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Abstract

ATM information providers publish reports and notifications of different types using standardized information exchange
models. For a typical information user, e.g., an aircraft pilot, only a fraction of the published information is relevant for a
particular task. Filtering out irrelevant information from different information sources is in itself a challenging task, yet
it is only a first step in providing relevant information, the challenges concerning maintenance, auditability, availability,
integration, comprehensibility, and traceability. This paper presents the Semantic Container approach, which employs
ontology-based faceted information filtering and allows for the packaging of filtered information and associated metadata
in semantic containers, thus facilitating reuse of filtered information at different levels. The paper formally defines
an abstract model of ontology-based information filtering and the structure of semantic containers, their composition,
versioning, discovery, and replicated physical allocation. The paper further discusses different usage scenarios, the role of
semantic containers in SWIM, an architecture for a semantic container management system, as well as a proof-of-concept
prototype. Finally the paper discusses a blockchain-based notary service to realize tamper-proof version histories for
semantic containers.
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1. Introduction

Providers of air traffic management (ATM) information
increasingly employ standardized information exchange
models for the publication of ATM information. The
Aeronautical Information Exchange Model (AIXM) [1],
the Flight Information Exchange Model (FIXM) [2],
and the ICAO Weather Information Exchange Model
(IWXXM) [3] are the most common examples of exchange
models in ATM. Different information providers publish
different types of information items, e.g., Digital NO-
TAMs, flight plans, or weather reports, on the SWIM net-
work, which relies on the standardized exchange models.
The SWIM network provides information consumers with
a uniform technical basis for accessing the various types of
ATM information published by a multitude of information
providers.

A consumer of ATM information, e.g., an aircraft pilot
or an air traffic controller, typically requires only a small
fraction of the available information in order to prepare for
a task. Providing ATM information packages, i.e., collec-
tions of relevant ATM information, encompasses retriev-
ing all the required information by making calls to various
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services offered by different information providers. In or-
der to reduce the information load, filter conditions may
be sent along with the requests for information directly
to the service providers. Alternatively, dedicated filtering
services or end-user applications may assume the filter-
ing task. The complexity of the filtering task, in turn,
may vary, from rather simple to more complex; Digital
NOTAM (DNOTAM) filtering [4] is a prime example of a
complex and computationally expensive filtering task.

The overall goal of the research presented in this paper
is to facilitate the provisioning and management of ATM
information packages. The challenges we tackle are the fol-
lowing. (i) Dealing with many different service interfaces
from different information providers without standardized
means to specify filter criteria makes the collection of rel-
evant information cumbersome. (ii) Information filtering
is often computationally expensive and conducting the in-
formation filtering from scratch for every information need
is highly inefficient. (iii) New information items must be
integrated over time to keep ATM information packages
up-to-date. For later auditability it is necessary to keep
track of every update and its provenance. (iv) Network or
service outages may hamper availability.

Solving these challenges is necessary for the scalable
provision of ATM information packages which we believe
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will play a central and ubiquitous role in the future SWIM
network where ATM information will be provided and fil-
tered at large-scale.

The overall contribution presented in this paper is
a platform-independent, ontology-based approach for the
provision and management of ATM information packages
– the Semantic Container approach developed in project
BEST [6]. A semantic container, the central construct
of the approach, represents an information need or infor-
mation package, and is described by type and origin of
information together with filter criteria.

The Semantic Container approach tackles the afore-
mentioned challenges as follows (using the same numbering
as above): (i) Information needs and information packages
are uniformly represented by semantic containers with fil-
ter criteria defined in shared ontologies to ensure a com-
mon understanding between ATM stakeholders and allow-
ing to abstract away from particular service calls. (ii)
Pre-filtered information packages can be re-used for the
derivation of task-specific information packages. The de-
scription of semantic containers facilitates automated dis-
covery of pre-filtered information packages as well as the
dynamic addition and removal from a derivation chain of
semantic containers. (iii) A semantic container maintains
a version history to verify which information was available
to the user at a particular point of time and to track the
provenance of each update. (iv) Replication of informa-
tion packages increases availability in case of network or
service outages.

This paper is a revised and extended version of a con-
ference paper [8]. The main additional contributions of
this paper are formal definitions of an abstract model of
ATM information, of ontology-aware information filtering,
and of the main constructs of the Semantic Container ap-
proach. The formal definitions precisely describe the Se-
mantic Container approach and the basics upon which it
builds, avoiding the ambiguities of the previously mainly
textual presentation of the approach. Additionally we de-
scribe a notary service that provides trusted timestamps,
thus enabling trusted version histories of semantic con-
tainers, allowing, especially in case of incidents, to verify
without doubt the contents of a semantic container at a
particular location at a certain point of time in the past.

The remainder of the paper is structured as fol-
lows. Sect. 2 explains the development of OWL ontolo-
gies from widely-used, standardized ATM information ex-
change models which serve as basis for ontology-based
ATM information filtering. Sect. 3 introduces an abstract
and formal model of ATM information and of ontology-
based ATM information filtering which underly the Se-
mantic Container approach. Sect. 4 introduces a for-
mal model of the Semantic Container approach, describ-
ing the core constructs of the approach in a precise and
implementation-independent manner. Sect. 5 discusses the
application potentials of the approach in SWIM and high-
lights the necessity for a Semantic Container Management
System as a concrete realization of the approach. Sect. 6

discusses an architecture of such a system and Sect. 7
presents a proof-of-concept prototype of a basic seman-
tic container management system and its integration with
a system for integrated digital briefing in SWIM. Sect. 8
presents different usage scenarios for semantic containers.
Sect. 9 discusses how blockchain technologies can provide
trusted timestamps for trusted version histories of seman-
tic containers. Sect. 10 gives an overview of related work
and Sect. 11 concludes with an outlook on future work.
A table of acronyms (Table 3) is given at the end of the
paper.

2. ATM Information Ontologies

The ontologies used in the Semantic Container ap-
proach are based on OWL ontologies and ontology modules
derived from ATM information exchange models (IWXXM
and AIXM) and from the ATM Information Reference
Model (AIRM) available as UML class diagrams. In
this section we describe the transformation from UML to
OWL, automatic extraction of modules, and the develop-
ment of more fine-grained ontologies by specializing the
concepts from the generated ontologies. We conclude the
section with a formalization of the aspects of ontologies
which are essential to the Semantic Container approach.

The ontology infrastructure includes ontologies devel-
oped from the AIRM UML model and a set of ontolo-
gies, each representing different domains of ATM informa-
tion exchange, namely AIXM [1] and IWXXM [3]. All
ontologies are formalized in the Web Ontology Language
(OWL) as standardized by the World Wide Web Consor-
tium. The ontologies are used as the vocabulary for de-
scribing and supporting retrieval of relevant information
by applications developed in the project. Furthermore, the
ontologies form a baseline for the establishment of guide-
lines describing how semantic technologies can be applied
to support information exchange in a SWIM environment.

The ontology development basically included three
sub-processes:

1. Transformation from UML to OWL

2. Automated extraction of modules

3. Development of fine-grained ontologies by extending
and refining the generated ontologies and ontology
modules

2.1. Transformation from UML to OWL

The first step in transforming UML to OWL was to
generate an XML Metadata Interchange (XMI) represen-
tation of the UML models. In the next step, we applied a
set of XSLT transformation rules to transform from XMI
to OWL. The transformation rules were developed with
support from the (non-normative) guidelines for mapping
between UML and OWL in the OMG ODM specification
(see Appendix A of [9]). Table 1 provides an overview of
the transformations performed; a more detailed explana-
tion of each transformation and its resulting OWL entity
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Table 1: Overview of transformation between UML and OWL

UML Construct OWL Construct

UML Class OWL Class
UML Generalization OWL SubClassOf
UML Boolean attribute OWL Class
UML Attribute with complex type OWL Object Property
UML Association OWL Object Property
UML Aggregation (AIRM only) OWL Object Property
UML Composition (AIXM, IWXXM) OWL Object Property
UML Attribute with simple data type OWL Data Property

is provided in [9]. The XSLT scripts used in the transfor-
mation are available online1.

For the AIRM, the transformation from UML to OWL
was fully automated using the XSLT transformation rules
described above. However, the IWXXM and AIXM ex-
change models include many package interdependencies,
intricate data typing, and other modelling conventions
(e.g. XOR relationships and association classes) that made
a fully automated transformation from UML (via XMI) to
OWL challenging. Therefore, for these two models the
transformation followed a semi-automatic ontology devel-
opment consisting of two consecutive processes. In the first
process, OWL classes and properties were generated auto-
matically using approximately the same XSLT transforma-
tion that was used for the AIRM. In the second process,
manual engineering using the ontology editor Protégé [11]
was applied to create and verify proper relationships be-
tween classes, object properties, data properties, and in-
dividuals, before an OWL representation of the exchange
models was complete and the module extraction described
in the next section could take place.

