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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Recent advances in the manufacturing industry have enabled the deployment of Cyber-Physical Systems (CPS) at scale. By utilizing advanced 
analytics, data from production can be analyzed and used to monitor and improve the process and product quality. Many frameworks for 
implementing CPS have been developed to structure the relationship between the digital and the physical worlds. However, there is no systematic 
review of the existing frameworks related to quality management in manufacturing CPS. Thus, our study aims at determining and comparing the 
existing frameworks. The systematic review yielded 38 frameworks analyzed regarding their characteristics, use of data science and Machine 
Learning (ML), and shortcomings and open research issues. The identified issues mainly relate to limitations in cross-industry/cross-process 
applicability, the use of ML, big data handling, and data security.  
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1. Introduction 

The advent of advanced technologies in the manufacturing 
industry such as Internet of Things (IoT), Machine Learning 
(ML) and distributed ledger in the context of digitization and 
Industry 4.0 is transforming today’s manufacturing lines into 
Cyber-Physical Systems (CPS). In the context of this paper, the 
term CPS describes a new generation of manufacturing systems 
with interconnected computational and physical capabilities 
that can interact with human operators through new modalities 
[1]. The prevalent manufacturing industry is characterized by 
increasing competitive pressure and customer requirements 
with regards to product and process quality as well as low 
prices. Concurrently, the complexity of the manufactured 
products is rising through ongoing optimization, 
customization, and the use of high-tech engineering in products 
working at the physical limits of the respective materials such 

as in offshore wind turbines and aerospace products [2, 3]. 
Companies in the manufacturing sector thus strive for 
continuous improvement, optimization and increasing 
efficiency of their processes to cope with the increasing quality 
requirements and to keep up with the competition. 
Coincidently, the growing availability of data related to quality 
aspects yields the potential of enhancing process and product 
quality using data analytics [4]. Quality is here seen from the 
manufacturing perspective and relates to conformance to 
technical requirements [5]. Quality Management is defined as 
“an integrated approach to achieving and sustaining high 
quality output, focusing on the maintenance and continuous 
improvement of processes and defect prevention at all levels 
and in all functions of the organization, in order to meet or 
exceed customer expectations” [6]. Process and product quality 
optimization using acquired production data has distinctly 
emerged as a prominent subject of research in the last two 
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decades [3] and is becoming more feasible in practical 
applications due to the deployment of CPS. The introduction of 
data-driven quality management in companies is still 
challenging though, due to the novelty of the respective 
technologies. Frameworks have thus been introduced in the 
literature to guide the implementation of quality management 
in CPS, providing a structured architecture to connect physical 
production systems and digital services. As this is a topic of 
active research, multiple such frameworks have been 
introduced, cf. Table 1, which focus on various aspects and 
industry sectors. To gain an overview as well as to identify the 
benefits and shortcomings of these frameworks, a structured 
review is needed. To the best of the authors’ knowledge, no 
such review exists and shall thus be provided here. The main 
contributions of this work are our answers to the following 
research questions (RQ): 

 
RQ1: What are the characteristics of existing data-driven 
frameworks for quality management in CPS? 

The first research question investigates the characteristics of 
the identified frameworks. The focus with respect to the 
manufacturing process and industry should be identified, as 
well as similarities and differences of the frameworks. Finally, 
the level of abstraction e.g., product/ single machine/ 
production line, should be classified, together with the benefits 
that are achieved by the implementation of the framework. 

 
RQ2: How are data science and ML techniques used for 
quality management? 

The second research question focusses on the use of data 
science and ML for quality management within the 
frameworks. Thus, it should be identified what the data-based 
components of the frameworks are used for and which specific 
algorithms are employed. Further, it is of interest, what kind of 
data e.g., synthetic/ real data as well as which metrics/ Key 
Performance Indicators (KPIs) are used for training and 
evaluation. In the context of interaction with human operators, 
it is of special interest how ML KPIs e.g., accuracy, can be 
translated to manufacturing KPIs e.g., parts per million (ppm), 
and whether the frameworks can provide statistical guarantees 
like traditional Statistical Process Control (SPC). 

 
RQ3: What are the deficits and open research questions? 

Finally, the deficits of the available frameworks shall be 
identified. This is done to highlight open research questions 
and opportunities for future work. 

2. Methodology 

We conduct a systematic literature review (SLR) following 
the guidelines from [7, 8]. With the context and research 
questions presented in Section 1, we describe the criteria for 
selecting the primary studies. Then we explain our search and 
selection process that yields the final set of primary studies.  

 
Inclusion criteria. Papers which present a framework or a 

software architecture for CPS and that address quality in 
manufacturing were selected. 

