
RESEARCH ARTICLE

Teacher-student approach for lung tumor

segmentation from mixed-supervised

datasets

Vemund Fredriksen1☯, Svein Ole M. Sevle1☯, André PedersenID
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Abstract

Purpose

Cancer is among the leading causes of death in the developed world, and lung cancer is

the most lethal type. Early detection is crucial for better prognosis, but can be resource

intensive to achieve. Automating tasks such as lung tumor localization and segmentation in

radiological images can free valuable time for radiologists and other clinical personnel. Con-

volutional neural networks may be suited for such tasks, but require substantial amounts of

labeled data to train. Obtaining labeled data is a challenge, especially in the medical

domain.

Methods

This paper investigates the use of a teacher-student design to utilize datasets with different

types of supervision to train an automatic model performing pulmonary tumor segmentation

on computed tomography images. The framework consists of two models: the student that

performs end-to-end automatic tumor segmentation and the teacher that supplies the stu-

dent additional pseudo-annotated data during training.

Results

Using only a small proportion of semantically labeled data and a large number of bounding

box annotated data, we achieved competitive performance using a teacher-student

design. Models trained on larger amounts of semantic annotations did not perform better

than those trained on teacher-annotated data. Our model trained on a small number of

semantically labeled data achieved a mean dice similarity coefficient of 71.0 on the MSD

Lung dataset.
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Conclusions

Our results demonstrate the potential of utilizing teacher-student designs to reduce the

annotation load, as less supervised annotation schemes may be performed, without any

real degradation in segmentation accuracy.

Introduction

Cancer is becoming the leading cause of death and the most significant obstacle to increase life

expectancy in many countries [1]. Lung cancer, accounting for more than 11% of all new

cases, is the second most common cancer and it ranks first among the cancer-related mortality

worldwide, accounting for 18% of the total cancer deaths [2]. The most common lung cancer

treatments include: surgical resection, chemotherapy, radiotherapy, and immunotherapy.

Many of these treatments, and also the successful diagnosis with bronchoscopy or computed

tomography (CT)-guided biopsy, depend on accurately locating, and in many cases delineat-

ing (segmenting), the tumor from normal tissue in the preoperative images, typically CT.

Manual segmentation of the lesions/tumors from preoperative CT is a laborious and

tedious process for oncologists, radiologists, and pulmonologists, which could result in delays

of treatment and lower the survival rates, especially in clinics with inadequate resources. In

addition, the quality of manual localization and segmentation relies on prior knowledge and

clinical expertise. Even with adequate guidelines and standards, tumor segmentation is often

prone to high inter- and intraobserver variability. On the other hand, automatic segmentation

techniques has the potential to provide efficient, consistent, and more accurate results. Auto-

matic methods can both shorten the time needed to read the images and they also allow

experts to devote their limited time to optimize planning and treatment planning.

Related work

Historically, methods like thresholding [3], region growing [4, 5], and graph cuts [6] were

commonly proposed to segment lung tumors from CT images. These algorithms are suitable

as semi-automatic methods, but are not suited for localization of lung tumors. Recent advance-

ments in deep learning enables automation of tasks that until recently was only performed by

trained experts [7, 8]. Advancements in hardware has enabled development of larger and

increasingly complex models, but much of the improvement is caused by access to large

amounts of annotated data.

Today, especially after the introduction of the U-Net [9] architecture, deep learning meth-

ods have dominated the field of medical image segmentation [10]. However, convolutional

neural networks (CNNs) are memory intensive, especially for 3D volumes. It is therefore com-

mon to train networks based on 2D or 2.5D input images [11], where the model evaluates one

slice at a time, chunks of slices, or 3D patches, and then applied in a sliding windows fashion

across the CT volume. Patching the 3D volume comes at a cost of loss of perception, and thus

more efficient multi-scale 3D CNN architectures have been proposed, which enables the use of

larger input volumes [12]. An alternative approach is to perform segmentation in multiple

steps, either using multiple algorithms or a cascade of CNNs [11, 13–15].

