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Abstract
For automating deburring of cast parts, this paper proposes a general method for estimating burr height using 3D vision sensor
that is robust to missing data in the scans and sensor noise. Specifically, we present a novel data-driven method that learns
features that can be used to align clean CAD models from a workpiece database to the noisy and incomplete geometry of a
RGBD scan. Using the learned features with Random sample consensus (RANSAC) for CAD to scan registration, learned
features improve registration result as compared to traditional approaches by (translation error (�18.47 mm) and rotation
error(�43◦)) and accuracy(35%) respectively. Furthermore, a 3D-vision based automatic burr detection and height estimation
technique is presented. The estimated burr heights were verified and compared with measurements from a high resolution
industrial CT scanning machine. Together with registration, our burr height estimation approach is able to estimate burr height
similar to high resolution CT scans with Z-statistic value (z = 0.279).

Keywords Burr detection · Burr height · Deep learning · Convolutional neural network · Registration

Introduction

When sand casted parts come out of the mold they have to be
cleaned in a fettling process to remove sprues, runners, risers,
and flashing. Flashing, also called burrs, is thematerial left on
the cast part in the separation plane between the two molds.
Figure 1 shows a cast part with risers and flashing. Fettling of
cast parts is important to ensure that the part meets its design
requirements. Removal of sprues, risers, and runners can be
done in a cutting process that leaves a burr to be removed.
The burrs from the cutting and flashing are removed in a
deburring process. Deburring can be very challenging and are
mostly done manually (Aertbeliën, 2009) where the workers
are exposed to high noise and vibration levels. It is therefore
desirable to automate the deburring process.

Detecting andmeasuring the size of burrs to adjust the feed
rate and registration of CADmodel with the workpiece-scan
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for creating a deburring tool path are some of the essential
steps in automated deburring process. A deburring process
is traditionally planned on either a reference CAD model of
reference workpiece (Onstein et al., 2020), this includes both
the tool path and machining parameters. The challenge with
automating deburring of cast parts is that both the workpiece
and the burrs vary in shape and size due to the solidifying
in the casting process. During solidifying, uneven shrinkage
and deformation can occur. The uneven shrinkage and defor-
mation can be controlled by optimizing the casting process,
but it cannot be completely avoided (Huang et al., 2021). To
formalize this observation, we define the domain gap as a
measure of the discrepancy between the CAD (source) and
target (scan) domains. This means that the deburring process
has to be robust to domain gap, i.e. corresponding CAD and
scan geometric variations.

The conventional approach to burr localization (Huang et
al., 2021) follows a two-step coarse and fine point cloud reg-
istration approach where the relative positions of workpieces
and CADmodels must be accurate. However, such approach
are sensitive to variation in point density, missing data (par-
tial scans) and noise in the scan. Furthermore, registration
of the workpieces and CAD models fails due to domain gap
issues.
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Fig. 1 Cast part with riser/feeder and flashing

In this paper, we propose a machine learning approach
that is robust to missing data in the scans, view point, noise,
rotation and scale. Our approach is able to learn features
of the CAD model/scan without any labeled data through
a series of augmentations to the CAD models. Note that
the our approach uses only CAD models for training and is
able to generalize to scans during testing. Furthermore, using
the learned features we show a burr localization approach
that is able to estimate burr height similar to high resolu-
tion CT scans with Z-statistic value (z = 0.279) supporting
the hypothesis that the CT measured and our estimate burr
height distributions are similar. This paper is structured as fol-
lows. “Background” section briefly reviews previous works
on deburring and burr measurement. In “Methods” section
we present the proposed burr detection and quantization
approach, and the data collection setup. In “Results” section
we present evaluation of the CAD-scan registration and burr
size estimation. Finally, in “Discussion and conclusion” sec-
tion we conclude the paper with discussion and future work.

Background

Scan-to-CAD registration for tool path planning

The deburring process consists of, among other steps, detect-
ing and quantifying the burrs, generating a deburring tool
path and optimising machining parameters. Because of the
geometric variations caused by deformations and uneven
shrinkage during solidifying, the deburring process has to
be adapted to each individual workpiece. The deburring tool
path is traditionally generated off-line based on the CAD
model using a CAM software. This reference path has to be
registered onto the workpiece, where the goal is to find the
corresponding relationship between two point sets and com-
pute an appropriate transformation (Du et al., 2015). The
most widely used method for registration of 3D shapes is

the iterative closest point (ICP) algorithm (Besl & McKay,
1992).