Exclusion criteria. We discard non-peer-reviewed papers, 
unpublished papers, and non-English papers. We exclude 
papers that do not provide technical details about the respective 
framework and surveys or literature reviews. We also do not 
consider papers having less than 4 pages double column or 6 
pages single column. We keep the journal version and exclude 
the conference version of the same work. We also exclude 
papers outside the time range from 2010 to February 2021. 

Search and selection process. We first search for potential 
primary studies from the four most popular publication 
databases IEEE Xplore, ACM Digital Library, ScienceDirect, 
and Scopus. Scopus and ACM DL already index SpringerLink 
[9]. Following the guidelines from [8], based on the research 
questions and keywords utilized in related articles, we define 
our search keywords. The following search string is adapted to 
fit each of the search engines of the publication databases: 
(framework OR software architecture) AND (manufacturing 
OR industry OR industrial OR production) AND (quality) AND 
(cyber-physical system OR CPS OR digital twin OR DT) AND 
(artificial intelligence OR AI OR machine learning OR ML).  

We merge the search results returned from all four databases 
(673 papers) into one Excel file and remove any duplicates 
based on paper titles and DOIs. For every candidate paper in 
the search results, we first review the paper's title and abstract, 
followed by skimming through the contents.  

3. Results 

Data from the primary studies are extracted and synthesized 
to answer the research questions. Table 1 provides the complete 
list of the 38 primary studies. 

 
RQ1. Figure 1 shows the distribution of the papers per year, 
from 2010 to February 2021. An increase in the number of 
frameworks for CPS related to quality in the last 5 years, with 
a strong growth trend (compound annual growth rate of 63% 
from 2017 to 2020) is clearly noticeable. From the 38 papers, 
63% (24) were published in journals, and 37% (14) in 
conference proceedings. Based on the papers’ authorship the 
number of papers per country was calculated. In papers with 
authors from n countries, the papers were assigned as 1/n to 
each country. China (29%) and USA (23%) account for most 
publications. South Korea, United Kingdom and Germany are 
represented with 11%, 7% and 6% of the papers, respectively. 
84% (32) of the papers validated the proposed frameworks with 
use cases.  

Figure 1. Number of papers per year 
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Table 1. Primary studies 
# Year Title DOI 

S1 2021 BiDrac Industry 4.0 framework: Application to an Automotive Paint Shop Process 10.1016/j.conengprac.2021.104757 

S2 2021 Maintenance and digital health control in smart manufacturing based on condition monitoring 10.1016/j.procir.2020.05.216 

S3 2021 Data-driven cyber-physical system framework for connected resistance spot welding weldability certification 10.1016/j.rcim.2020.102036 

S4 2021 A digital twin-based flexible cellular manufacturing for optimization of air conditioner line 10.1016/j.jmsy.2020.07.012 

S5 2021 A big data-driven framework for sustainable and smart additive manufacturing 10.1016/j.rcim.2020.102026 

S6 2020 Digital Twin-enabled Collaborative Data Management for Metal Additive Manufacturing Systems 10.1016/j.jmsy.2020.05.010 

S7 2020 A Conceptual Framework for AI-based Operational Digital Twin in Chemical Process Engineering 10.1109/ICE/ITMC49519.2020.9198575 

S8 2020 Architecture model proposal of innovative intelligent manufacturing in the chemical industry based 
on multi-scale integration and key technologies 

10.1016/j.compchemeng.2020.106967 

S9 2020 Six-Sigma Quality Management of Additive Manufacturing 10.1109/JPROC.2020.3034519 

S10 2020 A Requirements Driven Digital Twin Framework: Specification and Opportunities 10.1109/ACCESS.2020.3000437 

S11 2020 Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing 10.1080/0951192X.2020.1747642 

S12 2020 Machine Learning-enabled feedback loops for metal powder bed fusion additive manufacturing 10.1016/j.procs.2020.09.314 

S13 2020 Research on on-line Monitoring Method of Automatic Production Line based on Industrial Internet of Things 10.1109/IAAI51705.2020.9332863 

S14 2020 Virtual quality gates in manufacturing systems: Framework, implementation and potential 10.3390/jmmp4040106 

S15 2020 A digital twin-based big data virtual and real fusion learning reference framework supported by industrial 
internet towards smart manufacturing 

10.1016/j.jmsy.2020.11.012 

S16 2020 Contributions of lean six sigma to sustainable manufacturing requirements: an Industry 4.0 perspective 10.1016/j.procir.2020.02.044 

S17 2020 A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin 10.1016/j.rcim.2020.101974 

S18 2020 A Quality-Oriented Digital Twin Modelling Method for Manufacturing Processes Based on A Multi-Agent Architecture 10.1016/j.promfg.2020.10.044 

S19 2020 Digital twin for cutting tool: Modeling, application and service strategy 10.1016/j.jmsy.2020.08.007 

S20 2019 Visual Analytics Framework for Condition Monitoring in Cyber-Physical Systems 10.1109/ICSTCC.2019.8885611 