To accommodate the issue of lacking training data, unsupervised methods like supervoxel

has been proposed [16]. To facilitate faster convergence and more accurate results, multi-

modality methods that utilize magnetic resonance imaging (MRI) or positron emission
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tomography (PET) scans in addition to CT have been suggested [17–19]. Neural network

architectures that can utilize multiple annotation types has also been suggested [20, 21].

A more recent strategy to accommodate the lack of training data is the teacher-student

design, inspired by the concept of knowledge distillation [22–24]. The teacher creates

pseudo-annotations from suboptimal annotations to increase the dataset size for training the

student. The teacher-student pattern can be applied to any type of network architecture, and

does not dictate other hyperparameters or external configurations. A teacher-student design

can be used in different ways, from utilization of unlabeled data [25–27], to exploitation

of multiple modalities [18, 19, 27], and to usage of datasets with different annotation types

[28, 29].

Contributions

Our approach differs from the previously mentioned methods applied to lung tumor segmen-

tation by utilizing annotations of different supervision on the same modality, namely CT

images. Since CT scanning is less invasive to the patient than the other modalities, it is a goal

to efficiently segment tumors from CT-only examinations. Our method is inspired by Sun

et al. [28] that shows promising results using a teacher-student framework to segment liver

and liver lesions given semantic and bounding box annotations. To the best of our knowledge,

we are the first to implement a similar teacher-student framework for CT images to perform

semantic segmentation of lung tumors. Our study suggests that even with a small dataset of

semantic annotations, a student can achieve state-of-the-art performance given a large enough

pseudo-annotated dataset to learn from.

Materials and methods

Our method consists of two separate models: a semi-supervised teacher and a fully-automatic

student. The method relies on two different annotation types: semantic 3D annotations and

2D bounding boxes in the axial planes. These we refer to as strong and weak annotations. Fur-

thermore, we define our strongly and weakly annotated datasets as Ds ¼ fSix; S
i
yg

ms
i¼1

and

Dw ¼ fWi
x;W

i
yg

mw
i¼1

, respectively. An overview of our design can be seen in Fig 1.

Data

To study the effect of our teacher-student framework we used three public datasets: Medical

Segmentation Decathlon (MSD)-Lung [30], Non-Small Cell Lung Cancer (NSCLC)-Radio-

mics [31, 32], and Lung-PET-CT-Dx [33]. All three datasets contain manual annotations by

human experts. The first two datasets consist of semantic annotations, whereas the latter data-

set contains bounding box labels annotated in the axial plane.

The MSD-Lung dataset contains 64 images, whereas the NSCLC-Radiomics and Lung-

PET-CT-Dx datasets contains 422 and 1295 images, respectively. Multiple images in the Lung-

PET-CT-Dx dataset were discarded. The discarded images were either PET or PET/CT-fused,

only contained a small portion of the thorax, or comprised of multiple scans stacked on top of

each other. After removing all non-CT images and images with a real-world length (Z-axis)

outside the range [16, 60] cm, 665 images from Lung-PET-CT-Dx remained in our dataset.

The three datasets varied in terms of voxel density and tumor sizes. Overall, the Lung-

PET-CT-Dx and the NSCLC-Radiomics datasets contain larger tumors than the MSD-Lung

dataset (see Table 1). The tumor diameter is an approximate size, measured by calculating the

average of the longest and shortest diameter of the tumor in real-world coordinate space.
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Preprocessing

Our preprocessing pipeline consisted of multiple steps. Firstly, the voxel intensities were

clipped to the range [-1024, 1000], before being standardized using the Z-score normalization

method. The images’ voxel spacing were then normalized to an anisotropic resolution of 1 × 1

× 1.5 mm3. Lastly, a volumetric cropping was applied, which differed between the teacher and

the student.

