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Abstract— Low complexity of a system model is essential for
its use in real-time applications. However, sparse identification
methods commonly have stringent requirements that exclude
them from being applied in an industrial setting. In this article,
we introduce a flexible method for the sparse identification of
dynamical systems described by ordinary differential equations.
Our method relieves many of the requirements imposed by
other methods that relate to the structure of the model and the
dataset, such as fixed sampling rates, full state measurements,
and linearity of the model. The Levenberg–Marquardt algorithm
is used to solve the identification problem. We show that the
Levenberg–Marquardt algorithm can be written in a form
that enables parallel computing, which greatly diminishes the
time required to solve the identification problem. An efficient
backward elimination strategy is presented to construct a lean
system model.

Index Terms— Artificial neural networks, Levenberg-
Marquardt algorithm, machine learning, sparse identification,
system identification.

I. INTRODUCTION

IN MANY practical applications, a mathematical model
of a dynamical system is a prerequisite to understanding,

predicting, and manipulating the behavior of the system
in an effective manner. Obtaining a suitable model can
be a challenging task. For some systems, first principles
(e.g., established laws of physics) may be used to derive
model equations that represent the dominant system dynamics.
However, for many other systems, this way of model discovery
is out of the question due to insufficient information about
the system. Moreover, even if first principles can be used
to obtain a model, the resulting model may be too complex
to use in real-time applications for design, optimization,
and control. For example, in areas such as fluid dynamics,
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electrodynamics, and quantum mechanics, a first-principle
model may consist of multiple partial differential equations
for which the evolution of the state of the system is hard to
compute, let alone in real time.

Alternatively, we may construct a system model using
data following a system identification or machine learn-
ing approach. The corresponding system model can often
be written in the form of an artificial neural network,
where the type of neurons can range from commonly used
neurons with sigmoidal or rectified linear activation func-
tions to wavelets, splines, radial basis functions, monomi-
als, or Gaussian processes, to name a few [31]. Generally
designed to be a universal function approximator, the use of
an artificial neural network often leads to an unnecessarily
complex model. High complexity strongly hampers the use
of the model in real-time applications, and it commonly goes
hand in hand with stringent data requirements. It should be
noted that the complexity of the model strongly depends on
the chosen coordinate frame and type of neurons. As a first
example, the orbits of the planets in our solar system can
be described much simpler and in fewer terms by taking
the Sun as center of reference than Earth. As mentioned
in [2] and [29], many physical systems allow for a sparse
representation in a suitable coordinate frame. As a second
example, it takes a large artificial network with rectified linear
units to accurately approximate a quadratic function on a large
(but finite) domain, while it requires only three monomials to
do the same (i.e., monomials of degrees zero, one, and two,
respectively). Training such a large artificial network needs
many measurements of the quadratic function, while fitting the
three monomials requires a minimum of only three data points
(disregarding measurement noise). Without any knowledge of
the system to go by, the chance that a chosen coordinate frame
and neuron type result in an accurate model of low complexity
is generally slim.

In many industrial applications, neither a first-principle
model nor a purely data-driven model is constructed with high
accuracy due to various reasons including unknown environ-
mental conditions, a varying composition of raw materials,
knowledge caveats, imprecise data registration, and a lack of
exploration. In addition, there may be parts of the system
for which only a few measurements are available due to a
high cost or inability to conduct more. What complicates
matters further is that these measurements may have irregular
sampling rates because smart sampling algorithms (see [22])
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have been applied or measurements have been conducted
manually. To compose accurate models, one is often forced
to combine both first-principle information and measurement
data. These resulting gray-box models come in many different
forms [15]. In an attempt to improve the model accuracy while
keeping the model complexity low, we can use an artificial
neural network to model only those parts of the system for
which no first-principle model is available or for which the
solution of the first-principle model is difficult to compute or
inaccurate. However, due to a high network complexity, this
alone is generally not enough to ensure that the resulting model
is simple enough to be used for real-time applications.

In this article, we apply sparse identification to derive a
low-complexity network model. This article is inspired by the
works in [2] and [29]. In these, a lean feedforward network is
obtained by removing all edges (i.e., the connections between
the neurons in the network) that have little or no influence
on the quality of the fit. The network can be pruned by
adding a sparsity-promoting regularization term to the cost
function (or loss function) that is used to train the network;
see lasso [33] and sparse relaxed regularized regression [36],
for instance. Alternatively, a sequential algorithm, such as
stepwise regression [6] or sequential thresholding [2], may
be applied to remove all irrelevant edges in an iterative
fashion. Other model-selection approaches are discussed in [7]
and [20]. The sparse-identification methods in [2] and [29] rely
on linear regression. Although they are relatively simple and
fast enough to perform model identification in real time [9],
[25], they rely on the limiting assumptions that the network
model is linear in all its parameters, and that all system
states are measured and their first-order time derivatives can
be accurately approximated. This last condition commonly
translates to the requirement of a sufficiently high sampling
rate for all measurements to mitigate the negative influences
of measurement noise by averaging over multiple samples.
In [19], the computation of time derivatives of the states is
based on Koopman theory. This technique can be applied to
low-rate sampled data, but the requirement of a fixed sampling
rate is often too restrictive to be applied to industrial data.

If the model is composed of differential equations, we may
apply numerical integration to compute the state values of the
system at any point in time and compare these to the measure-
ments to optimize the model. This removes the requirement
that the network should be linear in its parameters. Moreover,
an arbitrarily sampled dataset can be used. In [30], the
solutions of differential equations modeled by deep neural
networks are computed using a Runge–Kutta scheme. In [26],
the numerical integration algorithm is directly encoded in
the kernels of the Gaussian processes. As an alternative to
traditional numerical integration, a neural network can be
trained to produce solutions of differential equations [11], [14].
The deep neural network in [27] is designed to obtain solutions
of differential equations and identify model parameters. To the
best of our knowledge, no attempts of network sparsification
have been made for any of the identification methods that rely
on numerical integration.

A possible reason for this is the high-computational demand
for training the network. Numerical integration of the state

equations implies calculating the state values on a finite
(and flexible) time grid. Evaluating the cost function used
for training the network subsequently requires computing
the state values for all grid points. The effective dimension
of the optimization problem to be solved for training the
network is equal to the number of network parameters plus
the number of state variables times the number of grid points.
A large number of grid points may be required to accurately
approximate the state solution, especially if the time series
of measurements span a large time interval. Therefore, the
dimension of the optimization problem may be very large.
In turn, the optimization problem may be difficult to solve.
It is noted that network pruning would require solving an
even harder regularized optimization problem or retraining the
network multiple times using a backward elimination strategy.

In this article, we develop an efficient method for
training an artificial neural network for system models
described by ordinary differential equations. Common train-
ing algorithms include gradient descent, the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, and
the Levenberg–Marquardt algorithm [12], [21], [32]. Com-
pared to the first-order convergence of gradient descent,
a faster second-order convergence can be obtained using
L-BFGS or Levenberg–Marquardt. The Levenberg–Marquardt
algorithm has the advantage that it is relatively easy to
parallelize. Due to the Markovian nature of the system model,
we can rewrite the approximation of the optimization prob-
lem by Levenberg and Marquardt as batches of recursive
small-scale optimization subproblems. We effectively divide
the time interval from the first to the last measurement in
separate subintervals, where each subinterval corresponds to
one batch of optimization subproblems. All batches can be
solved in parallel. Subsequently, the solution to the original
approximation can be reconstructed by combining the results
from all batches. Parallelization can significantly reduce the
wall time required to train the network. In addition, we outline
how a similar problem formulation can be used to prune the
network using backward elimination by removing irrelevant
network edges one at a time.