S21 2019 Mímir: Building and Deploying an ML Framework for Industrial IoT 10.1109/ICDMW.2019.00065 

S22 2019 A digital twin framework for performance monitoring and anomaly detection in fused deposition modeling 10.1109/COASE.2019.8843166 

S23 2019 A Conceptual Framework for Cyber-physical System in Connected RSW Weldability Certification 10.1016/j.promfg.2020.01.055 

S24 2019 The framework design of smart factory in discrete manufacturing industry based on cyber-physical system 10.1080/0951192X.2019.1699254 

S25 2019 Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry 10.1016/j.ijinfomgt.2019.05.020 

S26 2019 Cyber-physical-based PAT (CPbPAT) framework for Pharma 4.0 10.1016/j.ijpharm.2019.06.036 

S27 2019 Proposition of the methodology for Data Acquisition, Analysis and Visualization in support of Industry 4.0 10.1016/j.procs.2019.09.370 

S28 2018 Digital twin-based smart production management and control framework for the complex product assembly shop-floor 10.1007/s00170-018-1617-6 

S29 2018 A study on the integrations of products and manufacturing engineering using sensors and IoT 10.1007/978-3-319-99707-0_46 

S30 2018 Implementation of cyber-physical production systems for quality prediction and operation control in metal casting 10.3390/s18051428 

S31 2018 IDARTS – Towards intelligent data analysis and real-time supervision for industry 4.0 10.1016/j.compind.2018.07.004 

S32 2018 Data-driven smart manufacturing 10.1016/j.jmsy.2018.01.006 

S33 2018 Integrated Cyber Physical Simulation Modelling Environment for Manufacturing 4.0 10.1109/IEEM.2018.8607696 

S34 2017 A Framework of a Smart Injection Molding System Based on Real-time Data  

S35 2017 Framework and development of fault detection classification using IoT device and cloud environment 10.1016/j.jmsy.2017.02.007 

S36 2015 Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment 10.1016/j.ifacol.2015.06.318 

S37 2014 Towards a domain-specific framework for predictive analytics in manufacturing 10.1109/BigData.2014.7004332 

S38 2010 Research on Intelligent Process Quality Control System under Network Environment 10.1109/ISME.2010.29 

 
The frameworks in most of the papers (53%) are 

implemented and validated in a research setting, e.g., in 
testbeds. The remaining papers (37%) implement and validate 
their approaches in real industrial use cases. The presented use 
cases are from a variety of industries, as presented in Figure 2. 
The industry sectors were taken from the Global Industry 
Classification Standard [10]. The category “Multiple” refers to 
use cases that can be applied to a variety of industry sectors, for 
example, additive manufacturing, that can be utilized in, among 
others, the Aerospace & Defense sector as well as in Household 
& Personal Products. The Electrical Equipment and 
Automotive industries are most strongly represented with 7 and 
6 papers, respectively.  

Metal additive manufacturing [S5, S6, S9, S11, S12, S22] 
is the most frequent use case. Followed by milling [S1, S3, S5, 
S27], cutting [S17, S19, S36], battery production [S2, S14, 
S16], air conditioner production line [S4, S38], assembly [S18, 
S35] and welding [S3, S23]. When analyzing the abstraction 
level of the frameworks, 26 of the 38 papers (68%) developed 
the frameworks for the production line level (in some cases 
incorporating previous phases from the product development). 

10 papers (26%) presented frameworks for specific machines 
(for example machine tools with cutting use cases, or selective 
laser melting machines for additive manufacturing). Only 2 
papers (6%) developed a framework for the produced parts.  

Figure 2. Number of papers per industry sector 
 
Regarding the architecture, most of the frameworks are 

implemented using a combination of cloud-edge technologies 
(24%) as shown in Figure 3. Cloud computing was the most 
used technology with a combined presence of 56%. IoT 
technologies were present in 24% of the architectures. 
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S16 2020 Contributions of lean six sigma to sustainable manufacturing requirements: an Industry 4.0 perspective 10.1016/j.procir.2020.02.044 

S17 2020 A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin 10.1016/j.rcim.2020.101974 

S18 2020 A Quality-Oriented Digital Twin Modelling Method for Manufacturing Processes Based on A Multi-Agent Architecture 10.1016/j.promfg.2020.10.044 

S19 2020 Digital twin for cutting tool: Modeling, application and service strategy 10.1016/j.jmsy.2020.08.007 

S20 2019 Visual Analytics Framework for Condition Monitoring in Cyber-Physical Systems 10.1109/ICSTCC.2019.8885611 

S21 2019 Mímir: Building and Deploying an ML Framework for Industrial IoT 10.1109/ICDMW.2019.00065 

S22 2019 A digital twin framework for performance monitoring and anomaly detection in fused deposition modeling 10.1109/COASE.2019.8843166 