2.2. Automated Extraction of Modules

Monolithic ontologies can be characterized as large-
sized and complex, often spanning several different top-
ics and knowledge domains. Developing and maintaining
such monolithic ontologies is a cumbersome and sometimes
overwhelming task due to their size and complexity [13].
Advantages of ontology modules on the other hand include
that they promote use, re-use, more efficient processing,
and simple maintenance (to name a few).

The task of automatically decomposing a monolithic
ontology into a set of sub parts (modules) is called on-
tology modularization. There is no single approach to
ontology modularization that works for all situations, it
depends on the application requirements. There are how-
ever two overall strategies, namely 1) ontology partitioning
and 2) ontology module extraction. Ontology partitioning
consists of decomposing the full set of axioms in an ontol-
ogy into a set of modules (partitions) and the union of all
modules should in principle be equivalent to the original
ontology.

1https://w3id.org/airm-o/ontology/

Table 2: Modules generated from AIRM

Ontology Module Classes Object Data Indivi-
prop. prop. duals

Aircraft 71 84 32 182
AerodromeInfrastructure 117 345 69 0
NavigationInfrastructure 34 70 39 0
SurveillanceInfrastructure 34 21 17 0
Obstacle 12 27 8 0
BaseInfrastructureCodelists 100 0 0 1574
Meteorology 74 69 15 97
Stakeholders 148 131 40 316
Common 78 44 19 396

For example, Stuckenschmidt and Schlicht [14] applied
structural characteristics such as target module size and
number of target modules to determine suitable partitions
of an input ontology. Ontology Module Extraction ex-
tracts modules from an ontology based on a definition of
a sub-vocabulary, also called a seed signature. This signa-
ture consists of a set of entities (classes and/or properties
and/or individuals) from which the technique recursively
traverses through the ontology to gather related entities
to be included in the module [13].

In BEST, we employed the latter strategy and more
specifically a technique called Syntactic Locality Modular-
isation [14, 15], for extracting ontology modules from the
AIRM, AIXM and IWXXM monolithic ontologies. The
reason for this choice was primarily based on the use cases
we had in the BEST project. First, all the three original
models were structured according to topicality. For exam-
ple, the AIRM model is organized into different subject
fields, where each subject field is responsible for describ-
ing semantics about a certain topic, for example “Aircraft”
or “Meteorology”. Secondly, the semantic containers are
described in detail in Sect. 4.

The BEST project developed a set of prototypes sup-
porting different steps in the modularization process. The
module extraction functionality was implemented in Java
using the OWL API library (version 4.1.2). It is impor-
tant to realize that ontology modularization is not just
about extracting isolated modules from a monolithic rep-
resentation. To have a consistent set of modules in the
end (i.e. a network of modules), one must capture and
maintain dependencies among the extracted modules and
resolve any redundancy that might exist. For this reason,
a set of prototype ontology modularization applications
were developed 2.

2.3. Development of Fine-grained Ontologies

The ontologies and ontology modules generated from
exchange models and from the AIRM contain rather ab-
stract and generic concepts. For the purpose of ontology-
based information filtering they are extended with more
fine-grained concepts.

2https://github.com/sju-best-project/ontology-modules
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In the remainder of this paper we take an abstract
perspective on ontologies, since the Semantic Container
approach only uses the set of concepts defined by the on-
tology and the subsumption hierarchy (also referred to as
generalization hierarchy) of these concepts. For the Se-
mantic Container approach it is not relevant how these
concepts are defined and whether and how the subsump-
tion hierarchy is derived automatically.

Definition 1 (Ontologies). An ontology o ∈ O, taken
from the universe of ontologies O defines a set of concepts
Vo ⊆ V taken from the universe of concepts V. Concepts
are arranged in a subsumption hierarchy Go ⊆ Vo×Vo. We
say concept v is properly subsumed by concept v′, denoted
by v @ v′, if (v, v′) ∈ G+

o , where G+
o is the transitive

closure of Go; and v is subsumed by v′, denoted as v v v′,
if v @ v′ ∨ v = v′.

Example 1. An ontology AircrOnt defines concepts such
as Aircraft, from the AIRM, and more fine-grained con-
cepts such as HeavyAircraft (i.e., an aircraft in the
HEAVY wake turbulence category), Landplane and Boe-
ing747, i.e., VAircrOnt = {Aircraft, HeavyAircraft, Land-
plane, Boeing747, . . . }. These concepts are arranged,
by automatic classification, in a subsumption hierarchy
(also referred to as generalization hierarchy) GAircrOnt =
{(Boeing747, Landplane), (Boeing747, HeavyAircraft),
(Landplane,Aircraft), (HeavyAircraft, Aircraft), . . . }.
Boeing747 is thus properly subsumed by Landplane, de-
noted as Boeing747 @ Landplane, and also by HeavyAir-
craft and Aircraft. Note, the ontology further contains
concept definitions (e.g., the necessary and sufficient con-
ditions for an aircraft to be a HeavyAircraft) and prop-
erties which are not subject to the Semantic Container
approach but are rather used by an ontology reasoner to
derive the subsumption hierarchy of concepts. �

3. Filtering of ATM Information

In this section we define essential characteristics of
ATM information and of ontology-aware information fil-
tering that underlie the Semantic Container approach.

3.1. Abstract Model of ATM Information

We now introduce an abstract model of the informa-
tion provisioned in SWIM and covered by the Semantic
Container approach. Note, there are other kinds of infor-
mation exchanged in SWIM which are not covered by this
characterization and are thus not covered by the Semantic
Container approach.

In SWIM, information is provided and exchanged
based on standardized exchange models such as the
Aeronautical Information Exchange Model (AIXM) [1],
the Flight Information Exchange Model (FIXM) [2],
and the ICAO Weather Information Exchange Model
(IWXXM) [3] which, in turn, should conform to the ATM

Information Reference Model (AIRM) [7] and are thus cov-
ered by the ontology modules described in Sect. 2.

In the abstract model underlying the Semantic Con-
tainer approach, data items (often also referred to as mes-
sages or as information items) are the basic unit of infor-
mation provided in SWIM. There are many different types
of data items based on different information exchange
models, such as digital notices to airmen (NOTAMs) based
on the AIXM, and weather observations (METARs) or
weather forecasts (TAFs) based on IWXXM. The Seman-
tic Container approach is based on the abstract notion of
data item, abstracting from the specifities of the differ-
ent information exchange models and different data item
types.

Once issued (i.e., created and published) at some point
of time, a data item is immutable but may be replaced or
canceled by another data item. Depending on its type, a
data item may come with additional timing information,
such as the time of observation (of a METAR), or the
time a NOTAM becomes effective and the time it ceases to
be effective. While these type-specific timing information
may be used for type-specific filtering, the definition of
the Semantic Container approach is especially dependent
on the creation time, i.e., the point of time a data item is
issued.

Data items are published by a data provider, acting as
authoritative data source and origin. For example, Grou-
pEAD issues NOTAMs and is the authoritative source and
origin for the NOTAMs it issues. Similarly, the Met Office
issues METARs and TAFs. In order to apply an informa-
tion filter, one has to first specify the data item type(s)
and the data origin(s) of the to-be filtered data items.

The following definition summarizes the common prop-
erties of data/information items covered by the Semantic
Container approach.

Definition 2 (Data Items). A data item i ∈ I from the
universe of data items, I, has a data item type di ∈ D
taken from the universe of data item types, D, an origin
si ∈ S taken from the universe of data sources, S, and a
creation time ti ∈ T taken from the totally ordered set of
timestamps T . Given two timestamps t and t′, t is either
before or equal to t′, denoted as t � t′, or t′ is before t,
denoted as t′ ≺ t.

Example 2. An example data item i1 is a message of type
NOTAM, i.e., di1 = NOTAM, issued by data source Grou-
pEAD, i.e., si1 = GroupEAD, at time 16:32 on the 15th of
October, 2019, i.e., ti1 = 201910151632. Note, the content
of data item i1, e.g., notifying of a partial runway closure
at Frankfurt airport from October 20 to October 25, is
not subject to the Semantic Container approach but will
rather be analyzed by filter rules to decide if i1 is relevant
or not with regard to particular filter criteria. �

3.2. Ontology-aware Information Filtering

We now sketch the difference between information fil-
tering and data selection and introduce faceted ontology-
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aware information filtering, the filtering approach under-
lying the Semantic Container approach.

Information filtering is akin to data selection in
database querying (cf. selection in relation algebra). The
main difference between information filtering and data se-
lection is the complexity of the query. While the infor-
mation need underlying data selection can be directly ex-
pressed in a straightforward manner in a database query
and be executed by a query engine, the information need
underlying information filtering is more complex which
would make it extremely difficult to formulate it directly in
a query language. Instead, the information need for infor-
mation filtering should be expressed in a more declarative
form, with rule-based systems matching information need
to available ATM information. An example of a rule-based
system for ATM information filtering is SemNOTAM [4].

