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A Multiscale Approach for Whole-Slide
Image Segmentation of five Tissue Classes
in Urothelial Carcinoma Slides
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Abstract
In pathology labs worldwide, we see an increasing number of tissue samples that need to be assessed without the same increase in the
number of pathologists. Computational pathology, where digital scans of histological samples called whole-slide images (WSI) are
processed by computational tools, can be of help for the pathologists and is gaining research interests. Most research effort has been
given toclassify slides as being cancerousornot, localization of cancerous regions, and to the “big-four” in cancer: breast, lung, prostate,
and bowel. Urothelial carcinoma, the most common form of bladder cancer, is expensive to follow up due to a high risk of recurrence,
and grading systems have a high degree of inter- and intra-observer variability. The tissue samples of urothelial carcinoma contain a
mixture of damaged tissue, blood, stroma, muscle, and urothelium, where it is mainly muscle and urothelium that is diagnostically
relevant. A coarse segmentation of these tissue types would be useful to i) guide pathologists to the diagnostic relevant areas of the
WSI, and ii) use as input in a computer-aided diagnostic (CAD) system. However, little work has been done on segmenting tissue types
in WSIs, and on computational pathology for urothelial carcinoma in particular. In this work, we are using convolutional neural
networks (CNN) for multiscale tile-wise classification and coarse segmentation, including both context and detail, by using three
magnification levels: 25x, 100x, and 400x. 28 models were trained on weakly labeled data from 32 WSIs, where the best model got an
F1-score of 96.5% across six classes. The multiscale models were consistently better than the single-scale models, demonstrating the
benefit of combining multiple scales. No tissue-class ground-truth for complete WSIs exist, but the best models were used to segment
seven unseen WSIs where the results were manually inspected by a pathologist and are considered as very promising.
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Introduction

Worldwide, 549 393 new cases of bladder cancer were diag-

nosed in 2018, in addition there were 199 922 deaths due to the

disease. This makes bladder cancer the 10th most common type

of cancer in the world.1 Men are overrepresented, with approx-

imately 75% of the cases.2 The most common type of bladder

cancer is urothelial carcinoma, with over 90% of the cases.3 Of

the patients diagnosed with bladder cancer, 50% to 70% will
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experience recurrence, and 10% to 30% will advance to a

higher disease stage.4

Treatment and follow up of urothelial carcinoma are

primarily based upon histological grade and stage, evalu-

ated manually by an expert pathologist studying the histo-

logical images of the tumor using the latest WHO16

classification system.5 Correct grade and stage are essential

to avoid over- or under-treatment, and thereby unnecessary

suffering for the patient. For most pathology departments,

evaluation of histological images is still performed through

a microscope, a time-consuming process, not always repro-

ducible.6 Digital pathology has been introduced to improve

diagnostic accuracy, and certain computer-aided diagnostic

(CAD) tools are in use for other diseases. However, such

tools are currently not in use for the assessment of urothe-

lial carcinoma and could potentially be of great value to

patients and clinicians.

Non-muscle invasive bladder cancer is usually treated with

transurethral resection of the tumor. The removed tissue con-

tains both atypical urothelium from the tumor as well as

stroma, but can also contain smooth muscle from the bladder

wall, normal urothelium from surrounding mucosa and blood.

During the procedure, parts of the tissue can get damaged, for

example in terms of heating damage induced by laser or elec-

trically heated wire loop. Areas on the whole-slide images

(WSI) with blood and damaged tissue will not be suitable for

extracting diagnostic and prognostic information, and a pathol-

ogist will discard such regions on inspection. CAD systems

processing WSI must be able to identify trustworthy interesting

areas of resected tissue, but also identify damaged areas and

regions that should be excluded from further analyses.

This paper proposes an automatic method for classifying

WSI tiles from urothelial carcinoma cases into the following

categories: urothelium, stroma, muscle, damaged tissue, blood,

and background, utilizing different magnification scales.

Examples from each class are shown in Figure 1. The output

of such a system can be used as a guide for pathologists, pro-

viding a quick visualization of where the different tissue types

can be found. To the best of the author’s knowledge, a system

for segmenting urothelial carcinoma WSIs into each tissue

class does not exist. For determination of stage, pathologist

wants to identify if muscle tissue is present or absent in the

WSI and whether the tumor has infiltrated it. As muscle tissue

is often sparse in the WSI, it can be time-consuming to get a

full overview of its locations. However, with the help of seg-

mented tissue images, it can be verified in a short amount of

time. In the future, training data for a CAD system will be

created by utilizing the best model developed through this

paper by extracting diagnostic relevant features from the appro-

priate and relevant regions in the WSI. As this problem is not

strictly dependent on classifying all six tissue classes, a binary

approach is also experimented with in this paper classifying

only urothelium vs. non-urothelium tissue to see if an increase

in urothelium extraction can be achieved.

Tile-based classification of WSI has been done earlier.7

However, by only classifying a single tile, it leaves out infor-

mation from the surrounding area. Moreover, WSI viewed on

different magnification scale identifies different information.

