
Towards Sustainable IoT
Applications: Unique
Challenges for Programming
the Batteryless Edge

Arda Goknil
SINTEF Digital

Kasım Sinan Yıldırım
University of Trento

Abstract—The research on sustainable sensing applications relying on ambient energy
resources is receiving attention to reduce the carbon dioxide (CO2) emissions and greenhouse
effects of IoT applications. The advent of energy-harvesting technology and ultra-low-power
computer systems has enabled intermittently powered, battery-free devices to operate using
harvested ambient energy. Program execution on battery-free devices progresses in short bursts
interleaved by recharge periods. This type of program execution requires new techniques to
analyze, develop, and verify programs running on these devices. We present a roadmap from
today’s continuously powered IoT devices to tomorrow’s battery-free IoT devices that highlights
software engineering challenges for intermittent programs running on battery-free devices.

THE INTERNET OF THINGS (IOT) forms a
network of physical devices that can sense the en-
vironment via their sensors, perform computation
and communicate wirelessly to interact with each
other and exchange information. IoT applications
(e.g., smart homes and cities, autonomous vehi-
cles, wearables) support various tasks in our daily
lives intelligently to increase our comfort and
efficiency. On the other hand, the global energy
consumption of IoT edge devices (e.g., sensors,
actuators, and gateways) is already gigantic, i.e.,
equal to Portugal’s annual electricity consumption
in 2015 [1]. The consumption will increase con-
siderably since the number of IoT edge devices
will exceed 75 billion soon. Moreover, future
intelligent IoT applications will employ modern
Artificial Intelligence (AI) techniques that de-

mand more computing capabilities and, in turn,
more energy. For instance, Deep Neural Networks
(DNNs) require thousands of mathematical oper-
ations to enable inference applications such as
computer vision. Millions of IoT edge devices
executing these operations consume a total power
on the order of gigawatts, which is equivalent to
millions of tons of CO2 per year [2].

The majority of IoT edge devices are powered
using batteries which can store only a finite
amount of energy. These energy-constrained de-
vices (e.g., sensor nodes, implants, wearables)
sense raw data, process it, and communicate wire-
lessly to push the pre-processed field information
to more powerful nodes in the hierarchy. It is
not feasible for them to offload computationally
intensive tasks (e.g., inference tasks) to the cloud
by sending large amounts of raw sensor data

IT Professional Published by the IEEE Computer Society 1

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works

This is the author accepted version of an article published in 
IEEE Software, volume 39, issue 5, Sept.-Oct. 2022 

https://doi.org/10.1109/MS.2022.3184519



and waiting for the results since communication
is energy-intensive and can drain batteries fre-
quently. Contemporary IoT applications tend to
execute computationally intense AI tasks on edge
devices and use the energy stored in batteries
more conservatively. However, as the energy re-
quirements of these tasks increase, it is inevitable
for edge devices to drain their batteries more and
more often. Unfortunately, replacing millions of
batteries (optimistically every year) introduces a
significant maintenance cost, and recycling bat-
teries pose a severe threat to our environment.

Researchers are continuously proposing sev-
eral hardware (e.g., power-efficient DNN accel-
erators) and software solutions (e.g., approxi-
mate computing) to decrease the energy require-
ments of IoT applications and extend the bat-
tery life of edge devices. However, batteries are
still the most significant obstacle against long-
lived, stand-alone, and environmentally-friendly
IoT. Fortunately, the progress in energy harvest-
ing circuits and the decrease in power require-
ments of processing, sensing, and communication
hardware promised the potential of freeing IoT
devices from their batteries. On the other hand,
operating, without batteries, by relying only on
ambient energy changes the way we develop
software significantly.

