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S U M M A R Y
Seismic inversion of amplitude versus offset (AVO) data in viscoelastic media can poten-
tially provide high-resolution subsurface models of seismic velocities and attenuation from
offset/angle seismic gathers. P- and S-wave quality factors (Q), whose inverse represent a mea-
sure of attenuation, depend on reservoir rock and pore fluid properties, in particular, saturation,
permeability, porosity, fluid viscosity and lithology; however, these quality factors are rarely
taken into account in seismic AVO inversion. For this reason, in this work, we aim to integrate
quality factors derived from physically based models in AVO inversion by proposing a gradi-
ent descent optimization-based inversion technique to predict the unknown model properties
(P- and S-wave velocities, the related quality factors and density). The proposed inversion
minimizes the non-linear least-squares misfit with the observed data. The optimal solution
is iteratively obtained by optimizing the data misfit using a second-order limited-memory
quasi-Newton technique. The forward model is performed in the frequency–frequency-angle
domain based on a convolution of broad-band signals and a linearized viscoelastic frequency-
dependent AVO (FAVO) equation. The optimization includes the adjoint-state-based gradients
with the Lagrangian formulation to improve the efficiency of the non-linear seismic FAVO
inversion process. The inversion is tested on synthetic seismic data, in 1-D and 2-D, with
and without noise. The sensitivity for seismic quality factors is evaluated using various rock
physics models for seismic attenuation and quality factors. The results demonstrate that the
proposed inversion method reliably retrieves the unknown elastic and an-elastic properties
with good convergence and accuracy. The stability of the inverse solution especially seismic
quality factors estimation relies on the noise level of the seismic data. We further investigate
the uncertainty of the solution as a function of the variability of the initial models.

Key words: Inverse theory; Joint inversion; Numerical modelling; Seismic attenuation; Rock
physics and AVO inversion; Marine geosciences and applied geophysics.

1 I N T RO D U C T I O N

Seismic waves propagation through the geological layers leads to the amplitude loss of coherent wave front due to absorption and transmission
caused by numerous elastic and an-elastic subsurface mechanisms (Kneib & Shapiro 1995; Wang 2019). The energy absorption effect also
referred to as seismic attenuation, is measured by the inverse of the quality factor (Q), which can thus be estimated, for example, from the
amplitude decay of seismic waves. The energy loss might depends on the heterogeneity of rock and pore fluid properties which can cause
both scattering and wave-induced fluid flow (White 1975; Pride & Berryman 2003a, b; Pride et al. 2004; Carcione & Picotti 2006; Tisato
& Quintal 2013; Caspari et al. 2019; Mavko et al. 2020; Chapman et al. 2021). Seismic wave attenuation caused by such physically based
mechanisms is frequency dependent and can be approximated by a viscoelastic model (Jänicke et al. 2015, 2019).

At a geological horizon between two viscoelastic interfaces, the seismic reflection amplitude variations depend on the P- and S-wave
quality factors together with P- and S-wave velocities and density (Innanen 2011; Zhao et al. 2014; Li & Liu 2019). In viscoelastic media,
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Frequency-dependent AVO inversion 235

seismic waves exhibit dispersion and thereby the magnitude of reflection amplitudes is not only dependent on the medium properties and
incident angles but are also strongly affected by the frequency (Chapman et al. 2006; Jin et al. 2017; Kumar et al. 2020). Therefore, the
estimation of both seismic quality factors along with elastic properties can give valuable information regarding the Earth’s subsurface
properties, such as temperature, pressure, lithology and fluid content (Peters et al. 2012; Cheng 2013; Sheehan et al. 2014; Zong et al. 2015;
Chen et al. 2018; Li & Liu 2019). Numerous studies (Pride et al. 2004; Carcione 2007; Tisato & Quintal 2013; Chapman et al. 2021) have
shown that the wave-induced fluid flow (WIFF) is the dominant source of seismic waves attenuation in partially fluid-saturated sediments in
the seismic frequencies range, that is at the mesoscopic scale. The seismic energy attenuation can have a substantial impact on the seismic
reflectivity and hence can provide additional information regarding pore fluids saturation (Mavko et al. 2005; Dvorkin & Mavko 2006; Quintal
et al. 2009, 2011; Zhao et al. 2014; Mavko et al. 2020).

The frequency-dependent amplitude versus offset (FAVO) inversion method is used to estimate seismic velocities and quality factors
from pre-stack seismic gathers of partially fluid-saturated reservoirs where higher attenuation of seismic waves is observed. Innanen (2011)
carried out a direct AVO inversion process for an-elastic targets from a single absorptive reflectivity event. Teng et al. (2012) presented
a viscoelastic AVO inversion method by using the Bayesian approach to estimate the seismic wave quality factors and velocities from the
imaginary component of pre-stack seismic gathers. Zong et al. (2015) proposed an inversion strategy for P- and S-quality factors from
complex seismic data. Chen et al. (2018) developed a frequency-dependent AVO approximation and a Markov Chain Monte Carlo (MCMC)
inversion to predict inverse seismic quality factors and attenuative seismic impedances. Li & Liu (2019) derived a decoupled viscoelastic
AVO equation based on the Aki & Richards (2002) nearly constant Q models which relate the dispersion of P- and S-wave velocities to the
P- and S-wave quality factors. To avoid decoupling effects in the inversion results due to the simultaneous inversion of multiparameters, they
invert only for P- and S-wave quality factors and density under the assumption of known P- and S-wave velocities at a dominant frequency
in an-elastic medium. However, the inversion process given by Li & Liu (2019) does not take into consideration seismic velocity dispersion
effects. Recent advances in frequency-dependent AVO studies and FWI in viscoelastic media include (JafarGandomi & Takenaka 2013; Pang
& Stovas 2020; Pan et al. 2020; Pan & Wang 2020; Cheng et al. 2020; Keating & Innanen 2020; Yang et al. 2020; Li et al. 2021; Liu et al.
2022; Cheng et al. 2022); however, the use of the adjoint-state method for non-linear optimization with analytical solutions for the partial
derivatives of the gradient of the misfit function for FAVO inversion has not been yet presented.