This article is organized as follows. A formulation of the
system identification problem is given in Section II. The
standard approach of solving the system identification problem
using the Levenberg–Marquardt algorithm is discussed in
Section III. In Section IV, it is shown how the solution
method can be rewritten to parallelize parts of the algorithm.
In Section V, a method for network sparsification using back-
ward elimination is presented that utilizes a similar approach
as outlined in Section IV to efficiently approximate the effect
of removing a network edge on the overall quality of the
fit. In Section VI, the sparsification method is illustrated by
means of two examples. Advantages and drawbacks of the
proposed methodology are summarized in Section VII.

A. Notations

The sets of real numbers, nonnegative real numbers, and
positive real numbers are denoted by R, R≥0, and R>0,
respectively. N and N>0 denote the sets of natural numbers
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(i.e. nonnegative integers) and positive integers. The ceiling
function that maps a real number α to the least integer greater
than or equal to α is denoted by �α�. The transpose of any
vector x is written as xT . For any nonsingular, square matrix A,
its inverse is denoted by A−1. Similarly, A−T is the transpose
of the inverse. The Moore–Penrose pseudoinverse of the matrix
M is written as M+. We denote the union of two sets B and C
by B∪C. If C is a subset of B, then the set difference of B and C
(i.e. the relative complement of C in B) is written as B\C. Let
T = {t1, t2, . . . , tn} be an ordered set with n elements. The
notation {y(t)}t∈T is short for {y(t1), y(t2), . . . , y(tn)}. For
any time-varying vector signal s(t), where t denotes the time,
we write (ds/dt)(t) as ṡ(t). The Euclidean norm is denoted
by ‖·‖.

II. FORMULATION OF THE SYSTEM

IDENTIFICATION PROBLEM

Let the state trajectories of a dynamical system be given by
the solutions of the following ordinary-differential equations
that comprise a first-principle model:

ẋ(t) = fphys(t, x(t))+ e(t). (1)

Here, x(t) ∈ R
nx is the state vector with dimension nx ∈ N>0,

fphys : R×R
nx → R

nx is a continuously differentiable function,
e(t) ∈ R

nx is the model error, and t ∈ R denotes the time.
The exact value of the state is unknown in most practical
scenarios. To improve the accuracy of the first-principle model,
we approximate the error by a continuously differentiable
feedforward network fnet : R

nx × R
nu × R

na → R
nx .

That is,

e(t) ≈ fnet(x(t), u(t), a). (2)

The network consists of an input layer, one or multiple hidden
layers, and an output layer. The inputs of the network are
the state x(t) and the vector of known time-varying functions
u(t) ∈ R

nu with dimension nu ∈ N. The output of the network
is the estimate of the error in the first-principle model. The
vector of network parameters (e.g., weights and biases) is
given by a ∈ R

na , where na ∈ N>0 is its dimension. We do
not pose any restrictions on the structure of the network or
the choice of neurons. It is noted that this formulation can be
easily adapted to include other kinds of error models, such as
the closure models in [23]. Although the focus of this article
is to improve the accuracy of the first-principle model by
approximating the model error with a feedforward network,
we note that this formulation can be made more general by
considering models of the form

ẋ(t) ≈ f(t, x(t), a) (3)

where a is allowed to be any parameter vector. The only essen-
tial requirement is that the function f : R×R

nx×R
na → R

nx is
differentiable with respect to the state and parameter vectors.
Obviously, the system model consisting of the first-principle
model in (1) and the error model in (2) can be written in this
form.

To identify suitable parameter values, we compare the state
solutions of the model with process measurements. Consider

a finite time series of process measurements. Let Tm ⊂ R be
a finite set containing all measurement times. We denote by
y(tm) ∈ R

ny the vector of measurements with dimension ny ∈
N>0 taken at time t = tm ∈ Tm . The dimension ny is allowed
to be time varying [i.e., ny = ny(tm)]. The relation between
the measurements and the state is modeled by a continuously
differentiable function h : Tm ×R

nx → R
ny , such that

y(tm) ≈ h(tm, x(tm)) (4)

for all t = tm ∈ Tm . It is noted that the sampling of the
measurements can be arbitrary. Notation-wise, it is convenient
to number the measurements. We define

Im = {i ∈ N : 1 ≤ i ≤ Nm} (5)

where Nm ∈ N>0 is the cardinality of Tm (i.e., the set Tm

contains Nm elements). For any i ∈ Im , t (i)
m denotes the i th

element of the set Tm in ascending order. In turn, the i th vector
of measurements is denoted by y(t (i)

m ).
Obtaining the parameter values that fit the measurements

best requires that the state and the parameters of the model are
identified simultaneously. To find suitable values, we compute
the minimizer of the nonlinear least-squares problem

min
a, {x}, {εx}, {εy}

{∫ tm

tm

εT
x (t)W−1

x (t)εx(t)dt + μa‖a‖2

+
∑

tm∈Tm

εT
y (tm)W−1

y (tm)εy(tm)

+μx

∫ tm

tm

‖x(t)‖2dt :(∀t ∈ [tm, tm
])

[ẋ(t) = f(t, x(t), a)+ εx(t)]

(∀tm ∈ Tm)
[
y(tm) = h(tm, x(tm))+ εy(tm)

]}

(6)

where {x} and {εx} are shorthand notations for the state
{x(t)}tm

t=tm
and the state error {εx(t)}tm

t=t m
, respectively, and

where {εy} is short for the set {εy(tm)}tm∈Tm , with modeling
error εy(tm) ∈ R

ny for all tm ∈ Tm . Here, tm = t (1)
m and

tm = t (Nm )
m are the times of the first and last measure-

ment, respectively. The symmetric, positive-definite matrices
Wx(t) ∈ R

nx×nx and Wy(tm) ∈ R
ny×ny are weighting matrices

of the model errors εx(t) and εy(tm), respectively. If εx(t)
and εy(tm) are regarded as vectors of stochastic variables,
then Wx(t) and Wy(tm) can be chosen equal to the covariance
matrix of εx(t) and εy(tm) to obtain an estimate with minimal
variance. A more pragmatic approach is to think of Wx(t)
and Wy(tm) as scaling matrices, such that S−1

x (t)εx(t) and
S−T

y (tm)εy(tm) are vectors of elements with roughly equal
magnitude based on prior knowledge, where

Wx(t) = Sx(t)ST
x (t) (7)

and

Wy(tm) = Sy(tm)ST
y (tm). (8)

The terms in the cost function related to the (small) constants
μx, μa ∈ R≥0 are regularization terms to remedy the effects
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of overfitting [35]. If multiple or even infinitely many minima
exist, these regularization terms keep the magnitudes of the
computed, minimizing state and parameter values relatively
small. The selection of suitable regularization constants is an
open problem, and a topic for future work.