Faceted information filtering facilitates the specifica-
tion of an information need by filter criteria specifying fil-
ter conditions for different orthogonal facets. In ontology-
aware information filtering, every filter facet is associated
with an ontology and the possible filter conditions are the
concepts of that ontology.

The knowledge for filtering ATM information based on
ontologies is not contained in the definitions of concepts in
the ontologies but needs to be expressed in additional rules
for matching data items and filter conditions. For each
facet, a (typically rather complex) set of rules specifies
which information items are relevant or are not relevant
for which concepts.

We define essential properties of an ontology-aware in-
formation filtering system to be used in conjunction with
the Semantic Container approach. Such a system defines
a set of filter facets with the filter function (typically im-
plemented by a set of rules) of each facet adhering to the
subsumption hierarchy of the associated ontology.

Definition 3 (Filter facets). A facet f ∈ F , taken
from the universe of facets F , is a triple (of , Vf , ρf ), where
of ∈ O is the ontology from which the facet’s possible
filter conditions Vf are taken, i.e., Vf ⊆ Vof , and par-
tial Boolean function ρf : I × Vf → {true, false} deter-
mines the relevance of data items with regard to filter con-
ditions. The relevance of a data item i ∈ I with regard
to a filter condition v ∈ Vf is defined for facet f , de-
noted as (i, v) ∈ domdef(ρf ), or is undefined, denoted as
(i, v) 6∈ domdef(ρf ). In the former case, data item i is
either relevant with regard to v, denoted as ρf (i, v), or
irrelevant, denoted as ¬ρf (i, v).

Note, given a partial function f, we write domdef(f) to
refer to the domain of definition of f.

Example 3. A aircraft facet refers to the aircraft on-
tology AircrOnt from Ex. 1, oaircraft = AircrOnt
and uses concepts Vaircraft = { Aircraft, Landplane,
HeavyAircraft, Boeing747, . . . } as possible filter condi-
tions. According to the filter rules which analyze the

contents of data items, the relevance of data item i1
from Ex. 2 with regard to filter condition Landplane
for facet aircraft is undefined, i.e., (i1, Landplane) 6∈
domdef(ρaircraft), but it is defined for heavy aircraft, i.e.,
(i1,HeavyAircraft) ∈ domdef(ρaircraft), as relevant, i.e.,
ρaircraft(i1,HeavyAircraft). �

Each filter function ρf is defined by a shared set of
rules (since the Semantic Container approach is agnostic
towards the concrete rule mechanism we may also say that
filter functions are realized by filter services) which adheres
to the subsumption hierarchy of concepts as defined below.
This adherence to the subsumption hierarchy facilitates a
top-down evaluation of the filter function. Top-down eval-
uation is important for the Semantic Container approach
since it facilitates the reuse of packages of coarse-grained
filtered information as input for more fine-grained filtering.
When the coarse-grained filter criteria subsume the fine-
grained filter criteria, applying the fine-grained filter crite-
ria on the coarse-grained filtered information will produce
the same result as applying the fine-grained filter criteria
directly on the unfiltered set of data items.

Definition 4 (Subsumption Hierarchy Adherence).
Let v ∈ Vf and v′ ∈ Vf be two concepts used as filter
conditions of filter facet f with concept v subsum-
ing concept v′, v′ v v. If a data item i ∈ I is
relevant with regard to v in the context of facet f
then i is also relevant to v′ in the context of f , i.e.,
(i, v) ∈ domdef(ρf )∧ ρf (i, v)∧ v′ v v ⇒ ρf (i, v′). Thus, if
i is relevant to v′ it is either also relevant to v or its rele-
vance regarding v is undefined. If a data item i ∈ I is not
relevant with regard to v then i is also not relevant to v′,
i.e., (i, v) ∈ domdef(ρf ) ∧ ¬ρf (i, v) ∧ v′ v v ⇒ ¬ρf (i, v′).
Thus, if i is not relevant to v′ it is either also not relevant
to v or its relevance regarding v is undefined.

Example 4. (continued from Ex. 3) Since i1 is relevant
for heavy aircraft it is also relevant for Boeing747, i.e.,
ρaircraft(i1,Boeing747) is also true. �

4. The Semantic Container Approach

In this section we introduce semantic containers as
packages of filtered information. We begin our discussion
and formalization of semantic containers with elementary
logical containers, the core construct of the Semantic Con-
tainer approach used to represent elementary information
needs and information packages alike. We then continue
with subsumption checking as a basis for searching for and
reusing existing containers. Furthermore, we introduce
versioning and physical allocation of semantic containers
and finally discuss composite containers which collect data
items of different types and/or different origins.

In the previous section we discussed the kinship be-
tween information filtering and data selection. From that
perspective, semantic containers are akin to views in rela-
tional databases with the main difference that they are not
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based on data selection (like views in relational databases)
but rather on ontology-aware information filtering.

4.1. Ontology-based Description of Filtered Information

The core construct of the Semantic Container approach
is the elementary logical container which represents the set
of data items of a given origin, a given data item type, and
filtered according to the given filter criteria. That set of
data items is also referred to as the container’s content.

Definition 5 (Elementary Logical Containers). An
elementary logical container c ∈ C is defined by a triple
(dc, sc, γc) where dc ∈ D is the container’s data item type,
i.e., the type of the data items contained in the container;
sc ∈ S is the origin (also referred to as authoritative
source) of the container’s data items, and γc : F → V are
filter criteria given as a partial function mapping facets
to concepts. The contents of a container, Ic ⊆ I, are all
data items of type dc issued by sc and not irrelevant with

regard to filter criteria γc, i.e., Ic
def
= {i ∈ I | di = dc∧si =

sc ∧ @f ∈ domdef(γc) : ¬ρf (i, γc(f))}.

Example 5. An elementary logical container c1 repre-
sents NOTAMs, dc1 = NOTAM, issued by GroupEAD,
sc1 = GroupEAD, filtered for flights from Frankfurt
to London Heathrow conducted with a heavy aircraft,
γc1 = { location 7→ FRAtoLHR, aircraft 7→ HeavyAircraft
}. With data item i1 being of type NOTAM, being issued
by GroupEAD, and being neither irrelevant for location
FRAtoLHR nor for aircraft HeavyAircraft, it will be one
of the data items contained by c1, i.e., i1 ∈ Ic1. A special
kind of elementary logical container are containers with
unfiltered content, e.g., c0 represents all NOTAMs issued
by GroupEAD, i.e., dc0 = NOTAM, sc0 = GroupEAD,
γc0 = {}. �

4.2. Ontology-based Discovery of Filtered Information

The Semantic Container approach facilitates discovery
of filtered ATM information (i.e., available semantic con-
tainers) to, first, fulfill a given information need or, second,
to derive possible derivation chains for existing containers.
In both cases, with information needs also represented as
logical containers, the goal is to discover the available con-
tainers from which the contents of the given logical con-
tainer can be derived by applying the given filter criteria.
Based on subsumption checking, the system determines
available containers which subsume the given logical con-
tainer, and thus always contain a super-set of the contents
sought. Based on the assumption that filter rules adhere
to the concept subsumption hierarchies (see Def. 4) we can
define the derivation of a subsumption hierarchy of seman-
tic containers from concept subsumption hierarchies.

Definition 6 (Subsumption of Semantic Containers).
A container c ∈ C subsumes another container c′ ∈ C, de-
noted as c′ v c, if both have the same origin and the same
data item type and for every facet of c’s filter criteria,

the filter condition of c subsumes the filter condition of

c′, i.e., c′ v c
def
= dc′ = dc ∧ sc′ = sc ∧ ∀f ∈ domdef(γc) :

γc′(f) v γc(f). Container c properly subsumes c′ if c
subsumes c′ and c and c′ have different filter criteria, i.e.,

c′ @ c
def
= c′ v c ∧ γc 6= γc′ .

Example 6. Container c2 ∈ C represents the information
need of an aircraft pilot preparing for a flight from Frank-
furt to London Heathrow on Oct-19 using a Boeing 747,
γc2 = { aircraft 7→ Boeing747, location 7→ FRAToLHR,
time 7→ Oct-19 }. The aircraft pilot needs all the rel-
evant NOTAMs, dc2 = NOTAM, issued by GroupEAD,
sc2 = GroupEAD. Information need c2 is subsumed by
container c1, c2 v c1, since they have the same data item
type, dc1 = dc2, the same origin sc1 = sc2, and for every
facet, aircraft and location, of γc1, the filter condition of
c1, HeavyAircraft and FRAtoLHR, respectively, subsumes
the filter condition of c2, Boeing747 and FRAtoLHR, re-
spectively. c1 also properly subsumes c2, c2 @ c1, since
their filter criteria are not the same. Now, consider an
additional container c3 with dc3 = NOTAM, sc3 = Grou-
pEAD and γc3 = { location 7→ FRAtoLHR } which, based
on its definition, properly subsumes both c1 and c2. Ob-
viously, container c0 with its unfiltered content, properly
subsumes c1, c2, and c3. �

In order to reduce the effort for further information fil-
tering, only the most relevant information packages should
be discovered. Consequently, out of a set of containers
subsuming a given logical container only the most specific
ones, i.e., those with the most specific filter criteria, should
be selected. Such a most-specific subsumer contains all the
needed information and there is no more specific container
which also contains all the needed information. If there are
multiple most-specific subsumers, their intersection may
serve as input to further filtering.