In this research work, we propose a novel inversion scheme that is a constrained non-linear frequency-dependent AVO algorithm that
relies on Li & Liu’s (2019) linearized viscoelastic equation. We first develop a generalized seismic forward model for the frequency-angle
dependent reflectivity time series by performing a 1-D Fourier transform from frequency-time-angle to frequency–frequency-angle. Then,
we apply a gradient descent optimization-based inversion method to iteratively minimize the least-squares misfit function that defines
the distance between the forward synthetic model and the observed data. Gradient-based numerical optimization algorithms are highly
efficient thanks to the implementation of the adjoint-state method (Plessix 2006) to calculate the gradient. The adjoint-state method is
widely used in non-linear inverse geophysical problems (Fabien-Ouellet et al. 2017; Wang et al. 2021; Guo et al. 2022; Yong et al.
2022; Ahmed & Weibull 2022; Ahmed et al. 2022) and provides the analytical gradient solution more efficiently than the finite difference
approximation. For this reason, the adjoint-state method is applied to differentiate the misfit function with respect to the set of viscoelastic
AVO variables. We then adopt the chain rule of derivatives to obtain the gradient equations for the P- and S-wave quality factors. For
model updating at every non-linear iteration step, we apply the limited-memory BFGS algorithm (Nocedal & Wright 2006) to define
the descent search direction for the data misfit minimization towards the local minima. BFGS is a second-order algorithm for numerical
optimization that refers to the class of quasi-Newton methods. L-BFGS performs numerical optimization for large-scale problems very
efficiently.

The novelty of the presented inversion process is the analytical derivation of the adjoint-state solution to find the gradient of data misfit
with respect to the viscoelastic AVO variables. Furthermore, unlike the Li & Liu (2019) approach, the gradients of seismic (P- and S-)wave
velocities also depend on the frequency and therefore incorporate the velocity dispersion. To validate the FAVO non-linear inversion process,
we test the proposed methodology using synthetic data computed from borehole sonic measurements. The direct measurements of seismic
wave quality factors during wireline logging is problematic. Therefore, various rock physics models, such as Waters empirical relationships,
constant Q models and frequency-dependent White analytical solution (White et al. 1975; Waters & Waters 1981; Dvorkin & Mavko 2006;
Quintal et al. 2009; Li & Liu 2019; Mavko et al. 2020), are applied to compute the reference seismic quality factors.

2 T H E O RY A N D M E T H O D

2.1 Viscoelastic FAVO model

A frequency-dependent reflectivity equation that is a function of seismic velocities, quality factors and density is used to estimate the
viscoelastic subsurface properties. In the viscoelastic geological medium, the seismic wave velocity exhibits a dispersion behaviour. Therefore,
the reflection coefficients also relate to seismic frequency rather than only incident angles. We implement a forward modelling approach in
the frequency domain with the help of a Fourier transform to do convolution in the frequency–frequency-angle domain in order to compute
the broadband viscoelastic seismic gather of multilayer dispersive media.
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236 N. Ahmed et al.

We use the frequency-dependent AVO approximation derived by Li & Liu (2019) for the forward model in the viscoelastic isotropic
media. The reflectivity equation in the frequency–time–angle (ω

′
, t, θ ) domain is given by:

RP P (t, θ, ωo, ω′) = A(θ )
�VP (t, ωo)

VP (t, ωo)
+ B(t, θ )

�VS(t, ωo)

VS(t, ωo)
+ C(t, θ )

�ρ

ρ

+ D(θ, ωo, ω′)
�ξP (t)

ξP (t)
+ E(t, θ, ωo, ω′)

�ξS(t)

ξS(t)
, (1)

where

A =
[

1

2

(
1 + tan2 θ

)]
, B =

[
−4β2

α2
sin2 θ

]
, C = 1

2

[
1 − 4β2

α2
sin2 θ

]

and

D =
[
−1

2
(1 + tan2 θ )

1

π
ln

(ωo

ω′

)]
, E =

[
4β2

α2
sin2 θ

1

π
ln

(ωo

ω′

)]
,

whereas ωo refers to the reference angular frequency, while VP and VS are the seismic wave phase velocities at an angular reference frequency
ωo and ρ is density. In eq. (1), the denominators represent the average values of elastic and an-elastic properties whereas the �-terms are the
differences across the viscoelastic geological boundaries. In the forward modelling equation, it is assumed that the medium above and below
the interface is viscoelastic and dissipative. The terms ξP and ξ S are defined as functions of both compressional and shear Q-factors, QP and
QS, as:

ξP (t) = 1 + 1

Q P (t)
, ξS(t) = 1 + 1

QS(t)
.

Seismic quality factors are not measured directly during borehole logging and are thus computed using empirical equations as in (Waters &
Waters 1981; Li 2017) or rock physics models such as Dvorkin–Mavko nearly constant Q approximations (Dvorkin & Mavko 2006; Mavko
et al. 2020) and the frequency-dependent White’s analytical solution (White et al. 1975; Quintal et al. 2009). The rock physics formulations
for the quality factors are given in Appendix A.

