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Nondisturbing Extremum Seeking Control
for Multiagent Industrial Systems

Mark Haring , Synne Fossøy , Thiago Lima Silva , and Alexey Pavlov , Senior Member, IEEE

Abstract—Industrial applications of extremum seeking
control (ESC) can be a hit and miss affair. Although a
gain in performance can be achieved, the dither applied
to excite the system causes unwanted fluctuations in the
performance of the system. The fluctuations in systems
with a single extremum seeking loop are generally small.
However, for systems with many extremum seeking loops,
the fluctuations in each loop may add up to an intolera-
ble amount of fluctuation in the total performance. In this
article, we propose a method to cancel the dither-induced
fluctuations in the overall system performance to a large
extent by smartly constructing the dither signals in each
extremum seeking loop using a centralized coordinator.
The novelty of our method lies in the direct calculation of
the dither signals that avoids the heavy computations re-
quired by other methods. Moreover, we provide a solvability
analysis for the problem of cancelling dither-induced fluctu-
ations in the total performance of the system. Furthermore,
a complete stability analysis of the overall ESC scheme with
dither coordination is given.

Index Terms—Distributed systems, dither coordination,
extremum seeking control (ESC), optimization, perturbation
methods.

I. INTRODUCTION

INDUSTRIAL applications of extremum seeking control
(ESC) can be found in sectors that encounter a large level

of uncertainty in daily operation. These uncertainties are often
caused by inconsistencies in the composition of raw materials,
such as in the process industry, or by changing environmental
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conditions, commonly encountered in the energy industry. Typ-
ical examples of industrial applications of ESC are power opti-
mization of wind turbines [8], [12], [18] and photovoltaic arrays
[7], [22], [23], oil well optimization [26], [29], and the operation
of smelting furnaces [5]. For many of these applications, the
system to be controlled can be divided into several subsystems,
where each subsystem is locally controlled by ESC. Although
controlled by individual local controllers, the subsystems may
share input resources, output infrastructure, or system-wide
constraints that must be honored while steering the control inputs
toward their optimal values. Examples of distributed ESC for
multiagent systems are presented in [9], [13], [27], [30], [39],
and [40].

Although ESC comes in many forms (see, e.g., [3], [35], and
[41] and references therein), if the uncertainties acting on the
system are large and slowly time varying, dither is commonly
used to track changes in the unknown optimal operating con-
ditions. Too large or too fast dither signals in the input may be
harmful to equipment, violate constraints, or cause unacceptably
large fluctuations in the system’s output. For individual systems
controlled by ESC, dither is often chosen to be sufficiently small
to not pose this problem, although a positive lower bound on the
amount of dither commonly exists in practice due to the presence
of measurement noise [14]. For large systems with many ESC
loops, the combined effects and consequences of the introduced
dither signals may be substantial, even if all dither amplitudes
are small. For instance, for a multiagent system comprised of
many parallel subsystems, the amplitude of the dither-induced
fluctuation in the overall output of the system may be as large as
the absolute sum of the fluctuation amplitudes of all individual
subsystems [31]. Therefore, it can be challenging to choose
suitable dither signals that are sufficiently large to ensure a
proper tracking of changes in the optimum of each individual
subsystem, and at the same time, are small enough to avoid
losses and damages due to overly large fluctuations in the overall
system output.

Previous works addressing dither signals concern mostly their
shape, frequency, and amplitude. For instance, the use case in
[36] presents results that show a relation between the size of
dither amplitudes and the achieved convergence speed. Besides,
the amplitudes should be large enough to satisfy the persistence
of excitation requirement, and thus, ensure convergence to the
optimum; see, e.g., [1] and [2]. When it comes to the dither
frequencies, an important criterion is to select them such that
time-scale separation is obtained between the dynamics of the
system, the dither, and all other time scales of the controller;
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see, e.g., [14], [20], and [33]. Performance improvement of
multiagent systems can also be achieved by reusing agent fre-
quencies that are not significantly coupled with regards to their
steady-state performance; see, e.g., [21].

Preliminary ideas on cancelling dither-induced fluctuations
in the total system input were reported in [27] for a multiagent
resource allocation problem. In that article, the cancellation is
achieved by coordinating phases of individual dither signals.
Some form of minimizing dither signal amplitudes while en-
suring an appropriate persistence of excitation condition was
presented in [2]. However, that result does not guarantee cancel-
lation of dither-induced fluctuations. The challenge of designing
dither signals to cancel fluctuations both in the total input and
total output of a multiagent system, while at the same time ensur-
ing that each subsystem is sufficiently excited, was first treated
in [31]. The solution presented in that article calculates dither
signals by solving a nonconvex, yet computationally feasible
optimization problem. The proposed algorithm implicitly coor-
dinates both amplitudes and phases of individual dither signals
to achieve minimization of dither-induced fluctuations both in
the total input and output. This approach was then successfully
applied to the case of a network of subsystems sharing a common
constraint [32], with practical benefits demonstrated for the case
of constrained ESC optimization for an oil production system.

This article focuses on minimizing dither-induced fluctua-
tions in the total output of a multiagent system. It proposes an
algorithm for computing the dither-signals for each subsystem’s
extremum seeking controller such that the fluctuations in the
total output (defined as the sum of the outputs of individual
subsystems) are as small as possible. Considerations to avoid
rapid changes in dither signals, and to maintain a constant
excitation level in each subsystem’s input, make a complete
cancellation in total output infeasible. In contrast to the method
proposed in [31] and [32], we propose an algorithm for direct
calculation of the dither signals, which is much lighter than the
computationally heavy method proposed in these articles. Fur-
thermore, the dither signal optimizer of [31] and [32] considers
only sinusoidal dither signals, while the new proposed method
holds for a larger class of dither signals. Finally, this article
presents a solvability analysis for the problem of cancelling
dither-induced fluctuations in the total output and a complete
stability proof for each extremum seeking loop consisting of a
subsystem, an extremum seeking controller, and the dither signal
generated by the proposed algorithm.

This article is organized as follows. Preliminaries are given
in Section II. The ESC problem is presented in Section III.
Our method to solve the dither coordination problem is given
in Section IV. In Section V, an example of a stabilizing ex-
tremum seeking controller is given, which is subsequently used
in Section VI to show stability and convergence of the resulting
extremum seeking loops. Section VII presents two use cases to
illustrate our method. Finally, Section VIII concludes this article.

II. PRELIMINARIES

The sets of real numbers, the set of nonnegative real numbers,
and the set of positive real numbers are denoted by R, R≥0, and

R>0, respectively. The sets of natural numbers (nonnegative
integers) and positive integers are denoted by N and N>0. A
scalar function α : R≥0 → R≥0 is said to belong to class K if
it is continuous, strictly increasing and α(0) = 0. A continuous
function β : R≥0 × R≥0 → R≥0 is said to belong to the class
KL if, for each fixed s, the mapping β(r, s) belongs to the class
K with respect to r, and for each fixed r, the mapping β(r, s) is
decreasing with respect to s, andβ(r, s) → 0 as s → ∞ [19]. Let
x be a vector in Rn, where n is a positive integer. The transpose
of the vector x is denoted by xT . The Euclidean norm of x is
denoted by ‖x‖.

III. EXTREMUM-SEEKING PROBLEM FORMULATION

Consider a system consisting of N parallel subsystems. We
assume that there is no interaction between the subsystems, or
at least that the interaction between the subsystems is negligibly
small. The dynamics of each subsystem i ∈ {1, 2, . . . , N} are
given by a function fi : Rni × Ui → Rni such that

ẋi(t) = fi(xi(t), ui(t)) (1)

where xi(t) ∈ Rni is the state of the subsystem with dimension
ni ∈ N>0, ui(t) ∈ Ui is a controllable input, and t ∈ R≥0 is
the time. The set of possible input values Ui is assumed to be a
closed interval defined by

Ui =
{
ui ∈ R : smin

i ≤ ui ≤ smax
i

}
(2)

for some constants smin
i < smax

i . The measured output of each
subsystem is given by

yi(t) = hi(xi(t)) + di(t) (3)

for some function hi : Rni → R, where di(t) ∈ R is measure-
ment noise. Due to limited knowledge about the system, we con-
sider the state xi(t) of each subsystem, the measurement noise
di(t), and the functions fi in (1) and hi in (3) to be unknown.
Let us denote the true (noiseless) output of the subsystem by

zi(t) = hi(xi(t)). (4)

The true output zi(t) is measure for the performance cost
of the subsystem. The total performance cost of the system is
defined as the sum of the true outputs of all subsystems

ž(t) =

N∑
i=1

zi(t). (5)

To achieve optimal operating conditions under steady-state
conditions, we are interested in minimizing the total steady-
state performance cost. To clarify what we mean with the total
steady-state performance cost, let us consider fixed input values
ui(t) = ui. We assume the following.

Assumption 1: For each i ∈ {1, 2, . . . , N} and each fixed
ui ∈ Ui, there exists a (constant) solution Xi(ui) ∈ Rni of the
dynamics in (1) such that

0 = fi(Xi(ui), ui). (6)

In addition, we assume that the constant solution given by the
mapping Xi : Ui → Rni is locally attractive, uniformly on its
domain as well as in time.