S23 2019 A Conceptual Framework for Cyber-physical System in Connected RSW Weldability Certification 10.1016/j.promfg.2020.01.055 

S24 2019 The framework design of smart factory in discrete manufacturing industry based on cyber-physical system 10.1080/0951192X.2019.1699254 

S25 2019 Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry 10.1016/j.ijinfomgt.2019.05.020 

S26 2019 Cyber-physical-based PAT (CPbPAT) framework for Pharma 4.0 10.1016/j.ijpharm.2019.06.036 

S27 2019 Proposition of the methodology for Data Acquisition, Analysis and Visualization in support of Industry 4.0 10.1016/j.procs.2019.09.370 

S28 2018 Digital twin-based smart production management and control framework for the complex product assembly shop-floor 10.1007/s00170-018-1617-6 

S29 2018 A study on the integrations of products and manufacturing engineering using sensors and IoT 10.1007/978-3-319-99707-0_46 

S30 2018 Implementation of cyber-physical production systems for quality prediction and operation control in metal casting 10.3390/s18051428 

S31 2018 IDARTS – Towards intelligent data analysis and real-time supervision for industry 4.0 10.1016/j.compind.2018.07.004 

S32 2018 Data-driven smart manufacturing 10.1016/j.jmsy.2018.01.006 

S33 2018 Integrated Cyber Physical Simulation Modelling Environment for Manufacturing 4.0 10.1109/IEEM.2018.8607696 

S34 2017 A Framework of a Smart Injection Molding System Based on Real-time Data  

S35 2017 Framework and development of fault detection classification using IoT device and cloud environment 10.1016/j.jmsy.2017.02.007 

S36 2015 Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment 10.1016/j.ifacol.2015.06.318 

S37 2014 Towards a domain-specific framework for predictive analytics in manufacturing 10.1109/BigData.2014.7004332 
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The frameworks in most of the papers (53%) are 

implemented and validated in a research setting, e.g., in 
testbeds. The remaining papers (37%) implement and validate 
their approaches in real industrial use cases. The presented use 
cases are from a variety of industries, as presented in Figure 2. 
The industry sectors were taken from the Global Industry 
Classification Standard [10]. The category “Multiple” refers to 
use cases that can be applied to a variety of industry sectors, for 
example, additive manufacturing, that can be utilized in, among 
others, the Aerospace & Defense sector as well as in Household 
& Personal Products. The Electrical Equipment and 
Automotive industries are most strongly represented with 7 and 
6 papers, respectively.  

Metal additive manufacturing [S5, S6, S9, S11, S12, S22] 
is the most frequent use case. Followed by milling [S1, S3, S5, 
S27], cutting [S17, S19, S36], battery production [S2, S14, 
S16], air conditioner production line [S4, S38], assembly [S18, 
S35] and welding [S3, S23]. When analyzing the abstraction 
level of the frameworks, 26 of the 38 papers (68%) developed 
the frameworks for the production line level (in some cases 
incorporating previous phases from the product development). 

10 papers (26%) presented frameworks for specific machines 
(for example machine tools with cutting use cases, or selective 
laser melting machines for additive manufacturing). Only 2 
papers (6%) developed a framework for the produced parts.  

Figure 2. Number of papers per industry sector 
 
Regarding the architecture, most of the frameworks are 

implemented using a combination of cloud-edge technologies 
(24%) as shown in Figure 3. Cloud computing was the most 
used technology with a combined presence of 56%. IoT 
technologies were present in 24% of the architectures. 
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Some papers (16%) did not provide information about the 
technologies used in their architecture design. 

Figure 3. Architecture type 
 

The existing frameworks focus on bridging the physical and 
digital worlds by establishing data transfer and interactions 
between layers in the production environment. In 30 of the 38 
papers “quality” is mentioned as a goal or focus for the 
framework. Predictive Maintenance is also considered a part of 
the broader concept of quality in CPS, as it is often cited in the 
context of process quality. For the remaining eight papers 
quality is part of the framework, but not the focus. We 
identified nine main benefits that can be achieved by adopting 
the proposed architectures, namely: Optimization of processes 
and decision making, detection of deviations and quality issues, 
decision support for domain experts, automation and reduction 
of the need for human intervention, scalability of the proposed 
data processing solutions, adaptation to changing conditions, 
integration of the value chain at different levels (local, 
subcontractors, etc.), assessment of production KPIs, 
generation of simulation data for quality assessment. 
 
RQ2. In 50% of the studies (19 papers), ML is part of the 
framework and used as the data analysis tool. The papers that 
do not implement ML make use of classical statistical methods 
(e.g., SPC) and visualization techniques for assisting the 
decision-making process. 17 papers mention that ML can be 
used for the data analysis, but do not provide concrete 
implementations or provide algorithms that may be used. These 
papers were not considered in the following analysis regarding 
RQ2.  