Kosler et al. (2016) propose amethod using ICP to register
a 3D scan with the CADmodel to adapt a reference tool path,
generated using off-line teaching, to the workpiece. Song
and Song (2013) propose a method that generates a tool path
usingCAMsoftware and then correct the path basedon teach-
ing points using an ICP-based contour matching algorithm.
These two ICP-based methods assume that the deformations
caused by the solidification can be ignored because it is not
significant for the overall geometry.

A method that consider the deformations are presented in
Villagrossi et al. (2017). A reference tool path is generated
trough teaching on reference workpiece. The workpiece to
be deburred and the reference are both scanned and regis-
tered using ICP to get a rough alignment. To compensate for
the deformations, a set of control points are taught on the
reference part in an area where burrs are highly unlikely. The
same control points are found on the workpiece, and the local
deformations are computed. The reference tool path is com-
pensated based on the computed deformations. Kuss et al.
(2016) propose a method where a series of CAD models are
generated based on the dimensional tolerances of the work-
piece CAD model. Registration using ICP is then performed
on the scan of the workpiece and the set of CAD models.
The CADmodel with the best fit is used for generating a tool
path usingCAMsoftware. Both proposedmethodsworkwell
for simple geometries, but both will be challenging and time
consuming for more complex geometries.

Béarée et al. (2011) and Huang et al. (2021) propose
methods that segment the part and do registration on each
sub-segment. The tool path is then adapted to each segment.
Both methods are based on the assumption that the deforma-
tions within one segment is negligible.

Adjusting feed rate

A burr can be defined as undesirable or unwanted projections
of the material formed as the result of a manufacturing pro-
cess (Aurich et al., 2009). The shape and size of a burr can be
described in different ways, it can be defined by its longitu-
dinal and cross-sectional profile including thickness, height,
and radius. The (ISO 13715:2019, 2020) standard use only
one parameter to describe the burr. This is the height from
the intended geometry and top of the burr as shown in Fig. 2.

During deburring, a set of machining parameters has to
be set. One of these are feed rate. An approach to tuning this
parameter is to choose a feed rate that is slow enough to be
able to remove the largest burr. This will most likely increase
the cycle time. If, on the other hand, the feed rate is too high,
the tool can be unable to remove the burr. Methods have
been proposed to adjust the feed rate based on burr height
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Fig. 2 External edge geometry as described in ISO 13715:2019 (2020)

(Lai et al., 2018; Xiong et al. 2018), where the feed rate is
adjusted based on given burr height thresholds.

Burr measurement

There is a large number of burr measuring and detection
methods available. The most appropriate system depend on
the application, requested accuracy, and the burr values to
be measured. Burr measurement systems can be divided into
twomain categories: in-process and out of process (Franke et
al., 2010). Out of process can be divided into two categories:
with contact and contactless. Contact methods include stylus
methods and contactlessmethods include optical and electro-
mechanical solutions. In-process methods include process
monitoring, force and sound emission analysis.

Contact methods are only suitable for measuring burr
height and can be limited due to workpiecematerial stiffness.
Various optical systems for measuring burrs are available.
These include camera systems, microscopes and lasers. The
measured values from the optical systems are analyzed using
specificmeasurement software. To characterize non-uniform
burrs, several measurement are necessary.

A thorough comparison of burr measurement method
formed by drilling and milling is presented in Franke et al.
(2010). The results of the test show variations in the mea-
surements, especially when the burrs are formed in an angle.
It is concluded that very high caution is necessary for the
comparison of burr measurements.

A burr measurement method based on burr surface area is
proposed by Bahçe and Özdemir (2021), where they aim at
evaluating burr height, arc length, area, and the geometrical
characteristics of the burr. The proposed method capture a
3D scan of the burr and fit a cubic Bézier curve around the

outline of the burr. All burr parameters are gathered from this
curve.

Tellaeche andArana (2016) use ICP to register a scan from
a 3D vision systems with the CAD model. The matching is
used to characterize different type of burrs.

Summary

In summary, local CAD-scan registration approaches such
as ICP, require a good initial guess of the transformation
betweenCADand scan for convergence. Furthermore, earlier
works assume nearly identical CAD and scan ignoring the
deformation caused by solidification process (domain gap).
Proposed methods that consider the deformations are time
consuming and not applicable for complex geometries.

Compared to earlier works, our CAD-Scan registration
approach is robust to deformation caused by the solidification
process, differences between CAD and scan, and relies on
global registration unlike ICP. Moreover, burr measurement
is based on local smoothness of scan surface by reconstruct-
ing burr free scan which do not assume exact match between
CAD and scan. Common geometric features between CAD
and scan that simulate domain differences are learned on
the CAD model using sparse convolutional neural networks
(CNN). In the next section,we present the proposed approach
to learning features that are robust to domain gap between
CAD and scan followed by burr measurement.