For the teacher, the images were cropped around the tumor with a fixed resolution of

128 × 128 × 128 voxels, whereas for the student, the images were split in two, each cropped

around one of the lungs. The lungs were automatically segmented using the lungmask com-

mand line tool [34], and used when performing cropping around the lungs. The ground truth

label images were voxel normalized and cropped in a similar manner as their corresponding

CT image.

Teacher-student design

The teacher was trained on 3D patches surrounding the tumor, guided by the corresponding

bounding box annotations. Once trained, the teacher was applied to Dw to generate pseudo-

strong labels, Dw0. Although expert labeled images are the gold standard, teacher pseudo-

Fig 1. The method overview during training. Firstly, the teacher was trained using the strong dataset (semantic

annotated images) represented with blue lines. The teacher was then used to make semantic annotations for the weak

dataset (bounding box annotated images). The student was then trained on both the pseudo-annotated dataset Dw0,

represented by the orange lines, and the strong dataset Ds.

https://doi.org/10.1371/journal.pone.0266147.g001

Table 1. Tumor sizes of the three datasets.

Dataset Volume [cm3] Diameter [mm]

MSD-Lung 21.98 ± 51.66 37.63 ± 20.08

NSCLC-Radiomics 75.37 ± 96.30 63.63 ± 29.62

Lung-PET-CT-Dx 63.67 ± 86.26 48.66 ± 19.85

https://doi.org/10.1371/journal.pone.0266147.t001
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annotated images can enhance training of fully automatic models, or even be used to aid

experts in clinical use.

The student, like any ordinary automatic method, takes CT images as input and produces

3D segmentations of the potential lung tumors without user interaction. During training, the

student exploits the pseudo-annotated images in Dw0 produced by the teacher, using the

extended dataset, {Ds, Dw0}. Once trained, the student can perform end-to-end segmentation

without human intervention. Algorithm 1 describes the training scheme. Wx and Sx denote

inputs of weakly labeled and strongly labeled dataset, respectively. Likewise, Wy and Sy denote

weak and strong annotations.

Algorithm 1 Model training scheme
for each: (Sx, Sy) 2 Ds ⊳ Train teacher on strong dataset
1: Sy0  transform_to_weak(Sy) ⊳ Create weak annotations from

strong labels
2: W0

y0  teacher:predictðSx;WyÞ ⊳ Prediction with image and weak label as
input

3: loss  calculate_loss(Sy, Wy0) ⊳ Calculate loss from output and
strong label

4: teacher.adjust_weights(loss) ⊳ Backpropagate after every batch
for each: (Wx, Wy) 2 Dw ⊳ Annotate weak dataset with trained

teacher
5: W0

y  teacher:predictðWx;WyÞ ⊳ Prediction with image and weak label as
input

6: Dw0.insert(Wx, Wy) ⊳ Store input and teacher-annotated output in
Dw0

for each: (x, y) 2 Ds
S

Dw0 ⊳ Train student on extended dataset
7: y0  student.predict(x) ⊳ Prediction on image
8: loss  calculate_loss(y, y0) ⊳ Calculate loss from output and

label
9: student.adjust_weights(loss) ⊳ Backpropagate after every batch

Implementation

All our networks are based on the U-Net architecture [9], and share common building blocks

(see Fig 2). U-Net was used as it performs well as a baseline architecture, and has shown com-

petitive performance on various datasets from different modalities, of different organs, cancer

types, and data types [14, 35].

The teacher consists of three levels, one of each downsampling operation, going from an

image resolution of 128 × 128 × 128 to 16 × 16 × 16. The students are comprised of four levels.

In contrast to the U-Net architecture, our design performs downsampling by applying 3D con-

volutions with a stride of two. We also substituted the ReLU [36] activation function with

PReLU [37]. We implemented two related students: one that produces semantic segmentation

output only, which we call the Single Output Student (SO Student), and one that produces an

additional output approximating the bounding box surrounding the tumor in the axial plane,

which we call the Dual Output Student (DO Student). The architecture of the student networks

can be seen in Fig 2.