Definition 7 (Most-Specific Subsumer). Given
a container c̄ ∈ C and a set of available con-
tainers C ⊆ C, the set of most-specific sub-
sumers of c̄ in C, denoted by Ĉ(c̄,C), is given by

Ĉ(c̄,C)
def
= {c ∈ C | c̄ v c ∧ @c′ ∈ C : c̄ v c′ @ c}. Note, if

c̄ is in the set of available containers C, then c̄ is its own
most-specific subsumer in C.

Example 7. (continued from Ex. 6) Let the set of avail-
able containers consist of containers c0 (containing all NO-
TAMs from GroupEAD), c1 (like c0 but filtered for flights
from FRA to LHR conducted with a heavy aircraft), and
c3 (like c0 but filtered for flights from FRA to LHR). The
semantic container c2, representing an information need
of an aircraft pilot (for NOTAMs from GroupEAD for a
flight from FRA to LHR with a Boeing747 on Oct-19),
is properly subsumed by containers c0, c1 and c3. Since
c0 properly subsumes c3 which in turn properly subsumes
c1, only c1 is a most-specific subsumer of c2, denoted as
Ĉ(c2,{c0,c1,c3}) = {c1}. Container c1 is thus the most rele-
vant available container for information need c2 and may
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be provided as-is to the aircraft pilot or as input for fur-
ther filtering. Assuming there is a further available con-
tainer c4 (like c0 but filtered for flights on Oct-19) then
the most-specific subsumers of c2 are c1 and c4, denoted as
Ĉ(c2,{c0,c1,c3,c4}) = {c1, c4} In this case, the intersection of
containers c1 and c4 may be provided as-is to the aircraft
pilot or as input for further filtering. �

4.3. Versioning of Semantic Containers

ATM information is inherently dynamic. Data sources
frequently publish new data items leading to updates of
the contents of semantic containers. Semantic containers
keep track of every update by keeping a version history
which allows to rebuild past states of information. This is
important in the follow-up of incidents to analyze decisions
and their information base.

Definition 8 (Container Versions). The set of ver-
sion timestamps Tc ⊆ T of a container c is the set
of timestamps where the container’s data origin sc is-
sued data items of the container’s data item type dc, i.e.,

Tc
def
= {t ∈ T | ∃i ∈ I : di = dc∧si = sc∧ti = t}. For every

version timestamp t ∈ Tc there exists a container version
c〈t〉. A container version c〈t〉 contains all the container’s

data items until t, i.e., Ic〈t〉
def
= {i ∈ Ic | ti � t}. The

delta set of c〈t〉, denoted as I+
c〈t〉, is the (possibly empty)

set of data items added with version c〈t〉, and is defined as

I+
c〈t〉

def
= {i ∈ Ic | ti = t}.

Example 8. (continued from Ex. 5 and Ex. 2) So far, con-
tainer c1 has a single data item i1 as content with creation
time ti1 = 201910151632 and thus has a single version
c1〈201910151632〉 and a single delta set I+

c1〈201910151632〉 =

{ i1 }. At time 20:12 on the 16h of October, 2019, Grou-
pEAD issues three more NOTAMs, i2, i3, and i4, with
ti2 = ti3 = ti4 = 201910162012 of which i2 and i4 fulfil the
filter criteria of c1. Thus, a new version c1〈201910162012〉
comes to existence with delta set I+

c1〈201910162012〉 = { i2,

i4 } and the contents of the new container version be-
ing Ic1〈201910162012〉 = { i1, i2, i4 }. Fifteen minutes
later, GroupEAD issues two more NOTAMs, i5 and i6,
with ti5 = ti6 = 201910162027, which are not relevant
with regard to the filter criteria of c1. Thus, a new
version c1〈201910162027〉 comes into existence with an
empty delta set, I+

c1〈201910162027〉 = {}, and thus having the

same contents as the prior version, i.e., Ic1〈201910162012〉 =
Ic1〈201910162027〉. This new version with empty delta set in-
dicates that the latest updates from GroupEAD, namely
NOTAMs i5 and i6, have been considered but were filtered
out as irrelevant. �

4.4. Distribution of Filtered Information

Semantic containers come with a simple, yet power-
ful, distribution and replication concept: Each logical
container has a (possibly empty) set of physical copies

stored at different locations, making the container’s con-
tents available also off-line or in case of network failures.
It is important to note that the update cycle of a physi-
cal container may be independent of the versioning of the
corresponding logical container, where the latter solely de-
pends on when the data origin issues data items. This in-
dependence paves the way for both push- and pull-based
handling of updates.

In case of unavailability of primary sources of filtered
information, a physical container may be updated from
secondary sources with lesser information quality produc-
ing degenerated container versions which will later be re-
synchronized. The re-synchronization potentially com-
prises adding and/or deleting data items from the physical
representation of a logical container version – in order to
be able to reconstruct the information available to a user
or application at a previous point in time, in such a case,
physical container versions are not changed but additional
physical container versions are created. It is up to the ser-
vice or application which uses the contents of the container
to adequately deal with potentially degenerated quality
and with potential conflicts due to re-synchronization –
typically, a user application will inform the user about the
temporarily lower quality of information and about the
eventual re-synchronization.

Definition 9 (Container Allocation). A logical con-
tainer c ∈ C has a (possibly empty) set of physical copies
allocated at different locations Lc ⊆ L taken from the uni-
verse of locations L. A physical container c@l is container
c allocated at location l ∈ Lc.

• A physical container has an update history with
Tc@l ⊆ T being the set of update timestamps.

• A physical container version c〈t〉@l〈t′〉 is the physi-
cal representation of logical container version c〈t〉 at
location l produced with the physical container update
at time t′ ∈ Tc@l.

• If a physical container version c〈t〉@l〈t′〉 is marked
as final, denoted as final(c〈t〉@l〈t′〉), then its con-
tent Ic〈t〉@l〈t′〉 and its delta set I+

c〈t〉@l〈t′〉 must be

equal to content Ic〈t〉 and delta set I+
c〈t〉, respectively,

of the corresponding logical container version c〈t〉,
i.e., final(c〈t〉@l〈t′〉) ⇒ Ic〈t〉 = Ic〈t〉@l〈t′〉 ∧ I+

c〈t〉 =

I+
c〈t〉@l〈t′〉.

Example 9. (continued from Ex. 8) Logical container c1
has two physical copies c1@Fra and c1@Lon allocated at
locations Fra and Lon, i.e., Lc1 = { Fra, Lon }. Phys-
ical container c1@Fra is updated at 20:13 producing a
final physical container version c1〈...2012〉@Lon〈...2013〉.
Note: timestamps are abbreviated, 〈...2012〉 stands for
〈201910162012〉.

Due to a network outage the data source at Grou-
pEAD, physical container c1@Fra, as well as the NOTAM
filtering service are unavailable from location Lon from
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time 20:11. Physical container c1@Lon thus becomes stale.
When data source GroupEAD becomes available again at
time 20:14, container c1@Lon, in order to avoid missing
possibly mission-critical information, takes the unfiltered
information from GroupEAD to produce a preliminary
(and degenerated) version c1〈...2012〉@Lon〈...2014〉 with
delta set I+

c1〈...2012〉@Lon〈...2014〉 = {i2, i3, i4} and later a

degenerated version with delta set I+
c1〈...2027〉@Lon〈...2027〉 =

{i5, i6}.
As soon as physical container c1@Fra becomes avail-

able again from location Lon at time 20:30, the degen-
erated versions of c1@Lon are archived for later repro-
ducibility, and replaced with c1〈...2012〉@Lon〈...2030〉 and
c1〈...2027〉@Lon〈...2030〉 by replication from c1@Fra to fi-
nally get physical delta sets I+

c1〈...2012〉@Lon〈...2030〉 = {i2,

i4} and I+
c1〈...2027〉@Lon〈...2030〉 = {}. �

4.5. Composition of Semantic Containers

A consumer of ATM information in order to prepare for
a task typically has a complex information need comprising
various types of data items, issued by different information
providers, and often also combining different sets of filter
criteria. The description of such information needs and
the management of corresponding information packages is
made possible by composite containers.

Definition 10 (Container Composition).
Elementary containers C and composite containers
K are arranged in a part-of hierarchy P ⊂ (C ∪ K) × K.
With P+ being the transitive closure of P we derive for
composite container k

1. its set of component elementary containers Ck
def
=

{c ∈ C | (c, k) ∈ P+},
2. its contents Ik

def
=

⋃
c∈Ck

Ic.