Methods

In the process of developing an automatic burr detection and
deburring path planning system, having to align the reference
CADmodel to scan is the first step. Compared to CADmod-
els, scans exhibit camera noise, missing data, manufacturing
artifacts and geometric variations. Owing to the irregularity
and variations between the reference CADmodel and scan, it
is difficult to align synthetic data to scan - which complicates
burr measurement. To circumvent this problem, this paper
proposes a deep learning model that extracts robust features
from reference CADmodel and scans that is robust CAD-to-
scan domain gap, as well as variations in viewpoint, noise,
rotation and scale. Figure 4 shows our pipeline for automated
burr detection.Our acquisition setup captures high-resolution
scans of the parts, with efficient alignment of registration
ground truth (see “3D data acquisition” section). CNN fea-
tures are extracted from a pre-trained model for the scan and
the reference CAD model. Traditional CNN techniques are
mainly applied to data with a structured grid, point cloud,
on the other hand consists of sparse and unordered set of 3D
points. These properties of point clouds make it difficult to
use traditional CNN architectures for point cloud process-
ing. Therefore, pre-trained model is based on a sparse CNN
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Fig. 3 3D image acquisition
setup with rotating workspace
and high-resolution 3D camera
at different heights

(a) Schematic diagram (b) Capture setup

deep learningmodel (Choy et al., 2019) trained only on CAD
models (see “Training on CAD models” section). Finally,
given the approximate alignment between the referenceCAD
model and scan, a burr detection approach (see “Burr detec-
tion and measurement” section) is proposed to quantify the
height of the burr as shown in Fig. 4.

3D data acquisition

Our data acquisition setup consists of a turntable and a high-
resolution 3D camera, to capture accurate point clouds of the
parts and acquire ground truth registration data in an effi-
cient manner. The sensor used in our setup is a Zivid One1,
which is an RGB-D camera based on structured light, with
1920×1200 pixels and a Field-of-View (FOV) of 40◦ ×26◦.
The acquisitions were performed with High Dynamic Range
(HDR) imaging with 5 different exposure times from 40 to
100 ms, at a distance of about 0.5 m, which gives a nominal
depth resolution of 0.18 mm.

Each workpiece is placed on a turntable with a dark back-
ground and ArUco markers along the edges, and recorded
with 8 different rotation angles and 3 different camera heights
(see Fig. 3). For each height, the camera tilt is adjusted to
keep the part in view. This gives 24 pointclouds (scans)
per workpiece, resulting in 480 total number of scans that
are automatically co-registered during post-processing, using
ArUco marker detection from OpenCV. However, in some
of the scans, the ArUco markers were not detected with
OpenCV, therefore, we are not able to establish accurate
ground truth pose for these parts. After removing parts with-
out ground truth pose, we are left with 285 scans in total. In
thisway,we only need onemanual registration perworkpiece
for ground truth generation.

The acquired dataset consists of 4 parts with CADmodels
and 20 different physical workpieces in total (10 part ID 1,
(7 with burr, 3 without burr), 2 from part ID 2, (1 with burr, 1
without burr), 7 from part ID 3, (5 with burr, 2 without burr),
1 from Part ID 4, (without burr)).

1 https://www.zivid.com

Training on CADmodels

Supervised training of deep neural networks requires large
amounts of labeled data. This complicates their application
to domains where training data is scarce and/or the process
of collecting new datasets is laborious and expensive. There-
fore, we aim to train an sparse CNN model using only CAD
models which can be generalized to work on Zivid scans
(more details on the network architecture in “Data pre-pro-
cessing and training” section). We used CAD models as it is
easy to generate in large numbers and geometric variations.
As we wish to train solely on CAD models and have gener-
alized performance on Zivid scans, the domain gap between
CADand scan need to be small as possible. Consequently, we
seek to emulate the real domain by applying a series of aug-
mentations to theCADmodels.Moreover, aswe have limited
training samples the augmentations themselves increases our
training samples to an arbitrary amount.

In addition to traditional augmentations such as point jit-
tering, random rotation and translation, we simulate a casting
burr randomly, generate a random viewpoint of the cloud
and apply scaling which affects point density. The input to
the random view-point generation (rendering) is the CAD
model of the workpiece and then it is rendered from desired
virtual view points. The generated point-view point can be
controlled by randomly changing the camera position and
orientation.