Firstly, the original U-Net design was too heavy to be applied in 3D directly. The architec-

ture was therefore tuned to be better suited for the task and dataset. Hyperparameters were

chosen through a systematic search. However, a rigorous search was not feasible due to the

long training runtime. The teacher architecture and training hyperparameters were then fro-

zen, before the teacher-student design was introduced. This was done to make comparison fair

between the designs.
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The SO student was one level deeper than the teacher, but trained in the same manner. The

DO student was identical to the SO student, but a second decoder branch was added to investi-

gate the potential benefit of using both annotation types (semantic and bounding box labels)

in training. The second decoder branch had a second loss to predict bounding boxes. The aim

of the second branch was to improve localization of the tumor, as using the bounding

box labels would make it learn different features.

The Adam [38] optimizer with a learning rate of 10−4 was used for training until DSC vali-

dation convergence. The batch size was set to one and virtually increased to eight using accu-

mulated gradients. The gradients were computed using the Dice Loss function [39], based on

the Dice Similarity Coefficient (DSC). The models were trained for a maximum of 350 epochs,

or until overfitting occured. The best model was selected based on the lowest validation loss.

Empirical evaluation

To evaluate our framework we considered two primary scenarios, each with two sub-experi-

ments. We considered one scenario where the size of the strongly annotated dataset (� 500

images) is similar to the size of the weakly annotated dataset (� 750 images), and another sce-

nario where the strongly annotated dataset was considerably smaller (� 50 images) than the

weakly annotated dataset(� 1000 images). Within each scenario, we evaluated two semi-super-

vised models and three fully-automatic models. Among the three fully-automatic models, one

model was trained solely on strongly annotated data, whereas the two other were student net-

works trained both on strongly annotated data and the teacher-annotated pseudo labels.

We used different metrics for evaluating and comparing the models. The DSC was used to

measure the semantic segmentation performance, whereas F1-score was used to determine

object-wise localization performance. We also used DSC-TP to evaluate the segmentation

accuracy considering only true positives (TPs). We considered objects to be true positives if

there were� 25% overlap between the predicted mask and the GT mask, motivated by a prior

study [40].

Fig 2. The network architectures. The single output (SO) Student is highlighted in colors whereas the decoder branch of the dual output (DO) Student

is implicated in gray. For the DO Student the ouput of the two decoder branches are concatenated to form a dual-channeled output. The teachers have

the same architecture as the SO Student, but with three downsamplings rather than four.

https://doi.org/10.1371/journal.pone.0266147.g002
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The test set was sampled at random and accounted for 15% of the total dataset. The same

split was used for all experiments to preserve fairness in evaluation. Patients with multiple

scans were stratified into the three subsets: train, validation, and test. To counter the tumor

size imbalance, we balanced the train and validation sets with regard to tumor sizes. Images

containing tumors of more rare sizes were upsampled.

Models were trained using a workstation with a 14-core Intel Core i9 10940X @3.30 GHz

CPU, 128 GB RAM, and two NVIDIA RTX 8000 (48 GB) GPUs. The most memory intensive

student used, at its peak,�22.54GB VRAM during training, but inference can be performed

with 3GB VRAM. Implementation was done in Python 3.7, built upon the MONAI [41]

framework (v0.4.0), using PyTorch v1.6, and CUDA 11.0. The best performing model and cor-

responding inference code are made openly available as a command line tool at https://github.

com/VemundFredriksen/LungTumorMask.

Results

Vast strongly annotated dataset

As seen in Table 2, the teacher guided by the bounding boxes, outperformed the point guided

(without bounding boxes as input) teacher on both datasets in terms of DSC. The difference

between the two models was less prominent measured on the MSD-Lung dataset than for the

NSCLC-Radiomics dataset.

For the final inference models, the DSC was highest on the MSD-Lung dataset, across all

three models (see Table 3). The best performing student network overall was the SO Student,

with highest DSC on the MSD-Lung dataset. There was negligible difference between the three

Table 2. Teacher results.