Figure 1. Example tiles of each class extracted at three magnification scales. Tiles at each scale are extracted from the same center pixel. The

magnification scale is increased by a factor of 4 in each step, resulting in the tile covering 16 times as much area, even though they have the same

size of 128 � 128 pixels.
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During an examination, a pathologist will integrate information

across several magnification levels before reaching a final deci-

sion. Low magnification (25x) will show global context infor-

mation such as papillary architecture, outline, and the border of

the tissue, as well as color and texture. Nuclear polarity can be

evaluated in the mid magnification (100x), while high magni-

fication (400x) will reveal cytological features like cell size and

shape, mitosis, as well as cell nucleus characteristics as con-

tour, size and colorization intensity, and distribution.

The proposed method combines global context information

found at lower magnifications (25x, 100x) with local informa-

tion found at the highest magnification (400x) using deep

neural networks to extract features from the different scales,

thereafter concatenating the features feeding the last classifier

layers of the network. Different neural network models were

tested which utilized different combinations of the scales.

Related Work

It is not possible to feed an entire gigapixel WSI into a deep

neural network, and a practical solution to this is to divide WSI

into tiles and feed the tiles sequentially to the deep neural net-

work. There are primarily two methods for semantic segmenta-

tion within medical applications. The first, which utilizes

models capable of providing pixel-wise classifications, can out-

put segmentations with high resolution. These networks are

usually based on the fully convolutional networks (FCN) intro-

duced by Long et al. in.8 Popular models are the U-net model by

Ronneberger,9 and variants of this.10,11 As these networks can

detect small details, they are often used in cell and nuclei seg-

mentation,12,13 but also on tumor segmentation tasks.14 The

downside, however, is the need for pixel-wise ground-truth

annotation for supervised learning, which is difficult and time-

consuming to generate, especially in many medical applica-

tions. These networks are typically trained and tested on small

example-patches from WSIs, since no dataset with a pixel-wise

annotation of cells and tissue types on full WSI exist.

The second approach is based on tile-wise classification,

where the models output a class label for each tile. This results

in a coarser segmentation with the resolution of the tile size,

and thus are more often seen for classification tasks rather than

segmentation tasks. Nevertheless, it has been used in tumor

segmentation methods.15-19 As every pixel within the tile

belongs to the same class, the tile-based ground-truth annota-

tion process is significantly simplified for classification and

localization of regions within histological images.

A combination of both tile-wise and pixel-wise classifica-

tion has been seen for segmentation of WSI by Guo et al.20

Firstly, a tile-based prediction using Inception-V3 gives a

coarse segmentation of the WSI, followed by a pixel-wise clas-

sification of only the tumor tiles for refined segmentation of

those areas. This approach can speed up the segmentation pro-

cess relative to a pixel-wise segmentation of the entire slide;

however, the need for pixel-wise ground-truth in all region of

interests is still a significant challenge.

A pathologist studying a slide would typically zoom in and

out, looking at both details and context. To similarly include

these features in an artificial intelligence (AI) model, some

multiscale approaches have been suggested. Models are trained

with multiple input tiles, either taken from different magnifica-

tion scales or taken from the same scale but with varying sizes to

accommodate for a larger field of view. In the work of Sirinu-

kunwattana et al.,21 the author has performed a systematic com-

parison between five single-scale and five multiscale

architectures, tested on four classes of prostate cancer and four

classes of breast cancer. Both tiles extracted at different magni-

fication levels, as well as tiles of various sizes, were tested; and

the result supports the claim that incorporating a broader visual

context improves the outcomes. Another multiscale approach

was used by Vu et al.,13 which created a network named multi-

scale deep residual aggregation network (MDRAN). First, a tile

is extracted from the WSI at 200x magnification, and then

resized to x0.5 and x2 the original size. The three scales (0.5x,

1x, 2x) were then aggregated in the model and used to accurately

segment nuclei of non-small cell lung cancer (NSCLC). Since

the models uses multiple inputs, the architectures often become

more complex, and the total number of parameters within the

models also goes up. This affects both the training and inference

time of the models.

Most previous work on WSI classification is targeted on

segmenting cancerous vs. non-cancerous areas of the WSI, and

often the non-cancerous class may include several tissue

classes. E.g. the work just mentioned by Vu et al.13 also per-

formed WSI classification of NSCLC into three classes:

NSCLC adeno (LUAD), NSCLC squamous cell (LUSC) and

non-diagnostic (ND). The ND regions, in this case, consisted of

fat, lymphocytes, blood vessels, red blood cells, normal stroma,

cartilage, and necrosis without any attempt to separate these

classes. Sometimes, however, there can be useful information

in stroma, muscle, or other non-cancerous tissue types as well.

There are some very few reported works on segmenting various

tissue types. In,22 Li et al. propose a model with dual inputs

trained to segment WSI from the ICIAR2018 breast cancer

dataset into normal, benign, situ, and invasive regions. Also,

a transfer learning model with multiple inputs was explored by

Wang et al.23 to segment histological images of inflammatory

bowel disease (IBD) into the four categories: muscle regions,

messy regions, messy þ muscle regions and background.