Assumption 2: The following holds for each i ∈
{1, 2, . . . , N}. Let us define the closed ball

Bi(ui; ri) = {xi ∈ Rni : ‖xi −Xi(ui)‖ ≤ ri} (7)
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centered around Xi(ui) with radius ri ∈ R>0. There exists a
radius ρ0i ∈ R>0 and a function βxi ∈ KL such that

‖xi(t)−Xi(ui)‖ ≤ βxi(‖xi(0)−Xi(ui)‖, t) (8)

for all xi(0) ∈ Bi(ui; ρ
0
i ), ui ∈ Ui, and t ≥ 0.

Because all solutions of the subsystem that start sufficiently
close to the constant solution Xi(ui) eventually converge to
it, we say that Xi(ui) is the steady state of the subsystem.
In correspondence to (4), the true steady-state output of the
subsystem is given by

Zi(ui) = hi(Xi(ui)). (9)

Therefore, the total steady-state performance cost may be ex-
pressed as

Ž(u) =
N∑
i=1

Zi(ui) (10)

with u = [u1, u2, . . . , uN ]T . In order to minimize the total
steady-state performance cost, we have to take into account all
constraints on the system. As each controllable input ui must
remain within its feasible region Ui in (2), we may formulate
the optimization problem as follows:

min
u∈U

Ž(u) (11)

with

U =

{
[u1, u2, . . . , uN ]T ∈ RN :

(∀i ∈ {1, 2, . . . , N})[smin
i ≤ ui ≤ smax

i ]

}
. (12)

However, because the function hi and the state xi (as well
as the steady-state Xi(ui)) of each subsystem are unknown,
the cost function Ž in (10) is also unknown. To optimize the
system’s performance despite the limited knowledge about the
system, we note that the optimizer of the optimization problem in
(11) corresponds to the optimizers of the optimization problems

min
ui∈Ui

Zi(ui) (13)

for each subsystem i ∈ {1, 2, . . . , N}; see (10). Moreover, the
output yi(t) in (3) is a reasonably accurate approximation of the
steady-state performance cost Zi(ui(t)) in (9) for sufficiently
low noise levels and near-steady-state conditions. Therefore, we
may minimize the total steady-state performance cost by using
N extremum seeking controllers to minimize the steady-state
performance cost of each subsystem. A depiction of the system
with N parallel control loops is given in Fig. 1.

Let the controllers that optimize the steady-state performance
of each subsystem i ∈ {1, 2, . . . , N} be perturbation based. Al-
though details may vary, the general idea behind a perturbation-
based controller is to excite the subsystem by adding a dither
signal to its input in order to retrieve sufficient information to
approximate the first- and sometimes, second-order derivatives
of its steady-state performance cost function Zi. Subsequently,
these derivative estimates are utilized to steer the nominal input
of the subsystem toward its optimal value using a gradient-based
[3], [35] or Newton-based [11], [25] optimizer. For simplicity,
we limit ourselves to controllers that rely on gradient-based
optimization in this work. A schematic representation of a

Fig. 1. System with N parallel subsystems with ESC loops.

Fig. 2. Perturbation-based controller for the subsystem
i ∈ {1, 2, . . . ,N}.

gradient-based controller is given in Fig. 2, where ûi(t) denotes
the nominal input of the subsystem and pi(t) denotes the dither
signal. A detailed example of such a controller is given in
Section V.

A. Dither-Induced Fluctuations

Although dither is often necessary to optimize the steady-state
performance of the system, it introduces a fluctuation in the
output of each subsystem. For subsystem i ∈ {1, 2, . . . , N}, let
the input ui(t) of the subsystem be the sum of its nominal value
ûi(t) and its dither signal pi(t) as

ui(t) = ûi(t) + pi(t). (14)

Assuming that the subsystem is close to steady state and that
the nominal input is much slower than the dither signal, we
obtain from a first-order Taylor series approximation of Zi in
(9) that the subsystem’s true output in (4) can be approximated
by

zi(t) ≈ Zi(ûi(t)) +
dZi

dui
(ûi(t))pi(t). (15)

Here, Zi(ûi(t)) is the nominal value of the performance cost
and dZi

dui
(ûi(t))pi(t) is a dither-induced fluctuation. Because the

total performance cost in (5) is the sum of all subsystem outputs,
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Fig. 3. Fluctuation in the total performance cost.

we obtain that

ž(t) ≈
N∑

k=1

Zk(ûI(k)(t)) +
N∑
i=1

dZi

dui
(ûi(t))pi(t) (16)

where the first summation in the right-hand side of (16) is the
nominal value of the total performance cost of the system, and
the second summation is the corresponding fluctuation. Because
the fluctuation of the total performance cost is the sum of the
fluctuations of the outputs of all subsystems, we may have
that the fluctuation of the total performance cost is large even
if all fluctuations of the outputs of the subsystems are small.
This situation is illustrated in Fig. 3. A large dither-induced
fluctuation of the performance cost is generally undesirable
as it may lead to damaged equipment, violated constraints,
and large variations in production rates. A large performance
fluctuation may rule out ESC as a feasible optimization method
for industrial applications, especially for systems for which a
steady production rate is critical, such as energy production
systems.

Similarly to [31] and [32], we aim to minimize the fluctuation
in the total performance cost by cleverly coordinating the dither
signals of the subsystems such that the fluctuations of the outputs
of the subsystems cancel each other out instead of amplifying
each other. Our solution in the next section is simpler to com-
pute than the computationally heavy solutions in [31] and [32].
Moreover, we consider a much broader class of dither signals
than the single-frequency sinusoids used therein.

IV. DITHER SIGNAL COORDINATION

For any subsystem i ∈ {1, 2, . . . , N}, we define the dither
signal pi(t) in (14) as the linear sum of M time-varying basis
functions, denoted by bj(ωt), with j ∈ {1, 2, . . . ,M} as

pi(t) =

M∑
j=1

aij(t)bj(ωt) (17)

where ai,j(t) ∈ R represent the corresponding amplitudes for
i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M}. By scaling the input
of the basis functions by the positive parameter ω ∈ R>0, we
can select the frequency of the dither signal based on the value

ofω. For simplicity, the basis functions are chosen to be periodic
with common period T ∈ R>0 (for ω = 1). In addition, they are
designed such that

1

T

∫ t+T

t

bj(τ)dτ = 0 (18)

and
1

T

∫ t+T

t

bj(τ)bk(τ)dτ =

{
1, if j = k
0, if j 
= k

(19)

for all j, k ∈ {1, 2, . . . ,M} and all t ≥ 0. Hence, the basis func-
tions have zero mean and are orthogonal. Moreover, the basis
functions and their first-order time derivatives are uniformly
bounded. That means that there exist constants δb, δḃ ∈ R>0,
such that

|bj(t)| ≤ δb (20)

and ∣∣∣ḃj(t)∣∣∣ ≤ δḃ (21)

for all t ≥ 0 and all j ∈ {1, 2, . . . ,M}. As an example, the
basis functions can be chosen as b1(ωt) =

√
2 sin(ωt), b2(ωt) =√

2 cos(ωt), b3(ωt) =
√
2 sin(2ωt), b4(ωt) =

√
2 cos(2ωt),

b5(ωt) =
√
2 sin(3ωt), etc. Note that a wide class of dither

signals can be captured by (17) given that M is sufficiently
large.

Although the amplitudes ai,j(t) may change over time, we
assume that this change is much slower than the variations in
values of the basis functions; in the time scale of the basis
functions, the amplitudes can be regarded as quasi-constant.
As a measure for the magnitude of the fluctuation of the total
performance cost [see (16)], we introduce

γ(t) =

√√√√√ω

T

∫ t+T
ω

t

⎛
⎝ N∑

i=1

dZi

dui
(ûi(t))

M∑
j=1

aij(t)bj(ωτ)

⎞
⎠

2

dτ

(22)
where we average over one period of the basis functions to
obtain a measure that represents the average magnitude of the
fluctuation instead of its instant value. Note that

γ(t) ≈

√√√√ω

T

∫ t+T
ω

t

(
N∑
i=1

dZi

dui
(ûi(τ))pi(τ)

)2

dτ (23)

if the amplitudes ai,j(t) and the gradients dZi

dui
(ûi(t)) are slowly

time varying with respect to the basis functions of the dither
signals. Using the approximation in (23), γ(t) is zero if the
fluctuation of the total performance cost is zero, and positive
otherwise. Utilizing the orthogonality property of the basis
functions in (19), we obtain from (22) that

γ(t) =

√√√√√ M∑
j=1

(
N∑
i=1

dZi

dui
(ûi(t))aij(t)

)2

. (24)

For any gradients dZi

dui
(ûi(t)), we aim to keep the fluctuation

in the total performance cost at a minimum by selecting suitable
amplitudes aij(t) that result in a low value of the measure γ(t).
However, the selection of amplitudes should not have a profound
effect on the optimization of the steady-state performance of
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each subsystem i ∈ {1, 2, . . . , N}. Motivated by the stability
analysis in Section VI, the following three important require-
ments must be met when selecting the dither signals.