Dataset Model DSC

MSD-Lung Point Guided 74.78 ± 11.83

Box Guided 84.91 ± 06.09

NSCLC-Radiomics Point Guided 59.57 ± 23.90

Box Guided 86.65 ± 08.77

Both Point Guided 61.48 ± 23.29

Box Guided 86.44 ± 08.50

The best performing model with respect to mean dice similarity coefficient (DSC) is highlighted in bold.

https://doi.org/10.1371/journal.pone.0266147.t002

Table 3. Student results.

Dataset Model DSC DSC-TP F1-score Recall Precision

MSD-Lung Baseline 67.31 ± 21.17 73.12 ± 15.16 81.48 ± 31.86 88.89 ± 31.43 77.78 ± 34.25

SO Student 64.27±16.05 71.32±8.06 81.48 ± 31.86 88.89 ± 31.43 77.78 ± 34.25

DO Student 55.37 ± 29.03 70.49 ± 8.82 74.07 ± 40.91 77.78 ± 41.57 72.22 ± 41.57

NSCLC-Radiomics Baseline 51.06 ± 28.22 68.81 ± 18.27 63.56 ± 36.36 83.82 ± 36.82 56.68 ± 38.65

SO Student 52.92 ± 31.13 69.39 ± 19.21 64.18 ± 37.37 79.90 ± 39.66 58.76 ± 39.28

DO Student 52.25 ± 30.18 68.69 ± 19.47 68.43 ± 38.71 79.17 ± 39.75 64.95 ± 40.81

Both Baseline 52.96 ± 27.98 69.34 ± 17.97 65.66 ± 36.32 84.41 ± 36.27 59.14 ± 38.76

SO Student 54.25 ± 29.99 69.63 ± 18.19 66.20 ± 37.19 80.95 ± 38.90 60.98 ± 39.21

DO Student 52.61 ± 30.06 68.90 ± 18.59 69.09 ± 39.02 79.00 ± 39.97 65.80 ± 40.97

For each respective metric, the best performing models are highlighted in bold.

https://doi.org/10.1371/journal.pone.0266147.t003
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models on the NSCLC-Radiomics dataset. The Baseline model performed best on the

MSD-Lung dataset, both in terms of DSC and F1-score.

Scarce strongly annotated dataset

When reducing the strongly labeled dataset, the performance of the point guided teacher was

degraded, whereas the box guided teacher still performed well (see Table 4).

A similar trend applies to the final inference models (see Table 5). The baseline model per-

formed poorer, whereas the student networks still performed well. The same can be seen from

the object-wise metrics, although the difference was more prominent. Contrary to the results

shown in Table 3, the SO Student had the highest DSC measured in this scenario. Fig 3 shows

a sample of the outputs produced by the models in the scarce scenario.

Discussion

In this paper, a teacher-student design to segment lung tumors from CTs has been proposed.

Three datasets of two different annotation types were used for this purpose. The teacher model

was first trained on the datasets that had strong annotations. It was then used to generate

pseudo-strong annotations for the student. Both the teacher and the student used U-Net-like

architectures, and were evaluated on segmentation performance. In addition, the student net-

works were evaluated on sensitivity to annotation type and sample size.

We observed that the box guided teacher outperformed the point guided teacher in both

scenarios. This was expected as the bounding box annotations assist the teacher by serving as a

segmentation and localization constraint. The effect of the box guidance is especially visible in

Table 4. Scarcely trained teacher results.

Dataset Model DSC

MSD-Lung Scarce Point Guided 48.52 ± 31.18

Scarce Box Guided 81.65 ± 07.40

NSCLC-Radiomics Scarce Point Guided 43.83 ± 25.65

Scarce Box Guided 84.69 ± 06.59

Both Scarce Point Guided 44.42 ± 26.45

Scarce Box Guided 84.31 ± 06.77

The best performing model with respect to mean dice similarity coefficient (DSC) is highlighted in bold.

https://doi.org/10.1371/journal.pone.0266147.t004

Table 5. Scarcely trained student results.