In the frameworks ML has been used for classification, 
regression, clustering, creation of digital twins, optimization of 
parameters, and scheduling. The most frequent use of ML is to 
perform regression (9 papers), where dependencies between 
product quality, machine data and process data are established. 
7 articles perform classification of sensor data, images, process, 
as well as internal machine data to predict defects, recognize 
parts, detect anomalies, and predict product quality. Finding 
optimal parameters such as machine and process configuration 
has also been explored [S5, S34] using multi-objective 
optimization methods such as heuristics combined with 
supervised learning. ML models have been used to create 
digital twins [S6, S11, S17, S19, S25, S28], for instance, to fit 
a simulation and create a surrogate model using machine and 
sensor data [S7].  Clustering [S14, S31] in manufacturing has 
been used to group machine conditions based on machine and 

sensor data as well as to explore and understand the data. The 
input data, the ML algorithms and the output data can be seen 
in the Sankey diagram in Figure 4. 

Input data. We differentiate between time-series sensor 
data (14 papers), image data [S6, S9, S11] and shop-floor data 
[S14, S28]. Time-series data refers to measurements from 
sensors (e.g., temperature, pressure, and vibration) either 
installed in the machines or along the production process. 
Image data are photos of the manufactured product (e.g., of the 
layers in additive manufacturing or the final product). Shop-
floor data are data from systems such as the Manufacturing 
Execution System or the Enterprise Resource Planning System. 
Shop-floor data can be for instance from personnel, logistics, 
equipment operation, inspections, etc. It is noticeable that most 
papers that adopted ML methods make use of time-series 
sensor data (both historical and real-time data). 

Output data. The output data shows more variety. 
Classification of product quality between a range of pre-
defined classes [S6, S13, S21, S24, S30, S35] and between 
conform and non-conform (OK, NOK) [S3, S14] account for 
most classification tasks. For continuous variables, the 
prediction of product quality [S14, S21, S23, S25], e.g., the 
yield of a chemical product [S25], is the most frequent output 
format. In two papers the output of the prediction tasks was the 
cutting tool wear [S17, S19]. Also, the prediction of energy 
demand [S1] and future states for a shop-floor configuration 
[S28] are among the outputs. The probability of failure [S31] 
and the defect probability [S9] appear in one paper each. The 
optimization of process parameters appears in two papers [S5, 
S34]. And finally, unsupervised learning techniques combined 
with expert knowledge are also used for data understanding 
[S1].  

ML algorithms. The most used algorithms fit into the 
category of supervised learning: Artificial Neural Networks - 
mainly Fully Connected Neural Networks [S3, S5, S13, S14, 
S24, S30] and Convolutional Neural Networks [S6, S9, S11] 
for image processing for time-series data, Random Forest [S3, 
S14, S17, S21, S25, S30], Gradient Boosting [S1, S21, S25], 
Lasso-lars regression [S14, S21], Decision Tree Regressor [S1, 
S17, S30] and Classification and Regression Tree [S3, S23], 
among others listed in Figure 5. K-Means Clustering [S1, S31], 
k-Nearest Neighbor [S3, S21] and Principal Component 
Analysis [S1] are the unsupervised learning techniques 
implemented in the analyzed studies. 

Automation level. Another point of interest for this study is 
the level of automation that the identified frameworks provide 
with regards to the use of ML algorithms. We differentiate 
between “Assisted Decision Making” and “Autonomous 
Decision Making”. Assisted Decision Making applies to 
scenarios where the framework provides information and 
suggestions that can be used or applied by the machine 
operators but are not executed autonomously. The framework 
thus has no direct control over physical equipment. 

Examples for this are indicators regarding the probability of 
quality problems, anomalies in the production process, 
suggestions for optimal process parameters as well as tool 
condition estimates for predictive maintenance.  

Author name / Procedia CIRP 00 (2021) 000–000 

2212-8271 © 2021 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 15th CIRP Conference on Intelligent Computation in Manufacturing Engineering. 

 
Figure 4. Sankey diagram linking input data, ML algorithm and output data 
 
In contrast, Autonomous Decision Making describes scenarios, 
where the framework directly executes control decisions such 
as scheduling decisions. The review shows, that most 
frameworks (93%) that specify the automation level fall into 
the category of Assisted Decision Making while only two 
frameworks support Autonomous Decision Making.  

For further analysis of the deployed ML systems, the use of 
metrics and KPIs is investigated. Only a small number of 
studies (10 papers, 26%) provide information regarding the 
metrics used in the frameworks. Out of these, the most popular 
metric for classification problems is Accuracy (5 papers), 
followed by Precision and Recall (3 papers). For regression 
problems, metrics focusing on the magnitude of the absolute 
deviation between target and prediction values are most 
popular such as (Root-)Mean Squared Error (RMSE), Mean 
Absolute Error (MAE) and Mean Absolute Percentage Error 
(MAPE) (5 papers). 