Ambient energy is unpredictable and subject
to environmental conditions. Therefore, removing
batteries and relying only on ambient energy in-
troduce frequent power failures that interleave the
software execution with intervals during which
the batteryless device is off and harvest ambient
energy into its tiny energy reservoir (e.g., a ca-
pacitor) to operate again. This phenomenon led
to the emergence of a new computing paradigm,
the so-called intermittent computing. A minuscule
amount of energy is spent to perform a burst of
tasks and save the computational state (e.g., the
global variables, program stack, general-purpose
registers, program counter) in nonvolatile memory
to recover upon a power failure. Upon recovery,
the computation progresses forward from the lat-
est successfully saved computational state.

Intermittent computing requires custom re-
covery solutions and programming models (e.g.,
checkpoints [3] and task-based models [4]) to
tolerate power failures that might keep programs
in an inconsistent computational state. A program

in an inconsistent state might never progress cor-
rectly, output meaningful results, and terminate.
For instance, a batteryless IoT edge executing
audio event detection (using an acoustic sensor
and DNN-based features for event classification)
might never infer the audio event (e.g., human
detection) due to the power failures that hinder
execution progress. Naturally, most research in
the past decade focused on the design and de-
velopment of new programming models [5], lan-
guage constructs [3], and runtimes [4] to ensure
the consistency of the computational state and
forward progress during intermittent execution.

Despite the recent efforts on intermittent com-
puting, several challenges and research opportu-
nities are waiting for the attention of researchers
and practitioners. As a practical example, in-
termittent programs may fail at any time, be-
tween any two lines of code, during unpredictable
lengths of time spent to charge the capacitor using
sporadic ambient energy. They might be function-
ally correct but not be beneficial since they might
not satisfy their non-functional requirements (i.e.,
timing constraints) on the target deployment en-
vironment. It is hard to predict the execution
time of an intermittent program and check how
likely it satisfies its timing constraints on a given
deployment area. Today’s popular IoT application
development techniques [6], including modeling
approaches, verification methods, and test envi-
ronments, overlook these challenges since they
only target continuously-powered systems.

Here, we highlight the challenges of program-
ming the batteryless edge that deserve more pro-
found study and understanding beyond those top-
ics focusing on developing continuously powered
IoT solutions. We emphasize that we need new
software engineering techniques and tools (e.g.,
for the verification of intermittent programs, test-
ing) to enable beneficial and reliable intermittent
IoT applications. With the rise of mobile devices,
there was an emerging need for a new generation
of software verification and validation techniques
and tools solely addressing mobile applications,
such as mobile device security and testing of
mobile applications. With the emergence of in-
termittent computing, we expect a similar need
to arise in software engineering practice targeting
batteryless IoT devices.

This paper is structured as follows. We

2 IT Professional



first give the description of intermittent com-
puting on the batteryless IoT edge. Then, we
highlight the differences between programming
continuously-powered and intermittently-powered
devices. Unique challenges for programming the
batteryless edge are introduced in the final part.

Intermittent Computing on the
Batteryless IoT Edge

Batteryless edge devices harvest energy from
ambient (e.g., via solar panels) or dedicated wire-
less energy sources (e.g., radiofrequency trans-
mitters such as WiFi routers). As depicted in
Figure 1, the main components of a batteryless
edge are (a) an energy harvester converting in-
coming ambient energy into electric current, (b)
an energy buffer (typically a capacitor) storing
the harvested energy to power electronics, (c) an
ultra-low-power microcontroller that orchestrates
sensing, computation, and communication, and
(d) nonvolatile memory that is used to capture
the volatile program state. Typical examples of
batteryless edge devices are Flicker [7] (which
can be powered using several harvesters from so-
lar to piezoelectric) and Camaroptera [8] (which
contains an ultra-low-power camera sensor and
a long-range wireless transmitter). The ultra-low-
power micro-controllers in intermittent comput-
ing platforms (e.g., MSP430FR5969 from Texas
Instruments) comprise a combination of volatile
and nonvolatile memory.