2.2 Viscoelastic FAVO inversion

The aim of the FAVO inverse modelling is to retrieve the viscoelastic model properties, that is m = (VP, VS, ρ, QP, QS) based on the broadband
seismic data d(t, ω

′
, θ ). We first set up the formulation of the seismic FAVO inverse process as the minimization of a differentiable error

function J with respect to m using the least-squares error between seismic data (d) and forward model predicted data f(m).
Let j, p and n be the maximum number of reflection interfaces, broad-band frequencies ranges and corresponding incident angles, then

the data misfit equation is given by:

min J (m) = min
1

2

j∑
t=1

p∑
ω′=1

n∑
θ=1

‖ d(t, θ ) − f (m(t, θ )) ‖2 over C, (2)

where forward model f(m) is the time-domain convolution after applying the inverse Fourier transform.

f (m(t, θ )) = F−1
p∑

ω′=1

[
W (ω̂) · RP P (t, θ, ω̂, ω′)δ(ω′ − ω̂)

]
, (3)

whereas, δ represents Dirac’s delta function.
In non-linear inverse optimization, an initial guess for the model properties VP, VS, ρ, QP and QS is required to iteratively update the

solution, together with a set of constraints to set their physical boundaries:

C = {m = (VP , VS, ρ, Q P , QS) | mmin ≤ m ≤ mmax}. (4)

The gradient of the data misfit J described in eq. (2) is the vector of partial derivatives of the misfit error J in respect of model properties m
as given:

∇ J =
[

∂ J

∂VP
,

∂ J

∂VS
,

∂ J

∂ρ

∂ J

∂ Q P
,

∂ J

∂ QS

]
(5)

and the solution of misfit J with respect to m = [VP, VS, ρ, QP, QS] is

∂ J

∂m
= −

[
d − f (VP , VS, ρ, Q P , QS)

]
· ∂ f

∂m
. (6)

In practical applications, viscoelastic seismic properties are discretized at the interfaces i = 1, ... in in the time (or depth) domain.
Therefore, in the following, we adopt the discretized notation for all the model variables

m = [VP1, ..., VPin , VS1, ..., VSin , ρ1, ..., ρin , Q P1, ..., Q Pin , QS1, ..., QSin ]T .
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Frequency-dependent AVO inversion 237

2.3 Adjoint-state method and L-BFGS

The adjoint-state method provides an effective numerical approach to computing the gradient of the non-linear least-square data misfit that
relies on a set of state variables without computation of the Fréchet derivatives. The adjoint solution is implemented here by introducing the
augmented Lagrangian function L as:

L (VP , VS, ρ, ξP , ξS, RP P , λ) =
∑

i

∫
θ

dθ
[
d[i] − f [i]

]2

+
∑

i

∫
θ, ω

dθ

[
RP P [i] − A[i]

�α

α
− B[i]

�β

β
− C[i]

�ρ0

ρ0
− D[i]

�P

P
− E[i]

�S

S

]
λ[i], (7)

where λ refers the adjoint-state variable, RPP denotes the state variable and forward model f is given by the eq. (3). The Lagrangian function
in eq. (7) can be reformulated as L = J (RP P , m) + C(RP P , m) ∗ λ, where the constraint (C) in the Lagrangian formalism is automatically
satisfied by:[

RP P [i] − A[i]
�α

α
− B[i]

�β

β
− C[i]

�ρ0

ρ0
− D[i]

�P

P
− E[i]

�S

S

]
= 0. (8)

In eq. (7), the denominators indicate the average values at the interfaces and the numerators are the differential values across the interfaces.
To make the derivation of the gradient solution of the Lagrangian of the misfit function ease for ourselves, we replace the seismic velocities,
density and quality factor terms in eq. (7) with α, β, ρ0, P and S which are related to the model variables m as:

α[i] = VP [i + 1] + VP [i]

2
�α[i] = VP [i + 1] − VP [i]

β[i] = VS[i + 1] + VS[i]

2
�β[i] = VS[i + 1] − VS[i]

ρ0[i] = ρ[i + 1] + ρ[i]

2
�ρ0[i] = ρ[i + 1] − ρ[i]

S[i] = ξS[i + 1] + ξS[i]

2
�S[i] = ξS[i + 1] − ξS[i]

P [i] = ξP [i + 1] + ξP [i]

2
�P [i] = ξP [i + 1] − ξP [i].

The gradient solution of the data misfit is achieved by solving the subsequent adjoint-state equations:

∂L
∂ RP P

= 0,
∂L
∂λ

= 0. (9)

The analytical formulation of the partial derivatives is given in Appendix B.
When the adjoint eqs (9), the partial differentials of the Lagrangian function in respect of viscoelastic RPP and state variable λ are

satisfied, that is equal to 0. Then the partial derivatives coincide with:

∂L
∂· = ∂ J

∂· ,

where · represents one of the five unknown variables m. Then the partial derivatives with respect to P- and S-quality factors are acquired using
the chain rule derivative:

∂ J

∂ Q P [i]
= ∂ J

∂ξP [i]
· ∂ξP [i]

∂ Q P [i]
(10)

∂ J

∂ QS[i]
= ∂ J

∂ξS[i]
· ∂ξS[i]

∂ QS[i]
(11)

∂ξ [i]

∂ Q P [i]
= − 1

Q2
P [i]

,
∂ξS[i]

∂ QS[i]
= − 1

Q2
S[i]

. (12)

The model m, including the five unknown variables, is updated at every iteration using the second-order quasi-Newton L-BFGS
optimization technique that iteratively approximates the inverse Hessian (H(k)) based on the gradient values and the previous solution as:

m(k+1) = m(k) + α(k)[−H (k)∇ J ], (13)

whereas m(k) and m(k + 1) are referred as the current and updated values and α(k) is described as step length. The gradient descent search
direction is determined by [ − H(k)∇J]. The L-BFGS procedure is described in algorithm 1.

