4°C and +2°C. The test performed at +2°C was conducted the
day after the other tests; during this period the desalinator was stored at room tempera-
ture. This pause could potentially have had an effect on the desalinator’s capacity to reject
salt molecules; the salinity level measured in the test performed at +2°C (0.36 ppt) was
higher than in the other test results but still well within the specification for the desalina-
tor; average salt rejection capacity is set to a salinity level of 0.43 ppt and a minimum of
0.86 ppt. The low salinity levels measured in the produced freshwater could be associated
with an initial lower salinity level in the collected seawater (26.8 ppt) than the average
salinity specification of the desalinator (35 ppt).

Reliable data on the possible health effects associated with the ingestion of TDS in
drinking water are not available (World Health Organization [WHO] 1996). Nevertheless,
the presence of dissolved solids in water may affect its taste (Bruvold and Ongerth

Table 6. Test results of processed seawater at the various temperatures; initial salinity level PSU 26.8.
Mean seawater temperature [°C] 2.2 3.7 6.9 9.9 23.1

Mean air temperature [°C] 0.3 2.3 6.9 9.4 19.8
Desalted water obtained over 60 min [litres] 3.2 3.2 3.6 4.5 5.4
Pump frequency [bpm] 17.5 17.5 20 25 30
Salinity PSU for processed water [ppt] 0.36 0.19 0.15 0.11 0.12
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1969), defined by water’s organoleptic properties, evaluated by objectionable smell and
tastes, odours, colours and turbidity. The palatability of drinking water, rated in relation to
its TDS levels, is categorised as: excellent, less than 0.3 ppt; good, between 0.3 and 0.6 ppt;
fair, between 0.6 and 0.9 ppt; poor, between 0.9 and 1.2 ppt; and unacceptable, greater
than 1.2 ppt (World Health Organization [WHO] 1996). The quality of the produced fresh-
water in the experiment can therefore be categorised as excellent in four of the tests and
good in the test performed at +2C°, considering the evaluation of taste, sight and smell.

Previous studies exploring the expected performance criteria for survival equipment in
cold climate conditions show a significant reduction in the tested equipment`s function-
ality (Solberg, Gudmestad, and Kvamme 2016; Solberg, Gudmestad, and Skjærseth 2017;
Solberg and Gudmestad 2018). The maximum expected time of rescue is defined in the
Polar Code as the time adopted for the design of equipment and systems that provide
survival support and shall never be less than five days (International Maritime Organiz-
ation [IMO] 2017, Ch. 1.2.7). In this experiment, the desalinator was only exposed to
low temperatures during each test and for a total of five hours. The use and storage of
the desalinator over a five-day period in cold climate conditions could potentially affect
the equipment in a way which was not explored in this experiment, due to set time limit-
ations for the entire project.

Conclusions and recommendations

The test of the desalinator revealed that low seawater temperatures had a negative effect on
thedesalting apparatus`s capacity toproduce freshwater, showing the importanceof testing

Picture 7. The Fluke 54 II B thermometer and probes measuring air temperature, taped to a wooden
rail. The photo was taken during the test performed at +10°C.
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essential survival equipment in cold climate conditions, to revealweaknesses and challenges
not experienced in a tropical climate. This experiment provided a controlled andmonitored
environment that couldbedifficult to achieve in thefield. A similar experiment couldbe con-
ducted in outdoor areas, to explore added stress elements and on-site challenges which
might appear; e.g. operating the desalinator from a lifeboat vs a life raft would increase
the distance to sea surface, considering the limited length of the desalinator`s seawater
inlet hose (see Picture 8), which hypothetically could introduce a practical challenge.

A standardised test for desalting apparatus should be developed, similar to the temp-
erature cycling tests described in the Revised recommendation on testing of life-saving
appliances (International Maritime Organization [IMO] 1998b). In addition, if this type of
survival equipment is planned for in the provision of freshwater, the ship’s operational
risk assessment should reflect the desalting apparatus`s reduced capacity to produce
freshwater at low seawater temperatures, which could be compensated for by carrying
additional desalting apparatus.

Picture 8. Katadyn Survivor-35 desalinator (Katadyn Fact Sheet n.d.).

Picture 9. The (white) pressure indicating rod, extending from the (black) indicator housing while
pumping. The freshwater outlet hose is seen above. The photo was taken during one of the tests.
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Note

1. In the manual specifications for the Katadyn-35 desalinator (Katadyn Manual n.d.), an orange
band on the pressure indicating rod is described, revealing itself when pumping the handle.
The purpose of the orange band is to determine pump frequency; pump frequency should be
maintained as long as the orange band remains visible. If water sprays from the indicator,
pump more slowly. If the orange band is not visible, pump faster. However, there was no
orange band on the desalinator tested in the experiment.
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