Kather et al.24 used a deep learning model to classify tiles from

colorectal cancer into eight different classes of tissue: tumor

epithelium, simple stroma, complex stroma, immune cell con-

glomerates, debris and mucus, mucosal glands, adipose tissue,

and background.

Relatively little work is aimed at segmentation of bladder

cancer WSIs. In the work of Xu et al.,18 a method for predicting

low or high tumor mutational burden (TMB) in bladder cancer

patients was investigated. As a preprocessing step, a tile-wise

tumor vs. non-tumor classifier was used to segment out the

tumor regions from the surrounding tissue. An SVM classifier

was then used to predict the patient’s TMB state using

extracted histological image features from the tumor regions.
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A similar approach was used by Zhang et al.,14 where a U-net

like network was used to predict each pixel into tumor or

non-tumor as a preprocessing step before using another neural

network for predicting the slide level diagnosis. As urinary

bladder tumors are removed using a laser, burnt and damaged

tissue is often present at the WSI. Muscle, stroma, and blood

will also be part of the removed tissue and visible in the WSIs.

But no effort is aimed at identifying these regions, even though

they may contain valuable information for a pathologist.

The recent research efforts show promising results utilizing

deep neural networks in different configurations for classifying

and localizing cancerous areas. However, most effort is made

on the “big four” in cancer (i.e., breast, lung, prostate, and

bowel), performed on some publicly available datasets. Still,

there is relatively little work done on other cancer types, on

multiclass classification, on tissue-type classification, and seg-

mentation/heat maps of full WSI.

Aims and Contributions

In Wetteland et al.,25 we presented a method based on convolu-

tional neural networks (CNN) for classifying tiles of urothelial

carcinoma WSI into the six classes shown in Figure 1. The

model utilized the autoencoder architecture and was first pre-

trained on a large unlabeled dataset, and afterward fine-tuned

on an annotated dataset. The models did not include any con-

text, as both the unlabeled and labeled dataset was extracted at

the full image resolution of 400x magnification.

The main contribution of the current paper is to combine

histological images from different magnification scales into the

model, giving the model access to a greater field of view and

more context of the surrounding tissue. The resulting models

are also used to generate segmented images of all the tissue

classes within bladder cancer WSIs. An extensive number of

experiments are conducted to find the best combination of

inputs and magnification levels for the given task. The method

utilizes the pyramidical image file format to extract tiles from

existing down-sampled versions already present in the file,

excluding any up- or down-sampling, limiting the number of

necessary computational operations. Transfer learning is incor-

porated by building on the VGG16 network rather than the

autoencoder model. To summarize, this paper proposes an

automatic multiscale system, merging inputs of 25x, 100x, and

400x magnification, based on a CNN for classification of

whole-slide histological images into six classes.

A preliminary study of this work was published by Wette-

land et al. as an abstract.26 Here we present much more com-

prehensive experimental work and a description of the method.

Materials and Methods

First, the data material will be introduced and explain how the

datasets are prepared. Afterward, the proposed system for tis-

sue segmentation is presented. Then the structure of the model

is described, and finally, the training procedure and model

selection is explained.

Data Material

The data material consists of digital whole-slide images from

patients diagnosed with primary papillary urothelial carci-

noma, collected at the University Hospital of Stavanger, Nor-

way, in the period 2002-2011. The biopsies are formalin-fixed

and paraffin-embedded, from which 4 mm slices are cut and

stained with Hematoxylin Eosin Saffron (HES).

Figure 2. The WSI is stored in a pyramidal file format, including several down-sampled versions of the base image. The annotated region

(marked with red at level 0) determines which tiles to extract. Tiles are then extracted at the desired location from all three levels.
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The prepared tissue samples are scanned at 400x magnifica-

tion using the Leica SCN400 slide scanner, producing image

files in Leica’s SCN file format. The images are stored as a

pyramidal tiled image with several down-sampled versions of

the base image in the same file to accommodate for rapid

zooming. Each level in the file is down-sampled by a factor

of 4 from the previous level. Figure 2 shows an example of a

pyramidal histological image with three levels. The Vips

library27 is capable of extracting the base image as well as the

down-sampled versions, making it easy to extract the dataset at

each resolution.

Two datasets were collected from the described data mate-

rial, referred to as the CV dataset and the inference dataset,

both are described below.

CV dataset. An expert pathologist carefully annotated selected

regions in the WSI, where each region includes one of the six

classes. A total of 239 regions belonging to the five foreground

classes was annotated in WSI from 32 unique patients. The

background regions were extracted from seven randomly

selected patients.

The annotated regions contain tight corners and narrow pas-

sages to accommodate the shape of the tissue regions in the

WSI. When extracting tiles from the WSI, a grid of non-

overlapping tiles was superimposed upon the annotated region

at 400x magnification level. The tiles in the grid which lie

outside of the region are regarded as invalid and will not be

used, whereas tiles within the region are valid. By shifting the

grid in the X- and Y- direction, more or fewer tiles become

valid. To maximize the number of valid tiles, an automatic

search algorithm was developed. The algorithm checks the

number of valid tiles for all possible positions of the grid. The

grid location with the highest number of valid tiles was used to

extract the dataset from that region. This search was performed

individually for each region.