Forward Progress and Memory Consistency
The frequent loss of the computation state

is an inevitable phenomenon for the batteryless
edge that operates using only harvested energy.
Upon a power failure, the contents of the CPU
registers and the volatile memory (i.e., the volatile
computational state) are lost. Therefore, power
failures hinder the forward progress of the com-
putation: the computation starts from the begin-
ning, and the intermediate, volatile results are
lost at each reboot. Restarting a computation
block after a power interrupt might also lead to
catastrophic side-effects on memory consistency.
If the program modifies the nonvolatile memory,
Write-After-Read (WAR) dependencies on persis-
tent variables (i.e., variables in nonvolatile mem-
ory) might keep these variables inconsistent [5]
since repeated computation may produce different

results (the violation of idempotency).
Figure 1 presents a code snippet (part of a

sensing application that runs on a batteryless IoT
edge) and an example intermittent execution sce-
nario that demonstrates how WAR dependencies
might lead to memory inconsistencies. x and
vector[] are persistent variables maintained in
nonvolatile memory. After executing x++ (which
sets x=1) in the scenario, a power failure oc-
curs and leaves x modified. Upon recovery from
the power failure, the device executes {x++;
vector[x]=0;}, which increments x again
and sets vector[2]=0. In a continuously powered
execution (without power failures), the device
would execute {x++; vector[x]=0;} only
once, and we would observe vector[1]=0. Due to
the power failure, x++ is executed twice, and a
different output is obtained.

If the program’s control flow depends on ex-
ternal inputs such as sensor readings (e.g., check-
ing persistent variables whose values are updated
during I/O operations), power failures might lead
to inconsistent program behavior [9]. In the sce-
nario (adapted from [9]) shown in Figure 1, the
temperature value (using readTemp()) is read,
and the persistent variable alarm is set to true
(the sensed temperature is more than a predefined
limit) just before a power failure occurs. After
recovery, the device re-executes the previously
executed code lines and re-reads the temperature
value. This time the temperature value is smaller
than the predefined limit, and hence the persistent
variable tempOK is set to true. At this point, both
alarm and tempOK are true, which is logically
incorrect.

What Makes Programming the
Batteryless Edge Different?

Operating without batteries requires dealing
with the forward progress of computation and
memory consistency. These issues change sig-
nificantly the way we develop software. Placing
checkpoints or employing the task-based model
are the two major approaches that ensure the
forward progress of the computation and keep the
nonvolatile memory consistent during intermittent
execution. Figure 2 presents the checkpointed and
task-based versions of a C program (i.e., 1-D
convolution code for DNN inference) developed
for continuously powered systems.

3



// variables in nonvolatile memory
nv char vector[4];
nv char x=0;
nv bool alarm=false;
nv bool tempOK=false;
...
x++;
...
vector[x]= 0;
...
if (readTemp() > LIMIT)
alarm = true;

else
tempOK = true;

...

Solar PanelHarvester

En
vi

ro
nm

en
ta

l
Po

w
er

Time

Energy Buffer

Harvester converts
the environmental
power into
electrical energy. 

Microcontroller and
Peripherals

Time

R
ec

ha
rg

in
g

Operating

Operating

OperatingEn
er

gy
 

R
ec

ha
rg

in
g

R
ec

ha
rg

in
g

Energy Buffer
stores the
harvested
energy

Radio

MCU c

Sensor

A batteryless edge device operates intermittently by performing bursts of computation interleaved
with time intervals during which the device is off and harvesting energy to fill its energy buffer.

Time

x++;

Intermittent Execution

x++; 
... 
vector[x] = 0; 

1 9 8 1vector

1x

1 9 0 1vector

2x

Memory Inconsistency
The value of x is not
correct after the
power failure.

x is incremented

x is incremented
again due to a
power failure

Charging

Charging
(Reboot)

Non-volatile
Memory

true
false

alarm

tempOK

if (readTemp() > LIMIT)
 alarm = true;

Charging
(Reboot)

alarm is updated since
temperature > LIMIT

if (readTemp() > LIMIT)
  alarm = true;
else 

 tempOK = true;

true
true

alarm

tempOK

tempOK is updated since
temperature <= LIMIT after

the power failure.

Memory Inconsistency
Both alarm and tempOK
are true, which is

logically incorrect.