1) For a robust optimization process, there must exist a
uniform positive lower bound on the level of excitation
provided by the dither signals in order to estimate the
gradient dZi

dui
(ûi(t)) that is required for the optimization

of the steady-state performance of each subsystem; see
Section III.

2) All dither signals are required to be small; large dither
signals result in inputs with large oscillations around
their performance-optimal values, which may lead to a
substantial performance loss on average.

3) The rate of change of all dither signals must be small for
each subsystem to remain close to steady-state operation.

Despite these three requirements, there is a large freedom in
selecting the amplitudes aij(t) in (17). If the amplitudes of the
dither signals are slowly time varying with respect to their basis
functions, the level of excitation provided by the dither signals
is given by

ω

T

∫ t+T
ω

t

p2i (τ)dτ ≈
M∑
j=1

a2ij(t) (25)

for all t ≥ 0 and all i ∈ {1, 2, . . . , N}; see (17) and (19). To
satisfy the first requirement, we fix the level of excitation of
each dither signal as

M∑
j=1

a2ij(t) = ν2 (26)

for all t ≥ 0 and i ∈ {1, 2, . . . , N}, where ν ∈ R>0 is a con-
stant. Because (26) implies that |aij(t)| ≤ ν for all t ≥ 0,
i ∈ {1, 2, . . . , N}, and j ∈ {1, 2, . . . ,M}, and because all basis
functions are uniformly bounded [see (20)], the second require-
ment is also satisfied by choosing a sufficiently small value of
ν. From (24), it follows that γ(t) is a function of the dither
amplitudes aij(t) and the gradients dZi

dui
(ûi(t)). We aim to find

mappings from the gradients dZi

dui
(ûi(t)) to the amplitudes aij(t)

that lead to a small value of γ(t) for each possible set of gradient
values. For each i ∈ {1, 2, . . . , N} and each j ∈ {1, 2, . . . ,M},
let this mapping be denoted by Aij : RN → R as

aij(t) = Aij (gZ(t)) (27)

with

gZ(t) =
[
dZ1

du1
(û1(t))

dZ2

du2
(û2(t)) · · · dZN

duN
(ûN (t))

]
.

(28)
We assume that each mapping is defined such that the fixed-
excitation condition in (26) is satisfied for all possible gradient
values. To satisfy the third requirement, we additionally assume
that each mapping is globally Lipschitz so that

|ȧij(t)| ≤ LA ‖ġZ(t)‖ (29)

for some Lipschitz constant LA ∈ R>0. In this case, the rate
of change of all dither signals can be made arbitrarily small by
tuning the extremum seeking controller of each subsystem such
that the rate of change of all gradients is small, and by choosing
a small value of ω such that the basis functions bj(ωt) of the
dither signals are slowly time varying; see (21). We note that the

gradients dZi

dui
(ûi(t)) are not known. However, as mentioned in

Section III, for each i ∈ {1, 2, . . . , N}, the extremum seeking
controller of the subsystem i contains a gradient estimator that
produces an estimate of dZi

dui
(ûi(t)) to optimize the performance

of the subsystem. This estimate is also used for computing the
dither amplitudes.

A. Theoretical Lower Fluctuation Bound for a Fixed
Excitation Level

As a benchmark for the reduction of the fluctuation of the
total performance cost that can be achieved with the described
approach, we determine the theoretical minimal value of γ(t) for
any (not necessarily Lipschitz) mappings in (27) that satisfy the
fixed-excitation condition in (26). This theoretical lower bound
on the value of γ(t) is given in the following lemma.

Lemma 3: Let M ≥ N − 1. Consider any gradients
dZi

dui
(ûi(t)) ∈ R for all i ∈ {1, 2, . . . , N}. Let us renumber the

subsystems. For all i ∈ {1, 2, . . . , N} and all t ≥ 0, the number
I(i) = I(i, t) corresponds to the number of the subsystem
with the ith largest gradient. Hence, we renumber the subsys-
tems such that |dZI(1)

duI(1)
(ûI(1)(t))| ≥ |dZI(2)

duI(2)
(ûI(2)(t))| ≥ · · · ≥

|dZI(N)

duI(N)
(ûI(N)(t))|. Under the fixed-excitation condition in (26),

the minimal value of γ(t) that can be achieved for any (not
necessarily Lipschitz) mappings of the dither amplitudes is given
by

γ(t) = max

{
0,

(∣∣∣∣dZI(1)
duI(1)

(ûI(1)(t))
∣∣∣∣−

N∑
i=2

∣∣∣∣dZI(i)
duI(i)

(ûI(i)(t))
∣∣∣∣
)
ν

}
.

(30)
Proof: See the Appendix A.
It follows from Lemma 3 that a zero total fluctuation can

only be achieved whenever the magnitude of the largest gradient
is smaller than or equal to the sum of magnitudes of all other
gradients. Only in that case, it is possible to choose the dither
amplitudes such that the fluctuations of the performance cost of
individual subsystems cancel each other out. If the magnitude of
the largest gradient is larger than the sum of all others, complete
cancellation is not possible under the fixed-excitation condition
in (26). The smallest fluctuation of the total performance cost
can then be achieved by cancelling out the fluctuation of the
performance cost of the subsystem with the largest gradient as
much as possible by choosing the same perturbation with an
effective opposite sign for all other subsystems. This approach
results in the minimal value of γ(t) in (30).

The mappings of the dither amplitudes that correspond to
the minimal value of γ(t) in Lemma 3 are discontinuous, and
therefore, not globally Lipschitz. These discontinuities occur at
the zero crossings of the gradient values. Alterations to obtain
globally Lipschitz mappings are described in the next section.
Note that these alternations inevitably lead to a larger value of
γ(t).
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B. Dither Coordination Method

In this section, we present our solution to the dither coordi-
nation problem. Our method requires that the number of the
basis function M is equal to the number of subsystems N .
Let I(i) denote the numbering of the subsystems from the
largest to the smallest gradient value, as in Lemma 3. For each
i, j ∈ {1, 2, . . . , N}, let us define the mappings

AI(i)I(j) (gZ(t))

=

{
χi(t) +

∑N
k=i ϕki(t)ξk(t), if i = j

−sij(t)
∑N

k=max{i,j}
ϕki(t)ξk(t)
max{k−1,1} , if i 
= j

(31)

where the nonnegative function ϕki(t) is given by

ϕki(t) =

⎧⎪⎪⎨
⎪⎪⎩

| dZI(k)
duI(k)

(ûI(k)(t))|

| dZI(i)
duI(i)

(ûI(i)(t))|
, if |dZI(i)

duI(i)
(ûI(i)(t))| > 0

1, if |dZI(i)
duI(i)

(ûI(i)(t))| = 0

(32)

for all i ≤ k ≤ N , where the nonnegative functionχi(t) is given
by

χi(t) = νmax

{
1− λ1

∣∣∣∣dZI(i)
duI(i)

(ûI(i)(t))
∣∣∣∣ , 0
}

(33)

for all i ∈ {1, 2, . . . , N} and some shape parameter λ1 ∈ R>0,
and where the function sij(t) is given by

sij(t) = sign

(
dZI(i)
duI(i)

(ûI(i)(t))
)
sign

(
dZI(j)
duI(j)

(ûI(j)(t))
)

(34)
with

sign(r) =

⎧⎨
⎩

−1, if r < 0
0, if r = 0
1, if r > 0.

(35)

Due to the difference in magnitude of the gradients, the dither
amplitudes of the various subsystems may have different effects
on the fluctuation of the total performance cost. The function
ϕki(t) in (32) is introduced to counteract these differences. To
ensure that the fluctuations cancel each other out instead of
amplifying each other, the function sij(t) in (34) is introduced
to give each amplitude the appropriate sign. In addition, to
guarantee that the resulting dither signals satisfy the excitation
condition in (26), we define the scaling parameters ξk(t) ∈ R≥0

for all k ∈ {1, 2, . . . , N}, such that
N∑
j=1

(
AI(i)I(j) (gZ(t))

)2
= ν2 (36)

for all i ∈ {1, 2, . . . , N}. We note that, for each i ∈
{1, 2, . . . , N}, (36) is quadratic in the parameters ξk(t) for
all k ≥ i. The values of ξk(t) are the nonnegative (analytic)
solutions of these equations, and can be computed in a recursive
manner starting at k = N . If all gradients are large, then χi(t)
in (33) is equal to zero for all i ∈ {1, 2, . . . , N}. Without the
function χi(j) in (33), the mappings in (31) are not globally
Lipschitz (similar to the optimal mappings in Lemma 3). With
χi(t), it can be verified that the mappings of the dither ampli-
tudes in (31) are globally Lipschitz for any positive value of the
shape parameter λ1. By substituting aij(t) = Aij(gZ(t)) into

(24), we obtain that

γ(t) =

((
dZI(1)
duI(1)

(ûI(1)(t)) (ξ1(t) + χ1(t))
)2

+
N∑
j=2

(
dZI(j)
duI(j)

(ûI(j)(t))χj(t)
)2) 1

2

≤
(√∣∣∣dZI(1)

duI(1)
(ûI(1)(t))

∣∣∣2 + N − 1

16λ2
1

)
ν (37)

for all t ≥ 0 and any set of gradient values. This indicates that,
for large values of λ1, the mappings Aij in (31) result in a small
total fluctuation that is reasonably close to the minimal total
fluctuation computed in Lemma 3, while selecting a small value
of λ1 may lead to a significant increase in total fluctuation of
the performance cost. However, the resulting global Lipschitz
constant is large for small values of λ1. As a result, this may
require that the extremum seeking controller is tuned very
conservatively to make gradients sufficiently slow to satisfy the
third requirement in Section IV. Hence, there is a tradeoff to be
found between maximizing the optimization speed of the total
performance cost and minimizing its fluctuation when selecting
the parameter λ1.