Tile sizes of 64� 64, 128� 128, and 256� 256 pixels were

tested when extracting tiles with the automatic program. Using

a tile size of 64 � 64 extracted the most extensive dataset, but

the size may be too small as each tile contain little context

information. With a tile size of 256� 256, the extracted dataset

became very small, especially for the stroma and muscle class.

A tile size of 128� 128 was thus chosen as a trade-off between

the other two sizes. When a tile is saved from the region, the

corresponding tiles from 25x and 100x magnification were also

extracted in such a manner that the center pixel is the same in

all three magnification levels, as can be seen in the right-half of

Figure 2.

The extracted 400x magnification tiles are ensured to stay

within the region border. However, by keeping the tile size the

same, the lower magnification (25x, 100x) tiles will have a

wider field of view, allowing for more context of the surround-

ing tissue to be included. Consequently, these tiles will, in

some cases, include several classes. Because the annotation

process requires specific expertise input, the dataset contains

a limited number of samples. Furthermore, the labels are

imprecise as they do not include samples of the labeled border

between tissue regions. This would require multi-label sam-

ples, an even more expensive annotation process. As a result

of this, the dataset is weakly labeled in both quantity and

quality.

No normalization of the stain color is performed on the data,

and the raw pixel intensity is used to train the models.

Stroma- and muscle-tissue are more sparsely distributed in

the WSI, resulting in a smaller amount of data for these classes.

Data augmentation techniques have been utilized to balance the

dataset. Tiles from these two classes are extracted with 50%
overlap, and further rotated and flipped during training to

achieve a more balanced dataset. The size of each class is listed

in Table 1.

Due to the low number of patients in the dataset, a tradi-

tional train/validation/test split could potentially hurt both the

training and evaluation of the models. Instead, stratified 5-fold

cross-validation is used. This enables the usage of all WSIs in

both training and testing of the models. Stratification is per-

formed on the patient-level to ensure that tiles from the same

patient are not present in both the training and test set. A ran-

dom seed is set to ensure that the folds are the same for each

model, making the included samples in the training and test sets

identical for all models.

Inference dataset. In addition to the CV dataset, seven WSIs were

selected to be used as inference on the retrained models. The

WSIs included in the inference dataset is not part of the CV

dataset, and thus unseen by the models. As with the CV dataset,

no normalization is performed on the WSIs in the inference

dataset.

Due to the large size of the histological images, the WSIs

included in the inference dataset do not have any annotations, and

therefore any quantitative measurements are lacking. However,

the resulting segmented images have been examined by a pathol-

ogist to be promising and confirm that the models can go from

predicting smaller regions of the WSI to segment the full WSI.

Proposed System

An overview of the proposed system for tissue segmentation of

whole slide images is presented in Figure 3. The system accepts

Table 1. The Resulting CV Dataset Is Listed in the Table With the

Total Number of Tiles Extracted for Each Class. The Number of Tiles

Refers Only to Tiles Extracted at 400x Magnification. For the DI- and

TRI-CNN Models, the Numbers Need to be Multiplied by 2 and 3,

Respectively. Classes Marked With an Asterisk Shows the Number of

Tiles After Augmentation.

Class Tiles Patients

Urothelium 29 728 28

Damaged 33 607 9

Stroma* 9 750 5

Blood 19 832 5

Muscle* 19 932 4

Background 27 012 7
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input WSI of any size and outputs a corresponding segmenta-

tion image from the input. The system is tested on the seven

WSIs in the inference dataset. The system consists of three

main steps which will be described here. The multiscale model

in step 2 is described in more detail in the next section. Note

that the blue box in step 2 in Figure 3 marked with “Multiscale

Tissue Model” can be exchanged with any of the models

described in the model structure section below.

First, a binary background mask is produced from the 25x level

of the WSI, generated by checking the pixel intensity value and

splitting them into background or non-background tiles. About 60

to 80% of the WSI is covered by background, so this step reduces

the number of tiles that needs to be processed by the inference

model. Tiles selected as non-background are then extracted and

fed to the multiscale model for further classification.

Depending on which model architecture is used (MONO,

DI, or TRI), one, two, or three tiles are extracted from the same

location but with different magnification. The extracted tile

will always be 128 � 128 pixels, as this is the required input

size of the inference model. However, the prediction only holds

for a smaller area within the tile, typically 8 � 8 pixels, but can

be set to any size. The input tiles are then overlapped, such that

the inner area is located next to each other with no overlap.

Tiles are classified according to the highest prediction score.

The outcome of a prediction may be equally split between

multiple classes (e.g., two classes getting a score of 0.5 each,

or four classes getting 0.25 each). To avoid such cases, a

threshold value is set to determine if a prediction is valid. To

ensure that the majority of the predicted score falls to a single

class, the threshold needs to be above 0.51. Also, by setting the

Figure 3. Overview of the proposed system. A background mask is created from the 25x WSI to exclude the background from further

processing. Areas in the WSI selected as non-background is then extracted and fed through the multiscale model from Figure 4, which outputs

tissue predictions. The prediction needs to exceed a set threshold to be valid. Finally, the segmentation image is generated by giving each class a

separate color. The values shown in the figure are for illustration purposes only.