III. SOLVING THE SYSTEM IDENTIFICATION PROBLEM

USING THE LEVENBERG–MARQUARDT ALGORITHM

To compute the solution of the optimization problem in (6),
we first discretize the problem in time. Let �t ∈ R>0 be
the maximal step size of the discretization. It is noted that
all continuous-time signals in (6) are defined on the interval
[tm, tm]. Let Td ⊂ R be a set of Nd ∈ N>0 discretization
points that are chosen such that Tm ⊆ Td , and the distance
between all subsequent points is smaller than or equal to �t .
A routine to generate such set is outlined in Appendix A.
To make the proceeding notations easier, we define the index
set

Jd = { j ∈ N : 1 ≤ j ≤ Nd}. (9)

For any j ∈ Jd , we denote by t ( j)
d the j th element of Td in

ascending order. In addition, we define the index set

Jm =
{

j ∈ Jd : (∃tm ∈ Tm)
[
t ( j)
d = tm

]}
(10)

such that t ( jm)
d ∈ Tm for all jm ∈ Jm . The (variable)

discretization step size is given by

�t(
j+ 1

2 )
d = t ( j+1)

d − t ( j)
d (11)

for all j ∈ Jd \ {Nd }.
We discretize the least-squares problem in (6) using the

midpoint rule and the trapezoidal rule. With a minor abuse of
notation, we get the optimization problem in (12), as shown
at the bottom of the page, with

t(
j+ 1

2 )
d = 1

2

(
t ( j+1)
d + t ( j)

d

)
(13)

for all j ∈ Jd \ {Nd}. The sets {x}, {εx} and {εy} are
now short for {x(t ( j)

d )} j∈Jd , {εx(t
( j)
d )} j∈Jd and {εy(t

( jm)
d )} jm∈Jm ,

respectively. Because the discretization errors of the midpoint
rule and the trapezoidal rule for each discretization step
are O(�t3) and the total number of discretization steps is
O(�t−1), the corresponding difference between the solutions
of (6) and (12) for all discretization steps combined is O(�t2).
Hence, the solutions are identical in the limit as �t approaches
zero.

Remark 1: The midpoint rule and the trapezoidal rule are
not the only numerical integration methods that can be applied
to discretize the optimization problem in (6). However, any
such integration method is required to be explicit to apply the
Levenberg–Marquardt algorithm later in this section. Alter-
natively, we may change the problem formulation in (6) by
replacing all integrals by finite, weighted sums of function
evaluations, as in [30], for instance. However, the solution of
this altered optimization problem may not correspond to the
solution of (6), not even in the limit.

We may simplify the optimization problem in (12) by
eliminating the variables of the model errors {εx} and {εy}
using the constraint equations. Subsequently, the optimization
problem can be written as

min
b
‖g(b)‖2 (14)

with

b =
[
xT
(

t (1)
d

)
, xT

(
t (2)
d

)
, . . . , xT

(
t (Nd )
d

)
, aT

]T
(15)

and

g(b) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

px,1(x(t (1)
d ), x(t (2)

d ), a)

px,2(x(t (2)
d ), x(t (3)

d ), a)
...

px,Nd−1(x(t (Nd−1)
d ), x(t (Nd )

d ), a)

px,Nd (x(t (Nd )
d ))

pa(a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

where as (17), shown at the bottom of the next page, for all
j ∈ Jd \ {Nd }

px,Nd (x) = S−1
y

(
t (Nd )
d

)(
y
(

t (Nd )
d

)
− h

(
t (Nd )
d , x

))
(18)

and

pa(a) = √μaa. (19)

The optimization problem in (14) may be solved iteratively.
Let k ∈ N be the iteration number. Writing the values of
the optimization variables in (15) at iteration k as bk , the
first-order Taylor series approximation

g(bk+1) ≈ g(bk)+ dg
db

(bk)γ k (20)

is accurate if γ k is sufficiently small, where γ k is defined as

γ k = bk+1 − bk . (21)

min
a, {x}, {εx}, {εy}

⎧⎨
⎩

∑
j∈Jd\{Nd }

εT
x

(
t(

j+ 1
2 )

d

)
W−1

x

(
t(

j+ 1
2 )

d

)
εx

(
t(

j+ 1
2 )

d

)
�t(

j+ 1
2 )

d +
∑

jm∈Jm

εT
y

(
t ( jm)
d

)
W−1

y

(
t ( jm)
d

)
εy

(
t ( jm)
d

)
+ μa‖a‖2

+μx

2

∑
j∈Jd\{Nd }

(∥∥∥x
(

t ( j)
d

)∥∥∥2 +
∥∥∥x
(

t ( j+1)
d

)∥∥∥2
)

�t(
j+ 1

2 )
d : (∀ jm ∈ Jm)

[
y
(

t ( jm)
d

)
= h

(
t ( jm)
d , x

(
t ( jm)
d

))
+ εy

(
t ( jm)
d

)]

(∀ j ∈ Jd \ {Nd })
⎡
⎣x
(

t ( j+1)
d

)
− x

(
t ( j)
d

)
�t(

j+ 1
2)

d

= f
(

t(
j+ 1

2 )
d , 1

2

(
x
(

t ( j)
d

)
+ x

(
t ( j+1)
d

))
, a
)
+ εx

(
t(

j+ 1
2 )

d

)⎤⎦
⎫⎬
⎭ (12)
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Applying the approximation in (20) and the change of vari-
ables in (21), we obtain the Gauss–Newton method

min
bk+1

‖g(bk+1)‖2 ≈ min
γ k

∥∥∥∥g(bk)+ dg
db

(bk)γ k

∥∥∥∥
2

. (22)

To prevent γ k from being too large, Levenberg [13] and
Marquardt [18] propose to add a regularization term (also
denoted as damping term) to the cost function, resulting in

min
γ k

{∥∥∥∥g(bk)+ dg
db

(bk)γ k

∥∥∥∥
2

+ λk

∥∥γ k

∥∥2

}
(23)

where λk ∈ R>0 is a tuning parameter. Noting that (23) is a
linear least-squares problem, the minimizer of the optimization
problem is given by

γ k = −
((

dg
db

(bk)

)T dg
db

(bk)+ λkI

)−1

×
(

dg
db

(bk)

)T

g(bk)

(24)

see, for example, [4, Th. 2.1.1]. By combining (21) and (24),
we get the update law

bk+1 = bk −
((

dg
db

(bk)

)T dg
db

(bk)+ λkI

)−1

×
(

dg
db

(bk)

)T

g(bk). (25)

Hence, the new values bk+1 are equal to the old values bk

minus the product of a symmetric, positive-definite matrix and
the gradient of the cost function in (14). It is noted that the
update law in (25) is similar to that of the Gauss–Newton
method for small values of λk . Moreover, the search direction
in which the optimization variables are updated is similar to
the gradient-descent direction for large values of λk . Due to the
uncertainty in the linearized model far from the linearization
point, convergence of the algorithm cannot be guaranteed
for small values of λk . On the other hand, the decrease
in the value of the cost function is small for large values
of λk . Therefore, it may take many steps to converge. Various
algorithms have been proposed to balance the uncertainty and
magnitude of the decrease in cost function value; see [16],
[24], [34] and references therein. Algorithm 1 is a simple
illustration of an adaptation method for λk . While the gradient
of the cost function is larger than a small constant σ > 0, new
values of the optimization variables are generated in Line 3 in

Algorithm 1 Standard Levenberg–Marquardt Algorithm
Input: b0, λ0, (parameters: σ , ρ1, ρ2)
Output: bk

1: k ← 0
2: while ‖2

(
dg
db (bk)

)T
g(bk)‖ > σ do

3: b′k+1 ← bk −
((

dg
db (bk)

)T
dg
db (bk)+ λkI

)−1

×
(

dg
db (bk)

)T
g(bk)

4: if ‖g(b′k+1)‖2 < ‖g(bk)‖2 then
5: bk+1 ← b′k+1
6: λk+1 ← λk

ρ1

7: else
8: bk+1 ← bk

9: λk+1 ← ρ2λk

10: end if
11: k ← k + 1
12: end while

accordance with (25). If these new values lead to a decrease
in cost-function value, the values are accepted and λk is
decreased by a factor (1/ρ1). If not, the values are rejected and
λk is increased by a factor ρ2, where ρ2 ≥ ρ1 > 1. It is noted
that robustness measures, such as a positive lower bound on
the decrease of the cost-function value in Line 4 and an upper
bound on the maximal number of iterations, should be added
for practical applications of the algorithm [16]. Moreover,
the optimization method by Levenberg and Marquardt only
converges to local optima.