Although the mappings in (31) are not optimal, it should be
noted that the worst-case fluctuation of the total performance
cost for the mappings in (31) is equal to and often much smaller
than the worst-case fluctuation for fixed dither amplitudes. This
claim is easy to prove by noting that, for any dither amplitudes
that satisfy the excitation condition in (26), there exist gradients
such that

γ(t) ≥
(√∑N

j=1

(
dZj

duj
(ûj(t))

)2)
ν (38)

and that the right-hand side of (38) is equal to or larger than
the equality (but not necessarily the inequality) in (37); see the
definitions of χi(t) and ξk(t).

As mentioned in Section IV, estimates of the gradi-
ents need to be used because their true values are un-
known. Let the vector of gradient estimates be denoted by
ĝZ(t) = [ĝZ,1(t), ĝZ,2(t), . . . , ĝZ,N (t)]T . Although the true
gradient values may be slowly time varying, their estimates may
not be. To guarantee that the estimates are sufficiently slow, we
propose the following rate limiters:

˙̄gZ,i(t) = λ2 sat

(
˙̂gZ,i(t)− λ3 (ḡZ,i(t)− ĝZ,i(t))

λ2

)
(39)

for i ∈ {1, 2, . . . , N}, with

sat(r) =

⎧⎨
⎩

−1, if r < −1
ri, if −1 ≤ r ≤ 1
1, if r > 1

(40)

where λ2 and λ3 ∈ R>0 are tuning parameters. Note that
| ˙̄gZ,i(t)| ≤ λ2 for all t ≥ 0. Hence, λ2 determines the upper limit
on magnitude of the time derivative of ḡZ,i(t). The value of the
parameter λ3 should be large so that ḡZ,i(t) converges fast to
the gradient estimate ĝZ,i(t) whenever | ˙̄gZ,i(t)| ≤ λ2.
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The dither amplitudes that are used to attenuate the fluctuation
of the total performance cost are thus given by

aij(t) = Aij (ḡZ(t)) (41)

with ḡZ(t) = [ḡZ,1(t), ḡZ,2(t), . . . , ḡZ,N (t)]T . Note that, for all
i, j ∈ {1, 2, . . . , N}, the following bound on the time derivatives
of the dither amplitudes can be given:

|ȧij(t)| ≤ λ2LA (42)

where the parameter λ2 is defined in (39) and LA is the global
Lipschitz constant of the mappings in (31).

V. EXTREMUM SEEKING CONTROLLER

The proposed dither coordination method can be applied to
new and existing ESC schemes; see Section III. We introduce the
following controllers as an illustration. For each subsystem i ∈
{1, 2, . . . , N}, let us consider the following gradient estimator,
similar to the one in [15]:

ṁi(t) = η
(
yi(t)−mi(t)

)
q̇1,i(t) = −η

(
pi(t) + q1,i(t)

)
+ ˙̂ui(t)

q̇2,i(t) = ηq2,i(t)
(
1− (pi(t) + q1,i(t)

)2
q2,i(t)

)
˙̂gZ,i(t) = η

(
pi(t) + q1,i(t)

)
q2,i(t)

× (yi(t)−mi(t)−
(
pi(t) + q1,i(t)

)
ĝZ,i(t)

)
. (43)

Here, ĝZ,i(t) ∈ R is an estimate of the gradient dZi

dui
(ûi(t)).

The signals mi(t), q1,i(t) ∈ R and q2,i(t) ∈ R>0 are internal
variables of the gradient estimator. The tuning parameter η ∈
R>0 is chosen sufficiently small, such that the variable q1,i(t)
remains close to zero and the time variations in the (positive)
variable q2,i(t) are small. Let the optimizer for each subsystem
be given by

˙̂ui(t) = −κ1 proji(sat(κ2ĝZ,i(t)), ûi(t)) (44)

where κ1 and κ2 ∈ R>0 are tuning parameters. The function
proji is the projection operator that confines ûi(t) to a set
Ûi ⊂ Ui. From (17), (20), and (26), it follows that there exists a
constant cp,∈ R>0 such that

|pi(t)| ≤ νcp (45)

for all i ∈ {1, 2, . . . , N} and all t ≥ 0. By defining the set Ûi as

Ûi =
{
ûi ∈ R : smin

i + νcp ≤ ûi ≤ smax
i − νcp

}
(46)

we ensure that, if ûi(t) ∈ Ûi, then ui(t) ∈ Ui. Here, we assume
that ν is sufficiently small, such that the set Ûi is nonempty. The
projection operator proji can now be defined as

proji(ri, ûi) =

⎧⎨
⎩

0, if ûi ≥ smax
i − νcp and ri > 0

or if ûi ≤ smin
i + νcp and ri < 0

ri, otherwise
(47)

for all i ∈ {1, 2, . . . , N}. In the next section, we prove asymp-
totic stability under suitable conditions for each closed-loop sub-
system consisting of the subsystem in (1) and (3), the controller
in (43) and (44), and the dither signal in (17) with the amplitudes
in (41).

VI. STABILITY ANALYSIS

In order to proof convergence of each extremum seeking loop,
we require that true steady-state output of each subsystem given
by the mappingZi in (9) has a unique minimum that corresponds
to the optimal performance.

Assumption 4: For each i ∈ {1, 2, . . . , N}, there exist a con-
stant u∗

i ∈ Ui and a function αZ,i ∈ K such that

(ui − u∗
i )
dZi

dui
(ui) ≥ αZ,i(|ui − u∗

i |) (48)

for all ui ∈ Ui. Hence, u∗
i is a unique minimizer of the function

Zi in (9) on the domain Ui in (2).
Assumption 4 implies that, from any initial condition ui(0),

we will end up at the optimal value u∗
i as long as we follow

a gradient-descent path with the gradient-descent optimizer in
(44). In addition to Assumption 4, we require that all functions
are sufficiently smooth on their relevant domains. In order to
define the relevant domain of the state vector xi(t), let us
introduce the set

Xi =
⋃

ui∈Ui

Bi(ui; ρi) (49)

where Bi(ui; ρi) is the closed ball defined in (7) and ρi =
βxi(ρ

0
i , 0), with βxi and ρ0i defined in Assumption 2. We note

that Xi is compact because the set Ui in (2) is a closed interval.
We assume the following.

Assumption 5: The following holds for each i ∈
{1, 2, . . . , N}. The function fi(xi, ui) in (1) is twice
continuously differentiable in xi on Xi and in ui on Ui.
The function hi(xi) in (3) is twice continuously differentiable
in xi on Xi. The mapping Xi(ui) of Assumption 1 is twice
continuously differentiable in ui on Ui.

With these assumptions, we are able to prove asymptotic
convergence of each extremum seeking loop to a small region
of the optimal steady-state conditions, and give a bound on the
gradient estimation error.

Theorem 6: For any i ∈ {1, 2, . . . , N}, suppose that the mea-
surement noise di(t) in (3) is uniformly bounded, i.e., there
exists a constant bd ∈ R>0, such that

|di(t)| ≤ bd (50)

for all t ≥ 0. Under Assumptions 1, 2, 4, and 5, there exist con-
stants ε1, ε2, . . . , ε7 ∈ R>0 and class-K functions αu and αu̇,
such that for all initial conditionsxi(0) ∈ Bi(ui(0); ε1), ûi(0) ∈
Ûi, mi(0), ĝZ,i(0), ḡZ,i(0) ∈ R, q1,i(0) = 0 and q2,i(0) =

1
ν2 ,

and for all parameter values ν ≤ ε2, ω ≤ ε3, η ≤ ωε4, κ1 ≤
ηνε5, λ1 ≤ ε6, λ2 ≤ ηνε7 and κ2, λ3 ∈ R>0, we have that the
solution of the closed-loop system of the subsystem in (1) and
(3), the controller in (43) and (44), and the dither signal in (17)
with the amplitudes in (41) are uniformly bounded. Moreover,
we have that

lim sup
t→∞

max

{
|ui(t)− u∗

i |,
∣∣∣∣ĝZ,i(t)− dZi

dui
(ûi(t))

∣∣∣∣
}

≤ lim sup
t→∞

αu

(
max

{
ν,

αu̇(νω)

ν
,
|di(t)|
ν

})
. (51)

Proof: See Section VI-A.
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We note that we can make the bound in the right-hand side
of (51) arbitrarily small in the absence of the disturbance di(t)
by choosing small values of ν and ω. In the presence of the
disturbance di(t), the bound cannot be made arbitrarily small.
However, boundedness of the solutions can still be guaranteed.
This stability result is similar to the ones in [14, Corollary 13]
and [16, Th. 14].