A further point of interest in this study is the origin of the 
data used for validation of the ML systems. Most of the 
reviewed studies used real data to test their implementations 
(71%). Some studies validated their implementation using 
simulated data (8%) and others used a combination of 
simulated and real data (13%).  
 
RQ3. In the following section, open research questions and 
deficits in current frameworks are identified, based on the 
acknowledged limitations and opportunities for future work in 
the primary studies. We coarsely group the identified issues 
into scope-related, machine learning-related, data 
security/privacy-related, as well as data handling/cloud-related. 
Starting with the scope of the frameworks, it is often noticed, 
that the framework is specific to a single industry [S3, S9, S11, 
S14, S25, S27] or even to a specific process, e.g., milling [S1, 
S3, S5, S27] and may be extended to cover different processes 

and industry sectors to facilitate a broader usage. Similarly, a 
higher abstraction level, e.g., production line instead of a single 
machine, is mentioned as a possible extension in [S11, S20, 
S22, S28]. Further, the frameworks may be adapted to support 
not only the production process but also the supply chain or 
even the complete product lifecycle [S5, S16, S27, S29, S30]. 
Finally, practical implementations as a proof-of-concept [S7, 
S34] as well as an analysis regarding the economic costs and 
benefits of using the framework [S14, S25] are considered as 
possible extensions.  

Regarding the use of ML, multiple frameworks only 
vaguely describe what ML may be used for within the 
framework and often acknowledge that the use of ML must be 
more concrete and may be extended to further parts of the 
framework and more advanced use cases such as parameter 
adaptation/optimization and automated decision making [S2, 
S6, S16, S17, S25, S26, S28, S31]. Further, ML-based virtual 
sensor may be used to estimate quality-related variables that 
are hard to measure physically [S4]. Another gap concerning 
the use of ML in current frameworks is the lack of uncertainty 
estimation and online evaluation acknowledged in some of the 
studies [S7, S17]. Manufacturing environments are strongly 
dynamic, which may degrade the accuracy of static ML models 
over time. ML models thus need to be adapted in case of 
changes to the environment [S14, S27]. 

An important issue in data-based quality management that 
is often mentioned is the potential for data security 
vulnerabilities that should be explicitly analysed by future 
frameworks [S14, S20, S23, S30]. Process and quality data are 
sensitive assets of manufacturing companies and thus must be 
protected. This issue is especially prominent in cloud-based 
applications [S10]. Nevertheless, future data protection and 
anonymization measures should not render the data useless to 
ML models [S23]. A possible solution is seen in the use of 
blockchain or distributed ledger technology (DLT) [S7, S8].  
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the broader concept of quality in CPS, as it is often cited in the 
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quality is part of the framework, but not the focus. We 
identified nine main benefits that can be achieved by adopting 
the proposed architectures, namely: Optimization of processes 
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decision support for domain experts, automation and reduction 
of the need for human intervention, scalability of the proposed 
data processing solutions, adaptation to changing conditions, 
integration of the value chain at different levels (local, 
subcontractors, etc.), assessment of production KPIs, 
generation of simulation data for quality assessment. 
 
RQ2. In 50% of the studies (19 papers), ML is part of the 
framework and used as the data analysis tool. The papers that 
do not implement ML make use of classical statistical methods 
(e.g., SPC) and visualization techniques for assisting the 
decision-making process. 17 papers mention that ML can be 
used for the data analysis, but do not provide concrete 
implementations or provide algorithms that may be used. These 
papers were not considered in the following analysis regarding 
RQ2.  

In the frameworks ML has been used for classification, 
regression, clustering, creation of digital twins, optimization of 
parameters, and scheduling. The most frequent use of ML is to 
perform regression (9 papers), where dependencies between 
product quality, machine data and process data are established. 
7 articles perform classification of sensor data, images, process, 
as well as internal machine data to predict defects, recognize 
parts, detect anomalies, and predict product quality. Finding 
optimal parameters such as machine and process configuration 
has also been explored [S5, S34] using multi-objective 
optimization methods such as heuristics combined with 
supervised learning. ML models have been used to create 
digital twins [S6, S11, S17, S19, S25, S28], for instance, to fit 
a simulation and create a surrogate model using machine and 
sensor data [S7].  Clustering [S14, S31] in manufacturing has 
been used to group machine conditions based on machine and 

sensor data as well as to explore and understand the data. The 
input data, the ML algorithms and the output data can be seen 
in the Sankey diagram in Figure 4. 