IV. EXPLOITING THE STRUCTURE OF THE OPTIMIZATION

PROBLEM TO ENABLE PARALLELIZATION

If the measurement times span a large interval (i.e., tm− tm
is large) and the maximal discretization step �t is small, the
number of discretization points Nd is very large. Therefore,
the number of variables of the optimization problem in (23),
which is equal to the dimension nb = na + nx × Nd of the
vector b in (15), can be very large. In turn, inverting a very
large matrix to compute the update in (25) can be costly. In this
section, we present a method to parallelize the computation of
the solution of the optimization problem in (23) to speed up
computations.

px, j (x, z, a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S−1
x

(
t(

j+ 1
2 )

d

)⎛⎝ z− x

�t(
j+ 1

2 )
d

− f
(

t(
j+ 1

2)
d , 1

2 (x + z), a
)⎞⎠√�t(

j+ 1
2 )

d√
μx

2
x
√

�t(
j+ 1

2 )
d√

μx

2
z
√

�t(
j+ 1

2 )
d{

S−1
y

(
t ( j)
d

)(
y
(

t ( j)
d

)
− h

(
t ( j)
d , x

))
, if j ∈ Jm

0, if j �∈ Jm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
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Let us define

βk

(
t ( j)
d

)
= xk+1

(
t ( j)
d

)
− xk

(
t ( j)
d

)
, δk = ak+1 − ak (26)

for all j ∈ Jm , such that γ k in (21) is given by

γ k =
[
βT

k

(
t (1)
d

)
, βT

k

(
t (2)
d

)
, . . . , βT

k

(
t (Nd )
d

)
, δT

k

]T
. (27)

It follows that the optimization problem in (23) can be written
as

min{βk},δk

⎧⎨
⎩

Nd∑
j=1

q j,k + rk

⎫⎬
⎭ (28)

with

q j,k =
∥∥∥∥px, j + ∂px, j

∂x
βk

(
t ( j)
d

)
+ ∂px, j

∂z
βk

(
t ( j+1)
d

)

+∂px, j

∂a
δk

∥∥∥∥
2

+ λk

∥∥∥βk

(
t ( j)
d

)∥∥∥2
(29)

for all j ∈ Jd \ {Nd },

qNd ,k=
∥∥∥∥px,Nd+

∂px,Nd

∂x
βk

(
t (Nd )
d

)∥∥∥∥
2

+λk

∥∥∥βk

(
t (Nd )
d

)∥∥∥2
(30)

and

rk =
∥∥∥∥pa + dpa

da
δk

∥∥∥∥
2

+ λk‖δk‖2 (31)

where {βk} is short for {βk(t
( j)
d )} j∈Jd . We have omitted the

arguments of the functions px, j and pa and their derivatives
to shorten the expressions in (28)–(31). It is noted that
the corresponding arguments of px, j and its derivatives are
(xk(t

( j)
d ), xk(t

( j+1)
d ), ak) for j ∈ Jd \ {Nd } and xk(t

(Nd )
d ) for

j = Nd , and that the argument of pa and its derivative is ak .
Now, to compute the solution of the optimization problem

in (23) using Ns ∈ N>0 parallel processes, let us divide the
sum in (28) in Ns smaller sums

Nd∑
j=1

q j,k =
Ns∑

s=1

vs,k, with vs,k =
ζ (s+1)−1∑

j=ζ (s)

q j,k (32)

for all s ∈ {1, 2, . . . , Ns }. Here, q0,k = 0, and ζ : N → N

is a strictly increasing function that satisfies ζ(1) = 0 and
ζ(Ns + 1) = Nd + 1. The function ζ is chosen such that the
number of summands of each partial sum in (32) is roughly the
same. Instead of minimizing the cost function in (28) over all
optimization variables at once, we minimize the partial sums
in (32) over all optimization variables that do not appear in
any of the other partial sums (i.e., {βk(t

( j)
d )}ζ(s+1)−1

j=ζ(s)+1 for all
s ∈ {1, 2, . . . , Ns }). For each s ∈ {1, 2, . . . , Ns }, this leads to
the series of nested optimization subproblems with solution
ws,k in (33), as shown at the bottom of the page. Note that
ws,k can be rewritten as

ws,k = Hs,ζ (s+1)−ζ (s),k (34)

using the recursion

Hs, j+1,k = min
βk

(
t (ζ (s)+ j )
d

){qζ (s)+ j,k + Hs, j,k
}

(35)

for all j ∈ {1, 2, . . . , ζ(s+1)− ζ(s)−1}, with Hs,1,k = qζ(s),k.
Subsequently, the optimization problem in (28) itself can be
formulated as the series of nested optimization subproblems;
see (36), as shown at the bottom of the page. Alternatively,
we can write (36) as

min
δk

{
rk + G Ns ,k

}
(37)

where G Ns ,k is obtained by the recursion

Gs,k = min
βk

(
t (ζ (s))
d

){ws,k + Gs−1,k
}

(38)

for all s ∈ {2, 3, . . . , Ns}, with G1,k = w1,k . We are able to
write the optimization problem in (23) as nested optimization
subproblems due to the Markovian structure of the model
in (3)–(4). The approach of solving an optimization problem
by recursively solving optimization subproblems is known as
dynamic programming [1]. There are two important things to
note here. First, all optimization subproblems in (35), (37), and
(38) are small-scale problems, depending only on a few opti-
mization variables. Therefore, the operative memory required

ws,k = min{
βk

(
t ( j )
d

)}ζ (s+1)−1

j=ζ (s)+1

vs,k = min{
βk

(
t ( j )
d

)}ζ (s+1)−1

j=ζ (s)+1

⎧⎨
⎩

ζ (s+1)−1∑
j=ζ (s)

q j,k

⎫⎬
⎭

= min
βk

(
t (ζ (s+1)−1)
d

)
⎧⎨
⎩qζ (s+1)−1,k + min

βk

(
t (ζ (s+1)−2)
d

)
⎧⎨
⎩· · · + min

βk

(
t (ζ (s)+2)
d

)
⎧⎨
⎩qζ (s)+2,k + min

βk

(
t (ζ (s)+1)
d

){qζ (s)+1,k + qζ (s),k
}⎫⎬⎭ · · ·

⎫⎬
⎭
⎫⎬
⎭ (33)

min{βk},δk

⎧⎨
⎩

Nd∑
j=1

q j,k + rk

⎫⎬
⎭ = min{

βk

(
t (ζ (s))
d

)}Ns

s=2
,δk

{
Ns∑

s=1

ws,k + rk

}

= min
δk

⎧⎨
⎩rk + min

βk

(
t (ζ (Ns ))
d

)
⎧⎨
⎩wNs ,k + min

βk

(
t (ζ (Ns−1))
d

)
⎧⎨
⎩· · · + min

βk

(
t (ζ (3))
d

)
⎧⎨
⎩w3,k + min

βk

(
t (ζ (2))
d

){w2,k +w1,k
}⎫⎬⎭ · · ·

⎫⎬
⎭
⎫⎬
⎭
⎫⎬
⎭
(36)
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to compute the solution is much lower than for large-scale
problem in (23). Second, for each s ∈ {1, 2, . . . , Ns }, the
solution ws,k in (34) can be computed independently and,
thus, in parallel. Given sufficient computational power, par-
allelization greatly reduces the time required to solve the
optimization problem. This makes it viable to use much
longer measurement series for the identification of the system,
which may considerably improve the accuracy of the identified
model.