The physics involving seismic wave velocities and corresponding seismic quality factors are coupled in the simultaneous viscoelastic
inversion (Kamei & Pratt 2013). Consequently, the inverse solution of the estimation of the parameters in presence of low-resolution noisy
data is not unique and the prediction of velocities and quality factors might be inaccurate. The lack of model properties resolution is referred
to as crosstalk or trade-off between the variables. Operto et al. (2013) present different strategies to reduce the coupling effect between
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238 N. Ahmed et al.

Algorithm 1 The standard L-BFGS algorithm

1: L-BFGS procedure
2: Choose a stating value m0, and integer l > 0
3: do k = 0, 1, 2, 3 ...
4: Calculate data misfit value J and gradient ∇
5: Compute the search direction [ − H(k) ∇ J] using L-BGFS two-loop recursion
6: Find the step length α(k) using line search algorithm
7: First trial step length: α(0) = l/�∇0�2, if k > m try α(k, 0) = 1
8: do i = 0, 1, 2, 3 ..., l
9: Verify function minimization conditions
10: Get new α(k, i + 1) using line search algorithm
11: End do
12: Update m(k + 1) = m(k) + α(k)[ − H(k) ∇ J]
13: Repeat until convergence
14: End procedure

optimized properties, such as the use of second order Hessian matrix, the selection of an appropriate parametrization and a model-driven
approach where the more sensitive variables are estimated before the least sensitive ones.

The linearized AVO equation for viscoelastic media relies on a set of five variables, that is P- and S-wave velocities, density, and the
seismic quality factors (VP, VS, ρ, QP, QS). In this model, the crosstalk affects the following couples of variables: VP and QP, VS and QS,
VP and VS and QP and QS. To examine the crosstalk effects between model variables, we run several tests and study the coupling effects
between seismic velocities and quality factors at initial iterations as well as for low and high incident angles. In the first crosstalk test, we
introduced two perturbations for P- and S-wave velocities (e.g. �V = 50 and 200 ms−1) and computed the gradient of corresponding quality
factors. In theory, if the velocities and quality factors were independent, the perturbation in VP or VS with a constant corresponding QP

and QS, respectively should not affect the partial derivatives with respect to the quality factors. However, in reality, these parameters are
not independent and the partial derivatives of the quality factors are affected by the velocity perturbation. Fig. 1(a) shows the results of the
perturbation for the following couples: VP and QP, VS and QS, by comparing the gradient results with and without perturbation. The results
demonstrate that strong crosstalk exists between the variables, as a small perturbation in the seismic velocities results in a variation in the
corresponding quality factors. We also investigate the crosstalk between VP and VS as well as QP and QS derived through a rock physics model
by considering the WIFF mechanism. The perturbations are added to the compressional wave velocity and the related quality factor. The
gradients of VS and QS with and without perturbations are shown in Fig. 1(b). The gradients plotted in Fig. 1 are scaled by different factors
ranging between 103 and 105. The results show limited crosstalk between VP and VS and quality factors. Despite the large perturbation in the
P-wave quality factor, limited crosstalk between QP and QS is observed. Then, we study the crosstalk effects between two classes (VP and
QP, and VS and QS) at low and high incident angles (Fig. 2). The results show that the crosstalk between variables exists at different incident
angles: for example, at the near offset, the coupling between VP and QP is higher than the coupling between VS and QS for large offset; this
result is even more evident for the coupling between VS and QS.

Due to the coupling between seismic velocities and corresponding quality factors, we adopt the strategy of inverting the most sensitive
model variables first (VP, VS and density) and then predicting the least sensitive properties (QP and QS). The crosstalk between VP and VS or
QP and QS is limited; hence, it does not affect the inversion of seismic velocities at the first phase nor the inversion of the quality factors in
the next step.

3 A P P L I C AT I O N S

We present several applications with two synthetic data sets to verify the described FAVO inversion scheme by using the frequency-domain
convolution of broadband signals. Data set 1 represents a 1-D vertical profile, whereas data set 2 represents a 2-D seismic section. In both
examples, the quality factors have been computed from well logs using empirical and rock physics models (Appendix A).

In the first example, a 1-D synthetic seismic forward model obtained from wireline logs in the Edvard Grieg field located in the North
Sea is used. The quality factors are calculated using the empirical expressions given by eq. (A1). The reference model is upscaled at the
seismic scale (Fig. 3). The seismic response with signal-to-noise ratio infinity and with seismic random noise level (S/N = 50) is shown in
Fig. 4. Seismic reflection amplitudes are displayed up to the incident angle 30◦ with an interval of 5◦. Figs 4 and 5 present the results of the
inversion scheme for the elastic and an-elastic properties. In the case of S/N = 0, the inversion method shows good convergence, and the
estimated parameters are in close agreement with the reference properties (Fig. 5). In the case of noisy data, the inversion method produces
stable results for P- and S-wave seismic velocities and density are consistent with the reference models, whereas the inversion of quality
factors are more unstable and less accurate (Fig. 6). To reduce the instability of the solution, we apply small Tikhonov regularization weights
(Aster et al. 2018), whereas the inaccuracy is due to noise in the seismic data and the limited sensitivity of the forward model.