Initial Values

x

1 9 8 1vector

0
false
false

alarm

tempOK

Non-volatile
Memory

Code

b a

d

Figure 1. The main components of a batteryless IoT edge device are (a) an energy harvester, (b) an energy
buffer, (c) an ultra-low-power microcontroller, and (d) nonvolatile memory. Intermittent execution due to the
frequent loss of the computation state is an inevitable phenomenon for batteryless edge devices. If the program
code modifies the nonvolatile memory, power failures might keep persistent variables in an inconsistent state.

4 IT Professional



void main(){

...

while(1){

...

conv();

  checkpoint();
...

}

}

void conv(){

int a[N];

int b[K];

int out[NK+1];

for(i=0;i<NK+1;i++)

for(j=0;j<K;j++){

out[i]+=a[i+j]*b[K-j-1];

   checkpoint();
}

}

Checkpoints Version
(intermittent)

Task t0{

if(i<NK+1)

  next(t1);

else

  next(main);

}

Task t1{

if (j<K)

  next(conv);

else{

  write(i,i+1);

  write(j,0);

  next(t0);

}

}

Task conv{

write(out[i],out[i]+a[i+j]*b[K-j-1]);

write(j,j+1);

 next(t1);

}

Task-Shared{

out[10],

a[10],b[10],

i,j

}

Task main{

 write(i,0);

 next(t0);

}

Task-Based Version
(intermittent) Persistent

variables shared
among the tasks

Save computational
state

Tasks are idempotent and
executed atomically.

Upon reboot, computation
starts from the latest
successfull checkpoint.

En
er
gy

Time

HIGH Ambient
Energy

Re
ch
ar
gi
ng

Operating

Operating

Operating

Re
ch
ar
gi
ng

Re
ch
ar
gi
ng

En
er
gy

Time

LOW Ambient
Energy

Operating

OperatingRe
ch
arg
ing

Re
ch
arg
ing

t0 t1
conv t1

conv

Due to different ambient energy (and charging times), the same task-based program
spends different times to finish its tasks

three tasks
are executed two tasks

are executed one task is
executed

three tasks
are executed two tasks

are executed
t0 t1

conv t1

conv

not executed
yet

void main(){

...

while(1){

...

conv();

...

}

}

void conv(){

int a[N];

int b[K];

int out[NK+1];

for(i=0;i<NK+1;i++)

for(j=0;j<K;j++){

out[i]+=a[i+j]*b[K-j-1];

}

}

Program Code
(continuously-powered)

Task-Based Intermittent Execution
(different charging rates)

main main

jumps to the
indicated task

modifies
task-shared
variables

6 tasks are executed
in three bursts

5 tasks are executed
in two bursts

Figure 2. The top part of the figure presents the checkpointed and task-based versions of a 1-D convolution
code for DNN inference developed for continuously powered systems. The batteryless device executes more
tasks in a high-energy ambient environment during a fixed time interval since the capacitor is charged faster.

5



Checkpoints. In checkpointing, either a program-
mer or a compiler instruments the program to
save the program state in nonvolatile memory [3].
In Figure 2, the checkpoint() interface (pro-
vided by the underlying runtime) inserts check-
points to a C program. The runtime stores the
checkpoint information by protecting it via dou-
ble buffering. Thus, the new program state does
not supersede the prior one immediately if the
checkpoint data is partially updated due to a
power failure. Moreover, the persistent variables
modified by the program should also be versioned
to keep nonvolatile memory consistent across
reboots [10]. Compiler analysis is required to
determine which persistent variables to be modi-
fied between two checkpoints. On crossing each
checkpoint, the runtime saves the program state
and versions the necessary persistent variables.
After a reboot, the program state and versions are
restored using the checkpoint data. The restore
operation makes the code between two check-
points naturally idempotent.
Task-based Model. This model requires the pro-
grammer to divide the computation into a set
of tasks [5], as depicted in Figure 2. The task
re-execution always produces the same results
since the inputs are never modified (and the
WAR dependencies are eliminated). Thus, tasks
are idempotent (re-executable). Moreover, they
are atomic in the sense that they have all-or-
nothing semantics and cannot interrupt each other.
The task-based model creates the local copies of
the persistent variables shared among the tasks
(the variables shown within the Task-Shared
block in Figure 2). Each task manipulates its
local copies (e.g., using write interface) and
atomically commits them to original locations
upon completion (e.g., using next interface).
This operation prevents memory inconsistencies
due to power failures.