It should be noted that q j,k , rk , ws,k , Hs, j,k, and Gs,k are all
quadratic, sum-of-squares functions of optimization variables.
It follows that the minimizers of the optimization subproblems
in (35), (37) and (38) can be computed analytically as linear
functions of other optimization variables (i.e., the ones we
have not minimized over yet); see Appendix B. To be precise,
for any s ∈ {1, 2, . . . , Ns } and any integer j that satisfies
ζ(s) < j < ζ(s+1), the minimizer of the subproblem in (35)
can be written as

βk

(
t ( j)
d

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l j,k

(
βk

(
t ( j+1)
d

)
, δk

)
, if s = 1

l j,k

(
βk

(
t (ζ (Ns ))
d

)
, δk

)
, if j = Nd

l j,k

(
βk

(
t (ζ (s))
d

)
,βk

(
t ( j+1)
d

)
, δk

)
, otherwise

(39)

for some linear function l j,k . Similarly, for any s ∈
{2, 3, . . . , Ns }, the minimizer of the subproblem in (38) is
given by

βk

(
t (ζ (s))
d

)
=
⎧⎨
⎩

lζ (s),k(δk), if s = Ns

lζ (s),k

(
βk

(
t (ζ (s+1))
d

)
, δk

)
, otherwise

(40)

for some linear function lζ(s),k . Because we have minimized the
optimization problem over all other variables, the minimizing
values of δk can be directly obtained from (37). We can
recursively reconstruct the optimal values of the minimizers
βk(t

(ζ(s))
d ) in (38) by substituting the optimal value for δk in

the linear functions in (40). Subsequently, we can recursively
reconstruct the optimal values of the minimizers βk(t

( j)
d ) in

(35) by substituting the optimal value for βk(t
(ζ(s))
d ) and δk in

the linear functions in (39). Once optimal values of the opti-
mization variables are determined, we may use the equations
in (26) to update the corresponding state and parameter values
for the next iteration.

An overview of the resulting algorithm is given by Algo-
rithm 2. It is noted that the for loops in Lines 3 to 10 and in
Lines 22 to 27 can be parallelized. The same remarks regarding
the robustness and convergence of the algorithm apply as for
Algorithm 1 in Section III.

V. NETWORK SPARSIFICATION

Consider the system model in (1)–(2), where the error of the
first-principle model is modeled by an artificial neural network.
To obtain a lean network, we propose to prune the network by
sequentially removing network edges. By removing a network
edge, we also remove the weight that corresponds to the
network edge. Therefore, the number of parameters of the

Algorithm 2 Levenberg–Marquardt Algorithm With
Parallelization
Input: {x0}, a0, λ0, (parameters: σ , ρ1, ρ2)
Output: {xk}, ak

1: k ← 0
2: while

∥∥∥2( dg
db (bk))

T g(bk)
∥∥∥ > σ do

3: for s = 1 to Ns do
4: Hs,1,k ← qζ(s),k

5: for j = 1 to ζ(s+1)− ζ(s)− 1 do
6: Compute lζ(s)+ j,k in (39)
7: Compute Hs, j+1,k in (35)
8: end for
9: ws,k ← Hs,ζ(s+1)−ζ(s),k

10: end for
11: G1,k ← w1,k

12: for s = 2 to Ns do
13: Compute lζ(s),k in (40)
14: Compute Gs,k in (38)
15: end for
16: Compute minimizer δk in (37)
17: a′k+1 ← ak + δk

18: for s = Ns to 2 do
19: Compute βk(t

(ζ(s))
d ) by evaluating lζ(s),k in (40)

20: x′k+1(t
(ζ(s))
d )← xk(t

(ζ(s))
d )+ βk(t

(ζ(s))
d )

21: end for
22: for s = 1 to Ns do
23: for j = ζ(s + 1)− 1 to ζ(s)+ 1 do
24: Compute βk(t

( j)
d ) by evaluating l j,k in (39)

25: x′k+1(t
( j)
d )← xk(t

( j)
d )+ βk(t

( j)
d )

26: end for
27: end for
28: if ‖g(b′k+1)‖2 < ‖g(bk)‖2 then
29: bk+1 ← b′k+1
30: λk+1 ← λk

ρ1

31: else
32: bk+1 ← bk

33: λk+1 ← ρ2λk

34: end if
35: k ← k + 1
36: end while

network decreases. Moreover, if all edges of a neuron are
removed, then the neuron is no longer part of the network.
Hence, removing network edges may also decrease the number
of neurons in the network. We aim to only remove the network
edges that have little or no effect on the minimal value of the
cost function. In that way, we can maintain the quality of
the fit after an edge removal. In general, we do not know by
how much the minimal value of the cost function changes if
any network edges are removed. To find out the difference
in minimal value, we need to retrain the network after every
change in network structure. Due to the large number of edges
and the substantial computational effort it takes to retrain the
network, it is often infeasible to retrain the network for every
network configuration. In the following section, we present a
method to identify which network edges are likely to have
the least effect on the minimal value of the cost function.
These edges are removed sequentially after verification. This
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allows us to efficiently identify irrelevant network edges while
keeping the overall computational cost relatively low.

A. Estimating the Change in Minimal Cost Function Value
Due to a Network Edge Removal

We note that we can effectively remove a network edge by
setting its corresponding weight to zero. Because the weights
of the network are part of the parameter vector a, determining
the minimal value of the cost function after an edge removal
is equivalent to determining the minimal cost function value
after a certain element of the parameter vector a is set to zero.
Suppose the artificial neural network in (2) is trained using
Algorithm 2 of Section IV. Let the optimal state and parameter
values be denoted by {xc} and ac, or by bc, for short; see (15).
Moreover, let the associated cost function value be given by
Vc = ‖g(bc)‖2; see (14). Similar to (20), we may approximate
the output value of g(b) at any point b = be close to bc by
the first-order Taylor series approximation

g(be) ≈ g(bc)+ dg
db

(bc)γ e (41)

where γ e is defined as

γ e = be − bc. (42)

For ease of notation, we define

βe

(
t ( j)
d

)
= xe

(
t ( j)
d

)
− xc

(
t ( j)
d

)
, δe = ae − ac (43)

for all j ∈ Jm , such that γ e in (42) is given by

γ e =
[
βT

e

(
t (1)
d

)
, βT

e

(
t (2)
d

)
, . . . , βT

e

(
t (Nd )
d

)
, δT

e

]T
. (44)

Without loss of generality, we assume that the desired edge is
removed from the network by setting the last element of the
parameter vector a = ae to zero. Let the last element of ac be
denoted by αc. If the last element of ae is zero and the last
element of ac is αc, it follows from (43) that the last element
of δe is −αc. Equivalently, the last element of γ e is −αc; see
(44). We let

δe =
[

δ̂e

−αc

]
, γ e =

[
γ̂ e
−αc

]
(45)

where δ̂e and γ̂ e are vectors containing all remaining elements
of δe and γ e, respectively. Assuming that be is close to bc (i.e.,
assuming that γ e is small), it follows that the minimal value
of the cost function after removing the network edge can be
accurately approximated by

Ve = min
γ̂ e

∥∥∥∥g(bc)+ dg
db

(bc)γ e

∥∥∥∥
2

. (46)

This optimization problem is very similar to the one in (23).
Thus, a similar approach to computing the solution can be
applied.