Input data. We differentiate between time-series sensor 
data (14 papers), image data [S6, S9, S11] and shop-floor data 
[S14, S28]. Time-series data refers to measurements from 
sensors (e.g., temperature, pressure, and vibration) either 
installed in the machines or along the production process. 
Image data are photos of the manufactured product (e.g., of the 
layers in additive manufacturing or the final product). Shop-
floor data are data from systems such as the Manufacturing 
Execution System or the Enterprise Resource Planning System. 
Shop-floor data can be for instance from personnel, logistics, 
equipment operation, inspections, etc. It is noticeable that most 
papers that adopted ML methods make use of time-series 
sensor data (both historical and real-time data). 

Output data. The output data shows more variety. 
Classification of product quality between a range of pre-
defined classes [S6, S13, S21, S24, S30, S35] and between 
conform and non-conform (OK, NOK) [S3, S14] account for 
most classification tasks. For continuous variables, the 
prediction of product quality [S14, S21, S23, S25], e.g., the 
yield of a chemical product [S25], is the most frequent output 
format. In two papers the output of the prediction tasks was the 
cutting tool wear [S17, S19]. Also, the prediction of energy 
demand [S1] and future states for a shop-floor configuration 
[S28] are among the outputs. The probability of failure [S31] 
and the defect probability [S9] appear in one paper each. The 
optimization of process parameters appears in two papers [S5, 
S34]. And finally, unsupervised learning techniques combined 
with expert knowledge are also used for data understanding 
[S1].  

ML algorithms. The most used algorithms fit into the 
category of supervised learning: Artificial Neural Networks - 
mainly Fully Connected Neural Networks [S3, S5, S13, S14, 
S24, S30] and Convolutional Neural Networks [S6, S9, S11] 
for image processing for time-series data, Random Forest [S3, 
S14, S17, S21, S25, S30], Gradient Boosting [S1, S21, S25], 
Lasso-lars regression [S14, S21], Decision Tree Regressor [S1, 
S17, S30] and Classification and Regression Tree [S3, S23], 
among others listed in Figure 5. K-Means Clustering [S1, S31], 
k-Nearest Neighbor [S3, S21] and Principal Component 
Analysis [S1] are the unsupervised learning techniques 
implemented in the analyzed studies. 

Automation level. Another point of interest for this study is 
the level of automation that the identified frameworks provide 
with regards to the use of ML algorithms. We differentiate 
between “Assisted Decision Making” and “Autonomous 
Decision Making”. Assisted Decision Making applies to 
scenarios where the framework provides information and 
suggestions that can be used or applied by the machine 
operators but are not executed autonomously. The framework 
thus has no direct control over physical equipment. 

Examples for this are indicators regarding the probability of 
quality problems, anomalies in the production process, 
suggestions for optimal process parameters as well as tool 
condition estimates for predictive maintenance.  
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In contrast, Autonomous Decision Making describes scenarios, 
where the framework directly executes control decisions such 
as scheduling decisions. The review shows, that most 
frameworks (93%) that specify the automation level fall into 
the category of Assisted Decision Making while only two 
frameworks support Autonomous Decision Making.  

For further analysis of the deployed ML systems, the use of 
metrics and KPIs is investigated. Only a small number of 
studies (10 papers, 26%) provide information regarding the 
metrics used in the frameworks. Out of these, the most popular 
metric for classification problems is Accuracy (5 papers), 
followed by Precision and Recall (3 papers). For regression 
problems, metrics focusing on the magnitude of the absolute 
deviation between target and prediction values are most 
popular such as (Root-)Mean Squared Error (RMSE), Mean 
Absolute Error (MAE) and Mean Absolute Percentage Error 
(MAPE) (5 papers). 

A further point of interest in this study is the origin of the 
data used for validation of the ML systems. Most of the 
reviewed studies used real data to test their implementations 
(71%). Some studies validated their implementation using 
simulated data (8%) and others used a combination of 
simulated and real data (13%).  
 
RQ3. In the following section, open research questions and 
deficits in current frameworks are identified, based on the 
acknowledged limitations and opportunities for future work in 
the primary studies. We coarsely group the identified issues 
into scope-related, machine learning-related, data 
security/privacy-related, as well as data handling/cloud-related. 
Starting with the scope of the frameworks, it is often noticed, 
that the framework is specific to a single industry [S3, S9, S11, 
S14, S25, S27] or even to a specific process, e.g., milling [S1, 
S3, S5, S27] and may be extended to cover different processes 

and industry sectors to facilitate a broader usage. Similarly, a 
higher abstraction level, e.g., production line instead of a single 
machine, is mentioned as a possible extension in [S11, S20, 
S22, S28]. Further, the frameworks may be adapted to support 
not only the production process but also the supply chain or 
even the complete product lifecycle [S5, S16, S27, S29, S30]. 
Finally, practical implementations as a proof-of-concept [S7, 
S34] as well as an analysis regarding the economic costs and 
benefits of using the framework [S14, S25] are considered as 
possible extensions.  