6 Technology in Cancer Research & Treatment



threshold too high may result in removing too many tiles. A

threshold value of 0.6 is therefore determined as a trade-off

between removing the unwanted conflicting predictions and

not removing too much. Tiles with all prediction scores below

the threshold are labeled as undefined.

Finally, each class is given a separate color, and the final

segmentation image is saved. The segmentation images are

ensured to only show classes with prediction scores higher than

0.6 but do not show the exact score. A method for creating heat

maps has also been implemented, where no thresholding is

performed, and the score for each class is visualized. A disad-

vantage of this is that one image must be created for each class.

We earlier showed this approach in Wetteland et al.,25 but have

omitted it from this paper.

Multiscale model structure. This paper compares three architec-

tures referred to as the MONO-, DI-, and TRI-CNN models.

The three architectures have one, two, and three inputs, respec-

tively. To differentiate the models from each other, they are

named according to their main architecture, and the input scale,

e.g. MONO-400x is a MONO-CNN model trained on tiles

extracted at 400x magnification. Tiles in the dataset are

extracted at three magnification levels, yielding three MONO

models: MONO-25x, MONO-100x, and MONO-400x. These

three magnification scales can further be combined in three

configurations for the DI-CNN model: DI-25x-100x, DI-25x-

400x, and DI-100x-400x. The TRI-CNN model has only one

configuration: TRI-25x-100x-400x, and is depicted in Figure 4.

The different MONO- and DI-CNN models can easily be

derived from the same figure. E.g. to create the DI-25x-400x

model, remove the 100x input and blue blocks, and to create the

MONO-100x model, remove the 25x input, 400x input, red and

yellow blocks.

The overall structure of each model is the same. Each input is

fixed at 128� 128� 3 pixels, which is the size of each tile. The

input is fed into a pre-trained VGG16 network28 which acts as a

feature extractor, followed by a global average pooling (GAP)

layer providing a feature vector representation of the input. This

feature vector is then fed into a classification network consisting

of two fully-connected (FC) layers, each followed by a dropout

layer, and a final softmax layer with one output node for each

class. The DI- and TRI-CNN models have two and three parallel

VGG16 branches, respectively, resulting in multiple feature vec-

tors. These feature vectors are concatenated before entering the

classification network. The FC-layers has the same size of 4096

neurons as the original layers in the VGG16 network. Dropout

layers are added after each FC-layers to add regularization to the

network due to the small dataset.

Training procedure and model selection. All models were trained

using the SGD optimizer with a learning rate of 1.5e-4, batch

size of 128, a dropout rate of 0.3, and a cross-entropy loss

function. Early stopping was enabled, stopping the model when

no increase in performance during the past 10 epochs was seen.

Due to the cross-validation training scheme, no validation set

was used, and the early stopping process was thus monitoring

the training loss. The model is written in Python 3.5 using the

Keras machine learning library,29 and Scikit-learn module30 for

evaluation.

The models were trained in a stratified 5-fold cross-

validation fashion. To produce an unbiased evaluation score,

the output from each fold was summarized in a micro-average

manner, as suggested by Forman and Scholz.31 All the true

positive (TP), false positive (FP), and false negative (FN) val-

ues were summarized for each class over all the folds to pro-

duce a final micro-averaged F1-score.

The VGG16 network, which is used as a base model in our

architectures, is pre-trained on the ImageNet dataset.32 It is

possible to have the base model fixed during training by freez-

ing the parameters, preventing the base model from being

updated. Freezing the parameters will allow for faster training

as fewer parameters need to be learned, however, as the nature

of the histological images is not part of the ImageNet domain, it

could affect the model’s ability to fully grasp the new images.

Figure 4. A block diagram of the TRI-CNN model proposed in the current paper. The input tiles are fed through individual pre-trained VGG16

network and global average pooling (GAP) layer to create feature vectors. The feature vectors are concatenated and fed through the classification

network before entering the final output layer consisting of a softmax function. The softmax function outputs a prediction score for each of the

six classes.
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By unfreezing the weights, it may allow to better adapt to the

histological domain, at the cost of longer training time. Both

freezing and unfreezing the weights were tested in the

experiments.

As one of the objectives is to be able to automatically extract

urothelium tissue from the histological images, to be used in

diagnostic systems in the future, it is therefore not strictly nec-

essary to classify all six tissue classes. A possible easier problem

would be to define a binary problem, classifying urothelium vs.

non-urothelium tissue. Each model was therefore also tested

with this binary-class approach to see if it improved classifica-

tion results for urothelium tissue. By simply combining the

remaining five classes into one non-urothelium class, the dataset

becomes heavily unbalanced toward the non-urothelium class.

To counteract against this, augmentation using rotation and flip-

ping was applied to balance out the dataset. By augmenting all

the tiles from the muscle, stroma, and urothelium class 4x during

training, the dataset became evenly distributed between the two

classes urothelium and non-urothelium.