Different classes of composite containers can be differ-
entiated based on whether their components have all the
same origins, the same filter criteria, and/or the same data
item type. A composite container k is called homogeneous
if all its components have the same data item type, i.e.,
∀c, c′ ∈ Ck : dc = dc′ , or heterogeneous, otherwise. It
is called single-origin if all its components have the same
origin, i.e., ∀c, c′ ∈ Ck : sc = sc′ , or multi-origin, other-
wise. It is called conjunctively filtered if all its components
have the same filter criteria, i.e, ∀c, c′ ∈ Ck : γc = γc′ , or
disjunctively filtered, otherwise.

Example 10. Aircraft pilots preparing for a flight from
Frankfurt to London Heathrow on Oct-19 are not only
interested in relevant NOTAMs provided by GroupEAD
but also in weather forecasts of type TAF provided by
DWD and MetOffice. Elementary containers c4 and c5
with dc4 = dc5 = TAF, and sc4 = DWD and s5 = MetOf-
fice and γc4 = γc5 = {location 7→ FRAtoLHR, time 7→
Oct-19} are combined into a homogeneous composite con-
tainer k1. Elementary container c6 with dc6 = NOTAM

and sc6 = GroupEAD and γc6 = γc5 is combined with k1
into a heterogeneous composite container k2. The part-of
hierarchy is P = {(c4, k1), (c5, k1), (c6, k2), (k1, k2)}. The
set of component elementary containers of k2 is Ck2 = {c4,
c5, c6} and its contents are the union of the contents of
its elementary containers Ik2 = Ic4 ∪ Ic5 ∪ Ic6. Composite
container k2 is called a multi-origin container because its
component containers have different origins, namely Grou-
pEAD, DWD, and MetOffice. It is called a conjunctively-
filtered container since its components all have the same
filter criteria, namely {location 7→ FRAtoLHR, time 7→
Oct-19}. It is a heterogeneous container since its compo-
nents have different data item types, namely NOTAM and
TAF. �

5. Discussion: Semantic Containers and SWIM

In this section we discuss the application of seman-
tic containers in SWIM and align the discussion with the
constructs of the Semantic Container approach formally
defined in the previous section.

Semantic containers encapsulate the data logic of
SWIM services [16] and clearly separate it from business
and presentation logic. A semantic container allows de-
velopers to organize and make sense of the provided ATM
information. A semantic container provides a SWIM ap-
plication or service with all the relevant ATM informa-
tion, hiding the complexities of compiling the information
package. Semantic containers come with ontology-based
metadata that allow users, services, and applications to
know what the content of the container is and assess the
freshness as well as the quality of the data.

The provisioning of semantic containers for a specific
purpose encompasses the discovery of existing source con-
tainers and often further filtering steps [17]. These tasks
are supported by matching of information need and avail-
able semantic containers and services. Based on a for-
mal ontology-based specification - employing the ontology
infrastructure - of the information needed for an opera-
tional scenario, the semantic container management sys-
tem should find existing containers that most closely fulfil
the specified information need and identify missing pro-
cessing steps. Note that the implementation of the cor-
responding algorithms of identifying missing processing
steps to obtain a full match is left to future work. More
information about the definition of a semantic container
can be found in [18] and [19].

Effective use of the Semantic Container approach de-
veloped in BEST depends on the existence of a Seman-
tic Container Management System (SCMS) controlling
the replication, distribution and consistency of contain-
ers. In the field of distributed databases, there are many
existing techniques for distribution, replication and consis-
tency management, mostly based on a single generic data
model. In BEST, we refine existing techniques using dif-
ferent types of models for different kinds of information
[20]. The specific configuration of semantic containers and
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realization of update strategies are left to the SCMS, the
Semantic Container approach only serves as a basis for
their realization.

High availability of information and low network load
are key goals for the success of the SWIM approach. Se-
mantic containers, supported by an SCMS, can contribute
significantly to these goals. The Semantic Container ap-
proach distinguishes between logical and physical contain-
ers to indicate which containers are allocated at which
nodes. The Semantic Container approach also allows for
the definition of different versions of containers, supporting
consistency management and different forms of synchro-
nization. Finally, semantic containers allow for traceabil-
ity of data provenance, and definition of composite con-
tainers that gather data from lower-level elementary con-
tainers. We stress that the Semantic Container approach
applies to various types of ATM information as well.

In SWIM, different applications require different types
of ATM information at various degrees of freshness and
availability. An aircraft pilot may, for example, request
current weather data. For availability’s sake, consistency
may be sacrificed: Slightly outdated weather information
is better for a pilot than none. With respect to notifi-
cations about runway closures, on the other hand, pilots
require fresh data because wrong information would entail
potentially disastrous consequences. Semantic containers
allow us to make the inherent trade-off between freshness
and high availability tangible for the consumer of ATM in-
formation: A semantic container packages ATM informa-
tion and the resulting packages can be redundantly stored
at multiple locations for high availability; administrative
metadata indicate freshness and data quality. As for the
metadata in the core Semantic Container approach pre-
sented in Sect. 4, every semantic container has origin, data
item type, and filter criteria; every version has a version
timestamp; every physical container has a location; and
every physical container version has an update time. Fur-
ther metadata, for example describing quality and prove-
nance, can be attached to logical and physical containers
as well as logical and physical container versions. It is left
open to future work to develop update strategies based on
additional metadata attached to semantic containers and
to realize them as part of an SCMS.

Semantic containers also increase availability of the
overall system by considering multiple sources of ATM in-
formation which semantic containers may be derived from.
The semantic container metamodel [17] allows for the rep-
resentation of multiple data sources for the same semantic
container. An SCMS may switch dynamically and trans-
parently between different sources. Different sources may
provide the same data with different quality to ensure that
the consumer is alert to any reduction in quality of ser-
vice. A primary source is a source with the highest data
quality among the sources of the container. Secondary
sources of lesser quality are only used when no primary
source is available at the expected freshness. The seman-
tic container metamodel [17] goes beyond the core of the

Semantic Container approach presented in Section 4 by
facilitating a distinction between primary and secondary
sources of filtered information based on their assumed in-
formation quality.

An advantage of packaging ATM information in seman-
tic containers is the possibility to allocate relevant informa-
tion directly in the aircraft that operates a specific flight.
The semantic container can be created a couple of days
prior to the date the actual flight takes place, being filled
with relevant information in advance. Shortly before the
flight, at the departure airport with high bandwidth, the
container can be uploaded onto the plane, and during the
flight updated with only the critical information or infor-
mation that requires low bandwidth. The specific con-
figurations for en-route information provisioning based on
semantic containers has to be realized as part of a SCMS.

ATM information is inherently dynamic: Government
authorities and authoritative sources, e.g., GroupEAD,
push new data and updates to existing data. Hence,
the Semantic Container approach requires a mechanism to
keep the contained ATM information up to date. The Se-
mantic Container approach comes with a versioning mech-
anism which is independent of its concrete realization and
which paves the way for both push- and pull-based han-
dling of updates. The concrete handling of updates and
the choice of update strategies is left to the SCMS.

Multiple service consumers may request the same ATM
information from a remote entity. Typically, each request
for ATM information is processed individually, thereby
putting stress on the available bandwidth. With a SCMS
in place, SWIM services may cache frequently requested
ATM information (e.g. weather data) as semantic con-
tainers. They can even store the semantic containers at
locations where they are frequently needed, thereby reduc-
ing the bandwidth and computation effort. For example, a
NOTAM filtering service may cache relevant NOTAMs for
the most important flight routes as semantic containers.
When concrete requests for specific flights come in, rather
than sifting through the whole body of NOTAMs currently
in place, the service may use the pre-filtered semantic con-
tainers as a starting point for further filtering. It is left
open to future work to develop algorithms which optimize,
with regard to frequent information needs, the provision
of pre-filtered information packages and their allocation at
different locations.

6. Architecture of a Semantic Container Manage-
ment System

In this section we introduce a possible architecture for a
SCMS. A semantic container management system (SCMS)
fits well into the decentralized, service-oriented architec-
ture of SWIM as it builds on the same technology stack.
What an SCMS adds to SWIM is a decentralized system
for the management of filtered ATM information and asso-
ciated metadata on which other SWIM services can build.
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A semantic container intended to be reused by others, can
be made available as a kind of information service.

The Semantic Container approach, as formalized in
this paper, may be implemented in many different forms;
the Semantic Container approach is independent of a con-
crete software and data distribution architecture. Other
and maybe more adequate architectures may be developed
in the future based on the vast literature on distributed
systems (e.g., [21][22]). The proposed architecture as de-
scribed in this paper serves two purposes:

1. to give a more complete picture of a globally dis-
tributed SCMS, and

2. to serve as a starting point for the development of
more advanced software and data distribution archi-
tectures.