As in Section IV, we may rewrite the optimization problem
in (46) in the following recursive form:

Ve = min
δ̂e

{
re + G Ns ,e

}
(47)

where G Ns ,e is recursively defined as

Gs,e = min
βe

(
t (ζ (s))
d

){ws,e + Gs−1,e
}

(48)

for all s ∈ {2, 3, . . . , Ns }, with G1,e = w1,e. For s ∈
{1, 2, . . . , Ns}, the functions ws,e are given by

ws,e = Hs,ζ (s+1)−ζ (s),e (49)

where Hs, j+1,e is obtained by the recursion

Hs, j+1,e = min
βe

(
t (ζ (s)+ j )
d

){qζ (s)+ j,e + Hs, j,e
}

(50)

for all j ∈ {1, 2, . . . , ζ(s+1) − ζ(s) − 1}, with Hs,1,e =
qζ(s),e. Here, for all j ∈ Jd , the functions q j,e and re are
similarly defined as the functions q j,k and rk in (29)–(31). The
differences are that their arguments are related to the vector
γ e in (42) instead of the vector γ k in (21), that the functions
px, j and pa, that are used in their definitions, have arguments
related to bc instead of bk , and that λk = 0.

In addition, we may compute the state and parameter values
that correspond to the minimizer of the optimization problem
in (46). These can serve as initial conditions for retraining
the network if removing the network edge appears beneficial.
Therefore, we introduce the linear functions that describe the
minimizers of the optimization subproblems in (48) and (50),
which can be used to evaluate the minimizer of the original
optimization problem in (46); see Section IV for more details.
Similar to (39), for any s ∈ {1, 2, . . . , Ns } and any integer
j that satisfies ζ(s) < j < ζ(s + 1), the minimizer of the
subproblem in (50) is given by

βe

(
t ( j)
d

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l j,e

(
βe

(
t ( j+1)
d

)
, δe

)
, if s = 1

l j,e

(
βe

(
t (ζ (Ns ))
d

)
, δe

)
, if j = Nd

l j,e

(
βe

(
t (ζ (s))
d

)
,βe

(
t ( j+1)
d

)
, δe

)
, otherwise

(51)

for some linear function l j,e. Also, as in (40), for any s ∈
{2, 3, . . . , Ns}, the minimizer of the subproblem in (38) can
be written as

βe

(
t (ζ (s))
d

)
=
⎧⎨
⎩

lζ (s),e(δe), if s = Ns

lζ (s),e

(
βe

(
t (ζ (s+1))
d

)
, δe

)
, otherwise

(52)

for some linear function lζ(s),e.
The proposed method for estimating the minimal value of

the cost function and the corresponding state and parameter
values is summarized in Algorithm 3. Similar to Algorithm 2,
note that the for loops in Lines 1 to 8 and in Lines 22 to
27 can be parallelized. Moreover, it should be noted that,
if we want to compute the minimal cost function value for
any other network edge removal instead of the one we have
already computed, the results of Lines 1 to 13 of Algorithm 3
are identical and may be reused. This makes it relatively fast
to compute all possible edge removals. Although Algorithm 3
may be applied to predict the minimal cost function value
for any possible edge removal, in some cases, it is desirable
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Algorithm 3 Estimating the Change in Minimal Cost Function
Value Due to Network Edge Removal
Input: {xc}, ac

Output: Ve, {xe}, ae

1: for s = 1 to Ns do
2: Hs,1,e ← qζ(s),e

3: for j = 1 to ζ(s+1)− ζ(s)− 1 do
4: Compute lζ(s)+ j,e in (51)
5: Compute Hs, j+1,e in (50)
6: end for
7: ws,e ← Hs,ζ(s+1)−ζ(s),e

8: end for
9: G1,e ← w1,e

10: for s = 2 to Ns do
11: Compute lζ(s),e in (52)
12: Compute Gs,e in (48)
13: end for
14: Compute minimizer δ̂e in (47)
15: Compute Ve in (47)

16: δe ←
[

δ̂e

−αc

]
17: ae ← ac + δe

18: for s = Ns to 2 do
19: Compute βe(t

(ζ(s))
d ) by evaluating lζ(s),e in (52)

20: xe(t
(ζ(s))
d )← xc(t

(ζ(s))
d )+ βe(t

(ζ(s))
d )

21: end for
22: for s = 1 to Ns do
23: for j = ζ(s + 1)− 1 to ζ(s)+ 1 do
24: Compute βe(t

( j)
d ) by evaluating l j,e in (51)

25: xe(t
( j)
d )← xc(t

( j)
d )+ βe(t

( j)
d )

26: end for
27: end for

to consider only a subset of network edges for removal.
For example, by prioritizing the removal of edges related to
monomials with a high degree, the polynomial output of the
network may be of lower degree than without prioritization.
In turn, this may improve the extrapolatory properties of
the network model outside the measured region of the state.
An example of this approach is given in Section VI-A.

B. Acceptance Criteria for Network Edge Removal

After we have estimated which edge removal results in the
smallest increase in minimal cost function value, we compute
the corresponding true minimal cost function value by
retraining the network without the specific edge. We may
use an acceptance criterion to decide whether to accept or
reject a proposed removal of a network edge. The simplest
criterion is solely based on the value of the cost function.
A proposed removal of a network edge is accepted only if
the value of the cost function after retraining the network
with the proposed removal is lower than a preset limit value.
Depending on the amount of initial overfitting, one may be
able to remove many edges before exceeding the limit value
after retraining the network, even if the limit value is only
slightly larger than the minimal value of the cost function for
the fully connected network.

Alternatively, we may use an information criterion to assess
the quality of the estimate of the model error. In this case,

the removal of a certain network edge is accepted only if the
quality of the estimate does not decrease. Using an information
criterion, both the value of the cost function as well as
the number of network parameters are taken into account.
There is a large selection of different information criteria to
choose from. Several of them are described in detail in [3]
and [10]. The choice of information criterion may significantly
influence the sparsification process due to the differences in
assumptions on which the various information criteria are
derived. A similar approach of quality assessment has been
proposed in [17], where Akaike’s Information Criterion and
the Bayesian Information Criterion are used to evaluate the
results of the sparse identification approach in [2].

A third approach of arriving at an acceptance criterion is by
cross-validation. Although there are many different forms of
cross-validation, the main principle behind cross-validation is
that the measurement data is partitioned in a training set, that
is solely used for training the neural network, and a validation
set (and/or test set; see [28], for example), to evaluate how
well the predictions of the trained network generalize to
previously unseen data. In that case, a proposed removal of
a network edge is only accepted if it results in a lower value
of the cost function based on the validation data. It is noted
that determining the cost function value for the validation
set requires solving the optimization problem in (6), where
the (fixed) values of the network parameters are determined
in the training stage. The use of a validation set avoids
the problem of selecting a suitable limit value for the cost
function or a suitable information criterion. However, because
the training set and validation set must each cover the relevant
part of the state space, this may put an unreasonably large
demand on the amount of available measurement data.