After evaluating the model using stratified cross-validation,

a new and final inference model was trained by utilizing all

available data as training data. The average number of epochs

used during cross-validation was used when training the infer-

ence model. This inference model was then used to predict new

WSIs from the inference dataset.

Results

This section will present the results for the different models. A

total of 28 models were trained using stratified 5-fold cross-

validation, including single- and multiscale, and binary- and

multiclass models. Each model was trained using weakly

labeled data, with both frozen and unfrozen weights in the

VGG16 network.

Table 2 shows the cross-validation results for all the models.

Aggregated micro-average F1-score across all classes are

included, as well as the F1-score for only the urothelium class

to better compare multiclass vs. binary-class models. Figure 5

displays the confusion matrices for the best multiclass models.

The matrices are normalized to allow for more easy compari-

son. For the number of samples in each class, refer to Table 1.

Some of the best models have been retrained on the entire

CV dataset and used to segment the seven WSIs included in the

inference dataset. The resulting segmented images have then

been inspected by an expert pathologist and are considered to

be very promising. Figure 6 shows four WSIs and their corre-

sponding tissue segmented images generated by the best multi-

class model. Figure 7 shows a comparison between

segmentation images generated by the best binary-class model

and the best multiclass model. A DICE-score is calculated to

measure the similarity between the predicted urothelium tissue

between these two models, with an average DICE-score of 0.87

for the three WSIs. Figure 8 shows a close-up region taken

from the top-right corner of the first WSI in Figure 6. This

region is then segmented with all the best MONO-, DI-, and

TRI-models for comparison.

Discussion

The results in Table 2 are shown as micro-averaged F1-score

across all classes, as well as for the urothelium class. The

results are overall good for all models, and a discussion of each

case follows below. Afterward, the confusion matrices and the

segmented images will be discussed, and finally, different

usage scenarios of the system will be considered as well as

some limitations of the study.

Binary-class vs. multiclass. As expected, the binary-class models

achieve a higher average F1-score than the multiclass models,

with all 14 of the binary models getting a higher score than their

multiclass counterparts. This is expected because five of the

classes are now grouped, and misclassification within these

classes is canceled out. The best multiclass model is the frozen

TRI-25x-100x-400x with an F1-score of 96.5% across six

classes, whereas the best binary model is the DI-25x-100x with

unfrozen weights, which got an F1-score of 99.3% across its two

classes.

By looking at the F1-score for the urothelium class alone,

the multiclass models are now superior, with 9 of the 14 models

Table 2. Results for all 28 Models, Trained Using Stratified 5-Fold Cross-Validation. Each Score Is Shown as Micro-Averaged F1-Score

Aggregated Across all Classes, Marked as “All” in the Table. F1-Score Only for the Urothelium Class Is Shown in the Columns Marked “Uro.”

Numbers in Bold Refer to the Highest Score in Their Respective Column.

Multiclass Binary-class

Frozen Unfrozen Frozen Unfrozen

Model All Uro. All Uro. All Uro. All Uro.

Single-scale MONO-25x 93.4 92.9 96.4 96.8 96.3 92.5 98.1 96.1

MONO-100x 94.4 96.6 94.8 97.8 98.3 96.5 99.1 98.1

MONO-400x 87.2 89.7 86.4 86.3 94.2 88.1 93.7 87.2

Multiscale DI-25x-100x 96.5 97.4 96.2 98.1 98.1 96.2 99.3 98.5

DI-25x-400x 95.6 96.3 96.0 97.6 97.8 95.4 98.3 96.5

DI-100x-400x 95.0 96.8 95.3 97.6 98.4 96.6 98.9 97.7

TRI-25x-100x-400x 96.5 97.6 96.4 98.3 98.5 97.0 99.2 98.3
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being ahead of their binary-class counterparts. The few binary-

models which have a higher score, are only marginally so, with

the largest difference being the unfrozen MONO-400x, where

the binary version is 0.9% better than the multiclass version. It

is clear that by simplifying the problem into a 2-class problem,

did not help with getting better urothelium extraction. The

highest urothelium score is achieved by the TRI model, where

both the unfrozen multiclass and unfrozen binary-class version

each got an equal F1-score of 98.3% for the urothelium class.

Frozen vs. unfrozen. The three architectures MONO, DI and TRI,

have 19 M, 21 M, and 23 M trainable parameters, respectively,

when the VGG16 weights are frozen. By unfreezing the weights,

the same models get 34 M, 50 M, and 67 M trainable parameters.

When comparing results for these models, there is on average an

increase ofþ0.6% by unfreezing the weights. Of the 14 unfrozen

models, 10 get a higher score than the corresponding frozen mod-

els. The largest increase is seen in the binary MONO-25x model,

which goes from an F1-score of 96.3% to 98.1% by unfreezing the

weights.

The increase in the number of trainable parameters also

affects the training time of the models. The average time per

epoch for all the frozen models was 9 minutes, while the unfro-

zen models needed on average 10 minutes to compute one

epoch. This is an increase of 11% processing time per epoch.

However, the frozen models needed on average 162 epochs to

reach the early stopping criteria, whereas the unfrozen models

only needed 58 epochs. Thus, the models with unfrozen

weights needed about 60% less processing time during training.