In example 2, we applied the proposed non-linear inversion process on a 2-D synthetic example mimicking faulted geological boundaries
and inclined horizons. Seismic velocities interpreted in seismic velocity analysis during processing are used to generate a 2-D visco-elastic
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Frequency-dependent AVO inversion 239

Figure 1. Crosstalk between elastic and an-elastic variables; VP and QP, VS and QS and QP and QS (a), and VP and VS and QP and QS (b). The panels represent
the gradients: red lines indicate a perturbation of 50 m s–1, green lines indicate a perturbation of 200 m s–1, and blue lines indicate no perturbation. The crosstalk
between QP and QS is calculated based on the rock physics model.

model. The FAVO inversion process is implemented trace by trace in the entire time window (0–5000 ms). The resulting elastic and viscoelastic
properties are shown in Fig. 7. The inverted P- and S-wave velocity, density and the related seismic quality factors are accurately estimated.
The initial Q-factors are obtained by using the empirical expressions. The inversion produces some mismatches, especially in the density
prediction, which can be partially compensated using Tikhonov regularization.

In the next examples, we focus on partially saturated reservoirs to investigate frequency-dependent mechanisms. A leading cause of
seismic wave attenuation and velocity dispersion in partially fluid-saturated rock or sediments is WIFF. Fig. 8 shows the P wave attenuation
behaviour in two cases when the magnitude of attenuation is estimated as frequency independent (constant Q model, Fig. 8a) and frequency-
dependent (Figs 8b and c) in a partially saturated rock. Partially saturated gas reservoirs exhibit higher attenuation compared to oil and water.
Furthermore, partially saturated reservoirs exhibit the P-wave energy dissipation which also varies as a function of seismic frequencies. In
the next examples, we adopt a rock physics model for seismic (P- and S-) wave attenuation due to WIFF in an oil–water system.

In example 3, we first adopt a simple physically based model with constant Q (eqs A2–A5) which allows for estimating the P- and S-
wave attenuation from the well logging curves. This model provides reasonable attenuation curves without considering frequency-dependence
effects and can be easily incorporated into the seismic model (Dvorkin & Mavko 2006). The model example in Fig. 9 is taken from the
Edvard Grieg oil field located in the North Sea. The reservoir zone (1865–1888 ms) has a partial oil saturation of about 66 per cent. Fig. 9
shows the water saturation curve and the computed attenuation curves in the corresponding zones. The calculated P-wave attenuation due
to WIFF is shown in Fig. 9(b). The partially oil-saturated zone displays higher attenuation due to partially fluid saturation heterogeneities,
for example the seismic energy loss in the oscillatory pore-fluid flow induced by the passage of waves. The seismic wave passage induces
fluid pressure gradients which cause the fluid flow between softer-stiffer fluids patches, which then results in viscus-friction losses. The Q−1

P

is approximately zero in the water zone as low and high limit moduli become equal. Fig. 9(c) shows both the theoretical P- and S-wave
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240 N. Ahmed et al.

Figure 2. Crosstalk between elastic and an-elastic variables; VP and QP, VS and QS, at incident angles of 1−5◦ (a) and at incident angles of 25−30◦ (b).
The panels represent the gradients: red lines indicate a perturbation of 50 m s–1, green lines indicate a perturbation of 200 m s–1, and blue lines indicate no
perturbation.

attenuation curves for fully water-saturated rocks, where the attenuation depends on the heterogeneities of both fluid and the solid phase.
The P-wave attenuation shown in Fig. 9(d) accounts for attenuation due to partial fluid saturation, full water saturation, and solid frame
heterogeneities. The quality factors (QP and QS) are shown in Fig. 10. The properties used in the rock physics model are given in Table 1.

We then apply the inversion method to estimate the energy dissipation from the seismic frequency-angle gather. The seismic response
up to 30◦ with intervals of 5◦ (Fig. 10a) together with initial guesses and true models for QP and QS are shown in Fig. 10(b). The inversion
results are shown in Fig. 10(c): the P-wave quality is accurate whereas there is a mismatch between the S-wave quality factor predictions,
possibly because of the low sensitivity of the seismic data to the shear wave attenuation due to rock-fluid inhomogeneities.

In example 4, we test the inversion workflow for the frequency-dependent mesoscopic loss which is responsible for the P- wave seismic
energy dissipation mechanisms at seismic frequencies range (Tisato & Quintal 2013). The magnitude of the seismic energy attenuation is
associated with both characteristics of the reservoir strata and of the fluid within pores (Carcione & Picotti 2006). We model the frequency-
dependent QP based on White’s analytical solution (Appendix A) at various vertical locations by using the well log data with the parameters
given in Table 1. We then apply the inversion technique to invert the seismic frequency-dependent P-wave quality factors. The results for a
subset of frequencies are shown in Fig. 11 in the partially saturated reservoir zone. The inverted QP curves are in good agreement with the
reference models, especially at lower frequencies. Fig. 12 shows a comparison of the theoretical P-wave attenuation computed from White’s
model and the predicted P-wave attenuation estimated with the inversion method, which has been made for a broad range of seismic frequencies
and demonstrates a high good correlation. This shows the efficiency of the inversion process to estimate the fluids-related attenuation from
seismic gather. Thus, our proposed inversion method can be used to locate partially hydrocarbon zones. At higher frequencies, the FAVO
inversion overestimates the P-wave attenuation but the difference in magnitude is small.
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Figure 3. Example 1—Reference model variables including P- and S-wave velocities, density and P- and S-quality factors, with respective initial guesses.

Figure 4. Example 1—Synthetic seismic pre-stack gathers with different noise levels (no noise and S/N = 50).
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Figure 5. Example 1—Inverted model variables including P- and S-wave velocities, density and P- and S-quality factors.