Given the CAD models, it is known a priori the possible
location where a burr could form. Therefore, using the sepa-
ration plane of the parts, we can simulate burrs by extruding
additional points in this plane. By calculating the outward
facing normals of the CAD point cloud, we know that point
will extrude from the separation plane along the direction of
the normal. Consequently, we produce extra points along the
separation plane as

pB = �pi + �L �ni , ∀i ∈ S (1)

where pB is a set of added burr points, pi are points in the
separation plane S and �ni is the associated outward facing
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Fig. 4 Overview of the proposed approach: The dataset contains mul-
tiple CAD models and their corresponding scans taken from different
view angles. To align CAD with the scan, DPFH features are extracted
using pre-trained sparse CNN network. The extracted DPFH feature

for both scan and CAD is used for global feature matching(alignment)
with RANSAC. Finally, burr height is estimated by taking the distance
between surface reconstructed scan and the input scan (“Burr detection
and measurement” section)

normal of the point. A burr thickness of L can be achieved
by iteratively adding burr points, pB , with increasing �L j

until
∑

j �L j = L .
Our approach to scan-to-CAD alignment relies on the

fact that geometric feature of CAD model ideally be
locally invariant to different data augmentation that simu-
late scan(view point, point density, noise, jittering, etc) and
can easily be computed (Khoury et al., 2017). However, tra-
ditional Fast Point Feature Histogram (FPFH) (Rusu et al.,
2009) features are sensitive to such data augmentation and
results in an incorrect alignment between CAD and scan.
Therefore, we aim tomake the FPFHdescriptor insensitive to
such data augmentation within the point neighbourhoods. To
make traditional FPFH features robust against noise, occlu-
sion and etc, we train a sparse CNN (Choy et al., 2019)
that predicts a robust FPFH feature hereinafter referred to
as DPFH (a Deep learning based FPFH feature descriptor).
The learned features are robust to the transformation that
simulate scan and the model is trained using solely the CAD
models. The pseudocode for training DPFH feature network
is summarized in Algorithm 1.

Burr detection andmeasurement

Based on the DPFH features we get an initial proposed reg-
istration, in terms of rotation R0 and translation T0, using
RANSAC with parameters as in Choi et al. (2015). In order
to achieve accurate burr measurement, the alignment of scan
and CAD has to be close to perfect. This is implausible as
burrs and other deficiencies in the scan will affect the result-

Algorithm 1 DPFH feature training procedure
Require: CADmodels (C), FPFH features (Rusu et al., 2009) (Y ), Data

augmentations (T ) � Initialize the CNN model
1: model ⇐ sparseUnet
2: while Not converged do
3: for ci , yi ∈ C, Y do
4: ci ⇐ T (ci ) � apply random data augmentation
5: yi ⇐ yi (ci ) � get the corresponding FPFH feature
6: ŷi ⇐ model(ci ) � pass through model
7: loss(yi , ŷi ) ⇐ K Ldiv(yi , ŷi ) � KL divergence loss
8: minimize: loss(yi , ŷi )

9: end for
10: end while
11: return model

ing registration. Consequently, in order achieve accurate
burrmeasurement further processing is needed.Approximate
location of burr relative to CADmodel is pre-computed (ROI
on CAD) since casting process is known and a burr is formed
in the separation plane between cope and drag. As casting
burrs are mostly present in the separation plane, we have a
priori information regarding where the deficiencies are most
likely present in the CADmodel, shown in Fig. 5a Therefore,
we can extract points in a region of interest (ROI) as;

pC,ROI = pC,i ∀i ∈ ROI (2)

pS,ROI = pS,i ∀i where
∥
∥pS,i − pC,ROI

∥
∥ < ε. (3)

here, pC and pS describe the points in the CAD and scan
point clouds respectively. The ROI is extracted as a thick
slab in the separation plane in the CAD model. The points
in the scan that are within the ROI are chosen as all points
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Fig. 5 Sample augmentations.
In a the original point cloud of
the CAD model is shown. The
burr locations are colored red. In
b a synthetic burr is added by
adding points along the casting
plane. In c the points that are not
visible for a given camera angle
and height are removed. Further,
random jittering is applied d
different scaling is applied
(affecting point density) as in e
and random rotation and
translation is applied (f) (Color
figure online)

(a) Original CAD (b) Synthetic casting burr (c) Viewpoint rendering

(d) Point jitter (e) Scaling (f) Rotation and translation

that have a distance norm to its closest neighbour in the CAD
ROI below some threshold ε.