Regarding the use of ML, multiple frameworks only 
vaguely describe what ML may be used for within the 
framework and often acknowledge that the use of ML must be 
more concrete and may be extended to further parts of the 
framework and more advanced use cases such as parameter 
adaptation/optimization and automated decision making [S2, 
S6, S16, S17, S25, S26, S28, S31]. Further, ML-based virtual 
sensor may be used to estimate quality-related variables that 
are hard to measure physically [S4]. Another gap concerning 
the use of ML in current frameworks is the lack of uncertainty 
estimation and online evaluation acknowledged in some of the 
studies [S7, S17]. Manufacturing environments are strongly 
dynamic, which may degrade the accuracy of static ML models 
over time. ML models thus need to be adapted in case of 
changes to the environment [S14, S27]. 

An important issue in data-based quality management that 
is often mentioned is the potential for data security 
vulnerabilities that should be explicitly analysed by future 
frameworks [S14, S20, S23, S30]. Process and quality data are 
sensitive assets of manufacturing companies and thus must be 
protected. This issue is especially prominent in cloud-based 
applications [S10]. Nevertheless, future data protection and 
anonymization measures should not render the data useless to 
ML models [S23]. A possible solution is seen in the use of 
blockchain or distributed ledger technology (DLT) [S7, S8].  
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Lastly, the issue of big data handling and cloud 
technologies is recognized by the primary studies. In general, 
the use of cloud technology is seen as a possible way to tackle 
growing amounts of data and local storage limits [S17, S26]. 
New ways of effectively managing big data in real-time 
applications need to be developed, especially when using cloud 
technology as issues with latency and bandwidth may arise. A 
possible solution is seen in the usage of edge devices for pre-
processing of the data [S2, S17, S22, S28, S32, S35]. Further, 
the heterogeneity of data sources and communication protocols 
raise integration efforts and costs of frameworks. Thus, 
standardized formats and protocols should be developed and 
utilized [S30, S32]. Finally, a simulation may be used as an 
additional data source [S15, S30, S32]. 

4. Discussion 

Following the description of research gaps that are 
acknowledged in the primary studies (RQ3), we critically 
discuss the frameworks in the following section.  

One of the major shortcomings we found is the superficial 
description and lack of detail of the presented frameworks. 
Oftentimes the system overview, the interconnection of 
different layers of the CPS and information about the data 
integration is missing. Many articles (14 papers) mention ML 
or Artificial Intelligence (AI) but do not specify what type of 
ML algorithm they use. We identify the need for studies that 
provide a concrete description on how to implement the 
framework, to guarantee its transferability and use in research 
and industry for additional use cases. 

A special focus of RQ2 has been the investigation of ML 
KPIs and metrics for evaluation of the algorithms used in the 
frameworks and how they may be translated to KPIs of the 
manufacturing sector. Very few of the frameworks describe the 
use of ML KPIs in detail and none of the studies describe the 
transformation into shop-floor-related KPIs. This result 
highlights an opportunity for further research, as the 
explainability and practicability of KPIs is a significant factor 
in the practical adoption of ML systems in industrial 
applications [10].  

ML algorithms are primarily used for supervised learning 
(17 papers). 4 articles use both supervised and unsupervised 
techniques. Our observations indicate that there is a gap in the 
use of unsupervised and reinforcement learning methods in the 
CPS frameworks for manufacturing. Also, the use of ontologies 
and knowledge-based solutions is explored in only one paper 
[S37]. Domain knowledge representation has the potential to 
contribute to the explainability and acceptance of AI for 
realizing flexible manufacturing systems [12]. 

5. Conclusions 

This study investigates the existing frameworks for data-
driven quality management in cyber-physical manufacturing 
systems by means of a systematic literature review. The review 
identifies gaps and shortcomings from 38 frameworks. 
Concerning the implications for practice, this work provides an 

overview of the existing frameworks, the benefits provided by 
them, and how AI-technologies are being used as data analytics 
tool. This can provide general support for improving quality 
management principles and implementation in certain 
industries. For academia, the literature review presents the 
open research questions and gaps regarding quality 
management in cyber-physical manufacturing systems, 
indicating further research directions in the field. The identified 
issues mainly relate to limitations in cross-industry/cross-
process applicability, the use of ML, big data handling as well 
as data security. Unsupervised, reinforcement learning, and 
ontology-based techniques are less explored when compared to 
supervised learning. AI model update and uncertainty 
estimation are not sufficiently discussed in the existing 
frameworks. Blockchain and DLT should be explored to tackle 
data security issues.  

This study has its limitations. First, academic databases are 
constantly updated, and the sample collected for this review 
refers only to the period in which the study was conducted. 
Finally, we also might have missed potentially relevant 
frameworks, despite the efforts presented in the methodology 
section. 
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