Finally, we propose an uncertainty quantification study where we investigate the uncertainty of the solution as a function of the variability
of the initial model. The uncertainty is quantified using a Monte Carlo simulation where we generate a set of initial models and predict
the corresponding set of posterior solutions. The variability of the posterior ensemble of solutions is used to investigate the uncertainty
propagation with respect to the initial uncertainty. We first generate a set of 75 initial models of the five unknown model variables by sampling
from a multivariate Gaussian distribution estimated from the well logs of the properties. The initial models are simulated according to a
spatial correlation model (Grana et al. 2021) estimated from the well log (Fig. 13). We then apply the proposed inversion method to each
initial realization to obtain the distribution of the inverted models (Fig. 14). The uncertainty in the inverted models of the model variables is
relatively narrow despite the large variability in the initial realizations, which shows that the presented inversion scheme is very stable and
precise.

4 D I S C U S S I O N

The proposed inversion is relying on the gradient descent method which requires the computation of the first-order gradients of the data misfit
in respect of the unknown model variables. By defining the Lagrangian formulation, we derive the adjoint solutions and the gradients of the
data misfit function, leading to a more efficient algorithm compared to the classic non-linear inverse theory. Furthermore, the optimal solution
is obtained by minimizing the misfit function iteratively and by using the non-linear L-BFGS optimization method.

Global optimization is often used in seismic inverse modelling (Sen & Stoffa 2013) thanks to its ability to explore the model space
and avoid local minima; however, for the proposed seismic inverse problem, local optimization can produce results comparable to global
optimization with a lower computational cost, as seismic data provide relative information about the property contrasts at the interfaces and
the solution is expressed as a perturbation of the low-frequency model. Because of the seismic noise and the band-limited nature of the
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Figure 6. Example 1—Comparison of initial and inverted properties estimated from the noisy seismic data.

seismic data, the solution is not unique and the objective function might include several local minima. For this reason, we propose a sensitivity
study on the initial guess of the inversion to investigate the variability of the solution with respect to the initial model. On the other hand,
the Bayesian methods for seismic inverse problems (Mosegaard & Tarantola 1995; Sen & Stoffa 1996; Buland & Omre 2003; Doyen 2007;
Avseth et al. 2010; Grana et al. 2021) can be extended to viscoelastic inversion; however, the computational efficiency of the Bayesian inverse
methods generally requires assumptions on the linearization of the forward model and the Gaussian distribution of the model variables. In the
Bayesian context, Monte Carlo simulation methods can also be applied for non-linear inverse problems with complex prior models (Cordua
et al. 2012; de Figueiredo et al. 2019), but the application to large geophysical data sets is generally not feasible because of the spatial
correlation of the model variables (Grana et al. 2022).

The forward model is relying on the frequency-angle dependent linearized AVO equation derived from constant Q models for the P-
and S-wave quality factors, where the seismic response depends on the incident angles and the seismic frequencies. In the objective function
of the inversion, we did not apply weights associated with angles nor frequencies, as the calibration of such weights is often challenging
as it depends on uncertain information such as acquisition and processing parameters. In the inversion, all frequencies and angles are used
simultaneously to define the update direction of the optimization step. Hierarchical approaches for the sequential inversion with respect to the
frequency or angles could also be applied but it might strengthen the crosstalk. The proposed inversion accounts for the velocity dispersion
in both P- and S-wave velocities as the derived gradient eqs (B1) and (B2) for VP and VS variables are frequency-dependent. The inversion
predicts the model variables by simultaneously modelling the multi-angles broad-band frequencies.

The viscoelastic inversion shows crosstalks between model variables, specifically seismic velocities and quality factors. Based on our
tests, the velocity variables are dominant over the quality factors; hence to avoid the crosstalk, we perform the inversion in two steps: first,
we invert the seismic data for the most sensitive properties, for example seismic velocities and bulk density; then we apply inversion process
for the less sensitive variables, for example quality factors. This approach provides stable inversion results for less sensitive properties. In
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Figure 7. Example 2—Reference model variables (left-hand panel) and inverted variables (right-hand panel) including P- and S-wave velocities, density and
P- and S-quality factors.

general, due to a lower sensitivity of the shear wave quality factor to the seismic data, it is more challenging to accurately estimate the QS

when the seismic data is noise contaminated.
The proposed sensitivity analysis aims to quantify the uncertainty of the inverted model as a function of the variability of the initial

models. Approximate Bayesian Computation and Markov chain Monte Carlo methods could also be used to assess the posterior uncertainty
in a Bayesian setting; however, the computational cost of these techniques is generally higher than the proposed sensitivity. Another approach
for uncertainty quantification in the context of local optimization is the calculation of the inverse Hessian matrix around the convergence
point as a proxy to the model covariance matrix, which provides an estimate of the null space around the solution of the optimization problem.

One of the main limitations of the described method is the instability of the solution for the quality factors in case of noisy data. This
effect can be mitigated by Tikhonov regularization which improves the stability of the optimized model. The solution shows some dependency
on the initial model possibly due to the presence of noise in the data, the approximation of the seismic forward model, and the local minima of
the objective functions; however, the proposed uncertainty quantification captures the variability of the solution as a function of the uncertainty
of the initial model.

5 C O N C LU S I O N S

We proposed a constrained non-linear frequency-angle-dependent pre-stack inversion method to estimate seismic properties in viscoelastic
media. The inversion of an-elastic properties, which are the P- and S-wave attenuation described as inverse quality factors (QP and QS), in
addition to seismic velocities and density, provides high-resolution seismic images which can be used in the geophysical exploration and
seismic monitoring of hydrocarbon fields, as well as in geothermal energy or geological sequestration of CO2. The inversion algorithm relies
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Figure 8. P-wave attenuation results: (top panel) P-attenuation as a function of water saturation estimated by using nearly constant Q-model (red dashed line
for the gas–water case and solid green line for the oil–water case); (middle panel) P-attenuation as a function of frequencies at different gas–water saturation
computed at mesoscopic scale using White’s analytical solution and (bottom panel) P-attenuation for the gas–water and oil–water cases as a function of
frequency in the case of Sw = 0.9 at the mesoscopic scale.