Algorithm 2 Burr measurement algorithm
Require: Roughly aligned CAD (C) and scan (S) point cloud
1:
2: � Extract ROI. See Fig. 6b

CROI ⇐ Ci , ∀i ∈ ROI

SROI ⇐ Si , ∀i ∈ d(Si , CROI < ε)

3: � Calculate normals with different radii, rl > rq , see Fig. 6c

�nrl
S = normals(SROI, rl )

�nrq
S = normals(SROI, rq )

�nC = normals(CROI, rl )

4: � Calculate difference of normals

�Ds = �nrl
S − �nrq

S

2
;

5: � Initial selection of non-burr points
6: Ŝi ⇐ Si, j ∀ j ∈ Nearest neighbors(Si (�Ds)) ∀�Ds < σ

7: Ŝi ⇐ Poisson(Ŝi ) � Poisson surface reconstruction, see Fig. 6d
8: � Calculate the distance between reconstructed surface and scan,

see Fig. 6e

Li ⇐∣
∣
(

Ŝi − Si, j

)
�nC, j

∣
∣ ∀ j ∈ Nearestneighbors(Si,RO I )

9: Mb ⇐ 1 ∀Li > σ

10: Lb ⇐ Li ∀Li > σ

11: return Burr point mask Mb and thickness Lb

Given the ROI, difference of normals (Ioannou et al.,
2012) are computed. The intuition behind using difference
of normals here is that if the direction of the two surface
normals computed at different radius is nearly identical, then
the structure of the surface does not change significantly. By
contrast, if there are burrs on the surface, the direction of the
two estimated normals are likely to vary by a larger margin.
Figure 6c shows difference of normals along the ROI region.
Therefore, a burr is detected by thresholding the difference
of normals above some ε.

To simulate a burr-free scan, Poisson surface reconstruc-
tion (Kazhdan et al., 2006) is applied after removing the
detected burr points. The Poisson surface reconstruction
method solves a regularized optimization problem to obtain
a smooth scan surface without burrs. Finally, the burr height
is approximated by taking the distance between original and
burr free surface reconstructed scan. The complete overview
of burr detection andmeasurement approach is given inAlgo-
rithm 2.

Data pre-processing and training

The network is trained only on CAD models. We converted
the workpiece CADmodel from STEP 3D file to point cloud
by sampling 1Mpoints to generate point clouds with uniform
density. Two out of four CAD models are used for training.
Note that none of 285 scans are used in the training. We use
a Sparse Residual U-Net (Sparse CNN, Choy et al., 2019)
architecture in this work. It is a 34-layer U-Net architecture
that has an encoder network of 21 convolution layers and a
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Fig. 6 Burr measurement. In a
rough alignment of CAD and
scan is shown. The prior
information on burr locations
are colored red. In b the region
of interest interest (ROI) is
extracted along the burr
location. In c a difference of
normals is calculated for ROI
region and based on difference
of normals, burr points are
removed and the surface is
reconstructed in d. e shows the
final detected burr. The burr
height is represented as bright
red (large burr) and dark (no
burr). (Best viewed in color)
(Color figure online)

(a) Initial alignment (b) ROI extraction (c) Difference of normals

(d) Poisson surface reconstruction (e) Final detection

decoder network of 13 convolution and deconvolution lay-
ers. It follows the 2D ResNet basic block design and each
conv/deconv layer in the network is followed by Batch Nor-
malization and ReLU activation. The overall Sparse CNN
architecture has 37.85M parameters. The Sparse CNN archi-
tecture was originally designed in Choy et al. (2019) that
achieved significant improvement over prior methods on the
challenging ScanNet (Dai et al., 2017) semantic segmenta-
tion benchmark.We train the sparseCNNnetwork on a single
RTX A6000 with batch size 32 and voxel-size 1cm. Adam is
usedwith a learning rate 1e−3.We trained the network for 500
epochs, and observed that the loss converged after approxi-
mately 100 epochs. The network outputs the estimatedDPFH
feature, ŷ, and the final loss function has the following form.

LK L(y, ŷ) = 1

M

M∑

i=1

yi log
yi

ŷi
(4)

where M is the total number of points. For registration, we
used global RANSAC registration based on featurematching
and using rn = 3 correspondences.

Results

We analyze the proposed approach pipeline in two scenarios:
CAD to scan registration where we estimate an SE(3) trans-
formation between CAD models and the Zivid scans, and
burr size estimation which generates a per point estimation
of burr height for all viewing angles of the workpiece.

Scan-to-CAD registration evaluation

For global registration, we use RANSAC (feature match-
ing). For each iteration of RANSAC, we select N random
points from the CAD point cloud. The nearest neighbor in
the DPFH feature space is queried to find their correspond-
ing points in the scan point cloud. We examine if aligned
point clouds are near together to quickly discard erroneous
matches (4cm). A transformation matrix is computed using
the remaining points. RANSAC is conducted for 500 itera-
tions (Open3d.org, 2015).