Dataset Model DSC DSC-TP F1-score Recall Precision

MSD-Lung Baseline 26.45 ± 26.56 75.24 ± 15.90 09.10 ± 13.26 33.33 ± 47.14 05.31 ± 07.80

SO Student 64.74 ± 11.82 71.56 ± 10.40 61.85 ± 16.49 100.0 ± 0.00 47.22 ± 20.79

DO Student 71.00 ± 16.01 76.67 ± 07.08 85.18 ± 31.86 88.89 ± 31.43 83.33 ± 33.33

NSCLC-Radiomics Baseline 28.23 ± 28.05 55.39 ± 22.80 32.13 ± 36.99 51.47 ± 49.24 26.99 ± 35.68

SO Student 51.06 ± 30.75 68.56 ± 20.69 62.65 ± 36.73 79.41 ± 39.51 56.67 ± 38.79

DO Student 53.89 ± 29.75 67.44 ± 21.70 66.96 ± 35.57 84.56 ± 35.62 60.44 ± 38.24

Both Baseline 28.02 ± 27.89 56.91 ± 22.96 29.44 ± 35.82 49.35 ± 49.34 24.45 ± 34.35

SO Student 52.66 ± 29.51 68.98 ± 19.60 62.55 ± 34.98 81.82 ± 37.72 55.56 ± 37.26

DO Student 55.89 ± 29.01 68.56 ± 20.71 69.09 ± 35.64 85.06 ± 35.18 63.12 ± 38.41

For each respective metric, the best performing model is highlighted in bold.

https://doi.org/10.1371/journal.pone.0266147.t005
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the scarce scenario, where the box guided teacher achieved almost double the DSC as the point

guided one. The scarce box guided teacher also outperformed the vast point guided teacher.

This suggests that training a teacher on a smaller set of bounding box annotated images can be

advantageous compared to training a teacher on a large set of point guided images.

Surprisingly, the students did not perform better than the baseline in the scenario with vast

strongly annotated data (see Table 3). Measured on the MSD-Lung dataset, the baseline model

outperformed the two students, whereas the opposite was observed for the NSCLC-Radiomics

dataset. A potential explanation might be that the Lung-PET-CT-Dx dataset contains tumors

with sizes more similar to the NSCLC-Radiomics dataset than to the tumors in MSD-Lung.

The introduction of the Lung-PET-CT-Dx dataset may have led the students to perform better

on larger tumors, but may have degraded the results on smaller tumors typically found in

MSD-Lung. Another explanation might be that the ratio between strong and weak labels were

not large enough to make a noticeable difference. This was further demonstrated when the

models were evaluated in the scarce scenario (see Table 5). In this scenario, the students signif-

icantly outperformed the baseline supervised model. This demonstrates that the introduction

Fig 3. A sample of the results produced by the scarce students on the test set. The figure shows the input image, bounding box, and

ground truth (GT) mask in the three top rows, respectively. The baseline model, single output (SO) Student, and dual output (DO)

Students corresponding outputs are shown in the three bottom rows, respectively.

https://doi.org/10.1371/journal.pone.0266147.g003
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of suboptimal annotations into the teacher-student design can improve performance of an

end-to-end segmentation model.

State-of-the-art comparison

We observed a DSC comparable with state-of-the-art performance measured on the

MSD-Lung dataset, with a F1-score of 85.18, and a DSC of 71.00, for one of our students. Isen-

see et al. [14] reported a DSC of 69.2 on the MSD-Lung dataset, whereas Carvalho et al. [11]

reported a DSC of 70.9. Our model trained on only 40 human annotated images scored mar-

ginally better, although on a different test set. Other state-of-the-art results demonstrated bet-

ter performance on the radiomics dataset. Pang et al. [42] reported a DSC of 77.67 whereas

Kamal et al. reported a DSC of 72.28, and Hossain et al. [13] a DSC of 65.77, respectively.