Single-scale vs. multiscale. When comparing the single-scale

MONO-models with the multiscale DI- and TRI-models, the

multiscale models achieve better results across all columns in

Table 2, with the exception for the unfrozen MONO-25x model

which matches the performance of the TRI-scale model. If we

limit ourselves to the multiclass models, the best models for the

three architectures are the unfrozen MONO-25x with 96.4%,

frozen DI-25x-100x with 96.5%, and frozen TRI-25x-100x-

400x which got an F1-score of 96.5%. The story is similar for

the binary models, with unfrozen MONO-100x being the best

with 99.1%, unfrozen DI-25x-100x with 99.3%, and unfrozen

TRI-25x-100x-400x with 99.2%.

By looking at the single-scale models alone, it is clear that

the two lower scales (25x, 100x) are performing better than the

400x scale, and that having a greater field of view is preferable.

The multiscale models, consisting of two and three VGG16

networks, have a more complex structure involving more para-

meters than the MONO models. In addition, they have access to

a greater field of view in all its models. These two features

seem to help the performance of these models.

Naturally, the MONO models take the least amount of train-

ing time, with an average of 4:40 minutes per epoch. The DI-

models take 136% longer with an average of 11:01 minutes,

and finally, the TRI-models take the most time with 19:38

minutes on average per epoch. That is 321% and 78% longer

than MONO and DI, respectively. The average number of

epochs before reaching the early stopping criterion for the three

architectures was 147, 88, and 64 epochs for the MONO-, DI-,

and TRI-models, respectively.

Confusion matrices. Figure 5 shows the resulting normalized

confusion matrices for the best multiscale models for both

multiclass and binary-class models.

Figure 5. Normalized confusion matrices for the best multiscale models. Aggregated results across all 5 folds in the cross-validation test. A)

Best multiclass DI-CNN, B) Best multiclass TRI-CNN, C) Best binary-class DI-CNN, and D) Best binary-class TRI-CNN.
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In the two multiclass matrices (A) and (B), the models did

an excellent job at classifying background, blood, and urothe-

lium correctly, and a great job with the damaged class as well.

Both models struggled mostly with the muscle and stroma

classes. These are the classes with the fewest number of labeled

samples in the dataset. As a result of this, the models may have

achieved a weaker generalization for these classes, and thus

misclassified them more often. Most notable misclassifications

are related to muscle and stroma being misclassified as dam-

aged tissue, and also stroma being misclassified as urothelium.

Figure 6. The best multiclass model was retrained and used to generate segmentation images from four WSI not present in the training data.
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The two binary-class models in Figure 5 (C) and (D) got an

equally good performance. Five of the classes are now com-

bined into one class named other in the figure and thereby

removing most of the misclassifications from the multiclass

cases. However, this did not significantly increase the perfor-

mance of model (C) and (D). Model (D) got the same normal-

ized score as (A), and model (C) is only marginally better.

Inference dataset results. The seven WSIs included in the infer-

ence dataset were processed with overlapping tiles according to

Figure 3, where only the inner 16 � 16 pixel of the tile was

classified. The average processing time was 7 hours 18 min-

utes, including all three steps in Figure 3. On average, only

0.9% of the WSIs were categorized as undefined. Four of the

WSIs are presented in Figure 6, and three in Figure 7.

Segmentation image results. The best multiclass model, accord-

ing to Table 2, is split between two models. The frozen DI-25x-

100x and frozen TRI-25x-100x-400x both have a similar F1-

score of 96.5%, but the latter model has a higher urothelium F1-

score and is thus regarded as the best multiclass model. The

model was retrained and used to process four new WSIs, not

present in the training data, to demonstrate its usage. Figure 6

shows the original WSI with the corresponding segmentation

images. The segmented images are intuitive, easy to under-

stand, and allow even untrained personnel to both identify and

locate the difficult to find regions, e.g. like muscle tissue.

Fully multiclass-annotated WSI in our dataset is not avail-

able. The resulting segmentation images for the WSI have,

however, been manually inspected by an expert uropathologist

and are considered to be very promising, especially considering

that the WSIs were only weakly annotated. Large homoge-

neous areas with a certain tissue type are clearly recognized.

Most models are really challenged by smaller, more heteroge-

neous areas.

Binary-class vs. multiclass segmentation images. The best multi-

class and binary-class models were retrained and used to create

the segmentation images seen in Figure 7. The multiclass seg-

mentation image may be of more interest to a pathologist, as it

outlines regions of all six classes, whereas the binary-class

segmentation image only outlines the urothelium class. How-

ever, both the multiclass and binary-class models have about

the same F1-score for the urothelium class, and the additional

Figure 7. The best binary-class model vs. the best multiclass model. A DICE-score is calculated to measure the similarity between the predicted

urothelium tissue between the two models. DICE-score from top to bottom are 0.92, 0.85 and 0.85 .
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information in the multiclass segmentation images favor the

former model in a final system.