The performance of CAD to scan registration algorithm
is evaluated under different views of the workpieces using
the Translation Error (TE) and Rotation Error (RE) metrics
that measures the deviations between the predicted and and
ground truth pose as defined in Elbaz et al. (2017). Given the
ground truth rotation R and translation T of each object, the
TE and RE are defined as follows:

T E = ‖T̃ − T‖

RE = arccos

(
trace(R̃TR) − 1

2

)
(5)

where T̃ and R̃ denote the estimated translation vector and
translation matrix, respectively. Note in this experiment we
train the encoder network only on CAD models and do not
fine-tune on the other datasets.

We report the registration results on the dataset, which
contains 4 different CAD models as discussed in “3D data
acquisition” section. We measure translation error (TE) and
rotation error (RE) as defined in Eq. 5, and accuracy. Accu-
racy is the ratio of successful scan to CAD registrations and
we define a registration to be successful if its rotation error
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Table 1 Rotation and translation error average over scans with burrs (B) and feeder(P)

Part CAD 1 CAD 2 CAD 3
Workpieces Workpieces Workpieces

Metric Method 1B-1 1B-2 1B-3 1B-4 1B-6 1B-7 1B-8 Avg. 2P-1 3B-1 3B-2 3B-3 3B-4 3B-5 Avg. Average

Acc DPFH 1.0 1.0 0.88 1.0 1.0 1.0 0.94 0.97 0.95 1.0 0.84 0.67 0.6 0.74 0.77 0.89

FPFH 0.56 0.9 0.71 0.75 0.82 0.82 0.71 0.75 0.58 0.25 0.32 0.33 0.4 0.47 0.35 0.59

Rerr DPFH 5.05 4.24 9.67 4.23 4.14 3.85 7.27 5.49 12.11 2.47 20.3 34.35 46.68 29.33 26.63 14.13

FPFH 57.68 19.89 46.03 31.36 33.05 27.15 51.25 38.06 63.65 99.2 56.55 70.05 72.38 45.8 68.8 51.85

Terr DPFH 5.61 5.27 4.17 4.27 4.2 4.67 3.4 4.51 7.34 6.79 3.66 5.17 6.12 7.28 5.8 5.23

FPFH 24.44 11.46 15.56 20.6 18.1 7.94 21.74 17.12 12.28 84.5 17.86 38.64 14.73 13.62 33.87 23.19

The accuracy is estimated by taking for rotation and translation error less than θr and Tt respectively. RE < 10◦, T E < 10mm are in degrees and
mm
Bold signifies the best-performing method

Table 2 Rotation and translation error average of scans after manual de-burring

Part CAD 1 CAD 2 CAD 3 CAD 4
Workpieces Workpieces Workpieces Workpieces

Metric Method 1N-1 1N-2 1N-3 Avg. 2N-1 3N-1 3N-2 Avg. 4N-1 Average

Acc DPFH 1.0 1.0 1.0 1 1.0 0.78 0.76 0.77 1.0 0.93

FPFH 0.0 0.67 0.62 0.43 0.83 0.44 0.35 0.39 0.7 0.51

Rerr DPFH 4.88 3.85 2.73 3.82 4.69 27.34 27.06 27.2 2.15 10.38

FPFH 146.25 51.99 59.19 85.81 20.3 49.96 74.6 62.28 42.91 63.6

Terr DPFH 6.54 4.75 3.52 4.94 3.84 5.26 3.91 4.58 5.19 4.71

FPFH 69.67 13.94 29.12 37.58 11.91 13.56 24.9 19.23 5.91 24.14

The accuracy is estimated by taking for rotation and translation error less than θr and Tt respectively. RE < 10◦, T E < 10 mm are in degrees and
mm
Bold signifies the best-performing method

and translation error are smaller than predefined thresholds.
Average TE and RE are computed for different views work-
piece of each part.

We compare robustness of learned features, using the pro-
posed DPFH for registration with the classical FPFH as
baseline. The result is separately shown for physical parts
with burr Table 1 and without burr Table 2 for clarity. In
Tables 1 and 2, we measure accuracy with the TE thresh-
old 10mm which is practical with the voxelization process,
and RE threshold 10 degrees which is typically a good initial
value for registration refinement. For this experimentwe used
4 CAD models (parts) and 285 scans taken from different
view points. Our learned features outperforms the baseline
on accuracy by a large margin (91% vs. 56%) and achieves
the lowest translation (5.05mm vs. 23.52) and rotation error
(12.82◦ vs 55.96◦) consistently on both scans with burr and
no-burr, andCADmodels. In Table 3,we show theRANSAC
registration fitness for both DPFH and FPFH by taking the
ratio of the inlier correspondences to the number of points in
the Zivid scans. Higher RANSAC registration fitness value
indicates DPFH feature gives a higher matching points for
CAD to scan registration task. We additionally show quali-
tative results in Fig. 7

Table 3 Registration Fitness (higher is better)