Factors Affecting Software Development and
Intermittent Program Behavior

Employing checkpoints or task-based pro-
gramming models only ensures the forward
progress of intermittent execution and memory
consistency. These programming models intro-
duce an unavoidable energy overhead. However,
the energy overhead is reasonable, as confirmed
by the state-of-the-art [10], [5], [3], [4]. In partic-

ular, the task-based programming model is pretty
efficient since it logs the minimum amount of
the data in non-volatile memory [5], [4]. Besides,
other factors affect the intermittent execution of
programs.
Energy Harvesting Environment. The energy
availability of the deployment environment is
stochastic and a significant factor for the rate of
power failures, the execution time of intermittent
programs, and in turn, program throughput. The
execution time of programs running on continu-
ously powered devices is more predictable since
these programs are not affected by the stochastic
nature of ambient energy. The harvested ambi-
ent energy depends on several factors, such as
the energy source type (e.g., solar or radiofre-
quency), the distance to the energy source, and
the efficiency of the energy harvesting circuit. As
depicted in Figure 2, when incoming power is
strong enough, the capacitor is charged rapidly,
and the device becomes available quickly after a
power failure. At low input power, the charging is
slower and takes more time. Since the computing
progresses slowly due to longer charging periods
in a low-energy environment, the program might
miss its deadlines, and the program throughput
may not meet expectations (e.g., a batteryless
long-range remote visual sensing system should
take a picture every 5 minutes and transmit the
relevant ones every 20 minutes).
Hardware Configuration. The energy consump-
tion attribute of the target hardware leads to
quantitative differences in program behavior (e.g.,
in program throughput and execution time). The
power requirements of the target platform affect
the end-to-end delay of program execution. The
intermittent program might take a long time to
finish on hardware platforms having high power
requirements since the capacitor discharges faster.
Hence, the program might drain the capacitor
more frequently (since some instructions con-
sume more energy in a shorter time). There-
fore, the device is interrupted by frequent power
failures, and it is unavailable and charging its
capacitor for long periods. For instance, special
instructions such as nonvolatile memory access
instructions consume more energy than others,
drain energy more frequently, and increase pro-
gram execution time.

On the other hand, other hardware attributes

6 IT Professional



such as capacitor size and voltage threshold set-
tings also affect the intermittent program behav-
ior. The capacitor size determines the maximum
length of program execution without a power
failure. If the capacitor size is large, the de-
vice has more energy to spend until the power
failure, but charging the capacitor takes more
time. Another attribute is the size of the volatile
program state (i.e., the volatile memory size and
the number of registers on the target platform)
that affects the checkpointing overhead, i.e., the
execution time and energy consumption of the
checkpoint operation that saves the program state
in nonvolatile memory. The checkpointing over-
head is architecture-dependent since the number
of registers and the volatile memory size change
from target to target.
Runtime Characteristics. Checkpoint-based re-
covery and task-based models are supported by
runtime environments (e.g., [3], [4]). These run-
times provide programmers interfaces to develop
intermittent programs and perform the necessary
recovery/logging operations. Thus, today’s inter-
mittent programs are coupled tightly to the under-
lying runtime environments. Even the programs
using the same programming model (e.g., task-
based) are not portable across platforms and not
compatible with other runtimes. Moreover, each
runtime introduces different processing delays
and energy overheads during intermittent execu-
tion and, in turn, changes the program behavior
significantly.
Program Structure. Intermittent programming
models require that source code be decomposed
into code blocks (atomic tasks or code blocks
divided by checkpoint instructions). These blocks
need to be efficient and terminating. Their ter-
mination is guaranteed if they consume less en-
ergy than the capacity of the energy storage
buffer. Therefore, while decomposing code into
blocks, programmers consider only stored energy
and not additional energy harvestable during ex-
ecution. The termination of code blocks short
enough is ensured, but having more code blocks
than necessary may waste energy and impose an
execution-time overhead, e.g., due to saving the
program state in nonvolatile memory for each
code block. For instance, checkpoint placement
is crucial for programmers to ensure the desired
timing behavior of their intermittent programs.