VI. EXAMPLES

As discussed in Section I, our formulation of the system
identification problem in Section II and the corresponding
solution method in Sections IV and V allow for significantly
lower data requirements and less stringent limitation on the
network structure than other methods (e.g., in [2] and [29]) that
are developed to construct a sparse system model. We illustrate
our proposed sparse identification approach with two examples
that could not have been computed with the methods in [2]
and [29]. In Section VI-A, we identify the structure of an
unknown system without measuring the full state vector, where
the identification is based on measurements with different sam-
pling rates. In Section VI-B, we train a network to approximate
the error in the first-principle model without the requirement
that the network model is linear in its parameters. We show
that sparsification can simplify a network model while at the
same time improve its accuracy by reducing overfitting.

A. Lorenz System

Consider the Lorenz system

ẋ1(t) = σ(x2(t)− x1(t))

ẋ2(t) = x1(t)(ρ − x3(t))− x2(t)

ẋ3(t) = −βx3(t)+ x1(t)x2(t) (53)
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with state x(t) = [x1(t), x2(t), x3(t)]T ∈ R
3 and parameters

σ = 10, β = (8/3) and ρ = 28. Without any information
about the dynamics of the system, the first-principle model
assumes a constant state

fphys(x(t)) = 0. (54)

This means that the true model error is given by

e(t) =
⎡
⎣ σ(x2(t)− x1(t))

x1(t)(ρ − x3(t))− x2(t)
−βx3(t)+ x1(t)x2(t)

⎤
⎦. (55)

We use noisy measurements of the state vector to estimate the
model error. The measurements of the first two elements of the
state vector are taken every 0.3 time units from time t = 0 to
time t = 4.8. The measurement of the third element of the state
vector is taken every 0.4 time units on the same time interval.
The measurement noise has a Gaussian distribution with zero
mean and a variance of one. We use a polynomial network
with monomials up to degree two to estimate the model error.
A polynomial network is a network with a single hidden
layer with monomials as neurons. Each output of the network
is a linear combination of monomials. The corresponding
monomial gains (i.e., the weights of the edges between the
hidden layer and the output layer) are tuned to best match the
measurement data. It is noted that all elements of the error
vector (55) are polynomials of maximal degree two. Therefore,
it is possible to obtain an exact expression of the model error
using the network. We apply the sparsification approach pre-
sented in this article to identify the model error, with weighting
matrices Wx = 10I and Wy = I and regularization constants
μx = 10−8 and μa = 10−3; see Section II. The maximal
discretization step size is set to �t = 10−3. We use the
stage-wise sparsification approach mentioned in Section V-A,
where we remove all irrelevant edges connected to monomials
with the highest degree in the first stage before we continue
to remove irrelevant edges connected to monomials with the
second-highest degree in the second stage, etc. Following this
approach, we obtain the following network model:

fnet(x(t))=
⎡
⎣ −9.378 x1(t)+ 9.483 x2(t)

28.779 x1(t)− 1.167 x2(t)− 1.024 x1(t)x3(t)
−2.628 x3(t)+ 0.960 x1(t)x2(t)

⎤
⎦.

(56)

Although we only have a few noisy measurements with a
heterogeneous sampling rate at our disposal, the identified net-
work model in (56) has the same structure as the model error in
(55). Moreover, the identified parameter values are reasonably
accurate. The time signals of the state, their estimates, and
corresponding measurements are depicted in Fig. 1.

Now, suppose that only measurements of the first two
state variables are available (i.e., y(tm) ≈ [x1(tm), x2(tm)]T ).
To successfully identify the model error by inferring the
dynamics of the third state from the measurements of the
first two states, the measurement rate should be increased
and the variance of the measurement should be decreased. Let
the measurements be taken every 0.01 time units from time
t = 0 to time t = 5. Moreover, let the noise variance be given

Fig. 1. Time signals of the state in (53) and the corresponding estimates
using three state measurements with different sampling rates.

by 10−4. We obtain the following network model:

fnet(x(t)) =
⎡
⎣ −9.997 x1(t)+ 9.998 x2(t)
−0.960 x2(t)+ 13.645 x1(t)x3(t)

5.418− 2.643 x3(t)− 0.073 x1(t)x2(t)

⎤
⎦. (57)

There seem to be significant differences in structure and value
between the error vector in (55) and the network model in
(57) at first glance. However, using the change of coordinate

x̃3(t) = γ (ρ − x3(t)) (58)

with scaling parameter γ ∈ R \ {0}, we get the following
equivalent form of the dynamics in (53):

ẋ1(t) = σ(x2(t)− x1(t))

ẋ2(t) = 1

γ
x1(t)x̃3(t)− x2(t)

˙̃x3(t) = β(γρ − x̃3(t))− γ x1(t)x2(t). (59)

For γ = 0.073, the corresponding model error is given by

ẽ(t) ≈
⎡
⎣ −10 x1(t)+ 10 x2(t)

−x2(t)+ 13.699 x1(t)x3(t)
5.451− 2.667 x3(t)− 0.073 x1(t)x2(t)

⎤
⎦. (60)

It is noted that the network model in (57) is an accurate
estimate of the error vector in (60). The time signals of the
equivalent dynamics in (59) and the corresponding estimates
are depicted in Fig. 2. We observe that the differences between
the true values of the states and the obtained estimates are
small, also for the third state, for which there are no measure-
ments available.

B. Van Der Pol Oscillator

Consider the forced Van der Pol oscillator

ẋ1(t) = x2(t)

ẋ1(t) = A sin(ωt)− x1(t)+ μ
(
1− x2

1(t)
)
x2(t) (61)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HARING et al.: LEVENBERG-MARQUARDT ALGORITHM FOR SPARSE IDENTIFICATION OF DYNAMICAL SYSTEMS 11

Fig. 2. Time signals of the state in (59) and the corresponding estimates
using only the first two state measurements.

Fig. 3. Contour plots of the values of the first (left) and second (right)
element of the error vector in (63). Note that the first element of the error
vector is zero everywhere. Therefore, there are no contours to display. The
gray color in the left plot corresponds to a value of zero. Lighter colors in
the right plot indicate positive values; darker colors indicate negative values.
The values in the right plot range from −23.5 to 23.5.

with state x(t) = [x1(t), x2(t)]T ∈ R
2 and parameters A = 1,

μ = 1 and ω = 0.2. Let the first-principle model and the
corresponding model error respectively be given by

fphys(t, x(t)) =
[

x2(t)
A sin(ωt)

]
(62)

and

e(t) =
[

0
−x1(t)+ μ

(
1− x2

1(t)
)
x2(t)

]
. (63)

The error in the first-principle model is visualized in Fig. 3.
It is modeled by an artificial neural network with two hidden
layers of ten units each. The (differentiable) exponential linear
unit with shape parameter a = 1 (see [5]) is used as activation
function for all neurons. The inputs of the network are the
states x1 and x2. It is noted that, if the value of A would be
uncertain, we could include sin(ωt) as an extra input to the
network [i.e., u(t) = sin(ωt) in (2)] to also learn the model
error related to an incorrect estimate of A. The outputs of
the network are the functions fnet,1(x(t)) and fnet,2(x(t)) that
represent the estimates of the two elements of the error vector.

Fig. 4. Network layout before sparsification (gray) and after sparsification
(black).

Fig. 5. Absolute value of the estimation error for the first element of the
error vector in (63) for the fully connected network (left) and the sparsified
network (right). A value of zero is indicated in white. A value of two or
higher is indicated in black.

Because there exist no network parameters that represent the
model error exactly for all values of x, the network provides
only a local approximation of the model error. The network
is trained based on noisy measurements of the (full) state of
the system. The measurements are taken from time t = 0 to
time t = 100, with a step size of 0.1 between subsequent mea-
surements. The measurement noise has a Gaussian distribution
with a zero mean and a variance of 0.01.