However, all of these related work performed considerable data sanitation, which we did

not, making the comparison unfair. Furthermore, our results suggest that 40 images is not

enough to train a supervised model, but enough to train a semi-supervised model that can

enhance a supervised model by increasing the available data in a cheaper way than manual

delineation. This finding highlights the advantage of using a teacher-student design, such as

ours, that can utilize datasets with poorer annotations. It is considerably faster to annotate

tumors with bounding boxes than with semantic segmentation, but with negligible loss in per-

formance. This finding suggests that it is advantageous to spend the time annotating more

images with poorer supervision than to spend the same amount of time annotating fewer

images with higher quality. The other highlighted papers performing lung tumor segmentation

cannot take advantage of this effect as they rely solely on fully supervised training on high qual-

ity data.

Data noise argument

The datasets were of varying quality. The MSD-Lung dataset was of high standard, whereas the

NSCLC-Radiomics dataset was less so. Other publications that used the NSCLC-Radiomics

dataset reported heavy data sanitation, effectively removing large parts of the dataset [13, 42,

43]. We did not override the expert’s annotations, as we also seek to handle suboptimal anno-

tations, if these should be present in a data set. The flawed dataset explains why the difference

between the box guided and point guided teacher is larger on the NSCLC-Radiomics dataset

than MSD-Lung. Images where the tumor is poorly, or even completely wrongly annotated,

the box guided teacher can rely on the bounding boxes to achieve a good DSC, but since the

annotation itself is wrong, the point guided teacher struggles.

Limitations

One of the major limitations in this experiment was the scarce amount of data. The test set was

sampled randomly from each dataset. It is plausible that a different sample of the test set would

have given different result. Although K-fold cross validation could be used to eliminate this

concern, it was dropped due to time limitations. K-fold cross validation is a time consuming

strategy. It depends on training K different models, which would take a considerable amount

of time, even with a small K in our situation. Since our method is a two step method that relies

on two training steps, the K-fold cross validation would take nearly double the time of a similar

single-step method as well.

Another limitations of this experiments was that the students were sensitive to voxel spac-

ing. By reducing the voxel spacing during normalization/preprocessing, thus increasing the

resolution of the image, the DSC did not improve, but actually degraded. Therefore, it is
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possible that the proposed architecture is sensitive to small adjustments in the preprocessing

pipeline.

Future work

An alternative to using 2D bounding boxes in the axial plane, is to use a 3D bounding box. As

one 3D bounding box contains much fewer corners than multiple 2D bounding boxes, this

could further reduce annotation load. It is reason to believe that a teacher trained on 3D boxes

will perform worse than one trained on 2D axial boxes. However, if the reduction in annota-

tion load is significant, the amount of data that can be annotated for the teacher might weigh

up the loss in precision of the annotation. After all, this is the very fundamental idea behind

the teacher-student design. However, we feel that a much larger dataset should be used to

explore this properly.

The main motivation of using a teacher-student design is to improve models by learning

from additional suboptimal annotated or unannotated data. We observed a benefit of using

such a design for lung tumor segmentation in CTs. However, a single-step teacher might not

be sufficient. It has been proposed to train both the teacher and student end-to-end in an itera-

tive fashion [25]. This makes sense as the teacher could improve from the student’s feedback.

Especially from multiple students, which iteratively could improve the students as well, as the

teacher become more experienced. However, for 3D applications this is likely infeasible. Alter-

natively, one could potentially use multiple teachers, trained on different types of images that

focus on different lung tumor types and sizes. Having specialized teachers to train the student

in an ensemble manner makes sense as it more closely represents the natual teacher-student

relation from academia.

Conclusion

We present the first known implementation of a mixed-supervised teacher-student framework

for lung tumor segmentation from CT images. Our method utilized both semantic and axial

bounding box annotations to maximize lung tumor segmentation performance. We demon-

strated that with sufficient bounding box annotated data, our teacher-student framework

achieved state-of-the-art performance, even with scarce semantic annotated data. In a scenario

with only 40 semantic labeled images and�1000 bounding box labeled images, one of our

models reached a mean DSC of 71.0 measured on nine images from the MSD dataset.
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