A. Proof of the Stability Result

We begin the proof of Theorem 6 by deriving a bound on the
magnitude of time derivative of the input ui(t). We obtain from
(14) and (17) that

u̇i(t) = ˙̂ui(t) +

N∑
j=1

(
ȧij(t)bj(ωt) + ωaij(t)ḃj(ωt)

)
(52)

where we have used that M = N for the dither coordination
method in Section IV-B. From (20), (21), |aij(t)| ≤ ν in (26),
(42), | ˙̂ui(t)| ≤ κ1 in (44), and the bounds on the parameters in
Theorem 6, it subsequently follows that

|u̇i(t)| ≤ ωνcu̇ (53)

for all t ≥ 0, all η ≤ ωε4, all κ1 ≤ ηνε5 and all λ2 ≤ ηνε7
(whereLA in (42) is a global Lipschitz constant of the mappings
in (31) for all λ1 ≤ ε6, for any given value of ε6).

Now, let us focus our attention to the state of the subsystem
in (1). Assumption 2 ensures convergence of the state xi(t) to
the steady state Xi(ui) for fixed inputs ui. In the following
lemma, we prove convergence to a neighborhood of the steady
state for time-varying inputs ui(t). Note that the size of this
neighborhood depends on how fast the input ui(t) changes over
time. Therefore, to ensure convergence to a small neighborhood,
we must make sure that the time derivative ofui(t) is sufficiently
small.

Lemma 7: Let us define

x̃i(t) = xi(t)−Xi(ui(t)). (54)

Under the assumptions of Theorem 6, there exist class-K
functions αx1 and αx2, such that the solutions of (1) satisfy

sup
t≥0

‖x̃i(t)‖ ≤ max

{
αx1(‖x̃i(0)‖), sup

t≥0
αx2(|u̇i(τ)|)

}
(55)

and

lim sup
t→∞

‖x̃i(t)‖ ≤ lim sup
t→∞

αx2(|u̇i(t)|) (56)

for all initial conditions xi(0) ∈ Bi(ui; ε1), where the values of
ε1, ε2, ε3 > 0 are sufficiently small to guarantee that xi(t) ∈ Xi

for all t ≥ 0, all ν ≤ ε2 and all ω ≤ ε3 by using the bound on
u̇i(t) in (53).

Proof: The proof of the lemma follows similar lines as the
proofs of [37, Prop. 2] and [14, Lem. 8]. In short, first a
converse Lyapunov theorem (e.g., [24] or [19, Th. 4.16]) is
used to show that there exists a Lyapunov function for fixed
inputs ui(t) = ui. Subsequently, this Lyapunov function is used
to prove the input-to-state stability of the subsystem with respect
to the time derivative u̇i(t) of the input; see (55) and (56). For
the construction of the converse Lyapunov function, we require
that the functions fi and Xi are Lipschitz on their domains.
This is satisfied due to the differentiability of the functions (see

Assumption 5) and the compactness of the setsXi andUi. Further
details of the proof are omitted for brevity.

The state error x̃i(t) in (54) influences how close the measured
output yi(t) in (3) of the subsystem is to the true steady-state
output Zi(ui(t)) in (9). Let us define the measurement error

ỹi(t) = yi(t)− Zi(ui(t)). (57)

Becausexi(t) ∈ Xi andui(t) ∈ Ui for all t ≥ 0 (see Lemma 7
and Section V), it follows (3), (9), and Assumption 5 that there
exists a constant cỹ ∈ R>0, such that

|ỹi(t)| ≤ cỹ‖x̃i(t)‖+ |di(t)| (58)

for all t ≥ 0. If x̃i(t) and di(t) are small, then the measurement
error ỹi(t) is also small and the measurement output yi(t) is
approximately equal to the true steady-state output Zi(ui(t)).
In turn, the signal ĝZi

(t) produced by the estimator in (43) is
an accurate approximation of the gradient dZi

dui
(ui(t)), as shown

next.
Lemma 8: Let us define

g̃Z,i(t) = ĝZ,i(t)− dZi

dui
(ûi(t)). (59)

Under the assumptions of Theorem 6, there exists a constant
cg̃ ∈ R>0, such that the solutions of the estimator in (43) are
uniformly bounded and satisfy

lim sup
t→∞

|g̃Z,i(t)| ≤ lim sup
t→∞

max

{
ν,

|ỹi(t)|
ν

}
cg̃ (60)

for all initial conditions mi(0) ∈ R, ĝZ,i(0) ∈ R, q1,i(0) = 0
and q2,i(0) =

1
ν2 , and all parameter values η ≤ ωε4, κ1 ≤ ηνε5

and λ2 ≤ ηνε7, with sufficiently small ε4, ε5 > 0.
Proof: See Appendix B.
Using an accurate gradient estimate, the gradient-descent

optimizer in (44) steers the nominal input ûi(t) to a small
neighborhood of the value

û∗
i =

⎧⎨
⎩

smin
i + νcp, if u∗

i < smin
i + νcp

u∗
i , if u∗

i ∈ Ûi

smax
i − νcp, if u∗

i > smax
i − νcp

(61)

see Assumption 4 and the definition of the set Ûi in (46). We
obtain the following result.

Lemma 9: Under the conditions of Theorem 6, there exists a
class-K function αû, such that the solutions of the optimizer in
(44) are uniformly bounded and satisfy

lim sup
t→∞

|ûi(t)− û∗
i | ≤ lim sup

t→∞
αû(|g̃Z,i(t)|) (62)

for all initial conditions ûi(0) ∈ Ûi, and all parameter values
κ1 ≤ ηνε5 and κ2 ∈ R>0.

Proof: Due to the use of the projection operator in (47), we
have that the nominal input satisfies ûi(t) ∈ Ûi for all t ≥ 0,
whenever ûi(0) ∈ Ûi. Thus, all solutions of the optimizer are
uniformly bounded. Heavily relying on Assumption 4, the proof
of the lemma follows similar lines as the proof of [37, Prop. 1].
Details of the proof are omitted for brevity.

It follows from (61) that |u∗
i − û∗

i | ≤ νcp. Therefore, we
obtain using (14) and (45) that

|ui(t)− u∗
i | ≤ |ûi(t)− û∗

i |+ 2νcp (63)

for all t ≥ 0. Note that all solutions of the extremum seeking
scheme are bounded under the conditions of Theorem 6. The
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TABLE I
PARAMETERS OF THE PHOTOVOLTAIC ARRAY MODEL

existence of the bound in (51) follows from (53), (56), (58), and
(60)–(63).

VII. EXAMPLES

A. Power Production of Solar Arrays

Consider three photovoltaic arrays with ns cells in series
affected by different sun light and temperature conditions. Ac-
cording to the model presented in [38], the light generated
current is and the reverse saturation current io in a photovoltaic
cell with temperature T and solar irradiance S can be described
as

is =
(
Is + ki(T − Tr)

) S

1000

i0 = I0

(
T
Tr

)3
e

Eg
NVt

(
T
Tr

− 1
)
, Vt =

kT

q
(64)

where the parameters of the equations are given in Table I. The
corresponding output current i of a photovoltaic array with ns

connected cells in series is

i = is − i0

(
e

v+iRsns
NVtns − 1

)
− v + iRsns

Rpns
(65)

where v is the output voltage. A dc–dc buck converter is used
to connect each array to a dc load. The converter dynamics are
represented by the model in [23] as

Ccv̇ = i(v;T, S)− iLu

Lci̇L = −iLRc + vu (66)

where i(v;T, S) is the nonlinear mapping from the duty cycle u
to the output current. This mapping can be computed from (64)
and (65).

Three photovoltaic arrays are simulated for the temperatures
T and irradiances S given in Table II. A subscript i ∈ {1, 2, 3}
is used to distinguish between the three arrays. The steady-state
relation between the duty cycle and the power output of each
array is depicted in Fig. 4. To maximize the total produced power,
we apply the extremum seeking controllers in Section V to each
of the photovoltaic arrays. Here, we use the negative of the power
as a measure for the performance cost

y(t) = −P (t) = −i(t)v(t). (67)

TABLE II
TEMPERATURE AND IRRADIANCE CONDITIONS FOR EACH PHOTOVOLTAIC

ARRAY, AND CONTROLLER SETTINGS

Fig. 4. Steady-state mappings of the effect of the duty cycle ui on the
produced power Pi for the three photovoltaic arrays i ∈ {1, 2, 3} with
different environmental conditions.

We apply the dither coordination method in Section IV-B to
minimize the fluctuation of the total produced power. The base
functions of the dither signals and the controller parameters are
presented in Table II, where tri(·) is the triangle wave function
defined in [36]. We constrain the duty cycle of each array to be
between 0.45 and 1. Therefore, two out of the three arrays are
not able to produce at their peak values in Fig. 4. As a reference,
we compare the results for the varying coordinated dither signals
with those of fixed dither signals (where the amplitudes of the
dither signals do not change over time). The fixed dither signals
have the same basis functions and effective amplitude as the
varying dither signals.