The more frequent the checkpoints are, the more
energy consumed, but less computation is lost
upon a power failure. Code decomposition based
on energy storage size, energy efficiency, and
the forward progress of computation represents a
new software design aspect unique to intermittent
programs.

Unique Challenges for Programming
the Batteryless Edge

Due to the differences and factors we pre-
sented, when implementing intermittent pro-
grams, programmers must consider several new
challenges that are unfamiliar to most of the
application developers that target continuously
powered IoT systems.
Energy-aware Timing Analysis. Considerable
research on intermittent computing has been de-
voted to compile-time analysis to find bugs and
anomalies of intermittent programs [9] and struc-
ture them (via effective task splitting and check-
point placement) based on worst-case energy
consumption analysis [11], [12]. Despite these
efforts, no attention has been paid to analyzing the
timing behavior of intermittent programs. Without
such an analysis, programmers will never know
at compile-time if their intermittent programs
execute as they intend to do in a real-world
deployment (e.g., meeting throughput require-
ments). Worse still, it is extremely costly and
time-consuming to analyze the timing behavior
of intermittent programs on real deployments
because programmers need to run the programs
multiple times on the target hardware.
Design Space Exploration. The execution time
and throughput of intermittent programs depend
on multiple hardware and software design factors
such as the capacitor size, the energy consump-
tion of the target hardware, the efficiency of the
energy harvester unit, and the program structure
(e.g., checkpoint placement and the size and
number of tasks in task-based models). As an ex-
ample, consider a deployment environment with
low ambient energy and frequent power failures.
If the program execution time and throughput do
not meet requirements in the low-energy environ-
ment, programmers might increase the capacitor
size, change the target hardware, or remove some
checkpoints. These changes may not always lead
to what is intended (e.g., the bigger the capacitor

7



size is, the longer the charging takes). There-
fore, programmers might have to do a what-if
analysis by deploying several program versions
into various hardware configurations, i.e., recon-
figuring the hardware, restructuring the program,
and checking if the restructured program has the
desired execution time and throughput on the
reconfigured hardware. This what-if analysis is
currently manual and not guided. It can quickly
become infeasible on target hardware deploy-
ments due to the size of design space, i.e., the
number of possible hardware configurations and
program versions.
Energy-aware Testing. The impact of harvesting
ambient energy on the behavior of intermittent
programs complicates their testing. Programmers
need to test their programs with power failures
under various energy conditions. They can ex-
pose some bugs only under distinct power failure
timings or test cases across energy conditions.
They also need to test energy-related program
properties such as forward progress. The tools
and techniques to test intermittent programs are
mostly the same tools and techniques designed
for testing programs running on continuously
powered systems. They do not inherently support
mimicking power failures and ambient energy
conditions during intermittent program testing.
Programmers need new testing tools with simula-
tor support that can accurately emulate real-world
energy harvesting conditions.
Runtime Independent Programming. Each in-
termittent runtime supports different language
constructs and abstractions (e.g., Alpaca [13] sup-
porting the privatization of data shared between
tasks, and InK [4] enabling reacting to changes in
available energy and variations in sensing data).
When writing programs, programmers use these
runtime-specific language constructs to support
memory correctness, timely execution, etc. In-
termittent programming is a fast-growing area,
and thus, intermittent runtimes constantly evolve
together with the language abstractions they sup-
port. New runtimes come with new constructs,
or updates on the constructs are introduced for
the existing runtimes. Programmers modify the
program for the new/updated constructs. Or, they
port it from an old runtime to a new one, which
may require fundamental changes, e.g., new task
structures replacing checkpoint instructions. It