Figure 9. Example 3—Water saturation (a) and corresponding P-wave attenuation (b–d): (b) attenuation due to pore fluid heterogeneities in partially saturated
rocks; (c) attenuation due to pore fluid heterogeneities in fully water-saturated rocks and (d) the total attenuation due to both fluid and solid frame heterogeneities.
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Figure 10. Example 3—Seismic response up to the incident angle 30◦ (a), P- and S-wave quality factors calculated from the attenuation logs are given in the
Fig. 9 (b), and the inverted P- and S-wave quality factors estimated by using constant Q rock physics models (c). The solid red curves are the reference models
and the dashed blue curves represent the initial models.

Table 1. The reservoir rock and fluid parameters used in
rock physics models, based on lab measurements and litera-
ture values (Mavko et al. 2020).

Parameters Average values

Effective porosity (φ) 0.26
Permeability (k) 50 mD
Bulk modulus of quartz 37 (GPa)
Bulk modulus of clay 21 (GPa)
Shear modulus of quartz 44 (GPa)
Shear modulus of clay 7 (GPa)
Layer 1 thickness (d1) 0.20 (m)
Layer 2 thickness (d2) 0.50 (m)
Temperature (T) 78.18 (◦C)
Pressure (Pe) 26 (MPa)
Oil API 35
Gas–oil ratio (GOR) 145.7
Density of water (ρo) 987 (kg m–3)
Density of oil (ρo) 821 (kg m–3)
Bulk modulus of oil (Ko) 1.04 (GPa)
Bulk modulus of water (Ko) 2.55 (GPa)
Water viscosity (ηw) 0.001 (Pa.s)
Oil viscosity (ηo) 0.11 (Pa.s)

Table 2. Symbols used for the elastic moduli given in the eqs (A12)–(A14).

Symbol Parameter

EG Plane P-wave modulus of saturated rock
KE Effective bulk modulus
r Ratio of fast P-wave fluid tension to total normal stress ratio
Ksat Gassmann modulus
Ed Dry-rock fast P-wave modulus
M Solid-grain bulk modulus
βc Biot’s coefficient
Kd Frame bulk modulus
Km Solid bulk modulus
μd Shear modulus
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Figure 11. Example 4—Inverted QP at different frequencies together with reference and initial models. The inversion results show a good correlation with the
true models.

Figure 12. Example 4—Comparison of P-wave attenuation curves computed using approximated White’s analytical solution (blue curve) and the proposed
FAVO inversion method (red curve).

on the gradient descent optimization technique in which a differentiable misfit function is iteratively minimized by using a second-order
non-linear L-BFGS algorithm. The least-square misfit function is based on an angle-frequency-dependent forward model of broadband
signals in the frequency domain. The first-order derivatives of the misfit function in respect of five model variables are analytically obtained
using the adjoint-state technique and chain rule of derivatives, which results in an accurate and efficient implementation. The inversion
method was tested on synthetic examples, in 1-D and 2-D, to predict the quality factors and validated for different an-elastic mechanisms and
noise-contaminated seismic data. The results demonstrate that the proposed an-elastic non-linear AVO inversion process accurately retrieves
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Figure 13. Initial realizations of P-wave velocity (a), S-wave velocity (b), density (c), P (d) and S (e) wave quality factors. The mean of the initial models is
also shown in black colour.

Figure 14. Inverted realizations of P-wave velocity (a), S-wave velocity (b), density (c), P (d) and S (e) wave quality factors.

the model variables with good convergence. The inversion process reliably estimates the fluid-related attenuation which demonstrates its
effectiveness to be used as a direct fluid indicator. In the case of noisy data, the inversion results might show some instability and the solution
might depend on the choice of the prior realization. In this case, we recommend the application of regularization parameters to obtain a stable
estimation.
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A P P E N D I X A : RO C K P H Y S I C S M O D E L S F O R Q UA L I T Y FA C T O R S

The Waters empirical expressions (Waters & Waters 1981) in relation to P- and S-wave velocities VP and VS (expressed in km s−1) are:

Q P = 10.76 × VP , QS = 10.76 × VS . (A1)

In the Dvorkin–Mavko nearly constant Q approximations, the formulation follows the wave-induced fluid flow (WIFF) mechanism and the
order of magnitude of the P-wave seismic attenuation (inverse quality factor) is proportional to the contrast between relaxed and unrelaxed
moduli (Mavko et al. 2020) as:

1

Q P
≈ M∞ − M0√

M∞ M0

, (A2)

where M0 and M∞ are the low frequency (relaxed) and high frequency (unrelaxed) limits of the compressional P-wave modulus MP,
respectively. The low-frequency limit (M0) is obtained using Gassmann’s fluid-substitution while the high-frequency limit (M∞) is calculated
using the patchy-saturation model (Mavko et al. 2020). The P-wave seismic attenuation depends on the difference between the two moduli.
The S-wave seismic attenuation (Q−1

S ) is computed using a rock physics model for fully water-saturated rocks with heterogeneous solid frame
(Dvorkin & Mavko 2006) as:

(
Q P-wet

QS-wet

)−1

= 5

4

(γ − 2)2

(γ − 1)

(
2γ

3γ − 2

γ

3γ − 3

)−1

, γ =
(

VP-wet

VS-wet

)2

, (A3)
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where the subscript wet means that the rock is fully saturated with water and the attenuation depends on the spatial heterogeneity of the rocks.
For fully water-saturated rocks, the low-frequency limit of the P-wave modulus is obtained as:

M0−wet = Mmin
φ̄ Mdry − (1 + φ̄)Kw Mdry/Mmin + Kw

(1 − φ̄)Kw + φ̄ Mmin − Kw Mdry/Mmin

, (A4)

where φ̄ = 〈φ〉 and Mdry =
〈
M−1

dry

〉−1
represent the arithmetic average of porosity and a harmonic average of dry-rock modulus and Mmin and

Kw are mineral and water moduli, respectively. The unrelaxed limit is computed as:

M∞−wet =
〈(

Mmin
φ Mdry − (1 + φ)Kw Mdry/Mmin + Kw

(1 − φ)Kw + φ Mmin − Kw Mdry/Mmin

)−1
〉−1

. (A5)

The P-wave seismic attenuation (Q−1
P ) is calculated from eq. (A2) by replacing the relaxed and unrelaxed moduli with M0−wet and

M∞−wet. Finally, P- and S-wave velocities for water-saturated rocks (VP−wet and VS−wet) are calculated using Gassmann’s fluid substitution
model by assuming the rock is fully saturated with water (Ahmed et al. 2017). The total attenuation is the sum of the two attenuation curves,
that is the sum of the attenuation due to fluid and elastic heterogeneity in rock (Mavko et al. 2020).

Several studies (White 1975; White et al. 1975; Pride et al. 2004; Quintal et al. 2009, 2011; Tisato & Quintal 2013; Khalid & Ahmed
2016; Ehsan et al. 2016) demonstrate that the P-wave attenuation is frequency-dependent in partially saturated rocks due to wave-induced
fluid flow (WIFF). Here, we use the analytical solution of White’s 1-D interlayer-flow model (a 1-D WIFF model) given by Quintal et al.
(2009) to estimate the frequency-dependent QP.

White’s analytical solution (White 1975) for the interlayer-flow model describes the P-wave attenuation as frequency-dependent for a
set of reservoir rock properties. Quintal et al. (2009) reformulated White’s analytical solution as follows:

Q−White = Re(b)

Im(b)
, (A6)

where Re and Im represent the real and imaginary parts while b is a complex number given by:

b = (
1 + (I1g1 + I2g2)−1

)−1
. (A7)

The complex P-wave modulus (H) is defined by the product of real numbers E0 and b.

H = E0b, (A8)

where

E0 =
(

p1

EG1
+ p2

EG2

)−1

. (A9)

Indexes 1 and 2 describe the two different porous media and for each single saturated porous medium (j = 1,2). The equations are:

g j = KE j

2E0(r2 − r1)2 p j
, I j = √

iω′s j coth

(√
iω′s j

2

)
, s j = η j d2

j

KE j k j
(A10)

p = d

d1 + d2
. (A11)

In the above equations, ω
′ = 2π f, k and η are angular frequency, permeability and fluid viscosity while p and d refer to the saturation levels

and layer thicknesses, respectively. The rest of the elastic properties (without index j) are given below and symbols are defined in Table 2.

EG = Ksat + 4

3
μd , KE = Ed M

EG
, r = βc M

EG
(A12)

Ksat = Kd + β2
c M, βc = 1 − Kd

Km
, M =

[
βc − φ

Km
+ φ

K f

]−1

(A13)

and

Ed = Kd + 4

3
μd . (A14)

A P P E N D I X B : PA RT I A L D E R I VAT I V E S O F T H E L A G R A N G I A N

The derived partial derivatives of the Lagrangian of the misfit function are as follows:
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∂L
∂VP [i]

=
∫

θ, ω

dθ

{
A

α[i − 1]
λ[i − 1] − A

α[i]
λ[i] − A�α[i − 1]

2α[i − 1]2
λ[i − 1] − A�α[i]

2α[i]2
λ[i]

+ 4β[i − 1]2

α[i − 1]3
sin2 θ

�β[i − 1]

β[i − 1]
λ[i − 1] + 4β[i]2

α[i]3
sin2 θ

�β[i]

β[i]
λ[i]

+ 2β[i − 1]2

α[i − 1]3
sin2 θ

�ρ[i − 1]

ρ[i − 1]
λ[i − 1] + 2β[i]2

α[i]3
sin2 θ

�ρ[i]

ρ[i]
λ[i]

+ 4

π

β[i − 1]2

α[i − 1]3
sin2 θ ln

(ωo

ω′

) �S[i − 1]

S[i − 1]
λ[i − 1]

+ 4

π

β[i]2

α[i]3
sin2 θ ln

(ωo

ω′

) �S[i]
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λ[i]

}
(B1)

∂L
∂VS[i]

=
∫

θ, ω

dθ
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sin2 θ ln
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}
(B2)

∂L
∂ρ[i]

=
∫

θ

dθ
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C[i − 1]

(
1

ρ[i − 1]
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λ[i − 1] − C[i]
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ρ[i − 1]2
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(
�ρ[i]

ρ[i]

)
λ[i]

}
(B3)

∂L
∂ξP [i]

=
∫

θ, ω

dθ

{
D

P [i − 1]
λ[i − 1] − D

P [i]
λ[i] − D

2

�P [i − 1]

P [i − 1]2
λ[i − 1] + D

2

�P [i]

P [i]2
λ[i]

}
(B4)

and

∂L
∂ξS[i]

=
∫

θ, ω

dθ

{
E

S[i − 1]
λ[i − 1] − E

S[i]
λ[i] − E

2

�S[i − 1]

S[i − 1]2
λ[i − 1] − E

2

�S[i]

S[i]2
λ[i]
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. (B5)

The state variable λ is given by the equation as:

λ[i] = −
p∑

ω′=1

W (ω′) ∗ (d[i] − f [i])(ω̂).δ(ω′ − ω̂). (B6)
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