We observe from the simulation results in Fig. 5 that each
extremum seeking controller steers the duty cycle u to its con-
strained optimal value. As a result, the power output P of each
photovoltaic array goes to its constrained maximum. All optimal
values are indicated by the dashed lines in Fig. 5. The figure
shows the results for the varying dither signals. Due to their
large similarity, the corresponding results for the fixed dither
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Fig. 5. Duty cycle ui and power output Pi of each photovoltaic array
i ∈ {1, 2, 3} for the varying dither signals. The dashed lines correspond
to the constrained optimal values.

Fig. 6. Total power Ptotal and fluctuation measure γ for the three pho-
tovoltaic arrays with fixed dither signals and with varying dither signals.
The blue lines correspond to the varying dither signals. The red lines
correspond to the fixed dither signals. The dashed line corresponds to
the theoretical lower bound on γ in Lemma 3.

signals are omitted. The main difference between the varying
dither signals and the fixed dither signals is showcased in Fig. 6;
the fluctuation in the total power Ptotal of the three arrays is
visually much smaller for the varying dither signals with dither
coordination than for the fixed dither signals without dither
coordination. Due to the smaller fluctuation, we see in Fig. 6 that
the value of the fluctuation measure γ in (24) is much smaller
overall for the varying dither signals than for the fixed dither
signals. Moreover, after the transient response has died out in
the first two seconds, the value of γ for the varying dither signals
remains close to the theoretical lower bound derived in Lemma 3.
This lower bound is indicated by the dashed line in Fig. 6. Fig. 7

Fig. 7. Dither amplitudes aij for each photovoltaic array i ∈ {1, 2, 3}.

Fig. 8. ESP-lifted wells with diluent injection producing to an offshore
platform.

presents the dither amplitude aij that are used to compute the
varying dither signals. Note that there are no rapid changes in
the values of aij , which is one of the three requirements in
Section IV. Thus, the proposed dither coordination method in
Section IV-B is able to drastically reduce the fluctuation in the
total produced power, even in the presence of dynamics and local
input constraints.

B. Power Optimization in Electric Submersible Pump
(ESP)-Diluent Lifted Wells

In this example we consider oil wells equipped with ESPs
[34] installed several hundred meters down in the well. High
viscosity of the reservoir fluid (consisting of viscous oil and
water) increased by emulsion formation at the ESP, significantly
reduces ESP efficiency and increases its power consumption.
To reduce the ESP power consumption, diluent (lighter oil)
is injected upstream the ESP [10], [26]. A diagram of this
production system for the case of several wells is shown in Fig. 8.

In the initial phase of oil production, when the percentage
of water in the reservoir fluid is low, increasing the diluent
injection rate initially reduces the ESP power consumption;
after a certain optimal rate, it starts to increase the ESP power
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consumption. The objective of diluent optimization is to find
the optimal diluent injection rate that provides a minimal power
consumption for the given ESP intake pressure setpoint.

Due to high uncertainties (emulsions can increase fluid vis-
cosity up to six times [28]), extremum seeking control is a
proper optimization tool to address this problem. However,
dither-induced fluctuations in ESP power consumption from
several ESP-lifted wells can add up to formidable power fluctu-
ations negatively affecting power generators on the oil platform.
The dither coordination method presented in this article can be
applied to reduce these power fluctuations.

For simplicity, we present a static model of an ESP lifted well,
which is derived from the dynamic model in [4]

pin = pwh + ρgh+Δpf −Δpp

qr = PI(pr − pbh)

qp = qr + qd

Δpp = ρgCH(μ)H0

(
qpf0

Cq(μ)f

)(
f

f0

)2

P = CP (μ)P0

(
qpf0

Cq(μ)f

)(
f

f0

)3(
ρ

ρ0

)
(68)

where pin is the ESP intake pressure; pwh is the well-head pres-
sure; ρgh is the hydrostatic pressure at the ESP intake for a given
fluid density ρ and a vertical distance h; Δpf is the frictional
pressure loss (calculated based on the Darcy–Weisbach and
Colebrook equations [17]); and Δpp is the pressure increase
yielded by the pump. The production rate of the reservoir fluid
qr is calculated as a product of the productivity indexPI and the
difference between the reservoir pressure pr and the pressure pbh
at the bottom of the well. The total flow rate through the pump qp
consists of the reservoir inflow rate qr and the diluent injection
rate qd.

The pressure increase provided by the ESP Δpp and the ESP
break horse power P depend on the pump speed f , flow rate
through the pump qp, the fluid density ρ, and the viscosity μ.
Δpp and P are calculated from the pump characteristics H0(q)
and P0(q) corresponding to the pump performance at the pump
speed f0, the flow rate q, the fluid density ρ0, and the viscosity
μ = 1 cP. The terms CH(μ), CQ(μ), and CP (μ) are viscosity
correction factors for using the model with fluids of higher
viscosities; see [4] for more details on the model.

Diluent injection enters the model through the diluent injec-
tion rate qd, the fluid viscosity μ, and the density ρ, which is
calculated by mass balance equations from the densities and
flow rates of the reservoir fluid and the diluent. The viscosity
of the diluted fluid μ is calculated using formulas for oil–water
emulsions from [6]. The effect of diluent depends on the water
cut WC—The percentage of water in the reservoir fluid.

The ESP speed f is controlled by a proportional-integral
controller that keeps ESP intake pressure pin at a set-point pspin ,
and thus, provides a constant inflow rate of the reservoir fluid
consisting of oil and water.

Fig. 9. Steady-state mappings describing the effect of the diluent
injection ui on the ESP power Pi for the three wells i ∈ {1, 2, 3}, with
WC =32%, 40%, and 35%, respectively.

TABLE III
CONTROLLER PARAMETERS

Based on the presented model, we calculate the curves de-
scribing the effect of diluent injection on the ESP power con-
sumption for three identical wells with different water cuts:
WC=32%, 40%, and 35%, respectively, as shown in Fig. 9.
Numerical values for these curves are taken from [4] with
the additional parameters being: the viscosities and densities
μd = 1 cP and ρd = 800 kg/m3 of the diluent, μo = 125 cP
and ρo = 970 kg/m3 of the oil, and μw = 1 cP and ρw =
1000 kg/m3 of the water. In reality, these curves, apart from be-
ing convex, are highly uncertain due to inaccurate pump models,
uncertainties in reservoir fluid properties and a varying diluent
mixing efficiency at the ESP. Extremum seeking control is,
thus, a suitable method to find the optimal diluent injection rate
[26], although one needs to avoid or reduce the dither-induced
fluctuation in the total ESP power consumption.

This can be achieved with the method presented in this article.
The basis functions and parameters for the extremum seeking
controller are presented in Table III. The basis functions have
periods of about 15–20 min to ensure quasi steady-state opera-
tion of the well under these perturbations. The diluent injection
is constrained to the interval of [100,400] m3/d.

Fig. 10 shows the performance of the controller for the three
ESP-lifted wells with varying dithers signals. As seen from
the figure, the diluent injection rates ui = qdi

for each well
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Fig. 10. Diluent injection ui and consumed power Pi of each ESP
i ∈ {1, 2, 3} for the varying dither signals. The dashed lines correspond
to the optimal values.

Fig. 11. Total power Ptotal and fluctuation measure γ for the three wells
with fixed dither signals and with varying dither signals. The blue lines
correspond to the varying dither signals. The red lines correspond to the
fixed dither signals. The dashed line corresponds to the theoretical lower
bound on γ in Lemma 3.

i are steered toward the optimal solutions by the extremum
seeking controllers so that the power Pi consumed by each ESP
reaches its minimum value. Fig. 11 presents the total power
consumed by all the ESPs and the fluctuation measure γ in (24)
for fixed and varying dither signals. As seen in the figure, the
extremum seeking controllers with coordinated varying dither
signals noticeably mitigate the fluctuation of the total power
consumption compared to the standard method with fixed dither
signals. The fluctuation measure γ is considerably lower for the
coordinated dither signals, being much closer to the theoretical
lower bound indicated by the dashed line in the figure. Fig. 12
depicts the dither amplitudes aij calculated for the coordinated
dither signals shown in Fig. 10. The absence of spikes or abrupt
changes in the dither amplitudes is essential for the smooth and
safe operation of this algorithm in the presented oil production
system.

Fig. 12. Dither amplitudes aij for each well i ∈ {1, 2, 3}.

VIII. CONCLUSION

In this article, we have introduced a novel method to coordi-
nate the dither signals utilized in the extremum seeking loops of
individual subsystems in order to minimize the dither-induced
fluctuation in the total output of a multiagent industrial system.
Therefore, we do not only optimize the quantity of the total
output by employing the optimizing capabilities of ESC but
also its quality by minimizing the undesired dither-induced
fluctuation. The presented method is computationally much
lighter than current alternatives. This greatly benefits its practical
deployment. The stability analysis in this article tells us that
convergence to a small region of the optimum can be guaranteed
under conditions that are similar to those of other ESC methods.
Two case studies show that the presented dither-coordination
method can drastically decrease the magnitude of the fluctuation
in the total output, while having a negligible effect on the
performance of the extremum seeking loop of each individual
subsystem.