is a manual, time-consuming, and error-prone
task. Therefore, programmers need techniques
supporting runtime independent program models
transformed (semi-) automatically into runtime
dependent intermittent execution models.
Software Adaptation. Energy-aware adaptation
of program execution (e.g., reducing sensor sam-
pling rates or degrading computation) is a promis-
ing way to avert power failures, meet timing dead-
lines, and increase program throughput. There
are different adaptation strategies that all depend
on the characteristics of intermittent applications.
For some applications, decreasing the number
of sensor readings might be a better solution
when the ambient energy is low. Some other
applications might need to keep the sensing rate
constant but can degrade the computation by skip-
ping some computationally heavy code blocks.
Due to constrained device capabilities and limited
energy information, it is challenging to decide
the best time and strategy for adapting execution.
Estimating the available energy in an environ-
ment during runtime is hard. And, small changes
in the ambient energy might have a significant
impact on program execution. Therefore, we
need flexible and configurable runtime adaptation
frameworks [14] that provide automatic responses
to changes in energy based on the adaptation
heuristics programmers specify concerning envi-
ronmental and physical phenomena (e.g., when
off-time increases, degrade program execution
to maintain throughput since the environment is
experiencing energy scarcity).
Reusability of Libraries. The libraries imple-
mented for continuously powered systems are
not reusable for intermittent systems. Due to
the rigid checkpoint and task-based programming
models, programmers need to reimplement the
new versions of open-source libraries, and pro-
grams are prevented from using closed-source
libraries. As of now, intermittent programs can
use closed-source libraries by employing check-
points. Checkpointing the internal state of these
libraries (e.g, when and what to checkpoint), and
power failure recovery might be different for each
library. Providing a generic solution for closed-
source library management remains an open ques-
tion for researchers and practitioners.
Secure Intermittent Execution. A significant
software challenge to the widespread use of bat-

8 IT Professional



teryless devices is the secure execution of inter-
mittent programs. Although cryptographic keys
and algorithms, security certificates, protocols,
and other security mechanisms used for contin-
uously powered IoT devices still play a critical
role in intermittent computing, several technical
challenges remain. Ensuring secure intermittent
computing is difficult due to the limited capabil-
ities and energy budgets of batteryless devices.
Intermittent execution models and runtimes do
not provide inherent security support, but pro-
gram recovery with charge-discharge cycles can
pose high-security risks. For instance, by altering
the checkpoint image, attackers can manipulate
the state of the intermittent program and prevent
the device from functioning correctly. A power
failure might leave a cryptographic operation un-
completed and private data in an insecure state.
Attackers can gain physical access to the device
and obtain private data in the device’s memory.
Programmers should pay extra attention when
implementing security functions in intermittent
programs. Some security functions (e.g., stateful
signature generation functions) may need to be
executed without a power interruption.

Conclusion
Sustainable software is necessary for many

reasons [15]: economic reasons, environmental
reasons, and because society has sustainability
awareness that has increased dramatically over
the past decade. Intermittent computing paves the
way for sustainable software in the batteryless
edge. Due to the differences and factors we pre-
sented, programmers implementing software run-
ning on intermittent devices must consider vari-
ous challenges unfamiliar to most programmers
developing continuously powered systems. These
challenges require new software engineering tools
and techniques for the development and testing of
intermittent programs.

Acknowledgments
This work was supported by the SINTEF

projects G-IoT (Green Internet of Things) and
Sustainable IoT (funded by the Research Council
of Norway) and the Italian Ministry for University
and Research (MUR) under the program Diparti-
menti di Eccellenza (2018-2022).

REFERENCES

1. X. Liu and N. Ansari, “Toward green IoT: Energy solu-

tions and key challenges,” IEEE Communications Mag-

azine, vol. 57, no. 3, pp. 104–110, 2019.