Part Fitness
DPFH FPFH

CAD1 0.313 0.260

CAD2 0.312 0.268

CAD3 0.341 0.140

CAD4 0.351 0.350

Average 0.329 0.254

For all real scans, DPFH feature gives a higher matching points as
compared to FPFH feature
Bold signifies the best-performing method

Burr size evaluation data

Although quantitative evaluation on the Zivid scans serves
the purpose of quantifying the burr quantization algorithm,
it is important to compare the estimated burr size with a high
resolution industrial burr size measuring device. An indus-
trial computed tomography (CT) scanning machine (Zeiss
Metrotom 1500) is used to scan the workpiece and produce
a volumetric representation of the scanned object. Volume
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Fig. 7 Qualitative comparison
of alignments on three different
CAD models. Our approach to
learning feature by mimicking
real scans produce reliable
correspondences, which coupled
with RANSAC algorithm,
produces significantly more
accurate alignments

(a) Input Scan (b) FPFH (c) DPFH

Graphics Software was used to analyze the scans, register
the parts, and measure the burr height (Fig. 8).

Burr detection and size estimation evaluation

In the following, we compare our approach to estimate burr
heightwith a high resolution industrialCT scanningmachine.
The workpiece materials in this study is shown in Fig. 9.
Using CT scanning machine as described in “Burr size eval-
uation data” section, burr height of discrete 100 points were
measured. Using CT scanning machine, the burr height is
measured to be 0.79 ± 0.17 mm for the sampled discrete
points. Figure 10 shows the region of interest and the dis-
tribution of burr height as estimated using our approach. To
compare our estimate with high resolution CT scan result, we
conducted a two sample z-test. The result shows the proposed
approach provides similar result with the industrial standard
burr height estimation technique (z = 0.279).

Discussion and conclusion

In this paper, we investigated burr size estimation and regis-
tration problemusing 3Dvision sensors. For theCADmodels
of the workpieces, the average translation and rotation errors
of CAD models to real Zivid scans are shown in Tables 1
and 2 . The result reveals that the maximum translation error
occurs for a workpiece 2P-1. This could be due the fact that
the scans of 2P-1 have extra feeding component that is not
part of the objects CADmodel. Furthermore, workpieces that
are symmetric and lack geometric variations (e.g. 3B-2) are
challenging as it is not possible to find unique points for reg-
istration resulting in a large rotation error (Choy et al., 2020).
While the focus of this work is mainly on burr height estima-
tion and registration given the CAD and scan, the approach
could further be improvedby including an algorithm forCAD
model retrieval (finding the most similar model). One exten-
sion of the proposed method would be to retrieve the CAD
model given the scan. This could be accomplished by design-
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Fig. 8 CT scan. The raw CT
scan is shown in (a). In b, the
scan is registered with the CAD
model. The colors indicate the
difference between CAD and
scan. The height of the burr is
measured as the distance from
the CAD model and the top of
the burr (c). A burr region was
measured for comparison with
the Zivid scans (d) (Color figure
online)

(a) CT scan (b) Difference between CAD and scan

(c) Measured burr height (d) Measured burr region

(a) Ground truth burr height (b) Estimated burr height

Fig. 9 Comparison of ground truth burr height as explained in “Burr size evaluation data” section and the estimated burr height using our approach

ing a neural network architecture that is specifically trained
on shape similarity between scan and CAD geometry.

Our primary contribution is to provide a high-resolution
characterization of burrs using 3D vision sensors. To do so,
we developed a deep learning model that is trained unsuper-
vised only on CAD models by mimicking real scans. The
developed model is robust to differences between CAD and
real world scans such as variations to point density as well

as missing data in the scans. Figure 11 shows a side by side
comparison of CAD model, RGB image and captured point
cloud highlighting the domain gap between CAD and real
scans. The proposed method is general in that it works with
multiple CADmodels and able to handle variations in physi-
cal parts due to solidifation process. Therefore, applicable in
industrial settings. Together with registration, our burr height
estimation approach is able to estimate burr height similar to
high resolution CT scans with Z-statistic (z = 0.279).
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(a) Burr height sampled region (b) Estimated burr height distribution com-
parison

Fig. 10 Estimated burr height for region of interest and histogram of burr (325 sample points on the scan)

(a) Original CAD (b) Synthetic casting burr (c) Detected burr

Fig. 11 Result on missing/noisy data: The ID2 cad model is shown a
and b shows the RGB image of one of the physical workpieces of ID2
part standing on rotating workspace with camera facing the backside of
the workpiece, see Fig. 3. In c we show the scanned point cloud with

sensor noise and missing parts with the detected burr. Note that with
the learned features, we are able to register the clean CAD model with
the noisy scan shown in c and detect burrs

Acknowledgements The work reported in this paper was based on
activities within centre for research based innovation SFI Manufac-
turing in Norway, and is partially funded by the Research Council of
Norway under contract number 237900. We would like to thank Mjøs
Metallvarefabrikk AS www.mjosmetall.no for providing access to data
and valuable feedback.