APPENDIX A
PROOF OF LEMMA 3

For brevity of notation, we drop the time index t. The proof of
the lemma consists of two parts. In the first part, we prove that, if∑N

i=2 |dZI(i)
duI(i)

(ûI(i))| ≥ |dZI(1)
duI(1)

(ûI(1))|, it is always possible to

choose the dither amplitudes such that γ = 0 and
∑M

j=1 a
2
ij =

ν2 for all i ∈ {1, 2, . . . , N}. In the second part, we prove that the

minimal value of γ is (|dZI(1)
duI(1)

(ûI(1))| −
∑N

i=2 |dZI(i)
duI(i)

(ûI(i))|)ν,

whenever |dZI(1)
duI(1)

(ûI(1))| >
∑N

i=2 |dZI(i)
duI(i)

(ûI(i))|.
Part 1: For γ to be zero, we require that∑N
i=1

dZI(i)
duI(i)

(ûI(i))aI(i)j = 0 for all j ∈ {1, 2, . . . ,M};
see (24). By squaring both sides of the equation, we
can write this condition as (acol

j )TMacol
j = 0, with acol

j =

[aI(1)j , aI(2)j , . . . , aI(N)j ]
T and M = (dŽdu (û))

T dŽ
du (û), with

dŽ
du (û) = [

dZI(1)
duI(1)

(ûI(1)),
dZI(2)
duI(2)

(ûI(2)), . . . ,
dZI(N)

duI(N)
(ûI(N))]

T .

We obtain that γ = 0 if and only if acol
j ∈ ker(M) for all

j ∈ {1, 2, . . . ,M}.
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Due to the numbering specified in the lemma, we have
that

dZI(1)
duI(1)

(ûI(1)) = 0 implies that
dZI(i)
duI(i)

(ûI(i)) = 0 for all i ∈
{1, 2, . . . , N}. If

dZI(1)
duI(1)

(ûI(1)) = 0, then M(t) = 0. Therefore,

any vector acol
j ∈ RN is in the nullspace of M. As a conse-

quence, any dither amplitudes that satisfy
∑M

j=1 a
2
ij = ν2 for

all i ∈ {1, 2, . . . , N} will result in the theoretically minimal
value γ = 0. We can always find dither amplitudes that sat-
isfy these conditions. Thus, the minimal value of γ is zero if
dZI(1)
duI(1)

(ûI(1)) = 0.

Now, let
dZI(1)
duI(1)

(ûI(1)) 
= 0. The nullspace of the matrix M is
given by

ker(M) = span {v̄2, v̄3, . . . , v̄N} (69)

where for each k ∈ {2, 3, . . . , N}, v̄k is a vec-
tor with two nonzero elements: its first element is
dZI(k)

duI(k)
(ûI(k)); its kth element is −dZI(1)

duI(1)
(ûI(1)) (i.e.,

v̄2 = [
dZI(2)
duI(2)

(ûI(2)),−dZI(1)
duI(1)

(ûI(1)), 0, 0, . . . , 0]T , v̄3 =

[
dZI(3)
duI(3)

(ûI(3)), 0,−dZI(1)
duI(1)

(ûI(1)), 0, . . . , 0]T , etc.). Therefore,

any vectoracol
j ∈ ker(M)may be written asacol

j =
∑N

k=2 qjkv̄k

for some coefficients qjk ∈ R. It follows from this and the
definitions of acol

j and v̄k that, if there exist dither amplitudes

that satisfy γ = 0 and
∑M

j=1 a
2
ij = ν2 for all i ∈ {1, 2, . . . , N},

then there must exist coefficients qjk such that

M∑
j=1

a2I(1)j =
M∑
j=1

(
N∑

k=2

qjk
dZI(k)
duI(k)

(ûI(k))

)2

= ν2 (70)

and
M∑
j=1

a2I(k)j =
(
dZI(1)
duI(1)

(ûI(1))
)2 M∑

j=1

q2jk = ν2 (71)

for all k ∈ {2, 3, . . . , N}. Let us define the vectors qcol
k =

[q1k, q2k, . . . , qMk]
T for all k ∈ {2, 3, . . . , N}. The equations

in (70) and (71) can be rewritten as
N∑

k=2

N∑
l=2

(
qcol
k

)T
qcol
l

dZI(k)
duI(k)

(ûI(k))
dZI(l)
duI(l)

(ûI(l)) = ν2 (72)

and (
dZI(1)
duI(1)

(ûI(1))
)2

‖qcol
k ‖2 = ν2 (73)

respectively. In turn, the condition in (73) is equivalent to
‖qcol

k ‖ = ν

| dZI(1)
duI(1)

(ûI(1))|
. Hence, qcol

k is a vector of length

ν

| dZI(1)
duI(1)

(ûI(1))|
for all k ∈ {2, 3, . . . , N}. By combining the con-

ditions in (72) and (73), we get that there exist dither amplitudes
that satisfy the conditions γ = 0 and

∑M
j=1 a

2
ij = ν2 for all

i ∈ {1, 2, . . . , N} if and only if there exist vectors rcol
k ∈ RM of

length one (i.e., ‖rcol
k ‖ = 1) for all k ∈ {2, 3, . . . , N} such that

N∑
k=2

N∑
l=2

(
rcol
k

)T
rcol
l

dZI(k)
duI(k)

(ûI(k))
dZI(l)
duI(l)

(ûI(l))

=

(
dZI(1)
duI(1)

(ûI(1))
)2

. (74)

Here, rcol
k =

qcol
k

‖qcol
k ‖ for all k ∈ {2, 3, . . . , N}. Noting that

−1 ≤ (rcol
k )T rcol

l ≤ 1 for all k, l ∈ {2, 3, . . . , N}, it is not dif-
ficult to show that there exist vectors rcol

k ∈ RM for k ∈
{2, 3, . . . , N} for which the left-hand side of (74) attains its
maximal value

N∑
k=2

N∑
l=2

(
rcol
k

)T
rcol
l

dZI(k)
duI(k)

(ûI(k))
dZI(l)
duI(l)

(ûI(l))

=

(
N∑

k=2

∣∣∣∣dZI(k)
duI(k)

(ûI(k))
∣∣∣∣
)2

. (75)

Moreover, we may always select vectors rcol
k for k ∈

{2, 3, . . . , N} such that

N∑
k=2

N∑
l=2

(
rcol
k

)T
rcol
l

dZI(k)
duI(k)

(ûI(k))
dZI(l)
duI(l)

(ûI(l))

=
(∣∣∣dZI(2)

duI(2)
(ûI(2))

∣∣∣− ∣∣∣dZI(3)
duI(3)

(ûI(3))
∣∣∣)2

+
(∣∣∣dZI(4)

duI(4)
(ûI(4))

∣∣∣− ∣∣∣dZI(5)
duI(5)

(ûI(5))
∣∣∣)2 + · · ·

+

⎧⎨
⎩

(∣∣∣ dZN−1
duN−1

(ûN−1)
∣∣∣−

∣∣∣∣ dZI(N)
duI(N)

(ûI(N))

∣∣∣∣
)2

, if N is odd∣∣∣∣ dZI(N)
duI(N)

(ûI(N))

∣∣∣∣
2

, if N is even.

(76)
Note that the right-hand side of (76) is smaller than or

equal to (
dZI(1)
duI(1)

(ûI(1)))2 using the specified numbering of the

gradients. Moreover, noting that rcol
k for k ∈ {2, 3, . . . , N} are

N − 1 vectors on an M -dimensional unit sphere, M ≥ N − 1
implies that there exist a continuous path on the M -dimensional
unit sphere between the vector values that correspond to (75)
and the vector values that correspond to (76). Therefore, fol-
lowing this path, the value of the left-hand side of (74) will
change from the value (

∑N
k=2 |dZI(k)

duI(k)
(ûI(k))|)2 to a value that

is smaller than or equal to (
dZI(1)
duI(1)

(ûI(1)))2 in a continuous
manner. Thus, somewhere on this path, we will always en-
counter values of rcol

k for k ∈ {2, 3, . . . , N} for which (74) holds

if and only if
∑N

k=2 |dZI(k)

duI(k)
(ûI(k))| ≥ |dZI(1)

duI(1)
(ûI(1))|. Hence,

we obtain that there exist dither amplitudes for which γ = 0
and
∑M

j=1 a
2
ij = ν2 for all i ∈ {1, 2, . . . , N} if and only if∑N

k=2 |dZI(k)

duI(k)
(ûI(k))| ≥ |dZI(1)

duI(1)
(ûI(1))|.

Part 2: Let us definearow
i = [aI(i)1, aI(i)2, . . . , aI(i)M ]T . The

excitation condition
∑M

j=1 a
2
ij = ν2 for all i ∈ {1, 2, . . . , N}

implies that ‖arow
i ‖ = ν for all i ∈ {1, 2, . . . , N}. From (24), it

follows that

γ2 =

∥∥∥∥∥
N∑
i=1

dZI(i)
duI(i)

(ûI(i))arow
i

∥∥∥∥∥
2

. (77)

Using the sign function, we may rewrite this equation as
follows:

γ2 = ‖w̄1 + w̄2‖2 (78)
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with

w̄1 =
(∣∣∣dZI(1)

duI(1)
(ûI(1))

∣∣∣−∑N
i=2

∣∣∣dZI(i)
duI(i)

(ûI(i))
∣∣∣)arow

1

w̄2 =
∑N

i=2

∣∣∣dZI(i)
duI(i)

(ûI(i))
∣∣∣

×
(
sign

(
dZI(i)
duI(i)

(ûI(i))
dZI(1)
duI(1)

(ûI(1))
)
arow
i + arow

1

)
.