An SCMS is distributed over multiple server locations
and multiple client locations. Locations are connected
over the internet. Container content and metadata are
allocated redundantly at multiple locations. Centrally-
provided software is run independently at the different
locations which cooperate to provide globally-distributed
semantic container management. Container content and
metadata are allocated redundantly at multiple locations.
A semantic container consists of location-independent
metadata (represented by the logical semantic container),
location-dependent metadata (represented by the physi-
cal semantic container) and content (also referred to as
data/information, e.g., a set of AIXM Digital NOTAMs).

The container metadata can be represented as RDF
triples [10]. All container metadata can thus be collected
into an RDF graph. This RDF graph of all semantic con-
tainers is fully replicated at every server location and par-
tially replicated at client locations. Each location runs an
RDF database management system (a.k.a. graph store)
and SPARQL query engine for storing, modifying and
querying (parts of) the RDF graph. Modifications of meta-
data at some location are replicated in an asynchronous
manner to other locations to provide for redundancy of
metadata in case of connection or network failures. Replica
consistency of metadata is maintained by giving priority
to most recent writes.

Container contents remain in their original form (XML
documents according to AIXM, IWXXM, or FIXM).
Each location runs an XML database management sys-
tem (a.k.a. document store) for storing and querying the
contents of its allocated containers.

Each server location independently runs a software
package which makes available functionality for managing
and querying data and metadata via RESTful web ser-
vices. A client location (or sink), e.g., an electronic flight
bag on board of an aircraft, may run a client variant of
the software package which provides a subset of this func-
tionality. The software package (in its server and client
variants) is distributed from a central software repository.

A client location provides functionality for:

1. Allocating an existing semantic container

2. Provisioning of semantic containers including con-
tent and metadata

3. Keeping data and metadata of allocated semantic
containers up-to-date via push and/or pull from their
primary sources

4. Keeping semantic containers up-to-date from alter-
native sources in case of unavailability of primary
sources

A server location additionally provides functionality for:

5. Creating a semantic container, determining locations
for its physical allocation

6. Calling services to derive/update the contents of se-
mantic containers

7. Forwarding modifications of semantic containers to
client containers via push and pull

8. Creating, updating and deleting semantic containers

9. Discovery of semantic containers

7. Semantic Container Proof-of-Concept

In this section a proof-of-concept prototype is described
in which the Semantic Container approach is integrated
into a SWIM environment. Possible users of such an
approach are all ATM stakeholders sharing, consuming,
and exchanging SWIM data like Airlines, Airports, and
ANSPs. Figure 1 gives an overview about the various sys-
tems involved in this scenario. The goal of the scenario is
to give an idea how the TRL1 concept can be used in a
complete SWIM life-cycle.
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Figure 1: SWIM enhanced by Semantic Container [10]

For the scenario the Frequentis SWIM Registry (i.e.,
a collection of meta-data about available SWIM services
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together with a web-based tool for exploring and query-
ing these meta-data) was integrated to provide not only
information about SWIM services but also about seman-
tic containers via SWIM. The SCMS is used to define and
create containers that are then visible through the SWIM
registry. On an organizational level the Frequentis SWIM
integration platform - called MosaiX - serves to configure
organization internal the SWIM information for the spe-
cific SWIM applications. The information is ultimately ac-
cessed by a SWIM application. For the BEST integration
we used an existing SESAR 1 prototype [23], namely the
Integrated Digital Briefing from that project’s WP13.2.2.

7.1. Integration: SWIM Registry

As a starting point to demonstrate setup and use of se-
mantic containers, a SWIM service registry is introduced.
This registry provides a list of available SWIM services
and semantic containers. It also allows to query informa-
tion about these service providers (e.g., source, content,
freshness) and harmonizes the both types in a single view.
For the current use case a dedicated Frequentis Semantic
Container Service Registry was adapted. This registry lists
available SWIM services and semantic containers together
with the functionality to show details about the services
or edit entries.

Besides showing the content of existing semantic con-
tainers, it is also possible to create new containers in the
SCMS. Opening the SCMS allows to view further details
about the semantic containers.

7.2. Prototype: Semantic Container Management System

The SCMS is used to create and maintain semantic
containers. In the section “Containers”, a new container
can be created. The user can either create a new container
and select an XML file to be used as payload, or copy an
existing container to create compound containers. It is also
possible to already create a semantic container restricted
to a specific aircraft type. After creating the container,
the container hierarchy can be explored in the SCMS.

7.3. Integration: SWIM Integration Platform

To configure available data sources for an organiza-
tion the Frequentis MosaiX SWIM Management Console
is used.In this console, it is possible to establish, manage
and monitor relevant data sources for an organization to
provide access for those entities with legal permission.

The overall goals for this integration platform are in-
teroperability within the heterogeneous application land-
scape, data integration (consistent metadata and version-
ing), as well as monitoring data streams especially in re-
gard to security and compliance rules.

7.4. Integration: SWIM Integrated Digital Briefing

Based on the described use cases [19] Figure 1 shows
the components of the SWIM application with integrated
semantic containers. In red one can see the SWIM services
that are used to fill the semantic containers needed for the
digitally enhanced Pre-flight Information Bulletin (ePIB).

The SWIM application is managed by the organiza-
tional SWIM integration platform, which is responsible for
the service management, data mediation and other config-
uration options. Since the SWIM Integration Platform is
also used as the access point to the SWIM Registry all reg-
istered SWIM services and semantic container services are
available. For SWIM applications it is completely trans-
parent to connect to either a SWIM service or a semantic
container. However, to benefit from additional function-
ality provided in semantic containers (i.e., requesting a
defined data quality like freshness or locality) also SWIM
applications must be adapted for that purpose.

The prototype has been integrated to use the BEST
semantic container concept and is able to retrieve con-
tainerized filtered information to be used as such without
further need of filtering. The integration of the seman-
tic container concept into an existing SWIM application
showed that it can be used without any changes and only
little integration is necessary to visualize the added value
provided by the semantic containers.

8. Usage Scenarios

To demonstrate characteristics and benefits of semantic
containers in the SWIM environment, we present different
usage scenarios. Business procedures were compared be-
tween current settings and the envisioned use of semantic
containers. A more detailed account of this usage scenarios
can be found in [10].

8.1. Pilot Briefing for a Flight from Germany to Austria

This scenario (see Fig. 2) compares centralized data
distribution from Eurocontrol vs. decentralized data
sources from local ANSPs for a pilot briefing application
that requires specific (filtered) data. Data sources include
current weather information, NOTAMs, and airport infor-
mation from the start and destination airport.

While a centralized legacy services requires to handle a
large number of messages and a big storage (about 45 GB
for the major airports in Europe), the decentralized ap-
proach distributes this load as expected between effected
ANSPs (580 MB in Austria and 5,4 GB in Germany).
Since the majority of the data hardly changes (e.g., air-
port information) it makes sense to store this information
in a distributed way.

8.2. Information Needs of a Fuelling Service

In this scenario (see Fig. 3), a fuelling service company
operating at Frankfurt airport requests tailored informa-
tion in order to plan and improve its operations. DFS
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Figure 2: Pilot Briefing

provides flight plan information and Fraport AG supplies
a query interface for further relevant information about
the airport.

| © 2016 Frequentis AGClassificationPresentation title|2

DFS

legacy 
service

Fraport AG

SC

Fuel service

legacy 
service SC

Figure 3: Fuelling Service

The benefit in this scenario is a single interface with
consistent data. In case of inconsistent update intervals
among services providing data, a semantic container can
serve for data harmonization and also act as stable inter-
face during updates.

8.3. Airline Managing its Fleet

In this scenario (see Fig. 4) various information
providers relevant for an airline use Semantic Containers
to funnel relevant data. Data sources in this scenario in-
clude flight plan information, localized weather data, NO-
TAMs, and airport information from ANSPs, as well as
global weather information.

A solution employing semantic containers provides here
standardized handling of all data to merge information
from various sources and enables a ‘single version of the
truth’ with most up-to-date data within an organisation.
In addition, containers allow to collect data over a period
of time and then simulate certain combined scenarios (e.g.,
severe weather conditions together with strikes at an air-
port) for an airline to study the impact on the entire fleet.
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Figure 4: Airline Information Integration

8.4. Flight Data for an Intercontinental Flight

In this scenario (see Fig. 5), for an intercontinental
flight from Australia to Europe, information from a num-
ber of FIRs must be collected and can be updated ‘live’
with a container on board the airplane. The data is again
about weather information and relevant airports and NO-
TAMs en route together with data that is generated by
the aircraft during the flight.
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Figure 5: Flight Data for flight from Sydney to Vienna

For this scenario a legacy system does not exist, but
such a solution would make instant scenario evaluation on
board possible and would automatically generate a com-
plete audit trail for each flight.

8.5. Benefits of Semantic Containers

In the five above-mentioned scenarios, three general
benefits could be identified:

1. Decoupling of services: Semantic containers decou-
ple information consumers from information service
providers and in this way, make it easier to replace
and maintain SWIM components.