Funding Open access funding provided by SINTEF.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aurich, J. C., Dornfeld, D., Arrazola, P., et al. (2009). Burrs-analysis,
control and removal. CIRP Annals, 58(2), 519–542. https://doi.
org/10.1016/j.cirp.2009.09.004

Bahçe, E., & Özdemir, B. (2021). Burr measurement method based on
burr surface area. International Journal of Precision Engineering
and Manufacturing-Green Technology, 8(4), 1287–1296. https://
doi.org/10.1007/s40684-020-00228-0

Béarée, R., Dieulot, J. Y., & Rabaté, P. (2011). An innova-
tive subdivision-icp registration method for tool-path correction
applied to deformed aircraft parts machining. The International
Journal of Advanced Manufacturing Technology, 53(5), 463–471.
https://doi.org/10.1007/s00170-010-2875-0

Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D
shapes. In Sensor fusion IV: Control paradigms and data struc-
tures, SPIE, (pp. 586–606). https://doi.org/10.1117/12.57955.

Choi, S., Zhou, Q. Y., & Koltun, V. (2015). Robust reconstruction of
indoor scenes. InProceedings of the IEEE conference on computer
vision and pattern recognition (pp. 5556–5565). https://doi.org/10.
1109/cvpr.2015.7299195.

Choy, C., Park, J., & Koltun, V . (2019). Fully convolutional geometric
features. InProceedings of the IEEE/CVF international conference

123

www.mjosmetall.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cirp.2009.09.004
https://doi.org/10.1016/j.cirp.2009.09.004
https://doi.org/10.1007/s40684-020-00228-0
https://doi.org/10.1007/s40684-020-00228-0
https://doi.org/10.1007/s00170-010-2875-0
https://doi.org/10.1117/12.57955
https://doi.org/10.1109/cvpr.2015.7299195
https://doi.org/10.1109/cvpr.2015.7299195


Journal of Intelligent Manufacturing

on computer vision (pp. 8958–8966). https://doi.org/10.1109/iccv.
2019.00905

Choy, C., Dong, W., & Koltun, V . (2020). Deep global registration.
In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (pp. 2514–2523). https://doi.org/10.1109/
cvpr42600.2020.00259.

Dai, A., Chang, A. X., & Savva, M., et al. (2017). Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 5828–5839). https://doi.org/10.1109/cvpr.2017.261.

Du, S., Liu, J., Zhang, C., et al. (2015). Probability iterative closest point
algorithm for md point set registration with noise. Neurocomput-
ing, 157, 187–198. https://doi.org/10.1016/j.neucom.2015.01.019

Elbaz,G.,Avraham,T.,&Fischer,A. (2017). 3Dpoint cloud registration
for localization using a deep neural network auto-encoder. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4631–4640). https://doi.org/10.1109/cvpr.2017.
265.

Erwin Aertbeliën. (2009). Development and acquisition of skills
for deburring with kinematically redundant robots. PhD thesis,
Catholic University of Leuven.

Franke, V., Leitz, L., & Aurich, J . (2010). Burr measurement: a round
robin test comparing different methods. In Burrs-analysis, control
and removal (pp 167–178). Springer, https://doi.org/10.1007/978-
3-642-00568-8_18.

Huang, W., Mei, X., & Jiang, G., et al. (2021). An on-machine tool
path generation method based on hybrid and local point cloud
registration for laser deburring of ceramic cores. Journal of Intel-
ligent Manufacturing (pp. 1–16). https://doi.org/10.1007/s10845-
021-01779-y.

Ioannou, Y., Taati, B., & Harrap, R., et al. (2012). Difference of nor-
mals as amulti-scale operator in unorganized point clouds. In 2012
second international conference on 3D imaging, modeling, pro-
cessing, visualization & transmission, IEEE (pp. 501–508), https://
doi.org/10.1109/3dimpvt.2012.12.

ISO 13715:2019,. (2020). Edges of undefined shape-indication and
dimensioning. International Organization for Standardization,
Geneva, CH: ISO standard.

Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface recon-
struction. In Proceedings of the fourth Eurographics symposium
on Geometry processing.

Khoury, M., Zhou, Q. Y., & Koltun, V. (2017). Learning compact
geometric features. In Proceedings of the IEEE international
conference on computer vision (pp. 153–161). https://doi.org/10.
1109/iccv.2017.26.
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