By applying the sparsification approach in Section V with
weighting matrices Wx = Wy = I, regularization constants
μx = 0 and μa = 10−3, and maximal discretization step size
�t = 10−3, we are able to reduce the number of network
edges from 140 to 36 and the number of neurons from 20 to 16.
This means that the overall number of network parameters
(i.e., weights and biases) is decreased from 160 to 52. The
layout of the sparsified network is depicted in Fig. 4. The
absolute values of the estimation errors for the two elements
of the error vector in (63) for the fully connected network as
well as the sparsified network are depicted in Figs. 5 and 6.
The state values that correspond to the process measurements
are visualized by black dots in Fig. 7. Despite having much
fewer edges and parameters, we observe that the sparsified
network arguably represents the error in the first-principle
model better on average in a neighborhood around the process
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Fig. 6. Absolute value of the estimation error for the second element of the
error vector in (63) for the fully connected network (left) and the sparsified
network (right). A value of zero is indicated in white. A value of two or
higher is indicated in black.

Fig. 7. Location of the process measurements in the state space.

measurements than the fully connected network does. The
sparsified network captures the first element of the error vector
more accurately than the fully connected network for 100%
of the area of the state space shown in the figures; it captures
the second element of the error vector more accurately for
roughly 63% of the area of the state space shown in the figures.
This improvement of accuracy can be largely attributed to the
reduction of overfitting due to network sparsification.

VII. DISCUSSION

In this article, we have presented an efficient method
for sparse identification of dynamical systems described by
ordinary differential equations. We have shown that the
Levenberg–Marquardt algorithm, on which our method is
based, can be rewritten in a form that enables parallel com-
putation to a large extent. Therefore, the wall time required
to solve the identification problem can be greatly decreased.
In addition, we have presented a sparsification approach based
on backward elimination that utilizes the same time-efficient
computation strategy to estimate the relevance of any given
network edge, so that only those network edges that have
a small effect on the quality of the model fit are removed.
We have illustrated with two examples that our method is not
affected by many of the limitations, such as fixed sampling
rates, full state measurements, and linearity of the model, that
plague other methods (e.g., in [2] and [29]). This flexibility
is essential for the applicability of the method in many

industrial settings. The main drawback of our approach is
the relatively large computational demand. However, utilizing
the time-efficient algorithm presented in this article, the wide
applicability of our method is likely to outweigh the larger
computational cost in many practical scenarios.

APPENDIX A
ALGORITHM FOR GENERATING DISCRETIZATION POINTS

It is noted that all continuous-time signals in (6) are defined
on the interval [tm, tm]. For each subinterval [t (i)

m , t (i−1)
m ],

we define the number of discretization points between sub-
sequent measurements

N (i)
r =

⌈
t (i+1)
m − t (i)

m

�t

⌉
(64)

and the set of positive integers

J (i)
r =

{
j ∈ N : 1 ≤ j ≤ N (i)

r

}
(65)

for all i ∈ Im \ {Nm}. With these definitions in place, let
the discretization points between subsequent measurements be
given by

T (i)
r =

{
td ∈ R : (∃ j ∈ J (i)

r

)[
td = t (i)

m +
t (i+1)
m − t (i)

m

N (i)
r

( j−1)

]}
(66)

for all i ∈ Im \ {Nm}. Additionally, let T (Nm )
r = {t (Nm )

m }. The
set of all discretization points is given by

Td =
⋃

i∈Im

T (i)
r . (67)

It can be noted that Tm ⊆ Td . The cardinality of Td is given
by

Nd =
∑
i∈Im

N (i)
r (68)

where N (Nm )
r = 1.

APPENDIX B
ALGORITHM FOR SOLVING THE OPTIMIZATION

SUBPROBLEMS

It is noted that the optimization subproblems in (35), (37),
and (38) can all be written in the form

min
r
{g1(r, s)+ g2(r, s)} (69)

where g1 and g2 are quadratic, sum-of-squares functions of the
optimization variables we want to minimize over r, as well as
other optimization variables s. Because g1 and g2 are quadratic
and sum of squares, they can be written as

gi(r, s) =
∥∥∥∥∥∥
[
Mr,i Ms,i M1,i

]⎡⎣r
s
1

⎤
⎦
∥∥∥∥∥∥

2

(70)

for i ∈ {1, 2} and some coefficient matrices Mr,i , Ms,i , and
M1,i . It is noted that the sum of g1 and g2 can be written as

g1(r, s)+ g2(r, s) =
∥∥∥∥∥∥
[
Mr Ms M1

]⎡⎣r
s
1

⎤
⎦
∥∥∥∥∥∥

2

(71)
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with

Mr =
[

Mr,1

Mr,2

]
, Ms =

[
Ms,1

Ms,2

]
, M1 =

[
M1,1

M1,2

]
. (72)

Because the cost function g1 + g2 is quadratic and sum of
squares, all values of r for which the gradient of the cost
function with respect to r is zero are minimizers. That is, r
minimizes the cost function g1 + g2 if it satisfies

2MT
r (Mrr +Mss+M1) = 0. (73)

Therefore, a minimizer is given by

r = −(MT
r Mr

)+
MT

r

[
Ms M1

][s
1

]
. (74)

It is noted that this minimizer is a linear function of the other
optimization variables s. This minimizer is unique if MT

r Mr is
invertible, in which case we can exchange the pseudoinverse
by the regular inverse. The corresponding solution of the
optimization problem in (69) is given by

min
r
{g1(r, s)+ g2(r, s)} =

∥∥∥∥Pr
[
Ms M1

][s
1

]∥∥∥∥
2

(75)

with

Pr = I −Mr
(
MT

r Mr
)+

MT
r . (76)

A. Computation Using the QR-Decomposition

The computation of the minimizer in (74) and solution
in (75) of the optimization problem in (69) can be sim-
plified using the QR-decomposition. The QR decomposition
decomposes any real, rectangular matrix A into an orthogonal
matrix Q and an upper triangular matrix R (where the rank
of R is equal to its number of nonzero diagonal elements),
such that A = QR; see [8], for example. It is noted that
AT A = (QR)T QR = RT R, because Q is orthogonal. Thus,
for any partitioned, real, rectangular matrix

A = [A1 A2
]

(77)

we have

AT A =
[

AT
1 A1 AT

1 A2

AT
2 A1 AT

2 A2

]

=
[

RT
11R11 RT

11R12

RT
12R11 RT

12R12 + RT
22R22

]
= RT R (78)

for some partitioned, upper triangular matrix

R =
[

R11 R12

0 R22

]
(79)

where the elements of R are implicitly given by (78). It follows
that

R+11R12 =
(
RT

11R11
)+

RT
11R12 =

(
AT

1 A1
)+

AT
1 A2 (80)

and

RT
22R22 = AT

2 A2 − RT
12R12

= AT
2 A2 − RT

12R11
(
RT

11R11
)+

RT
11R12

= AT
2

(
I − A1

(
AT

1 A1
)+

AT
1

)
A2. (81)

Now, if A = [
Mr Ms M1

]
, with A1 = Mr and A2 =[

Ms M1
]
, by comparison with (80) and (81), we obtain the

following simple expressions for the minimizer in (74) and
the solution in (75):

r = −R+11R12

[
s
1

]
(82)

and

min
r
{g1(r, s)+ g2(r, s)} =

∥∥∥∥R22

[
s
1

]∥∥∥∥
2

. (83)

Hence, the minimizer in (74) and the solution in (75) can be
efficiently computed using the QR-decomposition.
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