2. Improved message distribution: Data provider in the
SWIM context process many requests from differ-
ent applications. With semantic containers providers
can package and compress those usually small mes-
sages to a single response and deliver the necessary
data in a more efficient way, improve reliability of
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the overall network, and increases response times for
SWIM applications.

3. Easier testing and monitoring of end-to-end work-
flows in SWIM networks: Semantic containers can
act as black boxes in a SWIM network and allow
shielding functionalities behind. When testing a new
data provider or consumer a semantic container acts
as a single interface with defined behaviour and thus
allows a wide range of tests in a realistic environ-
ment. It would also be possible to record data traffic
over a time and then replay this traffic in a test sce-
nario. Additionally, semantic containers occupy crit-
ical nodes in a SWIM network and allow therefore
monitoring data traffic at the relevant points.

9. Towards Trusted Semantic Containers

An SCMS providing mission-critical data and meta-
data requires special consideration of trustful commu-
nication to ensure authentication, integrity, and non-
repudiation of data and metadata. Furthermore, when
reappraising an incident, one needs a trusted version his-
tory of physical containers to be able to retrieve without
doubt the version of the semantic container that was avail-
able when the incident happened.

In a decentralized system, trust can only be provided
based on cryptography protocols [25]. Semantic containers
can leverage cryptography protocols to provide trustful se-
mantic container management and secure SWIM. Digital
signatures can serve as basic technology to provide authen-
tication, integrity and non-repudiation for single semantic
containers.

Trusted timestamps will provide the foundation for
making the update history of a physical container a trusted
version history, that is, to make it tamper-proof. In a
physical container with trusted version history, after each
update the then current state of the container includ-
ing metadata and content will get a trusted timestamp.
The update timestamp (which is a container-internal non-
trusted timestamp) will then be linked to the trusted
timestamp and stored together in the physical container as
part of its metadata (which will in turn receive a trusted
timestamp together with the content after the next up-
date).

In this section we will describe a notary service which
we have built to provide such trusted timestamps. The
notary service is freely available for experimentation and
in turn builds on the Ethereum blockchain and a Time
Stamping Authority (TSA).

9.1. The Need for a Notary Service

Digital content can be easily copied and manipulated.
But when data is shared or sold, there is a need to record
the exact state and timestamp of that data. Example sce-
narios for such requirements may be pieces of music by

artists who want to prove the authorship of a tune, con-
tent on the internet such as hate postings that may be
only briefly available, or the sale of data that is provided
with a well-defined usage policy.

Another important aspect in the storage of this data
are legal framework conditions such as the GDPR, and
commercial aspects to generate such information (current
state and timestamp) with only a low fee or even free.

9.2. Relevant Technical Building Blocks

There are already a number of technical solutions to
individual aspects of the challenges described above and
this section describes the technologies used.

• Snapshot of digital content: hash functions are well-
established methods for producing an almost-unique
fingerprint of a bit-stream. Currently, a SHA256
hash value is used which generates a 32-byte mes-
sage.

• Distributed Ledger Technologies (DLT) allow decen-
tralized storage of transactions that guarantee the
immutability of the data contained therein. For the
notary service the Ethereum blockchain is used as
DLT.

• Merkle trees: Since storing a transaction in a dis-
tributed ledger is associated with a cost (mining fee),
one option is to store several hash values in one trans-
action to reduce the price tag. At the same time, the
available storage space is limited (comparable to the
”Reference” field in a conventional bank transfer).
Using Merkle trees (as described in RFC 6962), it is
possible to combine any number of hash values in a
binary tree, and only the root node to storage at a
time. To verify a hash value, the root node is then
necessary together with an audit proof.

• Trusted Timestamp: the algorithm described in
RFC 3161 has been established in EU Regulation
910/2014 (eIDAS) as a binding method of electronic
identification and trust services for electronic trans-
actions. In this case, a provided hash value is cryp-
tographically signed together with a current time
stamp by a so-called timestamp authority. While
storing a hash values in the blockchain is a decentral-
ized way of making data immutable, Trusted Times-
tamps offer centralized immutability which is legally
binding in the EU.

The use of a decentralized storage mechanisms
(Ethereum blockchain) as trusted timestamp is not yet
fully recognized in courts all over Europe and therefore it
makes sense to additionally use a centralized and legally es-
tablished trust service based on an EU regulation. On the
other hand, if the certificate for the used Time Stamping
Authority (currently Germany-based freeTSA.org) is re-
voked the blockchain-based timestamp is available as fall-
back.
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9.3. Providing a Notary Service

The parts described above are combined into an easy-
to-use notary service. In particular two functionalities
must be provided for such a service: (i) notarization of
a specified hash value, and (ii) verification of an existing
hash value to retrieve its status, i.e., what is the associated
timestamp. For usability reasons, these two requirements
are combined in a single function so that the hash value
passed is either saved if it does not exist and the respective
status is always returned.

The described notary service is available via an API
endpoint3. The following examples demonstrate its usage.

9.4. Usage Scenario

As an example, the hash value of the string ”hello
world” is used:

$ echo -n "hello world" | openssl dgst -sha256

(stdin)=b94d27b9934d3e08a52e52d7da7dabfac484efe37a538

0ee9088f7ace2efcde9

9.4.1. First request
$ curl https://blockchain.ownyourdata.eu/api/doc?hash

=b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee

9088f7ace2efcde9

{

"status": "new",

"address": "",

"root-node": "",

"audit-proof": [],

"dlt-timestamp": "",

"tsr": "MIIN...5cXA==",

"tsr-timestamp": "2019-08-15T20:29:59Z",

"oyd-timestamp": "2019-08-15T20:29:59Z"

}

Result. The status ”new” indicates that this hash value
was passed for the first time and the field ”oyd-timestamp”
states the time provided by the notary service itself. Also,
a Trusted Timestamp (field tsr) is created and returned
base64 encoded. For easy readability, the timestamp ”tsr-
timestamp” received from the timestamp authority is also
provided in the response.

The following command can be used to check the
trusted timestamp (stored in the file.tsr file) for a hash
value:

$ openssl ts -verify -data <(echo -n

"b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee

9088f7ace2efcde9") -in file.tsr -CAfile

cacert.pem -untrusted tsa.crt

The files cacert.pem and tsa.crt, which are also re-
quired for this purpose, must be provided by the respec-
tive Timestamp Authority. The notary service uses a free
timestamp service4. Currently the timestamp service from
is used.

3https://blockchain.ownyourdata.eu/api/doc
4https://freetsa.org

9.4.2. Subsequent request
$ curl https://blockchain.ownyourdata.eu/api/doc?hash

=b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee

9088f7ace2efcde9

{

"status": "exist",

"address": "",

"root-node": "",

"audit-proof": [],

"dlt-timestamp": "",

"tsr": "MIIN...5cXA==",

"tsr-timestamp": "2019-08-15T20:29:59Z",

"oyd-timestamp": "2019-08-15T20:29:59Z"

}

Result. Only the ”status” field has changed to ”exist”.

9.4.3. Request after the entry has been stored in the
blockchain

Every day at 6 o’clock UTC, all entries of the notary
service not previously stored in the blockchain are com-
bined in a Merkle tree and the root node is stored in the
blockchain. The mining fee is paid by a non-profit associ-
ation5.

$ curl https://blockchain.ownyourdata.eu/api/doc?hash

=b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee

9088f7ace2efcde9

{

"status": "exist",

"address": "0x761519431eb768f5a7d4cec38a28172ec68fc

4cfa35c40f31cda603f4961cddc",

"root-node": "5ca0442dfb2a277d6bbe2397994723fdfacc2

f2002f8a143e7d77dc2bfe8b444",

"audit-proof": "-d9fe724f791e98a2c2fdc4bbb21f5b357e

38fbde228ada1a7dd5e5044b8610bf, -e663e58ce01a53bd

dcea2760c0b8981118bff6094be23b6f4d63619ec48c8c15,

-85eeb 4ac012e8fe6d977474a7735449cd924bd106dc07b9

219a76b33df8b25b0,-970bbad0eb493c67f2c1298490fa69

79f05874002c6401fcb9d248548d67c322,-e792a7cc91f9b

c2314f449e45be663d0fd5a33e265ba3a521cd53efb0dc979

33",

"dlt-timestamp": "2019-08-16T06:00:08Z",

"tsr": "MIIN...5cXA==",

"tsr-timestamp": "2019-08-15T20:29:59Z",

"oyd-timestamp": "2019-08-15T20:29:59Z

}

Result: by storing all entries in the blockchain, the
following additional information becomes available:

1. address: address in the Ethereum blockchain where
the root node was stored. The data at this address
can read using free web services6 the specified ad-
dress can be read, for example https://ethersca

n.io/tx/0x761519431eb768f5a7d4cec38a28172e

c68fc4cfa35c40f31cda603f4961cddc

5Verein zur Förderung der selbstständigen Nutzung von Daten,
https://OwnYourData.eu Public charity to foster personal use of
data

6for example: https://etherscan.io
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2. root-node: the computed root node stored in the
Ethereum Blockchain

3. audit-proof: the hash value together with the audit
proof uniquely identifies the root node of the Merkel
tree (as described in RFC 6962); however, it is im-
portant for each element to indicate whether it is the
left (+) or right (-) node along the path, hence the
+/- prefixes for each entry

4. dlt-timestamp: timestamp of the blockchain when
the transaction was mined

To use the API features described here, there is also an
easy to use web frontend7. Users can there calculate the
hash value of a file via drag & drop and request to store it
in the blockchain as well as retrieve a trusted timestamp.
All necessary information will then be displayed (status,
time stamp) or offered for download (TSR file and rele-
vant certificates) as well as instructions for independent
verification.