(79)
Because ‖arow

1 ‖ = ν, we have

‖w̄1‖2 =

(∣∣∣∣dZI(1)
duI(1)

(ûI(1))
∣∣∣∣−

N∑
i=2

∣∣∣∣dZI(i)
duI(i)

(ûI(i))
∣∣∣∣
)2

ν2

(80)
regardless of the choice of arow

1 . Note that, for any vectors arow
1

and arow
i , we have

(arow
1 )T

(
sign
(

dZI(i)
duI(i)

(ûI(i))
dZI(1)
duI(1)

(ûI(1))
)
arow
i + arow

1

)
≥ 0

(81)
because ‖arow

1 ‖ = ‖arow
i ‖. For |dZI(1)

duI(1)
(ûI(1))| >∑N

i=2 |dZI(i)
duI(i)

(ûI(i))|, the inequality in (81) implies that

w̄T
1 w̄2 ≥ 0; see (79). In addition, because ‖w̄2‖2 ≥ 0, we

obtain from (78) that γ ≥ ‖w̄1‖ for all dither amplitudes
that satisfy

∑M
j=1 a

2
ij = ν2 for all i ∈ {1, 2, . . . , N}, under

the condition that |dZI(1)
duI(1)

(ûI(1))| >
∑N

i=2 |dZI(i)
duI(i)

(ûI(i))|.
The equality γ = ‖w̄1‖ is obtained if and only if
w̄2 = 0. Given any vector arow

1 , by choosing arow
i to be

equal to arow
1 multiplied by an appropriate sign for all

i ∈ {2, 3, . . . , N}, we can always get w̄2 = 0; see (79).
Therefore, it follows from γ = ‖w̄1‖ and (80) that the minimal

value of γ is (|dZI(1)
duI(1)

(ûI(1))| −
∑N

i=2 |dZI(i)
duI(i)

(ûI(i))|)ν if

|dZI(1)
duI(1)

(ûI(1))| >
∑N

i=2 |dZI(i)
duI(i)

(ûI(i))|.

APPENDIX B PROOF OF LEMMA 8

The proof consists of three parts. First, we show that

|q1,i(t)| ≤ max

{
η

ω
,
κ1

ην

}
νcq1 (82)

for all t ≥ 0 and some constant cq1 ∈ R>0. Second, we demon-
strate that

1

2ν2
≤ q2,i(t) ≤ 3

2ν2
(83)

for all t ≥ 0. Third, we prove the statement in (60) using the
derived bounds in the first two parts.

Part 1: Let us define the variable

q̃1,i(t) = q1,i(t) + η
M∑
j=1

ai,j(t)

∫ t

0

bj(ωτ)dτ. (84)

By differentiating q̃1,i with respect to time and using (17) and
(43), we obtain

˙̃q1,i(t) = − ηq̃1,i(t) + ˙̂ui(t)

+ η

M∑
j=1

(ηai,j(t) + ȧi,j(t))

∫ t

0

bj(ωτ)dτ. (85)

We note that | ˙̂ui(t)| ≤ κ1 [see (44)], |ai,j(t)| ≤ ν [see (26)],
|ȧij(t)| ≤ λ2LA [see (42)], and that it follows from (18) and
(20) that ∣∣∣∣

∫ t

0

bj(ωτ)dτ

∣∣∣∣ ≤ cb
ω

(86)

for all t ≥ 0 and some constant cb ∈ R>0. Therefore, the last two
terms in the right-hand side of (85) can be regarded as uniformly
bounded disturbances. Using that q̃1,i(0) = q1,i(0) = 0, we may
use a Lyapunov stability analysis with the candidate function
Vq1(q̃1,i) = q̃21,i to show that

|q̃1,i(t)| ≤ max

{
η

ω
,
κ1

ην

}
νcq1,1 (87)

for all t ≥ 0, all λ2 ≤ ηνε7 and some constant cq̃1 ∈ R>0. By
applying the same bounds as before, it follows from (84) that

|q1,i(t)| ≤ |q̃1,i(t)|+ η

ω
νcq1,2 (88)

for all t ≥ 0. Combining (87) and (88) gives the bound in (82).
Part 2: We define the variable

q̃2,i(t) = q−1
2,i(t)− η

M∑
j=1

M∑
k=1

aij(t)aik(t)Bjk(t)− ν2 (89)

with

Bjk(t) =

{∫ t
0 (bj(ωτ)bk(ωτ) if j = k∫ t
0 bj(ωτ)bk(ωτ)dτ, if j 
= k.

(90)

Using (43) and the excitation condition in (26), the time
derivative of q̃2,i in (89) is given by

˙̃q2,i(t) = −ηq̃2,i(t) + 2ηpi(t)q1,i(t) + ηq21,i(t)

− η

M∑
j=1

M∑
k=1

(
ηaij(t)aik(t) +

d

dt
(aij(t)aik(t))

)
Bjk(t).

(91)
From the definition ofBjk in (90), the orthogonality condition

of the basis functions in (19) and the bound in (20), we have that

|Bjk(t)| ≤ cB
ω

(92)

for some constant cB ∈ R>0. In addition, using (17), (82), and
the same bounds as in Part 1, we obtain from a Lyapunov stability
analysis with candidate function Vq2,i(q̃2,i) = q̃22,i that

|q̃2,i(t)| ≤ ν2

4
(93)

for all t ≥ 0, η ≤ ωε4, and κ1 ≤ ηνε5, where ε4, ε5 > 0 are
sufficiently small. Subsequently, we obtain from (89) that∣∣q−1

2,i(t)− ν2
∣∣ ≤ 1

2
ν2 (94)

for all t ≥ 0 and all η ≤ ωε4, with a sufficiently small value of
ε4 > 0, where we used the bounds in (26) and (92). The bounds
in (83) follow from the inequality in (94).

Part 3: Let us define

m̃i(t) = mi(t)− Zi(ûi(t)) + q1,i(t)
dZi

dui
(ûi(t)). (95)

In addition, we define the Lyapunov-function candidate as

Vg(m̃i, g̃Z,i, q2,i) = m̃2
i +

g̃2Z,i

q2,i
(96)
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with g̃Z,i(t) in (59). For brevity, we omit the time argument in
the following expressions. Using a first-order Taylor expansion
of Zi(ui), it follows that

Zi(ui) = Zi(ûi) + pi
dZi

dui
(ûi) + wi (97)

with

wi = p2i

∫ 1

0

(1− s)
d2Zi

du2
i

(ûi + spi)ds (98)

see (17). By combining (43), (59), (95), and (97), we get that
the time derivative of the Lyapunov-function candidate in (96)
can be written as
V̇g(m̃i, g̃Z,i, q2,i) = −η(m̃i + (pi + q1,i)g̃Z,i)

2

− η

(
m̃2

i +
g̃2Z,i

q2,i

)
+ 2η(m̃i + (pi + q1,i)g̃Z,i)(ỹi + wi)

+ 2

(
m̃iq1,i − g̃Z,i

q2,i

)
d2Zi

du2
i

(ûi) ˙̂ui.

(99)
Subsequently, applying Young’s inequality yields

V̇g(m̃i, g̃Z,i, q2,i) ≤ −η

2
Vg(m̃i, g̃Z,i, q2,i)

+ η(ỹ + wi)
2 +

2

η

(
q21,i +

1

q2,i

)(
d2Zi

du2
i

(ûi) ˙̂ui

)2

. (100)

Because the function Zi in (9) is twice continuously differen-
tiable (see Assumption 5), and because its domainUi is compact,
we have that d2Zi

du2
i

is uniformly bounded. Using this and (45),
we obtain that wi in (98) can be bounded by

|wi| ≤ ν2cw (101)

for some constant cw ∈ R>0. By applying the comparison
lemma [19, Lem. 3.4], and by using |u̇i(t)| ≤ κ1 [see (44)] and
the bounds in (82), (83), and (101), we obtain from (100) that

Vg(m̃i(t), g̃Z,i(t), q2,i(t)) ≤ max

{
ν4, sup

τ∈[0,t)
|ỹ(τ)|2

e−
η
2 tVg(m̃i(0), g̃Z,i(0), q2,i(0))

}
cV (102)

for all t ≥ 0, η ≤ ωε4, κ1 ≤ ηνε5, and some constant cV ∈
R>0. From (53), (55), and (58), it follows that ỹi(t) is uniformly
bounded under the conditions of Theorem 6. Therefore, we
obtain from (83), (96), and (102) that m̃i(t) in (95) and g̃Z,i(t) in
(59) are uniformly bounded. Moreover, the bound on the gradient
estimation error in (60) follows from the same arguments.
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tremum seeking,” Automatica, vol. 48, no. 8, pp. 1759–1767, 2012.
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