2. K. Hao, “Training a single ai model can emit as much

carbon as five cars in their lifetimes,” MIT technology

Review, 2019.

3. V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester,

and P. Pawełczak, “Time-sensitive intermittent comput-

ing meets legacy software,” in ASPLOS’20, 2020, pp.

85–99.

4. K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper,

P. Pawelczak, and J. Hester, “InK: Reactive kernel for

tiny batteryless sensors,” in SenSys’18, 2018, pp. 41–

53.

5. A. Colin and B. Lucia, “Chain: tasks and channels for

reliable intermittent programs,” in OOPSLA’16, 2016,

pp. 514–530.

6. A. Taivalsaari and T. Mikkonen, “A roadmap to the

programmable world: software challenges in the iot era,”

IEEE Software, vol. 34, no. 1, pp. 72–80, 2017.

7. J. Hester and J. Sorber, “Flicker: Rapid prototyping for

the batteryless internet-of-things,” in SenSys’17, 2017,

pp. 19:1–19:13.

8. H. Desai, M. Nardello, D. Brunelli, and B. Lucia, “Ca-

maroptera: A long-range image sensor with local infer-

ence for remote sensing applications,” ACM Transac-

tions on Embedded Computing Systems (TECS), 2022.

9. M. Surbatovich, L. Jia, and B. Lucia, “I/o dependent

idempotence bugs in intermittent systems,” in OOP-

SLA’19, 2019, pp. 1–31.

10. B. Lucia and B. Ransford, “A simpler, safer program-

ming and execution model for intermittent systems,” in

PLDI’15, 2015, pp. 575–585.

11. A. Colin and B. Lucia, “Termination checking and task

decomposition for task-based intermittent programs,” in

CC’18, 2018, pp. 116–127.

12. S. Ahmed, M. Nawaz, A. Bakar, N. A. Bhatti, M. H.

Alizai, J. H. Siddiqui, and L. Mottola, “Demystifying

energy consumption dynamics in transiently powered

computers,” ACM Transactions on Embedded Comput-

ing Systems, vol. 19, no. 6, pp. 1–25, 2020.

13. K. Maeng, A. Colin, and B. Lucia, “Alpaca: intermittent

execution without checkpoints,” in OOPSLA’17, 2017,

pp. 1–30.

14. A. Bakar, A. G. Ross, K. S. Yildirim, and J. Hester,

“Rehash: A flexible, developer focused, heuristic adap-

tation platform for intermittently powered computing,”

9



Proceedings of the ACM on Interactive, Mobile, Wear-

able and Ubiquitous Technologies, 2021.

15. A. Fonseca, R. Kazman, and P. Lago, “A manifesto for

energy-aware software,” IEEE Software, vol. 36, no. 6,

pp. 79–82, 2019.

Arda Goknil is a senior research scientist at SINTEF
Digital in Oslo, Norway. His research interests include
model-driven software engineering, software testing,
requirements engineering and intermittent comput-
ing. Dr. Goknil received his doctorate in software engi-
neering from University of Twente in the Netherlands.
Contact him at arda.goknil@sintef.no.

Kasım Sinan Yıldırım is an assistant professor at
the Department of Information Engineering and Com-
puter Science, University of Trento, Italy. His research
interests include embedded systems and IoT, wire-
less communication and protocols, self-organizing
sensor networks and distributed algorithms, operating
systems/run-times and architectural support for tiny
embedded devices. Dr. Yildirim received his doctorate
in computer science from Ege University in Turkey.
Contact him at kasimsinan.yildirim@unitn.it.

10 IT Professional


	Intermittent Computing on the Batteryless IoT Edge
	Forward Progress and Memory Consistency

	What Makes Programming the Batteryless Edge Different?
	Factors Affecting Software Development and Intermittent Program Behavior

	Unique Challenges for Programming the Batteryless Edge
	Conclusion
	REFERENCES
	Biographies
	Arda Goknil
	Kasım Sinan Yıldırım