Summarizing, OwnYourData offers an open source and
free service for the creation of independently verifiable
data including time stamp. It offers both decentralized
storage in a blockchain and legally binding processing via
EU regulations. To cover the costs incurred, a time denom-
ination of 1 day was selected for storage in the Ethereum
blockchain.

10. Related Work

Semantic web technologies in general and ontologies in
particular are increasingly being used for management of
ATM information. We refer to Keller [26] for a survey on
approaches applying semantic web technologies in ATM.
A notable example of an ontology for ATM is the NASA
ATM Ontology [27, 28].

The Semantic Container approach is closely related
to semantic web services. Semantic annotation of web
services renders the service descriptions machine-readable
which, in turn, facilitates automatic discovery as well as
composition of web services [29]. Among the types of se-
mantics covered by web service descriptions are data se-
mantics and functional semantics [30, p. 980]. The Seman-
tic Container approach adopts a data-centric view towards
web services: Semantic containers are the data products
that are the output of web services, thus covering the data
semantics of ATM information services. Unlike work on
semantic web services, which is predominantly concerned
with web service discovery, the presented approach for the
description of data products explicitly considers distribu-
tion and maintenance of the data products after provision-
ing through the corresponding web services.

The FAA’s Web Service Description Ontological Model
(WSDOM) [31] allows for the semantic description of web
service interfaces in the aeronautical domain. An exten-
sion of the WSDOM ontology for geospatial concepts [32]

7https://notary.ownyourdata.eu

employs GeoSPARQL as representation format and query
language for web service discovery. The WSDOM ontology
and its extension for geospatial concepts are orthogonal to
the Semantic Container approach. We do not focus on the
web services as such but on the management and discovery
of data sets. To this end, we introduce the notion of se-
mantic containers and employ ontologies for the semantic
description of container contents.

Related work [33] investigates the design and execution
of web service workflows. In that context, metadata man-
agement has also been identified as an important topic [34].
Derivation chains of semantic containers provide a data-
centric view on ATM information service workflows.

The concept of data mashups [35] is also related to
semantic containers. Other work [36] propose the appli-
cation of secure multiparty computation to build privacy-
preserving data mashups.

The algebra of qualified relations [37], a well-
established approach to distributed database management,
served as a main inspiration for container versioning and
consistency management in a distributed environment. We
adapt the underlying concepts of the algebra for qualified
relations for SWIM information services and extend the
concept with semantic labels to support the management
of containers, specifically the discovery but also the de-
scription of container lineage and provenance.

Zander and Schandl [38] propose to use “Semantic Web
technologies to build comprehensive descriptions of user’s
information needs based on contextual information” and
employ the descriptions to “selectively replicate data from
external sources.” Keeping local copies of relevant data
on mobile devices, so that an application on the mobile
device can operate also without network connectivity.

Replication of semantic containers is related to distri-
bution and replication of (dynamic) XML documents [39,
40]. In comparison to existing approaches, semantic con-
tainers offer a unique combination of version manage-
ment, distribution, replication, and fine-grained prove-
nance tracking. Instead of relying on a single generic
data model, e.g., XML, the Semantic Container approach
uses different data models for different kinds of informa-
tion – XML for data, RDF for metadata, OWL for seman-
tic labels. In contrast to generic XML-based approaches,
the Semantic Container approach leverages the specifics of
ATM information exchange, with data items like NOTAMs
and METARs constituting the lowest grain of fragmenta-
tion.

The PROV-O ontology considers activities that are as-
sociated with an agent and use entities that were them-
selves generated by activities and derived from other en-
tities. The Semantic Container approach builds on that
provenance concept by considering services (activities)
that are associated with a service provider (agent) and
use containers (entities) that were themselves generated
by services (activities) and derived from other containers
(entities).

Literature on database replication distinguishes be-
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tween eager and lazy replication [41]. Distributed semantic
container management could follow both an eager and lazy
replication approach, depending on the criticality of the
data – for non-safety critical data, lazy replication may be
preferable due to the lower replication costs. Lightweight
approaches to versioning for database systems have also
been proposed, e.g., OrpheusDB [42]. When datasets are
collaboratively authored, version management is of impor-
tance and appropriate techniques for version management
in the spirit of common version control systems must be
developed [43].

11. Conclusion and Future Work

The implementation of the SWIM concept enables di-
rect ATM business benefits to be generated by assuring the
provision of commonly understood quality information de-
livered to the right people at the right time [24]. Semantic
containers as described in the BEST project build on this
concept and establish additional patterns in such an in-
formation network. However, considering that as of today
still only a limited number of SWIM services is opera-
tional, we need to acknowledge that any service on top
– like semantic containers – will require even more time
before they become operational. Nevertheless, more and
more SWIM services will become operational over time
and it makes sense to already think now about addressing
foreseeable bottlenecks that can be solved with semantic
containers.

A replication mechanism for the redundant storage
of packages of filtered ATM information promises higher
availability of mission-critical data within SWIM while
at the same time reducing the network load of SWIM.
By packaging ATM information in semantic containers,
SWIM information services may cache often used infor-
mation and thus avoid frequent calls to other SWIM ser-
vices. Furthermore, semantic containers are a mecha-
nism to retain provenance information when packaging
ATM information from different SWIM information ser-
vices. Thus, when a composite SWIM information service
returns a composite semantic container based upon infor-
mation from various other SWIM services, provenance in-
formation about the semantic container’s components is
preserved, which is important for auditability purposes.

The proof-of-concept scenario has shown that the Se-
mantic Container approach can extend the SWIM concept
and add value to it by facilitating data discovery through
semantic annotation, thus leveraging necessary benefits in
SWIM networks. Since BEST was a TRL 1 project, future
work will improve the semantic container concept and val-
idate the SWIM integration in a comprehensive manner.
This should include more scenarios, including data from
an airline, an airport, and ANSPs and SWIM components
such as the SESAR 2020 SWIM registry.

Information sharing via semantic containers builds on
common and fine-grained ontologies providing commonly
understood filter conditions. Shared rule sets realize filter

Table 3: Acronyms

Acronym Explanation

AIRM ATM Information Reference Model
AIXM Aeronautical Information Exchange Model
ANSP Air Navigation Service Provider
ATM Air Traffic Management
BEST Archieving the BEnefits of SWIM by making smart

use of Semantic Technologies – a SESAR project
DFS Deutsche Flugsicherung – the ANSP for Germany
DLT Distributed Ledger Technologies
ePIB enhanced Pre-flight Information Bulletin
FAA Federal Aviation Administration
FIR Flight Information Region
FIXM Flight Information Exchange Model
GDPR General Data Protection Regulation
ICAO International Civil Aviation Organization
IWXXM ICAO Weather information Exchange Model
METAR METeorological Aerodrome Reports
NOTAM Notice to Airmen
ODM Ontology Definition Metamodel
OMG Object Management Group
OWL Web Ontology Language
REST Representational State Transfer
RDF Resource Description Framework
RFC Request for Comments
SCMS Semantic Container Management System
SESAR Single European Sky ATM Research
SPARQL SPARQL Protocol and RDF Query Language
SWIM System Wide Information Management
TAF Terminal Aerodrome Forecast
TRL Technology Readiness Level
UML Unified Modeling Language
XML Extensible Markup Language
XMI XML Metadata Interchange
XSLT Extensible Stylesheet Language Transformations

functions of filter facets which can be provided as infor-
mation filtering services. We expect the main effort with
realizing the Semantic Container approach is with the de-
velopment, maintenance, and governance of shared ontolo-
gies and rule sets. We expect fine-grained ontologies and
rule sets to be developed and maintained by different com-
munities. Faceted ontology-based information filtering al-
lows to combine ontologies and rule sets in a modular way.
This gives a high degree of flexibility supporting different
strategies for development, maintenance, and governance
of ontologies and rule sets.

Further details on the approach, including the full text
of project deliverables (and summaries thereof), informa-
tion about how to access technical results of the project
(software and ontologies), and a short video explaining
some technical details of parts of the work, are available
on the project website (https://project-best.eu/).
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