After comparing the urothelium regions in the two segmen-

ted images for each WSI, they are very similar. The DICE-

score is calculated to measure the similarity between the

regions, and the three cases have an average DICE-score of

0.87, which confirms that the two model’s prediction for

urothelium is quite similar. However, there is no truth annota-

tion, so the DICE-score does not reveal if one of the models is

better than the other.

Close-up segmentation regions. Even though the system is trained

on weakly labeled data, consisting of single-class samples,

using tile-based classification and not a per-pixel classification,

it is still interesting to see how the system performs on a

detailed level. This also allows us to compare the different

models. Figure 8 shows a close-up region taken from the top-

right corner from the first WSI in Figure 6, processed using an 8

� 8 pixel predict area.

All models do a decent job of outlining the major regions

in the image. The different models process the image on

different scales, and so the prediction tile covers a larger

area for the smaller scales. The effect of this is visible at the

three MONO models, where the level of detail goes up with

each scale. The MONO-100x and MONO-400x models,

with its smaller field of view, are able to detect some of

the small regions containing blood in the middle of the

image. The MONO-25x, however, is not able to identify

this. The DI-25x-100x model, which has access to both the

mid and broad field of view, barely identifies a small part of

Figure 8. Segmentation of close-up region taken from the top-right corner from the first WSI in Figure 6. A) Best MONO-25x, B) Best MONO-

100x, C) Best MONO-400x, D) Best DI-CNN model, E) Best TRI-CNN model. Arrows in the WSI region points to small areas of blood that the

models struggle to identify.
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the blood, whereas the TRI scale model does not identify

it at all.

Usage Scenarios

As seen from both Table 2 and the segmented images in Figure

6, the model is fully capable of distinguishing between the

different tissue types. The presented system has several possi-

ble usage scenarios, which will be discussed here.

The segmented images in Figure 6 can be used as a digital

tool for pathologists to help them become more efficient in

their work. It can be used to guide them to the diagnostic

relevant areas of the WSI, such as urothelium, muscle, and

stroma tissue. It can also be used to find edges of the urothe-

lium tissue without damage more easily. During an examina-

tion, a pathologist needs to verify if muscle tissue is present or

not in the current WSI. With the segmented images, this can be

verified within a short amount of time.

Another use case for the system is as a preprocessing

step for an automatic diagnostic system. For instance, each

patient has follow up records about whether the patient

experienced recurrence and progression. By training a diag-

nostic model on the entire WSI, the dataset quickly becomes

too large if many patients are included. Also, by randomly

selecting a subset of tiles within each WSI, the dataset will

include a large portion of damaged tissue and blood, which

will add noise to the diagnostic model. By using the multi-

scale tissue model presented in this paper as a preprocessing

step, areas of clean, undamaged urothelium and other diag-

nostic relevant types can easily be extracted and used as

training data.

Limitations

One limitation of the current study is that the dataset is

relatively limited in size. A small training dataset may lead

to overfitting of the model, resulting in poor performance,

and a small test set may cause an optimistic estimate of the

performance. Several measures have been taken to reduce

these negative effects. Pre-trained models, dropout, and

early stopping was used to reduce overfitting, and cross-

validation was used to get a realistic estimate of each mod-

el’s performance.

As mentioned in the data material section, the labels are

accurate in the highest resolution (400x) but are imprecise on

the lower scales (25x, 100x), meaning the ground-truth is based

on weak annotations of the dataset, which may impact the

accuracy. The experimental results show that having access

to a greater field of view outweighs the potential negative

effects of imprecise labels.

It is difficult to compare the presented models against other

approaches or to perform a test on an independent dataset. To

the best of the authors’ knowledge, no other open dataset exists

with annotations of the same six classes. As mentioned in the

related work section, some research and models exist for seg-

mentation of histological images. However, these are based on

other cancer types or trained on other classes than the six

classes used in this paper.

Conclusion

This paper investigates the effect of using multiple scales

during tissue classification from WSI of urothelial carci-

noma into six classes. The classification is performed on

smaller tiles and can be useful for a coarse segmentation,

or ROI-extraction, of WSI. Three main architectures are

presented: MONO-, DI-, and TRI-CNN model, and a total

of 28 different models were trained using weakly labeled

data and evaluated in a stratified 5-fold cross-validation

scheme.

The multiscale models achieved a better result than the

MONO-CNN models. There was not a substantial increase in

urothelium classification by using the binary-class models, nei-

ther by cross-validation or by inspection of the segmented

images. The best multiclass model was used to generate intui-

tive and easy to understand segmented images from unseen

WSIs, and after inspection by a pathologist is considered to

be very promising.

The segmented regions shown in Figure 8 demonstrates the

importance of including the highest magnification scale (400x)

during tile-wise classification. The models which do not

include this scale are not able to identify the smaller details

within the WSI.

As the three MONO models pick up different levels of

details, we will in the future experiment on employing them

in a multiscale ensemble model by combining their outputs,

instead of combining the different scales within the models, as

the DI- and TRI-CNN models do. We also plan to use the

model for automatic ROI-extraction of relevant tissue in the

WSI to create training datasets for a diagnostic and prognostic

classification model. By only extracting the diagnostic rele-

vant areas of the WSIs, a dataset of much higher quality can

be collected.
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